立体几何大题练习(文科)

立体几何大题练习(文科)
立体几何大题练习(文科)

立体几何大题练习(文科):

1.如图,在四棱锥S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,侧面SAD⊥底面ABCD.

(1)求证:平面SBD⊥平面SAD;

(2)若∠SDA=120°,且三棱锥S﹣BCD的体积为,求侧面△SAB的面积.

【分析】(1)由梯形ABCD,设BC=a,则CD=a,AB=2a,运用勾股定理和余弦定理,可得AD,由线面垂直的判定定理可得BD⊥平面SAD,运用面面垂直的判定定理即可得证;

(2)运用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,运用勾股定理和余弦定理,可得SA,SB,运用三角形的面积公式,即可得到所求值.【解答】(1)证明:在梯形ABCD中,AB∥DC,∠ABC=90°,BC=CD=,设BC=a,则CD=a,AB=2a,在直角三角形BCD中,∠BCD=90°,

可得BD=a,∠CBD=45°,∠ABD=45°,

由余弦定理可得AD==a,

则BD⊥AD,

由面SAD⊥底面ABCD.可得BD⊥平面SAD,

又BD?平面SBD,可得平面SBD⊥平面SAD;

(2)解:∠SDA=120°,且三棱锥S﹣BCD的体积为,

由AD=SD=a,

在△SAD中,可得SA=2SDsin60°=a,

△SAD的边AD上的高SH=SDsin60°=a,

由SH⊥平面BCD,可得

×a××a2=,

解得a=1,

由BD⊥平面SAD,可得BD⊥SD,

SB===2a,

又AB=2a,

在等腰三角形SBA中,

边SA上的高为=a,

则△SAB的面积为×SA×a=a=.

【点评】本题考查面面垂直的判定定理的运用,注意运用转化思想,考查三棱锥的体积公式的运用,以及推理能力和空间想象能力,属于中档题.

2.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.

求证:(1)EF∥平面ABC;

(2)AD⊥AC.

【分析】(1)利用AB∥EF及线面平行判定定理可得结论;

(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.

【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,

所以AB∥EF,

又因为EF?平面ABC,AB?平面ABC,

所以由线面平行判定定理可知:EF∥平面ABC;

(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,

因为BC⊥BD,FG∥BC,

所以FG⊥BD,

又因为平面ABD⊥平面BCD,

所以FG⊥平面ABD,所以FG⊥AD,

又因为AD⊥EF,且EF∩FG=F,

所以AD⊥平面EFG,所以AD⊥EG,

故AD⊥AC.

【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.

3.如图,在三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,AC⊥CB,点M和N 分别是B1C1和BC的中点.

(1)求证:MB∥平面AC1N;

(2)求证:AC⊥MB.

【分析】(1)证明MC1NB为平行四边形,所以C1N∥MB,即可证明MB∥平面AC1N;

(2)证明AC⊥平面BCC1B1,即可证明AC⊥MB.

【解答】证明:(1)证明:在三棱柱ABC﹣A1B1C1中,因为点M,N分别是B1C1,BC的中点,

所以C1M∥BN,C1M=BN.

所以MC1NB为平行四边形.

山东高考文科数学立体几何大题及答案汇编

2008年-2014年山东高考文科数学立体几何大题及答案 (08年)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,245AB DC == (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. (09年)如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 11111 (10年)(本小题满分12分) 在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==. (I )求证:平面EFG ⊥平面PDC ; (II )求三棱锥P MAB -与四棱锥P ABCD -的体积之比. (11年)(本小题满分12分) 如图,在四棱台 1111 ABCD A B C D -中, 1D D ABCD ⊥平面,底面 ABCD 是平行四边形, 112,,60AB AD AD A B BAD ==∠= (Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11//CC A BD 平面. A B C M P D E A B C F E1 A1 B1 C1 D1 D D B1 D1 C1 C B A A1

(12年) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点, 求证:DM ∥平面BEC . (13年)(本小题满分12分) 如图,四棱锥P —ABCD 中,AB ⊥AC , AB ⊥PA ,AB ∥CD ,AB=2CD ,E ,F ,G , M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点。 (Ⅰ)求证,CE ∥平面PAD; (Ⅱ)求证,平面EFG ⊥平面EMN 。 (14年)(本小题满分12分) 如图,四棱锥P ABCD -中,,//,BC AD PCD AP 平面⊥AD BC AB 2 1 = =,F E ,分别为线段PC AD ,的中点。 (Ⅰ)求证:BEF AP 平面// (Ⅱ)求证:PAC BE 平面⊥ P A C D E

高中数学《立体几何(文科)》练习题

高中数学《立体几何》练习题 1.用斜二测画法画出长为6,宽为4的矩形水平放置的直观图,则该直观图面积为 ( ) A.12 B.24 C.62 D.122 2.设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是 ( ) A .若//,,m n m n αβ⊥⊥,则αβ⊥ B .若//,,m n m n αβ⊥⊥,则//αβ C .若//,,//m n m n αβ⊥,则α⊥β D .若//,,//m n m n αβ⊥,则//αβ 3.如图,棱长为1的正方体1111D C B A ABCD -中,P 为线段B A 1上的动点,则下列结论错误.. 的是 A .P D DC 11⊥ B .平面⊥P A D 11平面AP A 1 C .1AP D ∠的最大值为090 D .1PD AP +的最小值为22+ 4.一个几何体的三视图如图所示(单位:m),则该几何体的体积为______m 3. 5.若某几何体的三视图如图所示,则此几何体的体积等于 . 6.如图是一个几何体的三视图,则该几何体的体积是____________

7.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞F E D ,,,且知 1:2:::===FS CF EB SE DA SD ,若仍用这个容器盛水,则最多可盛水的体积是原来的 . 8.如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB = 12 PD. (1)证明:PQ ⊥平面DCQ ; (2)求棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值.[来 9.如图所示的多面体中,ABCD 是菱形,BDEF 是矩形,ED ⊥面ABCD ,3 BAD π ∠=. (1)求证://BCF AED 平面平面. (2)若,BF BD a A BDEF ==-求四棱锥的体积。 10.在四棱锥ABCD P -中,底面ABCD 为矩形,ABCD PD 底面⊥,1=AB ,2=BC ,3=PD ,F G 、分别为CD AP 、的中点. (1) 求证:PC AD ⊥; (2) 求证://FG 平面BCP ; S F C B A D E

届文科数学立体几何大题训练

2017届文科数学立体几何大题训练 1. 如图,三棱锥A —BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 中点,D 为PB 中点,且△PMB 为正三角形. (Ⅰ)求证:DM //平面AP C; (Ⅱ)求 证:平面ABC ⊥平面APC ; (Ⅲ)若BC=4,AB=20,求三棱锥D —BCM 的体积. 2. 如图1,在四棱锥ABCD P -中,⊥PA 底面ABCD ,面ABCD 为正方形,E 为侧棱PD 上一点,F 为AB 上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示. (Ⅰ)求四面体PBFC 的体积; (Ⅱ)证明:AE ∥平面PFC ; (Ⅲ)证明:平面PFC ⊥平面PCD .

3. 如图,四棱柱P ABCD -中, .//,,AB PAD AB CD PD AD F ⊥=平面是DC 上的点且1 ,2 DF AB PH =为PAD ?中AD 边上的高. (Ⅰ)求证://AB 平面PDC ; (Ⅱ)求证:PH BC ⊥; (Ⅲ)线段PB 上是否存在点E ,使EF ⊥平面PAB ?说明理由. 4. 如图,在四棱锥中,底面 为菱形,,为的中点。 (1)若 ,求证:平面 ; (2)点在线段 上, ,试确定 的值,使; F A B D P C H

5. .如图, 是矩形中边上的点,为边的中点,,现将沿边折至位置,且平面平面. ⑴ 求证:平面平面; ⑵ 求四棱锥的体积. 6. 如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,90ABC BCD ∠=∠=, PA PD DC CB a ====,2AB a =,E 是PB 中点,H 是AD 中点. (Ⅰ)求证://EC 平面APD ;(Ⅱ)求三棱锥E BCD -的体积. E ABCD AD F CD 2 43 AB AE AD ===ABE ?BE PBE ?PBE ⊥BCDE PBE ⊥PEF P BEFC -P B C D F E B C D A F E (1) (2)

高考立体几何文科大题及标准答案

高考立体几何大题及答案 1.(2009全国卷Ⅰ文)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD , 2AD =,2DC SD ==,点M 在侧棱SC 上,o ∠ABM=60。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.(2009全国卷Ⅱ文)如图,直三棱柱ABC-A 1B 1C 1中,AB ⊥AC,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BD-C 为60°,求B 1C 与平面BCD 所成的角的大小 3.(2009浙江卷文)如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====, 120ACB ∠=o ,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平 面ABE 所成角的正弦值. A C B A 1 B 1 C 1 D E

4.(2009北京卷文)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB = 且E 为PB 的中点时,求 AE 与平面PDB 所成的角的大小. 5.(2009江苏卷)如图,在直三棱柱111ABC A B C -中,E 、F 分别是1A B 、1A C 的中点,点D 在11B C 上,11A D B C ⊥。 求证:(1)EF ∥平面ABC ;(2)平面1A FD ⊥平面11BB C C .

6.(2009安徽卷文)如图,ABCD 的边长为2的正方形,直线l 与平面ABCD 平行,g 和F 式l 上的两个不同点,且EA=ED ,FB=FC , 和是平面ABCD 内的两点,和都与平面ABCD 垂直,(Ⅰ)证明:直线垂直且平分线段AD :(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多 面体ABCDEF 的体积。 7.(2009江西卷文)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球 面交PD 于点M . (1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 8.(2009四川卷文)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 O A P B M D

2013-2018全国新课标1.2卷文科数学立体几何题(附答案)

2013-2018高考立体几何题文科数学(Ⅰ) (2013年): (11)某几何体的三视图如图所示,则该几何体的体积为( ) (A )168π+ (B )88π+ (C )1616π+ (D )816π+ (15)已知H 是球O 的直径AB 上一点, :1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为_______。 (19)如图,三棱柱111ABC A B C -中,CA CB =, 1AB AA =,160BAA ∠=。 (Ⅰ)证明:1 AB AC ⊥; (Ⅱ)若2AB CB == ,1 AC 111ABC A B C -的体积。 (2014年): (8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三 视图,则这个几何体是 A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 1

(19)如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O , 且⊥AO 平面C C BB 11.(Ⅰ)证明:证明:;1AB C B ⊥(Ⅱ)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高. (2015年): 6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆 放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛 11、圆柱被一个平面截去一部分后与半球(半径 为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( ) (A )1 (B )2 (C )4 (D )8

最新高考文科立体几何大题

1.(2013年高考辽宁卷(文))如 图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点 (I)求证:BC PAC ⊥平面; (II)设//.Q PA G AOC QG PBC ?为的中点,为的重心,求证:平面 2.2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中 心, A 1O ⊥平面ABCD , 12AB AA == (Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积. O D 1 B 1 C 1 D A C A 1

3.(2013年高考福建卷(文))如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =, 60PAD ∠=o .(1)当正视图方向与向量AD u u u r 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程); (2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积. 4. 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD ,且AB=1,AD=2,E 、F 分别为PC 和BD 的中点. (1)证明:EF ∥面PAD ; (2)证明:面PDC ⊥面PAD ; (3)求四棱锥P —ABCD 的体积.

5.(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ?沿AF 折起,得到如图5所示的三棱锥A BCF -,其中2BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23 AD =时,求三棱锥F DEG -的体积F DEG V -. 图 4G E F A B C D 图 5D G B F C A E 6.(2013年高考北京卷(文))如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ;(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD

最新最全立体几何 文科大题复习求体积完整版.doc

A C D 图2 B A C D 图1 1 C 1B 1 A 1D C B A D F E 1,(本小题满分14分)如图(1),ABC ?是等腰直角三角形,4AC BC ==,E 、F 分别为AC 、AB 的中点,将AEF ?沿EF 折起, 使A '在平面BCEF 上的射影O 恰为EC 的中点,得到图(2). (Ⅰ)求证:EF A C '⊥; (Ⅱ)求三棱锥BC A F '-的体积. 2,(本小题满分13分) 如图1,在直角梯形中,,,.将沿折起,使平面 平面,得到几何体,如图2所示. (Ⅰ) 求证:平面; (Ⅱ) 求几何体的体积. 3,(本小题满分14分)、已知几何体1111ABCD A B C D -的直观图如图所示,其三视图中主视图是长边为3的矩形,左视图是边长为2有一个角等于60°的菱形。 (1)求证平面1AD C ⊥平面11A DCB (2)求四棱锥1111D A B C D -的体积 4.(本小题满分12分) 在棱长为1的正方体1111ABCD A B C D -中,,,,E F G H 分别是棱1111,,,AB CC D A BB 的中点. (1)证明://FH 平面1A EG ; (2)证明:AH EG ⊥; (3)求三棱锥1A EFG -的体积. 5.(本小题满分14分) 如图,已知三棱锥A-BPC 中,AP ⊥PC, AC ⊥BC , M 为AB 中点,D 为PB 中点,且△PMB 为正三角形。 (Ⅰ) 求证:DM ∥平面APC :(Ⅱ) 求证:平面ABC ⊥平面APC ; (Ⅲ) 若BC=4,AB=20,求三棱锥D-BCM 的体积. 6.(本小题满分12分)在棱长为a 的正方体1111ABCD A B C D -中,E 是线段11A C 中点,AC BD F =. (Ⅰ) 求证:CE ⊥BD ;(Ⅱ) 求证:CE ∥平面1A BD ; (Ⅲ) 求三棱锥1D A BC -的体积. ABCD 90ADC ∠=?//CD AB 4,2AB AD CD ===ADE ?AC ADE ⊥ABC D ABC -BC ⊥ACD D ABC -3 2 2 A 1 B 1 A D C B D 1 C 1 俯视图 左视图 主视图 A C A 1E F

高考文科立体几何大题

1. (2013年高考辽宁卷(文))如 图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点. (I) 求证:BC _平面PAC ; (II) 设Q为PA的中点,G为AOC的重心,求证:QG//平面PBC. 2.2013年高考陕西卷(文))如图,四棱柱ABCDAιBιCD的底面ABCt是正方形,O为底面中 心,AC⊥平面ABCD AB=AA=√2. (I )证明:A i BD // 平面CDB1; ( ∏ )求三棱柱ABDABD的体积.

3. (2013年高考福建卷(文))如图,在四棱锥P- ABCD 中,PD _ 面ABCD , AB∕∕DC , AB _ AD , BC =5, DC =3, AD = 4, .PAD =60 .(1)当正视图方向与向量AD的方向相同时,画出四棱锥P- ABCD的正视图.(要求标出尺寸,并画出演算过程); ⑵若M为PA的中点,求证:DM / /面PBC ; (3) 4. 如图,四棱锥 P—ABCD中,ABCD为矩形,△ PAD为等腰直角三角形,∠ APD=90°,面 PAD⊥面 ABCD,且 AB=1,AD=2, E、F分别为 PC和BD的中点. (1)证明:EF// 面 PAD (2)证明:面PDC⊥面PAD; (3)求四棱锥 P— ABCD的体积. A B 求三棱锥D- PBC的体积.

5. (2013年高考广东卷(文))如图4,在边长为1的等边三角形 ABC 中,D ) E 分别是AB )AC 边上的点,AD =AE , F 是BC 的中点,AF 与DE 交于点G , 将 :ABF 沿AF 折起, (1)证明:DE //平面BCF ; (2) 证明:CF _平面ABF ; 2 ⑶ 当AD 时,求三棱锥F - DEG 的体积V F DEG 3 _ 6. (2013年高考北京卷(文))如图,在四棱锥P-ABCD 中,AB∕∕CD , AB _ AD , CD =2AB ,平面 PAD _ 底面 ABCD , PA _ AD , E 和 F 分别是CD 和PC 的中点,求证: (1) PA _ 底面 ABCD ;(2) BE//平面 PAD ;(3)平面 BEF _ 平面 PCD 得到如图5所示的三棱锥 A - BCF ,其中BC 洱

历年高考立体几何大题试题(卷)

2015年高考立体几何大题试卷 1. 【2015高考新课标2,理19】 如图,长方体ABCD -A1B1C1D1中,AB=16, BC=10, AA = 8,点E , F 分别在AB , C1D1上,A1E =4 .过点E , F的平面:-与此长方体的面相交,交线围成一个正方形. (1题图) (I )在图中画出这个正方形(不必说出画法和理由) (n )求直线AF与平面〉所成角的正弦值. 2. 【2015江苏高考,16】如图,在直三棱柱ABC—中,已知AC丄BC ,

BC =CC 1,设 AB 1 的中点为 D , BQ BC^ E .求证:(1) DE // 平面 AA 1C 1C ; (2) BC 1 _ AB 1 . (2题图) (3题图) C C 第的题图

3. 【2015高考安徽,理19】如图所示,在多面体 AEDQCBA ,四边形AABB , ADD 1A 1 ,ABCD 均为正方形,E 为Bp 的中点,过 A,D,E 的平面交CD ,于F. (I)证明:EF //BQ ; (□)求二面角E - A ,D - B i 余弦值. 4. 【2015江苏高考,22】如图,在四棱锥P-ABCD 中,已知PA _平面ABCD ,且 四边形 ABCD 为直角梯 形,.ABC =/BAD = —,PA 二 AD =2,AB 二 BC =1 2 (1)求平面PAB 与平面PCD 所成二面角的余弦值; (2)点Q 是线段BP 上的动点,当直线 CQ 与DP 所成角最小时,求线段 BQ 的长 (4题图) 5 .【2015高考福建,理17】如图,在几何体 ABCDE 中,四边形ABCD 是矩形,AB A 平面BEC , BE A EC , AB=BE=EC=2 , G , F 分别是线段 BE , DC 的中点. (I 求证:GF //平面ADE ; (^)求平面AEF 与平面BEC 所成锐二面角的余弦值. 6. 【2015高考浙江,理17】如图,在三棱柱 AB^A 1B 1C 1-中,.BAC =90;, AB = AC=2 , AA = 4 , A 在底面ABC 的射影为BC 的中点,D 为B 1C 1的中点. (5题图) D

2017年高考立体几何大题

2017年高考立体几何大题(文科) 1、(2017新课标Ⅰ文数)(12分) 如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o (1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P-ABCD 的体积为 83 ,求该四棱锥的侧面积.

如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2 AB BC AD BAD ABC ==∠=∠=? (1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为P ABCD -的体积.

如图,四面体ABCD中,△ABC是正三角形,AD=CD. (1)证明:AC⊥BD; (2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.

如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点. (Ⅰ)求证:PA⊥BD; (Ⅱ)求证:平面BDE⊥平面PAC; (Ⅲ)当PA∥平面BD E时,求三棱锥E–BCD的体积.

由四棱柱ABCD-A1B1C1D1截去三棱锥C1- B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD. A O∥平面B1CD1; (Ⅰ)证明: 1 (Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.

如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(1)EF∥平面ABC; (2)AD⊥AC.

高中数学立体几何大题练习(文科)

立体几何大题练习(文科): 1.如图,在四棱锥S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,侧面SAD⊥底面ABCD. (1)求证:平面SBD⊥平面SAD; (2)若∠SDA=120°,且三棱锥S﹣BCD的体积为,求侧面△SAB的面积. 【分析】(1)由梯形ABCD,设BC=a,则CD=a,AB=2a,运用勾股定理和余弦定理,可得AD,由线面垂直的判定定理可得BD⊥平面SAD,运用面面垂直的判定定理即可得证; (2)运用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,运用勾股定理和余弦定理,可得SA,SB,运用三角形的面积公式,即可得到所求值.【解答】(1)证明:在梯形ABCD中,AB∥DC,∠ABC=90°,BC=CD=, 设BC=a,则CD=a,AB=2a,在直角三角形BCD中,∠BCD=90°, 可得BD=a,∠CBD=45°,∠ABD=45°, 由余弦定理可得AD==a, 则BD⊥AD, 由面SAD⊥底面ABCD.可得BD⊥平面SAD, 又BD?平面SBD,可得平面SBD⊥平面SAD; (2)解:∠SDA=120°,且三棱锥S﹣BCD的体积为, 由AD=SD=a, 在△SAD中,可得SA=2SDsin60°=a, △SAD的边AD上的高SH=SDsin60°=a, 由SH⊥平面BCD,可得 ×a××a2=,

解得a=1, 由BD⊥平面SAD,可得BD⊥SD, SB===2a, 又AB=2a, 在等腰三角形SBA中, 边SA上的高为=a, 则△SAB的面积为×SA×a=a=. 【点评】本题考查面面垂直的判定定理的运用,注意运用转化思想,考查三棱锥的体积公式的运用,以及推理能力和空间想象能力,属于中档题. 2.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(1)EF∥平面ABC; (2)AD⊥AC. 【分析】(1)利用AB∥EF及线面平行判定定理可得结论; (2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论. 【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,

2016高考文科立体几何大题

立体几何综合训练 1、证明平行垂直 1.(2013?辽宁)如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点. (1)求证:BC⊥平面PAC; (2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC. 2.(2013?北京)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证: (Ⅰ)PA⊥底面ABCD; (Ⅱ)BE∥平面PAD; (Ⅲ)平面BEF⊥平面PCD. 3.(2011?福建)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB. (Ⅰ)求证:CE⊥平面PAD; (Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P﹣ABCD的体积.

4.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形.已知 .M是PD的中点. (Ⅰ)证明PB∥平面MAC (Ⅱ)证明平面PAB⊥平面ABCD (Ⅲ)求四棱锥p﹣ABCD的体积. 2、求体积问题 5.如图,已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1. (Ⅰ)求证:AB∥平面PCD; (Ⅱ)求证:BC⊥平面PAC; (Ⅲ)若M是PC的中点,求三棱锥M﹣ACD的体积. 6.(2011?辽宁)如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,OA=AB=PD. (Ⅰ)证明PQ⊥平面DCQ; (Ⅱ)求棱锥Q﹣ABCD的体积与棱锥P﹣DCQ的体积的比值.

7.(2013?安徽)如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PB=PD=2,PA=. (Ⅰ)证明:PC⊥BD (Ⅱ)若E为PA的中点,求三棱锥P﹣BCE的体积. 8.(2008?山东)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,. (Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD; (Ⅱ)求四棱锥P﹣ABCD的体积. 3、三视图 9.已知某几何体的直观图与它的三视图,其中俯视图为正三角形,其它两个视图是矩形.已知D是这个几何体的棱A1C1上的中点. (Ⅰ)求出该几何体的体积; (Ⅱ)求证:直线BC1∥平面AB1D;

(新)高三立体几何习题(文科含答案)

23 正视图 图1 侧视图 图2 2 2 图3 立几习题2 1若直线l 不平行于平面a ,且l a ?,则 A .a 内的所有直线与异面 B .a 内不存在与l 平行的直线 C .a 内存在唯一的直线与l 平行 D .a 内的直线与l 都相交 2.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 (A )12l l ⊥,23l l ⊥13//l l ? (B )12l l ⊥,23//l l ?13l l ⊥ (C )233////l l l ?1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点?1l ,2l ,3l 共面 3.如图1 ~ 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为 A .3 B .4 C .3 D .2 4.某几何体的三视图如图所示,则它的体积是( ) A.283 π - B.83 π- C.8-2π D.23 π 5、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点 求证: (1)直线E F ‖平面PCD ; (2)平面BEF ⊥平面PAD

5(本小题满分13分) 如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OD=,△OAB,△OAC,△ODE,△ODF都是正三角形。 OA=,2 1 ∥; (Ⅰ)证明直线BC EF -的体积. (Ⅱ)求棱锥F OBED 6.(本小题共14分) 如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点. (Ⅰ)求证:DE∥平面BCP; (Ⅱ)求证:四边形DEFG为矩形; . (Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由 7.(本小题满分12分) 如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。

2018高考文科立体几何大题

立体几何综合训练1、证明平行垂直 1.如图,AB 是圆O 的直径,PA⊥圆O 所在的平面,C是圆O 上的点.(1)求证:BC⊥平面PAC; (2)若Q 为PA的中点,G为△AOC 的重心,求证:QG∥平面PBC.2.如图,在四棱锥P﹣ABCD 中,AB ∥ CD,AB⊥AD ,CD=2AB ,平面PAD⊥ 底面ABCD ,PA⊥ AD .E和F分别 是CD 和PC 的中点,求证:(Ⅰ) PA⊥底面ABCD; (Ⅱ)BE∥平面PAD; (Ⅲ)平面BEF⊥平面PCD .

3.如图,四棱锥P﹣ABCD 中,PA⊥底面ABCD ,AB⊥AD ,点E在线段AD 上,且CE∥AB . (Ⅰ)求证:CE⊥平面PAD ; (Ⅱ)若PA=AB=1 ,AD=3 ,CD= , ∠ CDA=45 °,求四棱锥P﹣ABCD 的体4.如图,在四棱锥P﹣ABCD 中,底面ABCD 是矩形.已知 .M 是PD 的中点. Ⅰ)证明PB∥平面MAC Ⅱ)证明平面PAB⊥平面ABCD Ⅲ)求四棱锥p ﹣ABCD 的体积.

Ⅲ)若M 是PC 的中点,求三棱锥M ﹣ACD 的体积. 2、求体积问题 5.如图,已知四棱锥P﹣ABCD 中,底面ABCD 是直角梯形,AB ∥DC,∠ ABC=45 °,DC=1 ,AB=2 ,PA⊥平面ABCD ,PA=1 . (Ⅰ)求证:AB∥平面PCD; Ⅱ)求证:BC⊥平面PAC;

6.(2011? 辽宁)如图,四边形ABCD 为正方形,QA⊥平面ABCD , PD∥QA, OA=AB= PD. (Ⅰ)证明PQ⊥平面DCQ ; (Ⅱ)求棱锥Q﹣ABCD 的体积与棱锥P ﹣DCQ 的体积的比值.7.如图,四棱锥P﹣ABCD 的底面ABCD 是边长为 2 的菱形,∠ BAD=60 °,已知 PB=PD=2 ,PA= . (Ⅰ)证明:PC⊥ BD (Ⅱ)若E为PA 的中点,求三棱锥P ﹣ BCE的体积.

高中文科数学立体几何知识点[大题]

高考立体几何中直线、平面之间的位置关系知识点总结(文科) 一.平行问题 (一) 线线平行: 方法一:常用初中方法(1中位线定理;2平行四边形定理;3三角形中对应边成比例;4同位角、内错角、同旁内角) 方法二:1线面平行?线线平行 m l m l l ////??? ???=??βαβα 方法三:2面面平行?线线平行 m l m l ////??? ??? =?=?βγαγβα 方法四:3线面垂直 ?线线平行 若αα⊥⊥m l ,,则m l //。 (二) 线面平行: 方法一:4线线平行?线面平行 ααα////l l m m l ??? ????? 方法二:5面面平行?线面平行 αββα////l l ???? ? (三) 面面平行:6方法一:线线平行?面面平行 β ααβ//',','//'//??? ? ???? ??且相交且相交m l m l m m l l 方法二:7线面平行?面面平行 βαβαα//,////?????? =?A m l m l m l I , 方法三:8线面垂直?面面平行 βαβα面 面面面//???? ⊥⊥l l l

二.垂直问题:(一)线线垂直 方法一:常用初中的方法(1勾股定理的逆定理;2三线合一 ;3直径所对的圆周角为直角;4菱形的对角线互相垂直。) 方法二:9线面垂直?线线垂直 m l m l ⊥?????⊥αα (二)线面垂直:10方法一:线线垂直?线面垂直 α α⊥??? ? ???? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:11面面垂直?线面垂直 αββαβα⊥???????⊥=?⊥l l m l m , (面) 面面垂直: 方法一:12线面垂直?面面垂直 βαβα⊥???? ?⊥l l 三、夹角问题:异面直线所成的角: (一) 范围:]90,0(?? (二)求法:方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(计算结果可能是其补角) 线面角:直线PA 与平面α所成角为θ,如下图 求法:就是放到三角形中解三角形 四、距离问题:点到面的距离求法 1、直接求, 2、等体积法(换顶点)

2017届文科数学立体几何大题训练 (1)

2017届文科数学立体几何大题训练 1. 如图,三棱锥A —BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 中点,D 为PB 中点,且△PMB 为正三角形. (Ⅰ)求证:DM 如图1,在四棱锥ABCD P -中,⊥PA 底面ABCD ,面ABCD 为正方形,E 为侧棱PD 上一点,F 为AB 上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示. (Ⅰ)求四面体PBFC 的体积; (Ⅱ)证明:AE ∥平面PFC ; (Ⅲ)证明:平面PFC ⊥平面PCD . 3. 如图,四棱柱P ABCD -中, .//,,AB PAD AB CD PD AD F ⊥=平面是DC 上的点且1 ,2 DF AB PH =为PAD ?中AD 边上的高. (Ⅰ)求证://AB 平面PDC ; (Ⅱ)求证:PH BC ⊥; (Ⅲ)线段PB 上是否存在点E ,使EF ⊥平面PAB 说明理由. F A D P C H

4. 如图,在四棱锥中,底面为菱形,,为的 中点。 (1)若 ,求证:平面 ; (2)点在线段上, ,试 确定的值,使; 5. .如图,E 是矩形ABCD 中AD 边上的点,F 为CD 边的中点, 2 43 AB AE AD ===,现将ABE ?沿BE 边折至PBE ?位置,且平面PBE ⊥平面 BCDE . ⑴ 求证:平面PBE ⊥平面 PEF ; ⑵ 求四棱锥P BEFC -的体积. P B C E D F E

6. 如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD , 90ABC BCD ∠=∠=,PA PD DC CB a ====,2AB a =,E 是PB 中点,H 是AD 中点. (Ⅰ)求证://EC 平面APD ;(Ⅱ)求三棱锥E BCD -的体积. 7. 如图,在三棱锥S ABC -中,侧面SAB 与侧面SAC 均为等边三角形, 90BAC ∠=°,O 为BC 中点. (Ⅰ)证明:SO ⊥平面ABC ; (Ⅱ)求异面直线BS 与AC 所成角的大小. S

2017年高考立体几何大题(文科)

2017年高考立体几何大题(文科) 1、(2017新课标I文数)(12分) 如图,在四棱锥P-ABC[中,AB//CD,且.BAP = . CDP = 90: (1)证明:平面PABL平面PAD 8 (2)若PA=PD=AB=DC . APD =90,且四棱锥P-ABCD勺体积为-,求该四棱锥的侧面 3 积?

2、( 2017新课标n文)(12分) 如图,四棱锥P - ABCD中,侧面PAD为等边三角形且垂直于底面ABCD , 1 AB 二BC AD,. BAD = . ABC 二90 . 2 (1)证明:直线BC//平面PAD ; (2)若厶PCD的面积为2.1,求四棱锥P - ABCD的体积.

(2)已知△ ACD 是直角三角形,AB=BD 若E 为棱BD 上与D 不重合的点, 求四面体 ABCBf 四面体 ACDE 勺体积比. AEL EC, (1)证明:ACL BD

如图,在三棱锥PiABC中,PA I AB PAI BC ABL BC PA=AB=BC=2, D为线段AC的中 (H)求证:平面BDE L平面PAC (川)当PA//平面BD E时,求三棱锥E-3CD勺体积.

由四棱柱ABCDA i BQD截去三棱锥C-BQD后得到的几何体如图所示,四边形ABC[为正方形,O为AC与BD的交点,E为AD的中点,A i E_平面ABCD (I)证明:AO //平面BCD; (H)设

如图,在三棱锥A-BCD中,ABL AD BCL BD平面ABDL平面BCD点E F(E与A, D不重合)分别在棱AD BD上,且EF L AD 求证:(1) EF//平面ABC (2) AD L AC

高考文科立体几何考试大题(供参考)

1文档来源为:从网络收集整理.word 版本可编辑. 文科数学立体几何大题题型 题型一、基本平行、垂直 1、如图,在四棱台1111ABCD A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,AB=2AD ,11AD=A B ,BAD=∠60°. (Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11CC A BD ∥平面. 2.如图,四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ?为等腰三角形,90APD ∠=,平面PAD ⊥ 平面ABCD ,且 1,2,AB AD E ==.F 分别为PC 和BD 的中点. (1)证明://EF 平面PAD ; (2)证明:平面PDC ⊥平面PAD ; (3)求四棱锥P ABCD -的体积. 3. 如图,已知四棱锥ABCD P -中,底面ABCD 是直角梯形, //AB DC , 45=∠ABC ,1DC =,2=AB ,⊥PA 平面ABCD , 1=PA . (1)求证://AB 平面PCD ; (2)求证:⊥BC 平面PAC ; (3)若M 是PC 的中点,求三棱锥M —ACD 的体积. 4.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是矩形,E 、F 分别是AB 、PD 的中点.若3PA AD ==,6CD = . (Ⅰ)求证://AF 平面PCE ; (Ⅱ) 求点F 到平面PCE 的距离; 题型二、体积: 1、如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8, AB =2DC =45. (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面 P AD ; (Ⅱ)求四棱锥P -ABCD 的体积. 2、如图,三棱锥BCD A -中,AD 、BC 、CD 两两互相垂直, E F D A C B P A B C D P M

高考文科立体几何考试大题题型

文科数学立体几何大题题型 题型一、基本平行、垂直 1、如图,在四棱台ABCD A1B1C1D1 中,D1D 平面ABCD ,底面ABCD 是平行四边 形,AB=2AD ,A D=A 1B1 ,BAD= 60°. (Ⅰ)证明:A A BD ; 1 (Ⅱ)证明:C C ∥平面A BD . 1 1 2.如图,四棱锥P ABCD 中,四边形ABCD 为矩形,PAD 为等腰三角形,APD 90 , 平面PAD 平面ABCD ,且AB 1, AD 2,E .F 分别为PC和B D P 的中点. E (1)证明:E F / / 平面PAD ; D (2)证明:平面PDC 平面PAD ; (3)求四棱锥P ABCD 的体积. C F A B

1

3.如图,已知四棱锥P ABCD中,底面ABCD是直角梯形,AB // DC ,ABC 45 , DC 1,AB 2,PA 平面ABCD,PA 1. P (1)求证:AB // 平面PCD ;[ 来源:https://www.360docs.net/doc/922720289.html,] (2)求证:BC 平面PAC ; (3)若M是PC的中点,求三棱锥M—ACD的体积. M A B D C 4. 如图,四棱锥P ABCD中,PA 平面ABCD,四边形ABCD 是矩形,E 、F分别 是AB 、P D 的中点.若PA AD 3,CD 6 . (Ⅰ)求证:AF // 平面P CE ; (Ⅱ)求点F 到平面PCE 的距离;

2

题型二、体积: 1、如图,在四棱锥P-ABCD 中,平面PAD⊥平面ABCD,AB∥DC ,△PAD 是等边三角形,已知BD=2AD =8, AB =2DC = 4 5 . (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P-ABCD 的体积. 2 、如图,三棱锥A BCD 中,AD 、BC 、CD 两两互相垂直,且A B 1 3 , BC 3, CD 4 , M 、N分别为AB 、A C 的中点. (Ⅰ)求证:BC // 平面MND ; (Ⅱ)求证:平面MND 平面ACD ; (Ⅲ)求三棱锥 A MND 的体积. 3

立体几何大题练习文科

立体几何大题练习(文科): 1. 如图,在四棱锥s— ABCD中,底面ABCD是梯形,AB// DC, /ABC=90,AD=SD BC=CD丄叮,,侧面SAD丄底面ABCD (1)求证:平面SBD丄平面SAD (2)若/ SDA=120,且三棱锥S- BCD的体积为丄—,求侧面厶SAB的面积. 12 【分析】(1)由梯形ABCD设BC=a则CD=a AB=2a运用勾股定理和余弦定 理,可得AD,由线面垂直的判定定理可得BD丄平面SAD,运用面面垂直的判定定理即可得证; (2)运用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,运用勾股定理和余弦定理,可得SA SB,运用三角形的面积公式,即可得到所求值. 【解答】(1)证明:在梯形ABCD 中,AB / DC,/ ABC=90, BC=C 设BC=a贝U CD=a AB=2a在直角三角形BCD中,/ BCD=90, 可得BD= :a,/ CBD=45,/ ABD=45, 由余弦定理可得AD= j ? <:'a, 贝U BD丄AD, 由面SAD丄底面ABCD 可得BD丄平面SAD, 又BD?平面SBD,可得平面SBDL平面SAD (2)解:/ SDA=120,且三棱锥S- BCD的体积为匚, 由AD=SD= fa, 在厶SAD中,可得SA=2SDsin60 \= a, △ SAD的边AD上的高SH=SDsin60些a, 2 由SH!平面BCD可得

解得a=1, 由BD丄平面SAD,可得BD丄SD, SB=I T?= .「I ? '=2a, 又AB=2a 在等腰三角形SBA中, 边SA上的高为 则仏SAB的面积为“ SA X Vio-■/is 【点评】本题考查面面垂直的判定定理的运用,注意运用转化思想,考查三棱锥 的体积公式的运用,以及推理能力和空间想象能力,属于中档题. 2. 如图,在三棱锥A- BCD中,AB丄AD,BC丄BD,平面ABD丄平面BCD点E、 F (E与A、D不重合)分别在棱AD, BD上,且EF丄AD. 求证:(1)EF//平面ABC; (2)AD丄AC. 【分析】(1)利用AB / EF及线面平行判定定理可得结论; (2)通过取线段CD上点G,连结FG EG使得FG// BC,则EG// AC,利用线面垂直的性质定理可知FG丄AD,结合线面垂直的判定定理可知AD丄平面EFG从而可得结论. 【解答】证明:(1)因为AB丄AD, EF丄AD,且A、B、E、F四点共面,所以AB / EF,

相关文档
最新文档