锌锰氧化物-碳复合电极材料的制备及其电化学性能研究

摘要

摘要

便携式电子设备、动力汽车和智能电网的普及和发展,迫切要求开发高能量密度、高功率密度、低成本的新型锂离子电池负极材料。锌锰基混合金属氧化物具有理论容量高、资源丰富、绿色环保等优点,而且相对于钴基和铁基氧化物负极具有更低的工作电位。但是锌锰氧化物的导电性差,脱嵌锂过程中的体积变化较大。尽管纳米化、表面修饰和复合化等方法使得锌锰氧化物的储锂性能有了一定改善,但仍存在合成方法产量低、首次库伦效率低以及结构稳定性不足等问题。本论文围绕锌锰氧化物存在的上述问题,从改进制备方法入手,设计并合成出多种锌锰氧化物/碳复合材料。系统研究了材料的形成机理,对材料的组成、结构以及电化学性能进行了表征和测试,主要结论如下:采用一步溶剂热法合成“三明治”结构的ZnMn2O4/氮掺杂石墨烯(ZnMn2O4/N-doped graphene, ZnMn2O4/NG)复合纳米片,直径为10-12 nm的ZnMn2O4纳米晶均匀分散在石墨烯的表面。系统研究了氧化石墨烯、溶液pH 值和溶剂的种类对产物结构和电化学性能的影响。独特的二维结构、细小的ZnMn2O4纳米晶、高导电高柔韧的石墨烯以及两者之间牢固的相互作用赋予ZnMn2O4/NG丰富的活性位点、快速的离子/电子传输通道、大的电极/电解液接触面积和稳定的电极结构。ZnMn2O4/NG复合纳米片展现出了优异的储锂性能,在3200 mA g-1下其比容量为500 mAh g-1,以500 mA g-1的电流密度循环200圈后可逆容量为747 mAh g-1。

基于水热法和高温热还原制备出ZnO-MnO/石墨烯骨架(ZnO-MnO/graphene framework, ZnO-MnO/GF)材料。合适的热处理温度和石墨烯的引入是获得双金属一氧化物ZnO-MnO的关键因素。与ZnMn2O4/GF电极相比,ZnO-MnO/GF电极具有更高的首次库伦效率、更高的电化学可逆性和倍率性能。这是由于低价态的ZnO-MnO在首次充放电时减少了不可逆Li2O的形成。ZnO-MnO/GF具有良好的结构稳定性,随着循环进行多孔的ZnO-MnO/GF 演变成紧密的电极结构,与此同时,ZnO-MnO破裂成纳米颗粒堆积在石墨烯层间。进一步制备出ZnO-CoO/GF、NiO-CoO/GF和(FeO)0.333(MnO)0.667/GF等。与ZnCo2O4/GF相比,ZnO-CoO/GF电极同样展现出更高的首次库伦效率和比容量,进一步说明双金属一氧化物相对于高价态金属氧化物具有更加优异的电化学性能。

I

哈尔滨工业大学工学博士论文

室温下合成出由二维亚单元平行堆叠而成的Zn-Mn-BTC空心纳米盘,将其在保护气氛下煅烧得到锌锰混合氧化物/碳(Zn x MnO@C)复合材料,超细的锌锰氧化物纳米晶(4-8 nm)镶嵌在多孔碳基体中,同时分级空心结构得到完美地保持。Zn x MnO@C的高比表面积、独特的分级空心结构、细小的氧化物纳米晶等特点极大地促进了电解液在材料内部的浸润,缩短离子扩散路径和增加储锂活性位置,碳基体进一步提高整个电极的导电性和结构稳定性。Zn x MnO@C表现出优异的储锂性能,包括高比容量(0.1 A g-1下的可逆容量为1050 mAh g-1 )、高倍率(10 A g-1下可逆容量为330 mAh g-1 )和稳定的循环性能(2 A g-1下稳定循环1000圈)。动力学分析表明Zn x MnO@C的储锂过程是赝电容行为占据了主导地位。

提出了一种简便、高产、低成本的锌锰氧化物/碳复合纳米片的合成方法。利用溶胶凝胶法结合快速煅烧制备出ZnO-MnO/氮掺杂碳(ZnO-MnO/N-doped carbon, ZnO-MnO/NC)纳米片。该方法综合了气相法和液相法的优点,所制备纳米片具有高度均匀性,直径可达几百微米,厚度仅为3-4 nm。合适的原料配比和快速的升温速率是获得二维纳米片的重要条件。提出了一种“凝胶-膨胀”机制合理解释了纳米片的形成过程。ZnO-MnO/NC纳米片表现出优异的储锂性能和超长的循环稳定性(5 A g-1下循环1400圈后的比容量为543 mAh g-1),并展现出比块体ZnO-MnO/NC更明显的电容行为。进一步制备出具有不同组成的金属氧化物/碳复合纳米片,如Fe3O4/NC,MnO/NC和ZnO-Zn x Fe3-x O4/NC纳米片等,以及金属氧化物纳米片,如Fe2O3、Mn3O4、ZnMn2O4、ZnO/Zn x Fe3-x O4、(Co x Mn1-x)Fe2O4和(Zn x Mn1-x)Fe2O4纳米片等。高质量的二维结构、简便高产的合成方法以及优异的电荷存储性能大大推动了二维材料在储能领域的应用。

关键词:锂离子电池;锌锰氧化物/碳;石墨烯;金属有机框架材料;二维纳米片;合成方法

- II -

碳纳米材料在电化学传感器中的应用

碳纳米材料在电化学传感器中的应用研究 摘要由于碳纳米材料具有良好的力学、电学及化学性能而被人们广泛研究,特别是对于具有大比表面积、高的电导率和良好生物相容性的碳纳米管、碳纳米纤维和石墨烯更是研究的热点。这些新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域,特别是在电化学领域中显示出其独特的优势。本文主要阐述了碳纳米材料在电化学传感器领域的应用。 关键词碳纳米管石墨烯电化学传感器 1电化学传感器概述 电化学传感器主要由两部分组成:识别系统;传导或转换系统。 识别系统与待测物的某一化学参数(常常是浓度)与传导系统连结起来。它主要具有两种功能:选择性地与待测物发生作用,反所测得的化学参数转化成传导系统可以产生响应的信号。分子识别系统是决定整个化学传感器的关键因素。因此,电化学传感器研究的主要问题就是分子识别系统的选择以及如何反分子识别系统与合适的传导系统相连续。电化学传感器的传导系统接受识别系统响应信号,并通过电极、光纤或质量敏感元件将响应信号以电压、电流或光强度等的变化形式,传送到电子系统进行放大或进行转换输出,最终使识别系统的响应信号转变为人们所能用作分析的信号,检测出样品中待测物的量。 最早的电化学传感器可以追溯到 20 世纪 50 年代,当时用于氧气监测。到了 20 世纪80 年代中期,小型电化学传感器开始用于检测 PEL 范围内的多种不同有毒气体,并显示出了良好的敏感性与选择性。目前,为保护人身安全起见,各种电化学传感器广泛应用于许多静态与移动应用场合。 2 碳纳米材料——碳纳米管和石墨烯 随着科学技术的进步,研究者发现空间尺寸在0.1-100 nm之间的物质拥有很多宏观状态下没有的特性[1]。我们把这些具有一定功能性、三维空间尺寸至少有一维介于0.1-100 nm 之间的一类物体统称为纳米材料。它是由纳米微粒、原子团簇、纳米丝、纳米管、纳米薄膜或由纳米粒子组成的块体。由于具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的量子尺寸效应[2, 3]、体积效应[4]、表面效应[5]和量子隧道效应[6]等特性,纳米材料在光学、热学、催化、光化学以及敏感特性等方面具有一系列特殊的性质,因此它具备其它一般材料所没有的优越性能,可广泛应用于电子、医药、化工、生物、军事、航空航天等众多领域,在整个新材料的研究应用方面占据着核心的位置。 碳是一种非金属元素,位于元素周期表的第二周期IV A族。作为地球上最容易得到的元素之一,碳元素以多种形式广泛存在于大气和地壳之中。碳单质很早就被人认识和利用,它在常温下的化学性质比较稳定,不溶于水、稀酸、稀碱和有机溶剂。利用现代科技的不同制备方法,我们可以制备出不同独特空间结构和特异性能的碳纳米材料,其中包括零维的富勒烯、一维的碳纳米管、二维的石墨烯和三维的石墨或金刚石。依靠独特的空间结构和优异的化学性能,它们可以应用于各个领域中。接下来我们主要介绍一下碳纳米管和石墨烯。 2.1碳纳米管 CNTs是1991 年日本电镜学家Iijima在高分辨透射电子显微镜下检验石墨电弧中产生

二次碱性电池锌电极的研究进展

二次碱性电池锌电极的研究进展 郎俊山付强 (中国船舶重工集团公司七一二研究所,武汉430064) 摘要:介绍了二次碱性电池锌电极近年来的研究进展,综述了现有的制备手段和电化学性能改进研究状 况,指出锌电极现存的变形、枝晶生长、自腐蚀及钝化等主要问题,并展望了其未来的应用领域。 关键词:二次碱性电池锌电极电化学性能 中图分类号:TM912.2 文献标识码:A文章编号:1003-4862 (2010) 07-0047-04 Development of Zinc Electrodes for Secondary Akaline Batteries Lang Junshan,Fu Qiang (Wuhan Marine Electric Propulsion Research Institute, CSIC, Wuhan, 430064, China) Abstract:This paper introduce reseach and development of the zinc electrodes for secondary zinc electrodes. It summarizes the way to prepare the zinc electrodes and the research on the improvement of the electrochemistry performance, and indicates the major problems, such as deformation, dendrite growth, self-corrosion and passivation. It also prospects its application fields. Key words: Secondary alkaline batteries; zinc electrodes; electrochemical performance 1 引言 与其它碱性电池用电极相比,二次锌电极具有比能量高、价格低廉,原料来源广且对环境无害等优点。因此,锌电极可以和很多材料组合成化学电源,广泛应用于航空、军事、能源等多个领域。表1比较了锌电池与铅酸电池的理论/实际比能量。由于锌电极在充放电循环过程中会出现锌“形变”、锌枝晶、腐蚀及钝化等问题,造成锌电池循环寿命低,在很大程度上限制了锌电池的应用。解决或减少锌电极所存在的这些问题是加快、加大锌电池商业化的关键。本文综述近年来有关二次碱性电池锌电极的研究和开发情况。 表1 几种锌电池与铅酸电池的理论比能量与实际比能量 2 锌电极的制备方法 目前,市场上的锌粉大致分为雾化锌粉和电沉积锌粉两大类。 2.1 雾化法 雾化锌粉是将原料锌通过熔化进入带有高温塔盘的精馏塔内使其雾化为锌蒸气并进行精馏,利用各组分的熔点和比重不同,进行除杂、提纯;然后将锌蒸气引入主冷凝器中急剧冷凝,主冷凝 电池类型负极正极开路电压 ( V) 标称电压 ( V) 理论比能量 (Wh/kg) 实际比能量 (Wh/kg) 铅酸蓄电池Pb Pb2O 2.1 2V 175.5 30~50 锌镍蓄电池Zn Ni氧化物 1.73V 1.6V 372 60 银锌蓄电池Zn Ag氧化物 1.85V 1.5V 487.5 100~150 锌空蓄电池Zn 环境空气 1.65V 1.5V 1350(不计O2重) 100~250 收稿日期:2009-12-21 作者简介:郎俊山(1983-),男,硕士研究生,从事化学 电源方面的研究工作。 47

复合pH电极

复合电极 PH复合电极 1 什么是pH复合电极? 把pH玻璃电极和参比电极组合在一起的电极就是pH复合电极。根据外壳材料的不同分塑壳和玻璃两种。相对于两个电极而言,复合电极最大的好处就是使用方便。p H复合电极主要由电极球泡、玻璃支持杆、内参比电极、内参比溶液、外壳、外参比电极、外参比溶液、液接界、电极帽、电极导线、插口等组成。 (1)电极球泡:它是由具有氢功能的锂玻璃熔融吹制而成,呈球形,膜厚在O.1~0.2mm左右,电阻值<250兆欧(25℃)。 (2)玻璃支持管是支持电极球泡的玻璃管体,由电绝缘性优良的铅玻璃制成,其膨胀系数应与电极球泡玻璃一致。 (3)内参比电极:为银/氯化银电极,主要作用是引出电极电位,要求其电位稳定,温度系数小。 (4)内参比溶液:零电位为7pH的内参比溶液,是中性磷酸盐和氯化钾的混合溶液,玻璃电极与参比电极构成电池建立零电位的pH值,主要取决于内参比溶液的p H值及氯离子浓度。 (5)电极壳:电极壳是支持玻璃电极和液接界,盛放外参比溶液的壳体,通常由聚碳酸酯(PC)塑压成型或者玻璃制成。PC塑料在有些溶剂中会溶解,如四氯化碳、三氯乙烯、四氢呋喃等,如果测试中含有以上溶剂,就会损坏电极外壳,此时应改用玻璃外壳的pH复合电极。 (6)外参比电极:为银/氯化银电极,作用是提供与保持一个固定的参比电势,要求电位稳定,重现性好,温度系数小。 (7)外参比溶液:氯化钾溶液或KCl凝胶电解质。 (8)液接界:液接界是外参比溶液和被测溶液的连接部件,要求渗透量稳定,通常用砂芯的。 (9)电极导线:为低噪音金属屏蔽线,内芯与内参比电极连接,屏蔽层与外参比电极连接。

碳材料在电化学储能中的应用_梁骥

碳材料在电化学储能中的应用 梁骥,闻雷,成会明,李峰* (中国科学院金属研究所先进炭材料研究部,辽宁沈阳110016) 摘要:电化学储能材料是电化学储能器件发展及性能提高的关键之一.碳材料在各种电化学储能体系中都起到 了极为重要的作用,特别是近期出现的各类新型碳材料为电化学储能的发展带来了新动力,并展现了广阔的应用前景.本文综述了碳材料,特别是以碳纳米管和石墨烯为代表的纳米碳材料,在典型电化学储能器件(锂离子/钠离子电池、超级电容器和锂硫电池等)、柔性电化学储能和电化学催化等领域的研究进展,并对碳材料在这些领域的应用前景进行了展望. 关键词:碳材料;电化学;储能;催化;锂硫;氧还原中图分类号:O646 文献标识码:A 收稿日期:2015-09-11,修订日期:2015-11-04 *通讯作者,Tel:(86-24)83970065,E-mail :fli@https://www.360docs.net/doc/925787395.html, 沈阳材料科学国家(联合)实验室葛庭燧奖研金项目、科技部国家重大科技研究计划项目(No.2011CB932604, 2014CB932402)、国家自然科学基金(No.51221264,No.51525206,No.51172239,No.51372253,No.U14012436)、中国科学院 战略性科技先导专项(No.XDA01020304)和重点部署项目(No.KGZD-EW-T06)资助 电化学 JOURNAL OF ELECTROCHEMISTRY 第21卷第6期 2015年12月 Vol.21No.6Dec.2015 DOI :10.13208/j.electrochem.150845 Cite this :J .Electrochem .2015,21(6):505-517 Artical ID :1006-3471(2015)06-0505-13Http ://https://www.360docs.net/doc/925787395.html, 交通、信息等领域的高速发展,对具有高能量/功率密度、长寿命、安全、廉价以及环境友好等特性的电化学储能器件提出了愈加迫切的需求.为实现电化学储能器件的快速充放电,需提高其功率密度;为增强续航能力,需提高其能量密度;为延长使用寿命,需提高其循环性能;为实现便携性,需轻、薄、可弯折等特性,而影响这些性能的根本因素在于电化学储能材料(电极材料)的特性.因此,研究开发高性能、低成本的电极材料是电化学储能器件研发工作的核心. 目前,高性能电极材料已成为材料和电化学储能应用研究领域的热点,而针对未来的电池系统,如锂硫电池和柔性电池等,电极材料的研究具有更大的科学意义和应用潜力,并受到了广泛关注.然而电化学储能体系十分复杂,诸多热力学和动力学行为(包括化学、物理、力学等行为)在电化学过程中于不同尺度同时发生,这些行为与电极材料的结构和性质密切相关,但由于研究手段的制约,人们对这些行为的认识并不深入.尽管对于电化学储能的材料和器件的研究已经取得较大进展,但迄今尚未取得根本性的突破,目前的电化学储能材料难以满足未来新型电子器件的要求[1]. 碳材料具有结构多样、表面状态丰富、可调控性强、化学稳定性好等优点,同时具有优异的电输运特性和高活性表面,长久以来一直是各类电化学储能器件的理想材料,同时也是电化学储能体系中的关键组分,以活性物质、导电剂、包覆层、柔性基体、电催化剂(载体)等多种形式应用于电化学储能器件/体系中并发挥重要作用.特别是以碳纳米管和石墨烯为代表的新型碳纳米材料,具有优异的导电性、高比表面积和可构建三维网络结构的特点,在电化学储能领域表现出巨大的应用潜力,近年来得到了快速发展[2]. 1碳材料概述 碳材料的发展不断给科学和研究拓展新的领域并带来新的方向.从上个世纪发现的富勒烯、碳纳米管到近期出现的石墨烯和石墨炔一直被广大研究人员和产业部门所关注,形成了持续热点.碳元素在自然界中广泛存在,具有构成物质多样性、特异性特点.作为单质,碳原子可由sp 1、sp 2、sp 3三种杂化方式形成结构和性质完全不同的固体.其中,sp 2杂化的碳原子构成的碳质材料形式最为多样,新型碳材料基本都是以sp 2杂化为主. sp 2杂化的碳材料由石墨片层或石墨微晶构

镍电沉积及镀层的结构与性能的测试--开题报告

开题报告 镍电沉积及镀层的结构与性能的测试——电沉积工艺条件―Hull槽试验及镀层的 结构与性能的测试 开题报告 一、课题的名称:镍电沉积及镀层的结构与性能的测试 二、课题的目的和意义: 目的: 1.熟悉Hull 槽试验的基本原理、实验操作和结果分析。 2.试验并了解添加剂糖精、苯亚磺酸钠、镍光亮剂XNF 和十二烷基硫酸钠对电沉积光亮

镍的影响。 意义: 不锈钢具有良好的耐蚀性,但不锈钢硬度较低,表面强度低,耐磨性差,摩擦因数较大,在碰撞或者磨损环境中工作时,易发生局部损伤和表面钝化膜受损而导致局部腐蚀。所以为了提高不锈钢的耐磨性和耐蚀性,常对其表面进行处理,通过对不锈钢表面镀镍来改善材料的外观、耐腐蚀性和耐磨损性性能结构。 三、镍电沉积及镀层的特点及国内外研究现状: 镍具有银白色(略呈黄色)金属光泽,具有铁磁性,密度为8.9,原子量为58.71,标准电极电位为一0.25伏。镍具有很强的钝化能力,在空气中能迅速地形成一层极薄的钝化膜,使其保持经久不变的光泽。常温下,镍能很好地防止大气、水、碱液的浸蚀。在碱、盐和有机酸中很稳定,在硫酸和盐酸中溶解很慢,易溶于稀硝酸。 由于镍的硬度较高(HV 240-500),所以镍层可以提高制品表面硬度,并使其具有较好的耐磨性。镍是铁族元素,属于电化学极化较大的元素,当电解时能产生较大的极化作用,即使在很小的电流密度下,也会产生显著的极化作用。因此,镀镍与镀锌、镀铜不同,它不需要特殊添加剂。因为电沉积镍时有较大的极化作用,所以在强酸性介质中,根本不可能把它沉积出来,只能使用弱酸性电解液。 化学镀镍技术具有悠久的历史,但其技术的广泛运用还是在近期。化学镀镍的发展史是化学镀发展的重要组成部分。在1947年美国国家标准局A.Brenner和G.Riddell提出了沉积非粉末状镍的方法,并弄清楚了形成镀层的催化特性,奠定了化学镀镍技术的基础。化学镀镍技术的最早工业应用是1955年在美国通用运输公司(GATC)在系统研究该技术后建立的第一条生产线。早期化学镀镍技术的应用极少,直到70年代末化学镀镍技术才被大规模地运用到工业中。为了满足复杂的工况、获得更多的性能,近年来又发展起来了化学复合镀镍技术。化学镀镍技术的核心是镀液的组成及性能,所以化学镀镍发展史中最值得注意的是镀液本身的进步。20世纪60年代前后,由于化学知识贫乏,只有中磷镀液配方,镀液不稳定(往往只能稳定数小时),工艺落后。70年代后出现了络合剂、稳定剂等多种添加剂,经过大量的实验研究、筛选、复配以后,新发展的镀液均采用“双铬合”或“双铬合、双稳定、双促进”配方,极大地提高了镀液的稳定性,镀速加快,大幅度增加了镀液对亚磷酸根的容忍性、目前,化学镀液均已商品化,根据用户要求有各种性能化学镀的开缸及补加浓缩液的出售,施镀过程中只需要按消耗的主盐、还原剂、PH调节剂及适量添加剂进行补充,使用十分方便。 在化学镀镍溶液质量提高的基础上,化学镀镍生产线的装备和技术发展迅速,逐渐从小槽

英国city一氧化碳电化学传感器资料

7E & 7E/F CiTiceL ? Technical Specifications 3-electrode electrochemical 0-1000 ppm CO 2000 ppm CO None To remove SOx/NOx and H 2S 0.10 ± 0.02 μA/ppm <25 Seconds at 20°C <30 Seconds at 20°C -1 to +3 ppm equivalent <9 ppm equivalent 1% of signal Linear Product Dimensions All dimensions in mm All tolerances ±0.15 mm unless otherwise stated IMPORTANT NOTE: Connection should be made via PCB sockets only. Soldering to the pins will seriously damage your sensor and invalidate the warranty. All performance data is based on conditions at 20°C, 50% RH and 1013 mBar, using City Technology recommended circuitry. For sensor performance data under other conditions, refer to Operating Principles OP08 or contact City Technology. Carbon Monoxide (CO) Gas Sensor Part Numbers: 7E (AB704-400) & 7E/F (AB704-407) MEASUREMENT Operating Principle Measurement Range Maximum Overload Filter: 7E 7E/F Sensitivity Response Time (T 90): 7E 7E/F Baseline Offset (clean air)Zero Shift (-20°C to +40°C)Repeatability Linearity 10 ? Not Required ELECTRICAL Recommended Load Resistor Bias Voltage 17 g Polycarbonate ABS Any MECHANICAL Weight Housing Material: Cap Body Orientation Portable Life Safety -20°C to +50°C 0°C to 20°C Atmospheric ± 10% 0.020 ± 0.008 % signal/mBar 15 - 90% RH non-condensing ENVIRONMENTAL Typical Applications Operating Temperature Range Recommended Storage Temp Operating Pressure Range Pressure Coefficient Operating Humidity Range <5% signal loss/year Three years in air 6 months in CTL container 24 months from date of despatch LIFETIME Long Term Sensitivity Drift Expected Operating Life Storage Life Standard Warranty Key Features & Benefits: ? Robust, industry standard 7-Series packaging ? Compact Size

铁碳复合电极材料的成分原理与应用

铁碳复合电极材料的成分、原理与应用 陈老师 (浙大国家大学科技园哲博检测,杭州哲博化工科技有限公司,杭州西溪310023, Email:zhebocs@https://www.360docs.net/doc/925787395.html,) 铁炭微电解技术是目前处理高浓度有机废水的一种理想工艺。其关键技术点在于铁碳材料的成分和结构。通过对铁碳不同成分含量分析和结构测定,可以发现常见的铁碳材料为铁及金属催化剂与炭包容在一起形成架构式铁炭结构。此种材料的特点是:①此结构铁与炭永远是一体,不会像铁炭组配组合容易出现铁与炭分离;②铁炭一体可降低原电池反应的电阻,从而提高电子的传递效率;③铁炭一体可以避免钝化的产生,虽有裸漏的铁产生钝化,但因颗粒之间的磨损大可减少钝化层,而架构内的铁炭却不受钝化影响。铁碳微电极结构如下图所示: 一、铁碳微电极原理 当将铁屑和碳颗粒浸没在酸性废水中时,由于铁和碳之间的电极电位差,废水中会形成无数个微原电池。其中电位低的铁成为阳极,电位高的碳成为阴极,在酸性充氧条件下发生电化学反应,其反应过程如下: 阳极(Fe): Fe- 2e→ Fe2+, 阴极(C) : 2H++2e→ 2[H]→H2,

从反应中看出,产生的了初生态的Fe2+和原子H,它们具有高化学活性, 能改变废水中许多有机物的结构和特性, 使有机物发生断链、开环等作用。若有曝气,即充氧和防止铁屑板结。还会发生下面的反应: O2+ 4H+ +4e→2H2O; O2+ 2H2O+ 4e→4OH-; 2Fe2+ +O2+4H+→2H2O+ Fe3+。 反应中生成的OH-是出水pH值升高的原因,而由Fe2+氧化生成的Fe3+逐渐水解生成聚合度大的Fe(OH)3胶体絮凝剂, 可以有效地吸附、凝聚水中的污染物, 从而增强对废水的净化效果。 二、铁碳微电极在污水处理中的应用 1.pH值对处理效果的影响 pH值对铁碳处理有很大影响,进水的pH值越低,CODCr 去除率越高。结论是进水pH值一般为2到4之间。原因低pH能提高氧的电极电位, 加大微电解的电位差, 促进电极反应。但pH过低会导致铁的消耗量大, 产生的铁泥也多,增加了处理费用。 问题:如果我们处理的工业废水不是酸性水怎么办?为碱性水或者偏碱性。是不是需要对进水进行酸化。其后出水还需要加碱(如果出水pH不高的话),运行费用合算不合算。这是设计的时候需要考虑的问题。 2、HRT对处理效果的影响 结论是停留时间从30min到120min,CODCr 去除率逐步升高,其后再延长停留时间对出水效果影响不大。明水的铁碳池体积为50个立方,进水流量目前为4t/h,停留时间为12.5小时,所以在HRT方面可以达到最优化效果。 3. 铁碳比: 铁碳按1∶1 的体积比或者质量比为2:1装入反应器。

多孔碳纳米球的制备及其电化学性能_杨秀涛

物理学报Acta Phys.Sin.Vol.66,No.4(2017)048101 多孔碳纳米球的制备及其电化学性能 ?杨秀涛梁忠冠袁雨佳阳军亮夏辉? (中南大学物理与电子学院,长沙 410083) (2016年10月11日收到;2016年10月31日收到修改稿) 以三嵌段共聚物F108为软模板,通过水热法合成酚醛树脂球并在氮气氛围下碳化、KOH 活化处理,最终得到多孔碳纳米球材料.通过扫描电子显微镜,透射电子显微镜和氮气吸附分析仪对样品进行表征,结果表明样品的平均粒径为120nm,球形度高,比表面积达到1403m 2/g,孔径分布广.通过X 射线衍射研究样品的结晶度, 序度提高明,10000次循环充放电后,关键词:PACS:1引上的电池,长、能影响较大[纳米管[5,6]球[12?14].物为模板,活化,得到活 P123(PEO 20-. 为软模板,利用水(porous .通过扫描电子X 射线,研究孔隙结构、 ?国家自然科学基金(批准号:51673214)资助的课题.?通信作者.E-mail:xhui73@https://www.360docs.net/doc/925787395.html, ?2017中国物理学会Chinese Physical Society https://www.360docs.net/doc/925787395.html, 网络出版时间:2017-01-12 10:56:13 网络出版地址:https://www.360docs.net/doc/925787395.html,/kcms/detail/11.1958.O4.20170112.1056.016.html

结晶度和表面官能团的影响.结合PCNS 样品的电化学性能的测试,研究了PCNS 样品的理化特性对其电化学性能的影响. 2实验部分 2.1 多孔碳纳米球的合成 首先,称取1.96g 三嵌段共聚物F108溶解于30mL 水中搅拌均匀得到澄清溶液A.然后称1.2g 的苯酚并量取4.2mL 质量分数为37%的甲醛溶液溶解于30mL 的0.1M(mol/L)氢氧化钠溶液,搅拌均匀, min 体系中加入到溶液B.取物质烘干.氛下以700? 物PCNS 为中性,900?C 时,2.2600i)TWIX)比表面积S 孔面积(S 计算.品的孔径分布.用X 射线衍射仪(XRD,SIEMENS D500)在电压为40kV 、电流为100mA,Cu 靶、K α射线(λ=0.15056nm)、石墨单色滤波器以及衍射角为10?—70?的条件下以2?/s 的速度对样品扫描. 用红外光谱仪(FTIR,Niclet 380)对样品在波数500cm ?1—4500cm ?1范围内进行扫描,根据得到的吸收光谱图分析样品的表面元素及官能团组成. 2.3电化学特性测试 采用辰华CHI660E 电化学工作站在三电极体 系进行电化学特性的测试.测试体系的对电极和参比电极分别采用铂片电极和Hg/HgO 电极,而工作电极的制备采用(1×1)cm 2泡沫镍为基底,将制备的多孔碳纳米球样品作为活性物-质和乙炔黑,用乙醇作为溶剂,60wt%聚四氟乙烯(PTFE)混合,调成浆状,,于10MPa 压(cyclic (galvano-GC)和电化学阻spectroscopy,5,10,20,50,100V 的电压区间进行·m ), (1) (A),放电时间(g).电化学kHz,微扰为,1(b)分别是PCNS 1(c)和图1(d)是照片,图1(e)和TEM 照片,每TEM 照片,KOH 处理后其粒径大小没有明显的改变.从选区电子衍射图可知,样品在?002?和?100?晶面处具有衍射特征峰.由超高放大倍数TEM 照片,可以看出样品PCNS700和PCN900的微晶有序度要高于PCNS 的有序度.

金属材料的电化学腐蚀与防护

金属材料的电化学腐蚀与防护 一、实验目的 1.了解金属电化学腐蚀的基本原理。 2.了解防止金属腐蚀的基本原理和常用方法。 二、实验原理 1.金属的电化学腐蚀类型 (1)微电池腐蚀 在 由于?O(Fe2+/Fe)< ?O(Cu2+/Cu),两者构成了宏电池,铁作为阳极,失去电子受到腐蚀(属于吸氧腐蚀)。两极的电极反应式分别如下: 阳极反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(铜表面)反应式: O2+2H2O +4e-= 4OH- 在阴极由于有OH-生成,使c(OH-)增大,所以酚酞变红。

②金属铁和锌直接接触,环境同上,则由于?O(Zn2+/Zn)< ?O(Fe2+/Fe), 锌作为阳极受到腐蚀,而铁作为阴极,铁表面的氧气得电子后不断生成氢氧根离子,导致酚酞变红(属于吸氧腐蚀)。两极的电极反应式分别如下:阳极反应式: Zn = Zn2++2e- 3Zn2++2[Fe(CN)6]3-= Zn3[Fe(CN)6]2 (黄色沉淀) 阴极(铁表面)反应式: O2+2H2O +4e-= 4OH- 三、实验用品 仪器:0mL小烧杯,小试管(3支),10mL小量筒(1只)铁片,铜丝,锌 丝,滤纸片(若干),塑料镊子,洗瓶,细砂纸(约3×3cm2)。 药品:NaCl(0.1 mo1·L-1),K3[Fe(CN)6](0.1 mo1·L-1),乌洛托品(CH2)6N4(20%),CuSO4(0.1 mo1·L-1),HCl(0.1 mo1·L-1、6 mo1·L-1,浓),酚酞(0.5%),洗洁精,检验液(3%的CuSO4),磷化液(配方:H3PO4(85%):45g·L-1,ZnO:28 g·L-1,Zn(NO3)2:28 g·L-1,NaF:2 g·L-1 ,HNO3(浓):29 g·L-1)。 四、实验内容 1.金属的电化学腐蚀

锌电解沉积

锌电解沉积 electrowinning of zinc x}nd一anJ一e ehenjl 锌电解沉积(eleetrowinning of:inc)采用不溶阳极,在直流电作用下使硫酸锌电解液中的锌沉积在阴极上的过程,为湿法炼锌流程的重要组成部分。工艺将已净化合格的硫酸锌溶液(简称新液)和返回的电解液(简称废液)按一定的比例混合后,连续不断地从电解槽的进液端送入电解槽,槽中插入用铅银合金板制成的阳极和压延纯铝板做的阴极。当通入直流电时,在阴极发生析出锌的反应: ZnZ++Ze—Zn 在阳极则发生水被分解成H+和氧气的反应: HZO一Ze—ZH十+l/202 锌电解沉积的总反应为: ZnSO;+HZO一Zn+HZSO‘+l/202 随着锌不断地在阴极上电解沉积,电解液中含锌量逐渐减少,而硫酸却相应增加。为使电解槽内电解液中锌和硫酸的浓度稳定地保持在规定范围,并维持稳定的电解液液面,须连续向电解槽加入新液,从另一端排出含锌50一609/L、硫酸120一2609/L 的废液。部分废液冷却后返回电解配液,以使电解槽内的电解液达到必要的循环速度。每隔一定周期(24~48h)取出沉积锌的阴极,经洗净后剥离锌。阴极锌经干燥后,送熔铸成产品锌锭。阴极铝板经刷洗处理,再装入电解槽中继续使少月。主要技术经济指标锌电积的主要技术条件和指标有电能消耗、电流效率、槽电压和电锌质量。电能消耗湿法炼锌每生产h电锌锭消耗电能3800一400Okw·h,电耗是构成电锌成本的重要部分。而锌电解沉积的电单耗达300。一3500kw·h,为总电能耗的79%一55%。因此,降低锌电解沉积的电能消耗,对降低电锌成本意义重大。从电解沉积电能消耗公式: 电能消耗(kW·h/t)~ 槽电压(V)只100 锌的电化当量(g/(A·h))x电流效率(环) 可知,锌的电化当量为一恒量,为降低电能消耗,应采取一切措施提高电流效率和降低槽电压。电流效率定义为实际产出的锌量和通过相同电量时,理论上应得的锌量比的百分数。生产中,除由于漏电和短路引起电流效率下降外,阴极上氢的析出是使电流效率下降的主要原因。因此,提高氢在阴极L的超电位,就可以提高锌电解沉积的电流效率。生产上常采用提高电流效率的措施有:提高电流密度(阴极电流密度一般为35。~600A/mZ),控制好电解液的温度(常控制在308~313K),加速电解液的循环,稳定电解液成分并合理使用添加剂。正常生产的锌电解沉积的电流效率为88%一92%。槽电压是影响锌电解沉积电能消耗的重要技术参数,降低槽电压就能相应降低电能消耗。槽电压由硫酸锌分解电压(占槽电压的75%一80%),电解液电阻电压降(占13%一17%),阴、阳极极板电阻电压降(占1%一1,3%),阳极泥电阻电压降(占5%一6写)及各接触点电阻电压降(1%一1.4%)组成。一般工厂的锌电解沉积槽电压多控制在3.3一3.4V,如电流密度和极间距过大,也可能达到3.5一3.6V。可采取降低槽电压的措施有:使接触点导电良好,定期刷洗阳极泥,保持电解液中合适的镁、锰等离子的浓度。电锌质量电锌中的主要杂质有铅、福、铜。福主要来自新液,铜则是由于电解槽槽面操作不洁净引入的,铅基合金阳极是杂质铅的主要来源。生产实践中影响电锌质量的主要杂质是铅,铅是由于阳极腐蚀进入电解液,在电解沉积过程中沉积入阴极锌中的。因此,大多数的锌电积厂都采用耐腐蚀性能好的含银0.5% 一1%的铅银合金或铅、银、钙、惚四元合金制造的阳极。由于直接生成的PbO,膜较间接生成的致密,许多工厂采用预先镀膜的阳极,以减少从阳极进入电解液中的铅量。电解液中氯离子含量增加或电解液温度升高,都会引起阳极中铅的溶解,但当电解液中Mn与Cl 的浓度比大于3~3.5时,氯的有害影响受到明显抑制。提高电流密度以提高单位时间内锌的析出量,可相应降低电锌含铅量。向进槽电解液中添加铭或钡的碳酸盐,使之与铅形成溶解度更小的类质同晶硫酸盐共沉淀,可有效地降低电锌中的铅。设备锌电解沉积系统由贮槽、电解槽、阴极板、阳极板、废液冷却塔、管道、溜槽、输送泵和供电系统等组成。电解槽是一个钢筋混凝土制成的矩形槽子,内衬软聚氯乙烯塑料或环氧玻璃钢,也有用辉绿岩制成的。用单槽供液。阳极板材料一般为含

碳纳米管复合材料的制备_表征和电化学性能

第11卷 第2期2005年5月 电化学 ELECTROCHE M ISTRY V o.l 11 N o .2M ay 2005 文章编号:1006-3471(2005)02-0152-05 收稿日期:2004-11-02,*通讯联系人T el :(86-592)2185905,E -m a il :qfdong @x m u .edu .cn 973项目(2002CB211800),国家自然科学基金(20373058),福建省科技项目(2003H 044)资助 碳纳米管复合材料的制备、表征和电化学性能 董全峰* ,郑明森,黄镇财,金明钢,詹亚丁,林祖赓 (厦门大学化学系,厦大宝龙电池研究所,固体表面物理化学国家重点实验室,福建厦门361005) 摘要: 作为锂离子电池负极材料,碳纳米管和金属锡或其氧化物都曾引起过人们浓厚的兴趣,但由于其自 身的缺陷,这些材料均未能得到进一步的发展.本文以不同方法合成了碳纳米管和金属锡或其氧化物的复合材料,对其结构、形貌进行表征,并考察它的电化学性能. 关键词: 碳纳米管; 复合材料;制备;电化学性能中图分类号: O 646;T M 911 文献标识码: A 碳纳米管(CNT )是一种新型的碳材料[1,2] .碳纳米管在结构上与其它的碳材料有很大的不同,它不仅具有典型石墨层状结构(管壁),同时又具有无序碳的结构(内外表面的碳层及所附着的无序碳微粒),还具有与MC MB 类似的内腔结构,而且表面及边缘又存在结构缺陷,管与管之间为纳米间隙,管中还存在部分的H 原子掺杂.在制备上,碳纳米管可以通过控制一定的反应条件来调控它的几何结构参数,如管的管壁,外径、内径大小,及管的长度.基于其特殊的结构和高的导电率,吸引了众多研究者开展了大量研究工作,希望它能成为新一代锂离子电池“理想”的负极材料[3,4] . 由于碳纳米管的高比表面及其结构缺陷,锂不仅能嵌入管中的石墨层,还能嵌入它的孔隙及边缘缺陷中,使得它尽管具有高的嵌锂容量,但由于比表面积较大而表现出很大的不可逆容量.又因为在碳纳米管的结构中含有氢原子以及管壁层间和管 腔之内有间隙碳原子的存在[5] ,故其嵌锂容量出现较大的滞后现象.这些都限制了C NT 作为电极活性材料在实际中的应用,所见者只是被用作电极添加剂的报道.本文综合了碳纳米管和锡基材料的优点,规避其本身固有的缺陷,在碳纳米管的表面沉积/包覆锡或氧化锡形成CNT 复合材料,这样不仅可减少碳纳米管的比表面积,同时直接采用金属锡取代锡基氧化物,不存在氧化物的还原过程,从 而大大降低初次充电不可逆容量损失;通过控制反应条件在表面沉积过程中包覆纳米级的锡,使表面沉积/包覆锡的碳纳米管能在保持高容量的同时,也具有良好的循环寿命.此外,还提高了它的体积能量密度. 1 实 验 1.1 碳纳米管的制备 应用Sol -ge l 法制备N i -M g -O 催化剂,方法见文献[6],所用试剂N i (NO 3)2 6H 2O 、M g (NO 3)2 6H 2O 和柠檬酸均为分析纯(上海化学试剂有限公司).将制备好的催化剂称取一定量置于陶瓷舟内,放在反应器的恒温区内,于氢气氛下缓慢升温至700℃,还原一段时间后,降温到600℃稳定10m in ,然后以20m L /m i n 的流量导入C H 4气体,经反应一定时间后自然冷却至室温(冷却过程中继续通气体).用分析纯硝酸(上海化学试剂有限公司,AR 65%)处理反应后的样品,洗涤、烘干后即得到碳纳米管.反应装置是在一个水平放置的管式电炉内放一内径为5c m 的石英管(长140c m ),其恒温区为20c m ,电炉为SK -2-4-12型管式电阻炉(上海实验电炉厂),额定功率4k W ,额定温度1200℃,控温装置为A1-708P A 型程序控温仪(厦门宇光电子技术研究所),流量计为D08-4C /Z M 质量流量控制仪(北京建中机器厂).

第三章 材料电化学

第三章材料电化学 电化学的典型应用: 1、湿法精炼:包括金属的电解提取和电解提纯 2、表面处理:金属电镀、阳极氧化 3、材料抗腐蚀: 称为电化学防蚀技术 4、化学电源:一次电池、二次电池、燃料电池 电化学作为古老的研究领域,随着微观材料科学的发展,一些新观点、新技术正不断涌现,推动电化学进一步发展。 如:燃料电池 高性能、小型化一次电池、二次电池 光化学电池 电磁材料 化学现象转换成电信号的应用研究等。 3.1 电极电位和极化 一、界面电位计 导体——能导电的物质称为导电体,也称为~。 导体分两类: 第一类导体是电子导体,依靠自由电子的运动导电。 如金属、石墨和某些金属的化合物等。 第二类导体是离子导体,依靠离子定向运动导电。 如电解质溶液和熔融电解质等。 电极——侠义上是指与电解质溶液相接触的第一类导体, 广义上是指第一类导体与电解质溶液所构成的整体。 几个电化学上的概念: 电解池——利用电能以发生化学反应的装置称为~。 在电解池中,电能转变为化学能。 原电池——利用两极的电极反应以产生电流的装置称为~。 在原电池中,化学能转变为电能。

电极反应——在电极上进行的有电子得失的化学反应称为~。 电池反应——两个电极反应的总结果表示成电池反应。 阳极——发生氧化反应的电极为~。 阴极——发生还原反应的电极为~。 依电势(电位)的高低,将电极分为正极和负极: 电势(电位)高的为正极; 电势(电位)低的为负极; 电极电位——当金属与电解质溶液接触时,在金属、溶液界面将产生 电化学双电层,双电层的金属相与溶液相之间的电位差 称为界面电位差,又称为~。 用能斯特(Nernst)方程表示 ++ ?=?2ln 0M zF RT αφφ 或++ =2ln 0M zF RT E E α φ?—电位差 0φ?—标准电位差 z —电荷数 F —法拉第常数 E —电动势 +2M α—离子的活度,mol/kg 由能斯特方程确定的是平衡电位,即水溶液相和金属相之间呈电化学平衡。 从能斯特方程可知: 电解质溶液和金属间的电位差绝对值无法 测量,它随金属离子浓度的变化而变化。 二、电池结构与单极电位 对单极电池: 相间电位差 → 无法测量; 单极电池 + 单极电池 → 电池: 电位差即电动势 → 可以测量 1、丹尼尔电池 铜-锌电池

杂质对锌电解沉积过程的影响

杂质对锌电解沉积过程的影响1.钴(Co)0.001g/L 溶液中的钴离子对电解过程危害较大,它在阴极放电析出,并与锌形成微电池,使已析出的锌反溶解。烧板特征是背面有独立小圆孔,严重时可烧透,由背面往正面烧,正面灰暗,背面有光泽,未烧透时有黑边。如果溶液中锑锗及其他杂质含量较低时,溶液中适当的钴存在,对降低析出锌含铅有利。2.镍(Ni)0.001g/L 镍离子与钴一样,在阴极上放电析出,也与锌形成微电池。。烧板特征是呈葫芦瓢形孔,由正面往背面烧。除采取深度净化外,当同时存在钴和镍时,往电解液中加入β—萘酚可以抑制钴镍的危害作用。 3.锗(Ge)0.00004 g/L 锗是最有害的杂质,它在阴极上析出后,造成阴极锌的强烈反溶,电流效率急剧下降。烧板特征是由背面往正面烧,形成黑色圆环,严重时形成大面积的针状小孔。 4.砷(As)0.00024 g/L 锑(Sb)0.0003 g/L 它们都在阴极上放电析出,并产生烧板现象,锑引起烧板的特征是表面呈粒状;砷引起烧板的特征是阴极锌阴极表面呈条沟状。降低电解液温度可以减轻砷锑的有害作用,当砷锑引起烧板时,往电解液中加入适当的骨胶和皂角粉,可以改善析出状况,减轻烧板

5 铜(Cu)0.0002 g/L 铜离子在阴极上放电析出,与锌形成微电池,造成烧板。烧板特征是圆形透孔,由正面往背面烧,孔的周边不规则。 6 镉(Cd)0.001 g/L 镉离子在阴极上放电析出,虽不明显引起烧板,但降低析出锌的质量。 7 锰(Mn)2~5 g/L 溶液中二价锰离子在阳极氧化生成七价和四价锰离子,二氧化锰能保护阳极,但七价锰离子使砷锑的危害更显著。 8氟(F)0.05 g/L 溶液中氟离子的存在,腐蚀阴极铝板表面的三氧化二铝薄膜,使得析出锌与金属铝形成合金,发生难拨现象,同时也造成阴极消耗增加。 9氯(Cl)0.2 g/L 溶液中氯离子对阳极腐蚀性,使得阳极上的铅进入溶液,造成电解液含铅增高,降低析出锌质量。

锌电解沉积word版

锌电解沉积工艺现状及发展方向 中南大学——株洲冶炼集团工程硕士班王海波 一、锌电积过程的理论基础 锌电解液的主要成分是硫酸锌、硫酸和水,当通以直流电时带正电荷的离子移向阴极,带负电荷的离子移向阳极,并分别在阴、阳极上放电。 阴极主要反应:Zn2++2e=Zn 阳极主要反应:2OH--2e=0.5O 2+H 2 O(或H 2 O-2e=0.5O 2 +2H+) 电极过程总反应:ZnSO 4+H 2 O=Zn+H 2 SO 4 +0.5O 2 二、锌电解液成分及锌电积生产过程 (一)锌电解液 锌电解液除主要成分硫酸锌、硫酸和水外,还存在少量杂质金属的硫酸盐及部分阴离子(主要为氯离子和氟离子)。目前锌电解液中锌的浓度一般波动在40~60g/L范围内,而硫酸浓度则趋于逐步提高,已从110~140g/L提高到170~200g/L。对于杂质的含量各厂也有不同要求。加拿大一家锌厂在进行改造时曾做过调查,为了适应电流密度大幅度提高,对电解液中杂质含量(mg/L)要求更严格: Cd<0.3,CO<0.3,Sb<0.03,Ge<0.03,Fe<10,CL<50~100,F<10,Mn<1.8g/L (二)锌电积生产过程 硫酸锌溶液的电积过程是将已经净化好的硫酸锌溶液(新液)以一定比例同废电解液混合后连续不断地从电解槽的进液端送入电解槽内。 铅银合金板(含银量约1%)阳极和压延铝板阴极,并联交错悬挂于槽内,通以直流电,在阴极析出金属锌(称阴极锌或析出锌),在阳极则放出氧气。随着电积过程的不断进行电解液含锌量逐渐减少,而硫酸含量则逐渐增多,为保证电积条件的稳定,必须不断地补充新液以维持电解液成分稳定不变。电积一定时间后,提出阴极板,剥下压延铝板上的析出锌片送往熔铸工序。 三、锌电解生产的操作过程 (一)装出槽及槽上操作 1、停工(停车)及开工(开车)

温度对电沉积氢氧化镍电化学性能的影响

万方数据

万方数据

万方数据

温度对电沉积氢氧化镍电化学性能的影响 作者:薛雷, 王为, XUE Lei, WANG Wei 作者单位:天津大学化工学院应用化学系,天津,300072 刊名: 电镀与涂饰 英文刊名:ELECTROPLATING & FINISHING 年,卷(期):2007,26(4) 被引用次数:2次 参考文献(7条) 1.HUMBLE P H;HARB J N;LAFOLLETTE R M Microscopic nickel-zinc batteries for use in autonomous Microsystems[外文期刊] 2001 2.HUMBLE P H;HARB J N Optimization of nickel-zinc microbatteries for hybrid powered microsensor systems[外文期刊] 2003 3.BANHART J;FLECK N A;MORTENSEN A Cellular metals:manufacture,properties and application 2003 4.MAC ARTHUR D M The hydrated nickel hydroxide electrode potential step experiments[外文期刊] 1970(04) 5.STREIN C C;HARTMAN A P The effect of current and nickel nitrate concentration on the deposition of nickel hydroxide films[外文期刊] 1995(04) 6.KATHRYN P T;JOHN N Mass transfer and kinetic phenomena at the nickel hydroxide electrode[外文期刊] 1998(11) 7.KATHRYN P T;JOHN N Proton intercalation hysteresis in charging and discharge nickel hydroxide electrodes[外文期刊] 1999(08) 本文读者也读过(10条) 1.薛雷.王为电沉积氢氧化镍电极的性能研究[会议论文]-2006 2.韩恩山.许寒.康红欣.冯智辉.HAN Enshan.XU Han.KANG Hongxin.FENG Zhihui纳米氢氧化镍掺杂镍电极的电化学性能[期刊论文]-化工进展2008,27(3) 3.卢莹氧化镍功能材料的电沉积制备工艺及性能研究[学位论文]2005 4.薛雷.王为电化学沉积氢氧化镍电极材料的研究[会议论文]-2006 5.刘浩杰.尹鸽平.胡树清.呙成乙醇对电化学浸渍的影响[期刊论文]-电源技术2004,28(12) 6.李怀祥.薛成山.左传增.Li Huaixiang.Xue Chengshan.Zuo Chuanzeng阴极共沉积Ni(OH)2薄膜在碱溶液中的电化学特性[期刊论文]-山东师范大学学报(自然科学版)2000,15(1) 7.于维平.杨晓萍.孟令款.刘兆哲.YU Wei-ping.YANG Xiao-ping.MENG Ling-kuan.LIU Zhao-zhe电沉积法制备掺杂钴的氢氧化镍电极材料及其容量特性[期刊论文]-材料热处理学报2005,26(6) 8.潘滔用电化学阴极沉积法制备稳定α型氢氧化镍[学位论文]2003 9.刘建华.杨敬武.唐致远.LIU Jian-hua.YANG Jing-wu.TANG Zhi-yuan掺杂球形氢氧化镍的循环伏安特性[期刊论文]-天津大学学报2000,33(1) 10.李悦明.李玮瑒.侴术雷.陈军多孔空心氢氧化镍电极材料的研究[会议论文]-2006 引证文献(2条) 1.赫文秀.张永强.蒋文全.傅钟臻.于丽敏强旋流管道合成工艺制备球形氢氧化镍[期刊论文]-材料导报 2008(9) 2.赫文秀.张永强.蒋文全.傅钟臻.于丽敏.张文广球形覆Co氢氧化镍的合成及性能研究[期刊论文]-硅酸盐通报

相关文档
最新文档