(完整版)现代生物技术在医药领域的应用

(完整版)现代生物技术在医药领域的应用
(完整版)现代生物技术在医药领域的应用

河南工业大学

现代生物技术导论--生物技术在医药领域的应用

姓名:

学号:2

专业:

生物技术在医药领域的应用

在医药领域,生物技术在预防、诊断和治疗影响人类健康的重大疾病方面发挥了重要作用,并由此形成了高速成长的生物医药产业,这是目前为止生物技术最大的应用领域。生物医药产业最发达的国家是美国。第一家运用现代生物技术的制药公司--美国的Cetus公司,创建于1971年。到目前为止,美国生物制药业已有数百家公司,正在开发数千种药品。随着生物技术新药开发数量的增长,生物技术药品研发费用的增长速

度将比其他药品更快。生物技术药物的销售增长率趋势是2003年到2010年每年增长12-15%,随着更多的生物技术药品进入市场,销售增长率会增加得越来越快。生物技术药品已涉足于200多种疾病,其研究多数是针对癌症治疗,在传染性疾病、神经性疾病、心血管疾病、呼吸系统疾病、爱滋病、自体免疫性疾病、皮肤病等其他疾病方面的研究力量相当。总览生物技术在生物制药领域的发展新趋势,主要有以下几方面:

1、个性化药品

个性化药物是指适合于某一特定病人的药物。新技术的开发将使治

疗方法产生了巨大的进步,使个性化药物的运用成为可能。生物技术使得我们能够区别遗传物质形成过程中的细微差异,了解每个病人在治疗效果、药物敏感性和副反应发生方面的差异。如果知道一个人会对某个药物产生怎样的反应和如何代谢,医生就能在治疗前确定病人用什么药合适。

这些进步对医药产生了很大影响,制药企业可以生产更有效的药物。知道了药物对哪些人疗效好且副反应少,临床实验就可以在疗效好且副反应少的人中进行,医生就可以避免将处方药物开给使用效果不好或有严重副反应的人。这样,对于特殊

人群有好处的药物就有可能被开发出来了,而不是被拒绝,新药开发的成本也就会降低。

病人将受益于使用合适的药物,不用再试用所有的药物或受大量的副反应的影响。医生的处方药物会及时发挥作用,治疗会在更短的时间内见到效果,并且可以节省治疗费用。

同时,个性化药物也给我们带来一个问题--这些药物怎样使用?医生将说"遗传学上讲"还是"一般来说"?不同的医生的做法会相同吗?现在还不清楚怎样使医生将遗传学作为基本治疗方法的一部分。不经过学习和培训,我们也许不能获得个性化

治疗带给我们的所有好处

2、利用微生物发酵制取生物活性物质

生物体内有许多生物活性物质可以作为药物,这其中微生物产物最为重要,现代医疗所用的抗生素、菌体药物、酶制剂、酶抑制剂等都是微生物发酵产物,这些生物活性物质的生产大多采用液体深层培养法。

酶抑制剂,对生物体内酶活性有抑制作用的物质称酶抑制剂,它作为医药产品的潜力是很大的。。筛选的各种酶抑制剂,其中有的作为免疫促进剂,有的在进行动物试验。许多至今尚未攻克的疑难病症,将会通过酶抑制剂药物加以治疗及改善,该种药物将会成为具有广阔市场前景的药品。酶抑制剂研究中主要受各种酶和受体筛选模型的限制,因为靶酶和受体大多来自动物体内,数量有限不利于采用机器人进行大量筛选,应用基因重组技术将一些靶酶的活性中心或受体的配体、亚基等在微生物中大量表达可以解决这一难题。

生物技术发酵还可以生产其它生理活性物质主要有畄体激素、维生素、赤霉素、杀菌剂等。畄体激素是治疗关节炎的良药,特别是可的松对于风湿性关节炎疗效尤好。由脱氧胆酸为原料,以化学合成法合成醋酸可的松,需32步化学反应,用黑根霉将黄体酮一步转化为11一a一轻基黄体酮,收率高达90%,省去了10个化学合成工序。后又陆续发现一些细菌、放线菌、酵母、霉菌菌株对畄体化合物中的一定部位均有转化反应,微生物在街体激素的制造中得到了广泛应用。维生素种类繁多,许多为人体所必需,除鱼肝油外,过去大都采用化学合成法。随着发酵技术的日益发展,部分维生素如维生素B12、维生素B2和维生素C等可采用生物合成法生产。赤霉素对蔬菜有很好的增产效果,用赤霉素涂点棉花花铃能明显减少棉铃脱落,从而达到增产目的,我国已从稻恶菌病株上分离筛选出优良菌株,利用深层培养法生产赤霉素,但生产能力不高,有待提高。

3.利用动物、植物细胞和组织培养来提供药物

动物细胞或组织培养是直接从有机体得到的组织或将其分散成细胞后进行的培养。通过动物细胞培养,已可获得病毒疫茵、干扰素、激素、单克隆抗体、免疫制剂及特殊的酶和物

质,随着基因重组技术和单克隆抗体技术的进展,动物细胞和组织培养展现出越来越可观的工业化前景。近年来用300 L和1000L的培养罐分别用于生产单克隆抗体和灰色脊髓炎疫苗。把植物细胞或组织从植物体内分离出来,并在比较简单的培养基中进行培养获得色素、香料、药品等已有半个世纪的历史,植物细胞与栽培植物相比,具有不受气候影响、稳定供应、在控制条件下生产、可采用连续方法生产等优点,但由于目的产物产率很低、植物细胞生长缓慢等问题,利用植物细胞和组织培生产药物工作进展较慢。

4.运用固定化技术制备药物及中间体

固定化技术主要指酶、完整细胞的固定化,即将原来游离的水溶性酶或细胞,设法限制或固定于某一局部的空间或固体载体上。采用固定化技术后,酶既不会流失,也不会污染产品质量。固定化细胞可以使酶在细胞内环境中发挥作用,酶活力损失少,而且免除了破碎细胞提取胞内酶的手续。固定化酶在经过滤或离心后可以长期重复使用,而且它的稳定性也得到提高,在实际应用中,固定化酶可以装在反应器中,使整个生产连续化进行,有利于生产的自动化控制,提高生产率。

5.利用基因工程改进药物生产工艺

基因工程技术在药物生产过程中主要用子改良工业生产菌种、提高菌种生产能力和性能、提高有效组分含量、简化工艺提高收率、有利于提取精制等后处理工序,并可大大减少环境污染等。

应用基因重组技术把带有头抱菌素C生物合成途径中编码关键酶基因的杂合质粒转化至头孢菌素C的工业生产菌种中,获得的高产工程菌在中试规模中头孢菌素C生产能力比原菌株提高了15%,在抗生素发酵过程中供氧往往是限制因素,且消耗大量能源,将血红蛋白基因克隆进头孢菌素C产生菌顶头孢霉菌后,使该菌种在发酵中的氧耗明显降低,且有效增加了头孢菌素C的产量。随着对各种工业生产的微生物药物生物合成途径的深人了解以及基因重组技术的不断发展,应用基因工程技术定向构建高产菌株,改进药物生产工艺的实例将越来越多。

6.基因药物和基因治疗

6.1基因药物

基因药物是1990年在《科学》杂志上提出的“以基因为原料生产的药物”,主要包括基因( Gene )、质粒( plasmid )、反义DNA或RNA( Antisense molecules )、模拟分子(decay

DNA/RVA),短小DNA或RNA ( Aptamers )和核酶(Ribozyme)等。这些药物是从分子水平上搞清了致病基因及发病机制后,在体外重建基因,转入体内,达到定向改变或恢复基因生物学功能,实现基因治疗的目的。

6.2基因治疗( Gene therapy )

基因治疗:是将外源基因重建后导人体内细胞,使正常基因置换病源基因或有缺失的基因,从而恢复基因的生物学功能,达到治疗的目的。进行基因治疗需要有理想的载体,现在常用的有病毒性载体和非病毒性载体,非病素性载体有脂质体、质粒、金属微粒等;病毒性载体有反转录病毒、腺病毒、腺相关病毒、单纯疱疹病毒,每一种载体都有自己的特点,逆转录病毒是目前研究的最深人、应用最广泛,转基因效率最高的病毒性载体,它可以介导基因整合于宿主基因组而产生较长时间表达,但它不能感染静止细胞:病毒载体的缺点是可能产生插入突变的危险,会激活癌基因或灭活抑癌基因及其它功能基因。目前运用还不广泛。

6.3细胞因子类生物药物

细胞因子是淋巴细胞来源的淋巴因子和巨噬细胞及单核细胞来源的单核因子在免疫系统中具有各种生物学活性的一类因子的总称。细胞因子种类繁多,功能纷杂各异。以前细胞因子的来源是采用细胞培养法,细胞在刺激物作用下产生细胞因子,再从培养物中提取纯化,这种方法产量低、质量差,限制了对细胞因子的研究和应用,目前采用生物技术方法,对各种细胞因子的cDNA进行克隆,弄清其氨基酸序列,然后用基因重组技术构建生产用工程菌或细胞株,通过微生物培养或细胞培养方法可以生产细胞因子类药物。过去难以获得的生长激素、促红细胞生成素、粒细胞集落刺激因子、粒细胞巨噬细胞集落刺激因子和白细胞介素等产品已陆续在市场上销售,已用于贫血或嗜中性白细胞减少症患者以及癌症患者的治疗。新的细胞因子的不断出现,21世纪其在临床上作为一类药剂出现已是不可怀疑的事实。

生物技术在药物研究和开发、生产中的应用,为人类战胜疾病、增强体质做出了巨大贡献。在预防、诊断和治疗影响人类健康的重大疾病方面发挥了重要作用,并由此形成了高速成长的生物医药产业,这是目前为止生物技术最大的应用领域。

医药生物技术分类与详解.doc

医药生物技术分类与详解 (一)医药生物技术 1、新型疫苗 具有自主知识产权且未曾在国内外上市销售的、预防重大疾病的新型高效基因工程疫 苗,包括:预防流行性呼吸系统疾病、艾滋病、肝炎、出血热、大流行感冒、疟疾、狂犬病、钩虫病、血吸虫病等人类疾病和肿瘤的新型疫苗、联合疫苗等,疫苗生产用合格实验动物,培养细胞及菌种等。 2、基因工程药物 具有自主知识产权,用于心脑血管疾病、肿瘤、艾滋病、血友病等重大疾病以及其他单基 因遗传病治疗的基因工程药物、基因治疗药物、靶向药物,重组人血白蛋白制品等。 3、重大疾病的基因治疗 用于恶性肿瘤、心血管疾病、神经性疾病的基因治疗及其关键技术和产品,具有自主知 识产权的重大疾病基因治疗类产品,包括:恶性肿瘤、遗传性疾病、自身免疫性疾病、神经 性疾病、心血管疾病和糖尿病等的基因治疗产品;基因治疗药物输送系统等。 4、单克隆抗体系列产品与检测试剂 用于肝炎、艾滋病、血吸虫病、人禽流感、性病等传染性疾病和肿瘤、出生缺陷及吸毒 等早期检测、诊断的单克隆抗体试剂,食品中微生物、生物毒素、农药兽药残留检测用单克隆抗体及试剂盒;重大动植物疫病、转基因生物检测用单克隆抗体及试剂盒,造血干细胞移植的分离、纯化和检测所需的单克隆抗体系列产品;抗肿瘤及抗表皮生长因子单克隆抗体药 物;单克隆抗体药物研究关键技术和系统;先进的单克隆抗体规模化制备集成技术、工艺和成套设备;新型基因扩增(PCR) 诊断试剂及检测试剂盒和人源化/ 性基因工程抗体。 5、蛋白质 /多肽 /核酸类药物 面向重大疾病——抗肿瘤蛋白药物(如肿瘤坏死因子),心脑血管系统蛋白药物(如纤溶酶原,重组溶血栓),神经系统蛋白药物尤其是抑郁药物,老年痴呆药物,肌肉关节疾病的蛋 白质治疗药物,以及抗病毒等严重传染病蛋白药物的研究与产业化技术;各类细胞因子 (如促红细胞生成素,促人血小板生长因子,干扰素,集落刺激因子,白细胞介素,肿瘤坏死因 子,趋化因子,转化生长因子,生长因子 )等多肽药物的开发技术;抗病毒、抗肿瘤及治疗自 身免疫病的核酸类药物及相关中间体的研究及产业化技术等。 6、生物芯片

选修三现代生物技术专题全套课后答案

选修3现代生物科技专题 专题1基因工程 1.1DNA重组技术的基本工具 (一)思考与探究 1.限制酶在DNA的任何部位都能将DNA切开吗?以下是四种不同限制酶切割形成的DNA片段: (1) …CTGCA (2) …AC (3) GC… …G …TG CG… (4)…G (5) G… (6) …GC …CTTAA ACGTC……CG (7) GT… (8)AATTC… CA… G… 你是否能用DNA连接酶将它们连接起来? 答: 2和7能连接形成…ACGT… …TGCA…; 4和8能连接形成…GAATTC… …CTTAAG…; 3和6能连接形成…GCGC… …CGCG…; 1和5能连接形成…CTGCAG… …GACGTC…。 2.联系你已有的知识,想一想,为什么细菌中限制酶不剪切细菌本身的DNA? 提示:迄今为止,基因工程中使用的限制酶绝大部分都是从细菌或霉菌中提取出来的,它们各自可以识别和切断DNA上特定的碱基序列。细菌中限制酶之所以不切断自身DNA,是因为微生物在长期的进化过程中形成了一套完善的防御机制,对于外源入侵的DNA可以降解掉。生物在长期演化过程中,含有某种限制酶的细胞,其DNA分子中或者不具备这种限制酶的识别切割序列,或者通过甲基化酶将甲基转移到所识别序列的碱基上,使限制酶不能将其切开。这样,尽管细菌中含有某种限制酶也不会使自身的DNA被切断,并且可以防止外源DNA的入侵(本题不要求学生回答的完全,教师可参考教师用书中的提示,根据学生的具体情况,给予指导。上述原则也应适用于其他章节中有关问题的回答。)。 3.天然的DNA分子可以直接用做基因工程载体吗?为什么?

现代生物技术知识

现代生物技术 现代生物技术是以DNA分子技术为基础,包括微生物工程、细胞工程、酶工程、基因工程等一系列生物高新技术的总称。现代生物技术在农作物改良、医药研究、食品工程、治理污染、环境生物监测等方面发挥着重要的作用。由于现代生物技术对解决人类面临的重大问题如:粮食、健康、环境和能源等将开辟广阔的前景,因此越来越为各国政府和企业界所关注,与信息、新材料和新能源技术并列成为影响国计民生的四大科学技术支柱,是21世纪高新技术产业的先导。 (一)遗传工程 遗传工程的研究发展,为器官移植提供了一个很有前途的新手段——利用动物的器官代替人的器官。科学研究表明人体异种器官移植,猪较为合适。首先猪器官的大小与人的相当,生理上也比较接近;其次猪在无病原体条件下比较容易饲养和容易保证无病的供体;此外猪的繁殖率高,每窝可产十几只猪崽,存活率也较高。为了保证植入的器官不被排斥,生物学者正在培养具有人的基因的新型猪,这种猪叫转基因猪。 (二)基因治疗

基因治疗是21世纪国际生物技术的又一个热点,基 因治疗就是将外源基因通过载体导人人体内(器官、组织、细胞等)表达,从而达到治病的目的。基因治疗开辟了医学预防和治疗的崭新领域,自从1990年临床上首次将腺苷酸脱氨酶ADA。基因导人患者白细胞,治疗遗传病——重度联合免疫缺损病一以来,利用基因治疗手段襄性纤维化(CF)、血友病,还扩大用于治疗肿瘤和艾滋病——的临床试验已数以百计,基因治疗将引起临床医学的一场革命,将为治疗目前尚无理想治疗手段的大部分遗传病、重要病毒性传染病(如各型肝炎、艾滋病等)、恶性肿瘤、心脑血管疾病和老年病等到开辟了十分广阔的前景。可以比较乐观地认为,随着人类基因组所包含的约3万个基因中与人的重要疾病相关的基因将人断被发现,6000多种人类单基因遗传病和一些严重危害人类健康的、(三)农业生物技术 在农业生物技术中,转基因动植物的研究与开发最为突出。1983年转基因植物问世,1986年被批准进入田间试验,根据美国农业部动植物检疫局(APHIS)的数据,截止1997年1月31日,美国已批准的转基因植物田间试验达2584例。近年来,抗除草剂的大豆、抗病毒病的甜椒、抗腐能力强、耐贮性高的番茄、具有高含量必须氨基酸的

现代生物技术与应用

染色体工程技术 在小麦品质改良中的应用及社会意义 摘要:本文报告了染色体工程在小麦品质改良中的方法,在理论研究与育种实践上的应用。论述了染色体工程在小麦品质改良和生产实践中所体现出来的社会意义。 关键词:染色体工程,小麦,类型变化,实践 正文: 染色体操作(chromosome manipulation)是按设计有计划削减、添加和代换同种或异种染色体的方法和技术。也称为染色体操作。染色体工程一词,虽然在20世纪70年代初才提出。其实早在30年代,美国西尔斯(E.R.Sears)及其学生就已开始研究,但当时局限于小麦,定义为:在小麦中利用缺体或单体材料,对个别染色体或染色体片断进行替代或转移的工程谓之“染色体工程”。 植物染色体工程从50年代的兴起迄今约30余年的历史,但运用这一技术在改造 植物的遗传性方面却显示了它强大的力量,表现在创造崭新的遗传资源,培育突破性新 品种和合成新物种等方面取得的重大进展。 目前对基因操作的主要方法有:有性杂交、染色体代换、易位、添加、染色体显微切割和微克隆、PCR扩增等。 现代小麦育种十分注意栽培品种的类型变化,期望它们优质、高产、抗病、矮秆。我们知道,在小麦近缘种属中,存在着小麦栽培品种所没有的优质、抗病基因。在常规的杂交程序中,栽培品种与野生种之间,因染色体组不同,在多数情况下染色体不能配对,其基因很难进行重。细胞遗传学家已经研究出一套方法,将异种变异性应用于小麦育种实践。这些方法包括染色体附加、染色体代换、染色体易位等。用这些方法实现了小麦染色体附加、代换、易位和部分同源染色体间的重组。 (一)麦外源染色体的添加 普通小麦附加系的系统研究工作开始于1940年,07mara把3个不同的黑麦染色体分别附加到小麦中。1960年Evans~Jenkins得到了所有7个黑麦染色体的双体附加系。之后,Sears把小伞山羊草的染色体附加到小麦中;Joppa等(1978)用一种新方法得到了具有15对染色俸的硬粒小麦双单体(3D,4D,5D)附加系;Islam(1978)把6个大麦染色体分烈跗加到小麦中。有人还把顶芒山羊草和冰草的一些种的染色体附加到小麦中。

2019高考:《现代生物科技专题》高考试题汇编

《现代生物科技专题》高考试题汇编 1、(2011海南卷)【生物——选修3:现代生物科技专题】(15分) 回答有关基因工程的问题: (1).构建基因工程表达载体时,用不同类型的限制酶切割DNA后,可能产生粘性末端,也可能产生末端。若要在限制酶切割目的基因和质粒后使其直接进行连接,则应选择能使二者产生(相同,不同)粘性末端的限制酶。 (2).利用大肠杆菌生产人胰岛素时,构建的表达载体含有人胰岛素基因及其启动子等,其中启动子的作用是提供。在用表达载体转化大肠杆菌时,常用处理大肠杆菌,以利于表达载体进入。为了检测胰岛素基因是否转录出了mRNA,可用标记的胰岛素基因片段作探针与mRNA杂交,该杂交技术称为。为了检测胰岛素基因转录的mRNA 是否翻译成,常用抗原-抗体杂交技术。 (3).如果要将某目的基因通过农杆菌转化法导入植物细胞,先要将目的基因插入农杆菌Ti质 粒的中,然后用该农杆菌感染植物细胞,通过DNA重组将目的基因插入植物细胞的上。 2、(2011全囯Ⅰ卷)【生物——选修3:现代生物科技专题】(15分) 现有一生活污水净化处理系统,处理流程为“厌氧沉淀池→曝光池→兼氧池→植物池”,其中植物池中生活着水生植物、昆虫、鱼类、蛙类等生物。污水经净化处理后,可用于浇灌绿地。回答问题: (1).污水流经厌氧沉淀池、曝气池和兼氧池后得到初步净化。在这个过程中,微生物通过呼吸将有机物分解。 (2).植物池中,水生植物、昆虫、鱼类、蛙类和底泥中的微生物共同组成了(生态系统、群落、种群)。在植物池的食物网中,植物位于第营养级。植物池中所有蛙类获得的能量最终来源于所固定的。 (3).生态工程所遵循的基本原理有整体性、协调与平衡、和等原理。(4).一般来说,生态工程的主要任务是对进行修复,对造成环境污染和破坏的生产方式进行改善,并提高生态系统的生产力。 3、(2012海南卷)【生物——选修3:现代生物科技专题】(15分) 已知甲种农作物因受到乙种昆虫危害而减产,乙种昆虫食用某种原核生物分泌的丙种蛋白质后死亡。因此,可将丙种蛋白质基因转入到甲种农作物体内,使甲种农作物获得抗乙种昆虫危害的能力。回答下列问题: (1).为了获得丙种蛋白质的基因,在已知丙种蛋白质氨基酸序列的基础上,推测出丙种蛋白质的序列,据此可利用方法合成目的基因。获得丙中蛋白质的基因还可用、方法。 (2).在利用上述丙中蛋白质基因和质粒载体构建重组质粒的过程中,常需使用酶和酶。 (3).将含有重组质粒的农杆菌与甲种农作物的愈伤组织共培养,筛选出含有丙种蛋白质的愈伤组织,由该愈伤组织培养成的再生植株可抵抗的危害。 (4).若用含有重组质粒的农杆菌直接感染甲种农作物植株叶片伤口,则该植株的种子 (填“含有”或“不含”)丙种蛋白质基因。 4、(2012全囯Ⅰ卷)【生物——选修3:现代生物科技专题】(15分) 根据基因工程的有关知识,回答下列问题:· (1).限制性内切酶切割DNA分子后产生的片段,其末端类型有和。(2).质粒运载体用EcoRⅠ切割后产生的片段如下: 为使运载体与目的基因相连,含有目的基因的DNA除可用EcoRⅠ切割外,还可用另一种限制性内切酶切割,该酶必须具有的特点是 。 (3).按其来源不同,基因工程中所使用的DNA连接酶有两类,即DNA连接酶和DNA连接酶。 (4).反转录作用的模板是,产物是。若要在体外获得大量反转录产物,常采用技术。 (5).基因工程中除质粒外,和也可作为运载体。(6).若用重组质粒转化大肠杆菌,一般情况下,不能直接用未处理的大肠杆菌作为受体细胞,原因是。

现代生物技术发展史

现代生物技术的发展 姓名:王利新 学号: 学院:

摘要:现代生物技术是通过生物化学与分子生物学的基础研究而快速发展起来的。医药生物技术起步最早、发展最快,目前世界已有2000多家生物技术公司,其中70%从事医药产品的开发。生物技术工业总体日趋成熟,正在由风险产业变成以商业为动力,以市场为中心的产业。 应用生物技术已有可能产生几乎所有的多肽和蛋白质,基因工程技术的应用已使新药研究方法和制药工业的生产方式发生重大变革。该文对现代生物技术在医药和基因工程现代化的应用进行了全面、深入的论述。 【关键词】生物技术;医药;基因工程技术; 率高近十几年来,在利用生物技术制取新药方面取得了惊人的成就,已有不少药物应用于临床。例如人胰岛素、人生长激素、干扰素、乙肝疫苗、人促红细胞生成素(Epo)、GM-集落刺激因子(GM-CSF)、组织溶纤酶原激活素、白细胞介素-2及白介素-11等。正在研究的有降钙素基因相关因子、肿瘤坏死因子、表皮生长因子等140多种。随着生物技术药物的发展,多肽与蛋白质类药物的研究与开发,已成为医药工业中一个重要的领域,同时给生物制剂带来了新的挑战。在实际应用中,基因工程药物受到一定限制,如口服应用时生物利用度低,会受到消化酶的破坏,在胃酸作用下不稳定,在体内半衰期较短等,因此只能注射给药或局部用药。为了克服这些缺陷,已开始改为合成这些天然蛋白质的较小活性片段,即所谓“多肽模拟”或“多肽结构域”合成,又叫“小分子结构药物设计”。这类药物可口服,有利于由皮肤、粘膜给药,用于治疗免疫缺陷症、HIV 感染、变态反应性疾病、风湿性关节炎等,其制造成本也更低。这种设计思想也已应用于多糖类药物、核酸类药物和模拟酶的有关研究。小分子药物设计属于第二代结构相关性药物设计,所设计的分子能替代原先天然活性蛋白与特异靶相互作用。 在给药方式的研究方面,对注射用溶液和注射用无菌粉末(目前上市的多肽蛋白质类药物多为此种剂型),除了继续改进其稳定性外,还通过一些其他技术手段,研制出了化学修饰型、控释微球型和脉冲式给药系统。在非注射途径的给药系统,即包括鼻腔、口服、直肠、口腔、肺部给药方面也已取得重大进展。国内市场上主要有基因工程乙肝疫苗、干扰素、重组人白介素-2、G-CSF(增白细胞)、重组人红细胞生成素(EPO)等15种自己生产的基因工程药品。已经批准

国家重点支持的高新技术领域 生物与新医药

国家重点支持的高新技术领域生物与新医药 本文来源:中华人民共和国商务部网站 一医药生物技术 1.新型疫苗 新型高效基因工程疫苗、联合疫苗、减毒活疫苗研发技术;重大疾病和重大传染病治疗性疫苗技术;疫苗生产所使用新型细胞基质、培养基以及大规模培养生产的装备开发技术;疫苗生产所使用的新型佐剂、新型表达载体/菌(细胞)株开发技术;疫苗的新型评估技术、稳定和递送技术;针对突发传染病的疫苗快速制备和生产技术;其他基于新机理的新型疫苗技术。 2.生物治疗技术和基因工程药物 基因治疗技术;基因工程药物和基因治疗药物技术;基因治疗药物的输送系统技术;重组蛋白、靶向药物、人源化及人源性抗体药物制剂研制技术;单克隆抗体规模化制备集成技术和工艺;新型免疫治疗技术;新型细胞治疗技术;疾病治疗的干细胞技术;小RNA药物开发技术;降低免疫原性的多肽的新修饰技术;ADC抗体偶联药物研制及工程细胞株建库技术等。 3.快速生物检测技术 重大疾病和重大传染病快速早期检测与诊断技术;新型基因扩增(PCR)诊断试剂及检测试剂盒制备技术;新一代测序技术与仪器开发技术;生物芯片技术等。 4.生物大分子类药物研发技术 蛋白及多肽药物研究与产业化技术;细胞因子多肽药物开发技术;核酸及糖类药物研究与产业化技术等。 5.天然药物生物合成制备技术 生物资源与中药资源的动植物细胞大规模培养技术;基因工程与生物法生产濒危、名贵、紧缺药用原料技术;生物活性物质的生物制备、分离提取及纯化技术等。 6.生物分离介质、试剂、装置及相关检测技术 专用高纯度、自动化、程序化、连续高效的装置、介质和生物试剂研制技术;新型专用高效分离介质及装置、新型高效膜分离组件及装置、新型发酵技术与装置开发技术;生物反应和生物分离的过程集成技术与在线检测技术等。 二中药、天然药物 1.中药资源可持续利用与生态保护技术 中药材优良品种选育、品系提纯复壮的新方法、新技术;珍稀、濒危野生动植物药材物种的种源繁育、规范化种植或养殖及生态保护技术;中药材规范化种植或养殖技术;中药材饮片炮制技术等。 2.创新药物研发技术 新型天然活性单体成分提取分离纯化技术;新药材、新药用部位、新有效成分的新药研发技术;能显著改善某一疾病临床终点指标的新中药复方研发技术等。 3.中成药二次开发技术 显著改善传统或名优中成药安全性、有效性、质量均匀性或能显著降低用药剂量、提高患者依从性、降低疾病治疗成本的新工艺技术及新中药制剂技术;突破中药传统功能主治范围的新适应症研发技术等。 4.中药质控及有害物质检测技术 中药产品质量控制的标准物质研制技术;中药产品标准新型控制技术;新型有效质控检测方法技术;有害物质检测技术等。 三化学药研发技术 1.创新药物技术 基于新化学实体、新晶型、新机制、新靶点和新适应症的靶向化学药物及高端制剂的创制技术;提高药物安全性、有效性与药品质量的新技术;已有药品新适应症开发技术等。 2.手性药物创制技术 手性药物的化学合成、生物合成和拆分技术;手性试剂和手性辅料的制备和质量控制技术;手性药物产业化生产中的质量控制新技术等。

现代生物技术制药及展望

现代生物技术制药及展望 生物技术药物(biotechdrugs)或称生物药物(biopharmaceutics)是集 生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功 能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、 生物物理等基础学科的突破为后盾形成的产业。现在,世界生物制药 技术的产业化已进入投资收获期,生物技术药品已应用和渗透到医药、保健食品和日化产品等各个领域,尤其在新药研究、开发、生产和改 造传统制药工业中得到日益广泛的应用,生物制药产业已成为最活跃、进展最快的产业之一。有些学者认为,20世纪的科学技术是以物理学 和化学的成就占主导地位,而21世纪的科学技术是以生物学的成就占 主导地位。无论这种说法是否得到普遍的认同,生物技术是当今高技 术中发展最快的领域似乎是不争的事实。科学家预测,生命科学到 2015年会取得革命性进展。这些进展可以帮助人类解决很多目前无法 医治的疾病的治疗问题,彻底消除营养不良,改善食品的生产方式, 消除各种污染,延长人类寿命,提升生命质量,为社会安全和刑侦提 供新的手段。有些成果还可以帮助人类加速植物和动物的人工进化以 及改善生态环境对人类的影响等。产生新的有机生命的研究也会取得 进展。 1.生物制药现状 目前生物制药主要集中在以下几个方向: 1肿瘤在全世界肿瘤死亡率居首位,美国每年诊断为肿瘤的患者为 100万,死于肿瘤者达54.7万。用于肿瘤的治疗费用1020亿美元。肿瘤是多机制的复杂疾病,目前仍用早期诊断、放疗、化疗等综合手段 治疗。今后10年抗肿瘤生物药物会急剧增加。如应用基因工程抗体抑 制肿瘤,应用导向IL-2受体的融合毒素治疗CTCL肿瘤,应用基因治 疗法治疗肿瘤(如应用γ-干扰素基因治疗骨髓瘤)。基质金属蛋白酶抑制剂(TNMPs)可抑制肿瘤血管生长,阻止肿瘤生长与转移。这类抑制剂 有可能成为广谱抗肿瘤治疗剂,已有3种化合物进入临床试验。

现代生物技术的应用与展望

现代生物技术的应用与展望 姓名:班级:学号: 摘要:参阅大量文献资料对近年来生物技术在农业、医药业、社会科学等中的应用进展进行了综述。从改革传统农业结构,解决食品短缺问题的应用、深入基因研究,解决健康长寿问题、运用现代生物技术,解决环境污染问题等内容出发,指明了生物技术现代科学发展中的应用前景。 关键词:生物技术基因医学健康农业 Abstract: a large number of literature on recent biotechnology in agriculture, medicine and industry, social science and application were reviewed in this paper. From the reform of traditional agriculture structure, to solve food shortage problem, in-depth application of genetic research, solve the longevity and health problems, use of modern biological technology, solve the problem of environmental pollution and other content, pointed out the biological technology of modern science and application prospects. 现代生物技术也可称之为生物工程,是以重组DNA技术和细胞融合技术为基础,利用生物体(或者生物组织、细胞及其组分)的特性和功能,设计构建具有预期性状的新物种或新品系,以及与工程原理相结合进行加工生产,为社会提供商品和服务的—个综合性技术体系。其内容包括基因工程、细胞工程、酶工程、发酵工程和蛋白质工程。现代生物技术的诞生以2O世纪7O年代初DNA重组技术和淋巴细胞杂交瘤技术的发明和应用为标志,迄今已走过了30多年的发展历程。实践证明现代生物技术对解决人类面临的粮食、健康、环境和能源等重大问题方面开辟了无限广阔的前景,受到了各国政府和企业界的广泛关注,与微电子技术、新材料技术和新能源技术并列为影响未来国计民生的四大科学技术支柱,是2l世纪高新技术产业的先导。可以预测,生物技术的应用与发展将导致生产体系与经济结构的飞跃变化,甚至可能引发一次新的工业革命,对人类社会的生产、生活各方面必将产生全面而深刻的影响。 1 改革传统农业结构,解决食品短缺问题 现代生物技术在农业中最突出的应用是利用转基因技术,将目的基因导入动、植物体内,对家畜、家禽及农作物进行品种改良,从而获得高产、优质、抗病虫害的转基因动植物新品种,达到充分提高资源利用效率,降低生产成本的目的。经过长期不断的努力,现代农业生物技术已取得重大突破,不仅从根本上改变了传统农作物的培育和种植,也为农业生产带来了新一轮的革命,并将在解决目前人类所面临的粮食危机、环境恶化、资源匮乏、效益衰减等方面发挥巨大作用。 1.1 提高农产品的产量与质量农作物病虫害是造成农业产量下降的主要原因之一,因而利用转基因技术把抗病、抗虫基因导入农作物中,使之可避免或减少病虫害。近年来,抗黄杆菌的水稻、抗除草剂的大豆、抗病毒病的甜椒、抗腐能力强与耐贮性高的番茄等转基因植物开始进入市场,提高了产量,增加了效益;根据人类的需要,还可把特定基因导入植物体,可达到改良农产品品质的目的,如高含量必需氨基酸的马铃薯,高蛋白质含量的大豆等;此外还可利用生物技术破坏水果细胞壁纤维酶,保证猕猴桃、桃、西红柿等水果成熟但不变软而提高水果的保鲜度,便于水果的运输。从1996年到2o02年,转基因农作物在全球的种植面积从170万ha扩大到5810万ha,即增加35倍,显示了现代农业生物技术强大的生命

生物技术制药详解

植物生物技术在药用植物中的研究 摘要:生物技术的发展为药用植物的研究和中药现代化的发展提供了重要机遇。本文综述了近几年来生物技术在我国药用植物研究中的应用进展 关键词:组织培养;细胞培养;药用植物 引言 W hite 和Gautheret 在1939 年建立了植物组织无菌培养技术, 开启了生物工程的大门, 目前已成为21 世纪研究的热点和焦点。组织培养和细胞培养是药用植物生物工程的主要内容。 1.组织培养 植物组织培养就是在无菌和人工控制条件下,将离体的植物器官、组织、细胞,培养在人工配制的培养基上植物组织培养是现代生物技术在药用植物学领域中研究与应用的一个重要组成部分,是指在无菌和人为控制的营养(培养基)及环境条件下对药用,给予适宜的培养条件,诱导其产生愈伤组织、丛芽,最终形成完整的植株。药用植物器官、组织或细胞进行培养,用来生产药用活性成分或进行药用植物无性快速繁殖的技术。另一个重要突破是利用组织培养技术进行试管育苗,开辟了药用植物大规模种植的新天地,近10来,约有200药用植物通过试管育苗获得了成功[1]。 1.1外植体: 用于进行组织培养的材料称为外植体。根据不同的药用植物, 用于诱导培养的外植体不尽相同。常用的组织和器官有无菌实生菌、根、须根、茎、块茎、鳞茎、球茎、芽、子叶、吉片、叶柄、鳞片、花蕾、花序、花芽、花瓣、花药、花丝、子房、果肉、果实、原生质体、珠芽等植物体的各个部位, 其中最常用的有鳞茎、顶芽、茎尖、腋芽、叶、花茎、花蕾等, 相关研究很多。涂红艳等对细茎石斛的组织培养研究, 表明细茎石斛种子在M S 不含激素的培养基上有较高的萌发率, 种子萌发后形成的原球茎保持阶段十分短暂, 极易分化, 2 个月后形成小苗。外植体类型对拟原球茎的诱导有较大的影响, 成熟茎段很难脱分化, 幼嫩组织的诱导率相对较高, 但幼芽段褐化较高, 适宜做外植体是丛生幼芽。姜维梅等研究抗癌药用植物猫人参以茎段(至少带一个节)、叶片外植体离体培养, 表面以茎段作为外植体效果较好, 容易消毒, 能很快诱导腋芽萌发; 以叶片作为外植体, 成功诱导出愈伤组织, 但此愈伤组织的分化能力极低[2]。胡益明等研究

生物:《现代生物科技专题》书本知

选修3 一、基因工程 1、(a)基因工程的诞生 (一)基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 2、(a)基因工程的原理及技术 原理:基因重组 技术:(一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 DNA连接酶)的比较: (1)两种DNA连接酶(E·coliDNA连接酶和T 4 ①相同点:都缝合磷酸二酯键。 噬菌体,只能将双链DNA片段互补的黏性末端之间的②区别:E·coliDNA连接酶来源于T 4 磷酸二酯键连接起来;而T DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 4 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。②具有一至多个限制酶切点,供外源DNA片段插入。③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。 (3)其它载体:噬菌体的衍生物、动植物病毒 (二)基因工程的基本操作程序 第一步:目的基因的获取 1.目的基因是指:编码蛋白质的结构基因。 2.原核基因采取直接分离获得,真核基因是人工合成。人工合成目的基因的常用方法有反转录法_和化学合成法_。 3.PCR技术扩增目的基因 (1)原理:DNA双链复制 (2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。 第二步:基因表达载体的构建 1.目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。 2.组成:目的基因+启动子+终止子+标记基因 (1)启动子:是一段有特殊结构的DNA片段,位于基因的首端,是RNA聚合酶识别和结合的部位,能驱动基因转录出mRNA,最终获得所需的蛋白质。 (2)终止子:也是一段有特殊结构的DNA片段,位于基因的尾端。 (3)标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。常用的标记基因是抗生素基因。 第三步:将目的基因导入受体细胞_ 1.转化的概念:是目的基因进入受体细胞内,并且在受体细胞内维持稳定和表达的过程。 2.常用的转化方法:

生物技术及其在医药中的应用

生物技术及其在医药中的应用 摘要:现代生物技术是70年代开始异军突起的高新技术领域,近一、二十年来发展极为神速,它与微电子技术,新材料和新能源技术并列成为影响未来国际民生的四大科学支柱,被认为是二十一世纪科学技术的核心。 关键词:生物技术,医药,应用 世界各国都看到生物技术正以其巨大的活力改变着传统的社会生产方式和产业结构,迅速向经济和社会各领域渗透和扩散,推动社会生产力的飞速发展并成为国与国之间,特别是大国之间竞争的主要手段之一。发达国家或国家集团为了争夺在世界经济上的主动地位,都把发展生物技术当作自己强国之道和新的国策,竞相制定和实施投资大,耗时长的生命科学与生物技术的发展计划,发展中的国家也相继制订计划,采取措施,组织研究与开发,以免在战略上失去机会。我国也己经采取了一系列重要措施施以加强生物技术的研究和开发,诸如推行“863”计划等足见其重视程度.生物技术学是最古老的技术,其历史几乎同少、类的文明史同时开始,随着科学技术的发展,特别是分子生物学的最新理论成就和当代尖端技术对生物技术的渗透,以及社会的需求,促使生物技术由传统技术转化为高新技术,它主要包括基因工程,细胞工程、酶工程和发酵工程,其对世界面临的重大问题—饥俄、疾病、能源及污染等—有可能提供解决办法。现代生物技术又是一项和医药产业结合极为密切的高新技术,它的发展已带给了某些医学基础学科的革命性变化,并为医药工业开辟了更为广阔的新领域。 1基因工程(亦称遗传工程)

基因工程是当代生物技术较为复杂,难度较大,也较有发展前途的一类。它包括体外基因工程(DNA体外重组)和体内基因工程(DNA体内重组)两种方式。当前人们所说的基因工程多半指的是体外基因工程。一般程序是取得所需的目的基因,将目的基因与载体连接,经过重组cDNA引入受体细胞(寄主细胞)并使目的基因的性状得以扩增并表达产生、们所需的蛋白质。 这项技术经受了实践的考验,走向了成熟,不仅运用该技术本身取得了一批令人瞩目的技术成果和理论成果,而且在该技术渗透到其他生物技术中去的同时,也取得了为数众多,用途广泛、社会效益与经济效益均十分显著的成果。目前,医药基因工程产品研制和开发大约有70多种,尤其是美国在医药基因工程产品的研制与开发已进入产业化阶段,FAD已批准了十多种重组产品投放市场。我国自70年代末期开始部署基因工程的研究于今整个局面已经有了很大发展。据不完全统计.现在大约有不下20种基因工程产品在研究开发之中,其中干扰素已投放市场,乙型肝炎疫苗已进中试阶段。 2细胞工程 细胞工程是由细胞培养和细胞融合两方面技术组成。1975年Kohler和涌lstein成功地创建了淋巴细胞杂交瘤技术,该技术被誉为免疫学的一次革命,是20世纪后20年内最重要的生物技术之一,它不但广泛地应用于改良和创新菌种,而且有效地用来开发单克隆抗体,杂合抗生素及其它生物技术医药产品。淋巴细胞杂交瘤技术是将体外不能长期生存的免疫细胞与在体外能迅速增殖的瘤细胞在聚乙二醉(PEG)作用下融合而产生杂交瘤细胞,所得的杂交瘤细胞承袭了两组亲代细胞的遗传特性,既保存了瘤细胞在体外迅速增殖传代能力,又继承了

生物医药相关技术

生物医药类相关技术 1.特发性血小板减少性紫癜治疗药物——罗米司亭 项目简介: 特发性血小板减少性紫癜( idiopathic thrombocytopenic purpura, ITP)是一种常见的出血性疾病,系免疫系统引起的血小板破坏过多和巨核细胞导致的血小板减少所致的出血综合征。其中包括自身抗体引起的血小板减少以及同种类型抗体介导的免疫性血小板减 少症( immune thrombocytopenic purpura)两部分。在美国, 估计6万患者被诊断慢性 ITP,在欧洲原发的ITP估计 每年每百万人有50~100例 新患者。ITP患者经常由于小 血管撞伤、挫伤、鼻出血、牙科手术等轻度出血难以停止,发展为更严重的出血甚至可威胁生命。正常的血小板计数应为150 ×109 ~400 ×109/L。血小板计数< 150 ×109/L为血小板减少症,而血小板计数< 50 ×109/L具有高度危险,容易引起出血并发症。慢性ITP的致病机制与自身免疫异常造成的血小板破坏或由于骨髓功能不全导致的血小板产生不足有关。此外,化疗和慢性肝脏疾病也可引起血小板减少。当前的治疗采用大剂量糖皮质激素、免疫球蛋白和抗D球蛋白、环孢素等免疫抑制剂、化疗药环磷酰胺、长春花碱或抗人CD20单克隆抗体利妥昔单抗。但很多ITP患者会复发,且这类治疗不良反应较多,对难治性病例还要进行脾切除手术,但是容易出现感染等并发症,故临床需要更加安全有效的治疗方法。 2008年8月,美国FDA 批准Amgen公司的罗米司亭( romip lostim, Np late, AMG531)上市,用于治疗经糖皮质激素类药物、免疫球蛋白或脾切除术治疗无效的慢性ITP患者,罗米司亭只能用于血小板减少症出血危险增加的ITP患者。 罗米司亭产生自大肠杆菌, 系利用重组DNA技术制成的能刺激血小板生成的Fc肽融合蛋白。本品分子包含2个相同的单链亚单元,每个单链包含IgG Fc恒定

现代生物技术使我们的生活更美好

现代生物技术使我们的生活更美好 关键词:生物技术生活 摘要:现代生物技术在我们当今生活中运用得十分广泛。医药卫生、食品轻工、农牧渔业、能源工业、化学工业、冶金工业、环境保护等几个方面。尤其是在医药卫生,生物技术使现代医学实现了一个又一个的飞跃。 对我而言,从前,生物技术是一个陌生而又神秘的领域,通过这次选修课的学习,我也不敢说自己对这个有多么的了解,但我知道了,这一项伟大的工程。虽然还存在很大的风险,但我相信,现代生物技术会使我们的生活更美好。 现代生物技术的发展经历了三个阶段:传统生物技术、近代生物技术、现代生物技术。社?会的发展与生物技术的发展密不可分,两者相辅相成。 酿造技术是传统生物技术的技术特点,微生物发酵技术是近代生物技术的技术特征,而现代生物技术(生物工程)是指对生物有机体在分子、细胞或个体水平上通过一定的技术手段进行设计和操作,为达到目的和需要,以改良物种质量和生命大分子特性或生产特殊用途的生命大分子物质等。 生物技术的应用范围十分广泛,有医药卫生、食品轻工、农牧渔业、能源工业、化学工业、冶金工业、环境保护等几个方面。其中医药卫生领域是现代生物技术最先登上的舞台,也是目前应用最广泛、成效最显著、发展最迅速、潜力也最大的一个领域。这对我们医学生而言是一个好消息,科学技术的发展是我们有更强的武器去救助病人。同样,这对于那些陷于病困的人也是一个福音。 先从医疗方面说起吧。 在医学方面,科学家们利用生物工程手段,用大肠杆菌来表达系统,酵母表达系统和真核细胞来表达系统生产疫苗和蛋白质药品。使许多难生产出来的药有了生产的机会,给了病人更多希望。给了生命更多的可能。 传统的抗肿瘤治疗方法是放射治疗、化学药物治疗、手术切除等。 运用生物技术可以有基因治疗,生物类抗肿瘤药物有肿瘤抑制因子、内皮细胞抑制因子(如:内皮抑素已经上市)、血管抑制因子(VEGF等)。 生物技术治疗方法对治疗肿瘤效果优于传统治疗方法是作用于靶向性强,抗原性小,毒副作用小。 面临的困难:活性问题 另外:生物技术还可以很好的发挥预防肿瘤的作用。 生物技术在医药卫生领域的应用主要有以下三个方面:

现代生物技术在环境保护方面的应用

现代生物技术在环境保护方面的应用 地质学院勘查技术与工程申玉龙201101171223 摘要:应用现代生物技术进行环境保护拥有许多优点,人们已意识到,现代生物技术的发展,为从根本上解决环境问题提供了希望。 正文:现代生物技术是以DNA分子技术为基础,包括微生物工程,细胞工程,酶工程,基因工程等一系列生物高新技术的总称。现代生物技术不仅在农作物改良、医药研究、食品工程方面发挥着重要作用,而且也随着日益突出的环境问题在治理污染、环境生物监测等方面发挥着重要的作用。自20 世纪80年代以来生物技术作为一种高新技术,已普遍受到世界各国和民间研究机构的高度重视,发展十分迅猛。 目前生物技术应用于环境保护中主要是利用微生物,少部分利用植物作为环境污染控制的生物。生物技术已是环境保护中应用最广的、最为重要的单项技术,其在水污染控制、大气污染治理、有毒有害物质的降解、清洁可再生能源的开发、废物资源化、环境监测、污染环境的修复和污染严重的工业企业的清洁生产等环境保护的各个方面,发挥着极为重要的作用。应用环境生物技术处理污染物时,最终产物大都是无毒无害的、稳定的物质,如二氧化碳、水和氮气。利用生物方法处理污染物通常能一步到位,避免了污染物的多次转移,因此它是一种消除污染安全而彻底的方法。特别是现代生物技术的发展,尤其是基因工程、细胞工程和酶工程等生物高技术的飞速发展和应用,大大强化了上述环境生物处理过程,使生物处理具有更高的效率,更低的成本和更好的专一性,为生物技术在环境保护中的应用展示了更为广阔的前景。 与传统方法比较,生物治理方法具有许多优点。1 .生物技术处理垃圾废弃物是降解破坏污染物的分子结构,降解的产物以及副产物,大都是可以被生物重新利用的,有助于把人类活动产生的环境污染减轻到最小程度,这样既做到一劳永逸,不留下长期污染问题,同时也对垃圾废弃物进行了资源化利用。 2. 利用发酵工程技术处理污染物质,最终转化产物大都是无毒无害的稳定物质,如二氧化碳、水、氮气和甲烷气体等,常常是一步到位,避免污染物的多次转移而造成重复污染,因此生物技术是一种既安全又彻底消除污染的手段。. 3.生物技术是以酶促反应为基础的生物化学过程,而作为生物催化剂的酶是一种活性蛋白质,其反应过程是在常温常压和接近中性的条件下进行的,所以大多数生物治理技术可以就地实施,而且不影响其他作业的正常进行,与常常需要高温高压的化工过程比较,反应条件大大简化,具有设备简单、成本低廉、效果好、过程稳定、操作简便等优点。 所以,当今生物技术已广泛应用于环境监测、工业清洁生产、工业废弃物和城市生活垃圾的处理,有毒有害物质的无害化处理等各个方面。 污染土壤的生物修复 重金属污染是造成土壤污染的主要污染物。重金属污染的生物修复是利用生物(主要是微生物、植物)作用,削减、净化土壤中重金属或降低重金属的毒性。其原理是:通过生物作用(如酶促反应)改变重金属在土壤中的化学形态,使重金属固定或解毒,降低其在土壤环境中的移动性和生物可利用性,通过生物吸收、代谢达到对重金属的削减、净化与固定作用。污染土壤的生物修复过程可以增加土壤有机质的含量,激发微生物的活性,由此可以改善土壤的生态结构,这将有助于土壤的固定,遏制风蚀、水蚀等作用,防止水土流失。 白色污染的消除 废弃塑料和农用地膜经久不化解,估计是形成环境污染的重要成分。据估计我国土壤、沟河中塑料垃圾有百万吨左右。塑料在土壤中残存会引起农作物减产,若再连续使用而不采

我国生物医药行业现状及发展前景

我国生物医药行业现状及发展前景 (一)行业现状 我国生物技术药物的研究和开发起步较晚,直到70年代初才开始将DNA重组技术应用到医学上,但在国家产业政策(特别是国家“863”高技术计划)的大力支持下,使这一领域发展迅速,逐步缩短了与先进国家的差距,产品从无到有,基本上做到了国外有的我们也有,目前已有15种基因工程药物和若干种疫苗批准上市,另有十几种基因工程药物正在进行临床验证,还在研制中的约有数十种。国产基因工程药物的不断开发生产和上市,打破了国外生物制品长期垄断中国临床用药的局面。目前,国产干扰素α的销售市场占有率已经超过了进口产品。我国首创的一种新型重组人γ干扰素并已具备向国外转让技术和承包工程的能力,新一代干扰素正在研制之中。 随着国产生物药品的陆续上市,国内生物制药企业不仅在基础设备,特别在上游、中试方面与国外差距缩小,涌现出大批技术实力较强的企业。最近我国对药品生产企业实施GMP 管理,已经有正式生产文号的企业,正在按国际接轨要求准备GMP认证,目前已有四家通过了GMP现场认证,通过GMP认证的企业在软件和硬件方面又上了一个台阶,不仅有利于产品的销售,而且有利于产品开拓国际市场。全国约有80多家基因工程产品开发研究单位。通过从上游、中试、正试生产过程的大量实践中,积累丰富的经验,培养和锻炼一大批从事生物技术的骨干,为我国21世纪生物技术领域发展,参与国际竞争打下了良好基础。 目前,国内市场上国产生物药品主要是基因乙肝疫苗、干扰素、白细胞介素-2、G-CSF (增白细胞)、重组链激酶、重组表皮生长因子等15种基因工程药物。T-PA(组织溶纤原激活剂)、白介素--3、重组人胰岛素、尿激酶等十几种多肽药品还进行临床Ⅰ、Ⅱ期试验,单克

现代生物技术在医药领域的应用

河南工业大学 现代生物技术导论 -- 生物技术在医药领域的应用 姓名: 学号: 2 专业:

生物技术在医药领域的应用 在医药领域,生物技术在预防、诊断和治疗影响人类健康的重大疾病方面发挥了重要作用,并由此形成了高速成长的生物医药产业,这是目前为止生物技术最大的应用领域。生物医药产业最发达的国家是美国。第一家运用现代生物技术的制药公司--美国的Cetus公司,创建于1971年。到目前为止,美国生物制药业已有数百家公司,正在开发数千种药品。随着生物技术新药开发数量的增长,生物技术药品研

发费用的增长速度将比其他药品更快。生物技术药物的销售增长率趋势是2003年到2010年每年增长12-15%,随着更多的生物技术药品进入市场,销售增长率会增加得越来越快。生物技术药品已涉足于200 多种疾病,其研究多数是针对癌症治疗,在传染性疾病、神经性疾病、心血管疾病、呼吸系统疾病、爱滋病、自体免疫性疾病、皮肤病等其他疾病方面的研究力量相当。总览生物技术在生物制药领域的发展新趋势,主要有以下几方面: 1、个性化药品 个性化药物是指适合于某一特

定病人的药物。新技术的开发将使治疗方法产生了巨大的进步,使个性化药物的运用成为可能。生物技术使得我们能够区别遗传物质形成过程中的细微差异,了解每个病人在治疗效果、药物敏感性和副反应发生方面的差异。如果知道一个人会对某个药物产生怎样的反应和如何代谢,医生就能在治疗前确定病人用什么药合适。 这些进步对医药产生了很大影响,制药企业可以生产更有效的药物。知道了药物对哪些人疗效好且副反应少,临床实验就可以在疗效好且副反应少的人中进行,医生就

生物技术在生物药物制备中有哪些应用

基因工程药物在临床中的应用 摘要:随着生物技术的迅速发展,基因工程药物在临床中日益发挥举足轻重的作用。该文主要从干扰素,重组乙肝疫苗等几种药物在临床中的应用加以简述。前言 所谓生物技术,是指“用活的生物体(或生物体的物质)来改进产品、改良植物和动物,或为特殊用途而培养微生物的技术”。近20年来,以基因工程、细胞工程、酶工程、发酵工程为代表的现代生物技术发展迅猛,并日益影响和改变着人们的生产和生活方式。 目前,人类60%~70%的生物技术成果集中应用于医药工业。由此,引发了医药工业的重大变革。生物制药就是把生物技术应用到药物制造领域,其中最主要的是基因工程方法, 即利用克隆技术和组织培养技术,对DNA 进行切割、插入、连接和重组,从而获得生物医药制品。 生物药品是以微生物、寄生虫、动物毒素、生物组织为起始材料,采用生物学工艺或分离纯化技术制备,并以生物学技术、分析技术控制中间产物和成品质量制成的生物活化制剂,包括菌苗、疫苗、毒素、类毒素、血清、血液制品、免疫制剂、细胞因子、抗原、单克隆抗体及基因工程产品(DNA重组产品、体外诊断试剂)等。这些生物药品为癌症、病毒性疾病、心血管疾病和内分泌疾病等的治疗、预防和诊断提供了新型药物、新型疫苗和新型诊断试剂。现代生物技术制药开创了制药工业的新纪元, 解决了过去不能生产或者不能经济生产的药物问题, 产生了巨大的经济效益和社会效益。该文主要从干扰素重组乙肝疫苗等几种药品在临床上的应用简述。 基因工程药物在临床中的应用 近些年来,基因工程药物在临床上得到广泛应用。有的已成为具有良好作用的常规药物,深受临床的欢迎。基因工程药物带来了治疗学的新突破,在临床治疗中日益发挥举足轻重的作用,同时也为临床医学事业的发展带来了成就。 1.1干扰素 干扰素是应用最普遍的基因工程药物,具有抗病毒、抑制肿瘤和调节免疫作用。临床上不同的干扰素用途不相同。小剂量rhIFNα22a 主要用于一般病毒性感染。该院常用于治疗病毒性感冒、流行性腮腺炎、带状疱疹和尖锐湿疣。大剂量干扰素在治疗乙肝、丙肝和肿瘤等方面开辟了新途径。rhIFNα22b 主要用于乙型肝炎和恶性肿瘤的治疗。rhIFNγ常用于治小儿毛细支气管炎和类风湿性关节炎,因其具有较强的免疫调节作用。随着干扰素的广泛应用,其不良反应日益增多,尤其在抗恶性肿瘤等长期大剂量使用,还有可能发生严重不良反应。临床上常见不良反应有畏寒发热、恶心呕吐、食欲不振、肌痛乏力、粒细胞和血小板减少等。 1.2重组乙肝疫苗 重组乙肝疫苗具有安全有效、副作用小等特点,取代了原先的血源疫苗,广泛用于新生儿接种和乙肝易感人群。因重组乙肝疫苗为亚单位疫苗,它只含有刺激免疫系统发生免疫反应的表面蛋白(HbsAg) ,而不含传染因子(DNA) ,因此临床上再不用担心接种疫苗会有感染的危险。 1.3 bFGF 和rhEGF bFGF 和rhEGF 等外用基因工程药物都是细胞生长因子,具有促进细胞增殖作用。常用于创伤、烧伤创面修复,减少疤痕的形成。此外还用于褥疮的治疗。临床上反映很好,深受医护人员和患者的欢迎,已作为该院烧伤科的常规药品。由于

相关文档
最新文档