毛细管电泳技术的应用

毛细管电泳技术的应用
毛细管电泳技术的应用

毛细管电泳技术及在微生物学中的应用

摘要: 毛细管电泳技术是一种新型高效液相分离技术,应用领域广泛。本文分别从毛细管电泳技术的发展概况及在微生物学检测中的应用加以综述。

关键词: 毛细管电泳;微生物;应用

毛细管电泳迅速发展于80年代中后期,是分析科学中继高效液相色谱技术之后的又一重大进展,使分析科学得以从微升水平进入纳升水平,并使单细胞分析乃至单分子分析成为可能[1]。毛细管电泳(CE)是一类以毛细管为分离通道,以高压直流电场为驱动力的新型液相分离技术。广泛应用于核酸、蛋白质、多肽、药物等大分子物质的分析,但是,不同于毛细管电泳在无机离子、有机小分子和生物大分子等方面取得的巨大成功,毛细管电泳在微生物方面的应用在最近几年才取得较大进展,并逐渐显现出巨大的应用潜力。在微生物学领域,毛细管电泳除了在微生物基因测序方面得到广泛应用外,在微生物学检测方面应用的报道不多见。本文主要介绍了毛细管电泳的发展、原理、特点、分离模式及在微生物检测中的应用。

1、毛细管电泳技术

1.1毛细管电泳发展历史

1937年瑞典化学家Tiselius[2]利用电泳技术第一次从人血清中分离出白蛋白和α、β、γ球蛋白,并研制成第一台电泳仪,使电泳作为一种分离分析技术有了突破性的进展。经典电泳法最大的局限性在于存在焦耳热,只能在低电场强度下操作,直接影响了其分离效率和分析速度的提高,为了解决这一问题,人们进行了多方探索。1981年,Jorgenson和Lukacs[3]使用内径75um的石英毛细管进行电泳,成功地对丹酰化氨基酸进行了快速,高效分离获得了40万块/m理论塔板的高效率。这一开创性工作成为电泳发展史上一个里程碑,使经典的电泳技术发展为高效毛细管电泳(HPCE)。从此,毛细管电泳在理论研究,分离模式,商品仪器,应用领域等各方面获得了迅猛发展。如今,HPCE可与GC、HPLC相媲美,成为现代分离科学的重要组成部分[4]。

1.2毛细管电泳基本原理和分离模式

按毛细管内分离介质和分离原理的不同,毛细管电泳有以下几种分离模式[5]:

(1)毛细管区带电泳毛细管区带电泳(CZE)的分离原理是基于各个分离物质的净电荷与其质量比(比荷)间的差异而进行物质的分离。迄今CZE仍是应用最多的模式,应用范围包括氨基酸、肽、蛋白、离子等的分离。(2)毛细管凝胶电泳毛细管凝胶电泳(CGE)是将平板电泳的凝胶移到毛细管中作支持物进行电泳,不同体积的溶质分子在其分子筛作用的凝胶中得以分离。常用于蛋白质、寡聚核苷酸、核糖核酸、DNA片段分离和测序及聚合酶链反应(PCR)产物的分析。(3)毛细管胶束电动色谱毛细管胶束电动色谱(MECC)是采用表面活性剂在运动缓冲液内形成一疏水内核,外部带负电的动态胶束相,利用溶质具有不同的疏水性,在水相和胶束相间分配的差异进行分离。主要用于小分子、中性化合物和药物等的分离。(4)毛细管等电聚焦毛细管等电聚焦(CIEF)是用两性电解质在毛细管内建立pH梯度,使各种具有不同等电点的蛋白质在电场作用下迁移到等电点的位置,形成窄的聚焦区带。已成功用于测定蛋白质的等电点、分离异构体等。(5)毛细管等速聚焦毛细管等速聚焦(CITP)利用先导电解质和尾随电解质,使溶质按其电泳淌度不同得以分离。现常用于富集样品。(6)毛细管电色谱将高效液相色谱(I-IPLC)中众多的固定相微粒填充到毛细管中,以样品与固定

相之间的相互作用为分离机制,以电渗流为流动相驱动力的色谱过程称毛细管电色谱(CEC)。以上6种模式为毛细管电泳基本模式,此外,如亲和、免疫毛细管电泳发展趋势也很好。

1.3 毛细管电泳特点

毛细管电泳与高效液相色谱一样同是液相分离技术,但无论从效率、速度、样品用量和成本来说,毛细管电泳显示了一定的优势,与高效液相色谱相比,毛细管电泳柱效更高,可达105-106 理论塔板数/m,分离速度更快,几十秒至几十分钟间完成,同时,它几乎不消耗溶剂,而样品用量仅为高效液相色谱几百分之一,仅为几十纳升,毛细管电泳没有高压泵输液,因此仪器成本更低,可以通过改变操作模式和缓冲液的成分,毛细管电泳有很大的选择性,可以根据不同的分子性质对生物大分子,药物等极广泛的分离对象进行有效的分离,而高效液相色谱要消耗许多价格昂贵的色谱柱和流动相[6]。当然,毛细管电泳也存在一些不尽人意的地方,比如毛细管的填充需要专门的灌注技术且制备能力差,毛细管对样本的吸附难于克服从而使其分离效率下降,电泳的高灵敏度依赖于高灵敏度的检测仪等,这些都有赖于进一步完善。

1.4毛细管电泳---质谱联用

毛细管电泳---质谱联用综合了二者的优点,成为分析生物大分子的有力工具,是近年来发展迅速的联用技术。毛细管电泳---质谱联用的应用与LC-MS的应用在方法和分析对象上有许多相似之处,如都适用于小分子和大分子的分析,热不稳定,强极性分子及至离子型化合物的分离和分析,当然,毛细管电泳---质谱联用尚存在缺点如浓度灵敏度低,不如LC-MS;不是所有的毛细管电泳分离模式都可方便地用于与质谱相联用;质谱对毛细管电泳分离缓冲液的限制较多。同时,在将毛细管电泳体系与质谱仪联用时,还有以下问题需要注意[4]:(1)无论采用套液技术还是采用十字形接口,毛细管的出口处都会带有高电压。因此良好的电接触对控制接口的工作电流乃至稳定的离子化过程都是很重要的。(2)毛细管插入位置要经细心的优化,位置不当会导致电喷雾工作不稳定。(3)以往发表的毛细管电泳分离工作多数都是在磷酸盐缓冲液中完成的,在毛细管电泳和质谱相连接时要调整为易挥发盐的缓冲液。几种适宜的缓冲液及其浓度:<100mmol/l的甲酸乙酸混合溶液;<50mmol/l的乙酸氨溶液;<10mmol/l十六烷基三甲基氯化铵溶液。(4)为解决毛细管电泳进样量小,不足以在质谱上检出的问题,可以采用等速电泳对样品进行柱上浓缩,以提高进样浓度。

2、毛细管电泳在微生物学中的应用

2.1 CE在病毒检测中的应用

病毒的检测大多采用细胞培养以及免疫学方法,但是细胞培养是非常繁琐的,而免疫学方法也存在交叉反应等问题。Erdman等[7]将CE与RT-PCR联合起来,建立了基于CE技术的基因扫描RT-PCR法来检测患儿呼吸道中感染的6种常见的病毒。首先采用RT-PCR对样本进行扩增,然后使用基于CE技术的ABIPrism 310基因分析仪对扩增产物进行基因扫描分析。采用该法对临床标本进行了检测,其中病毒培养或直接免疫荧光法而确定为阳性的93份样本,该法86

例阳性;而病毒培养或直接免疫荧光法判为阴性的116例病人,该法却检出了119株病毒。Margraf等[8]采用异源双链核酸迁移率分析(HMA)并结合温度梯度CE(TGCE)的方法对HCV进行基因型鉴定。即采用RT-PCR对HCV 5 非转录区的一个56 bp的基因区域进行扩增,将扩增产物和已知基因的扩增子进行杂交;然后对杂交产物进行TGCE分析,依据不同的基因型产生的峰形差异进行基因型鉴定。采用该法对已知的200个HCV的基因型进行了鉴定,其中97%得到正确鉴定。还发现部分没有得到正确鉴定的HCV基因型存在着基因变异。

2.2 CE在细菌检测中的应用

细菌表面既包含正电荷基团又包含负电荷基团,因而细菌可被看成两性物质。细菌为胶体颗粒,表面积极大,而且覆盖着许多物质如多糖类、肽聚糖、脂类等。这些化合物在电泳缓冲液中可因解离和吸附形成双电层,因而毛细管电泳能将细菌当作“离子”看待[9]。细菌在一定的生理条件下,其表面基团的电离状态和双电层的厚度是电泳缓冲液种类、pH值、离子强度和温度等参数的函数,可以通过优化这些参数分离不同种类的细菌。细菌在电泳过程中受电场力和摩擦力作用,其迁移时间可作定性的依据,其峰高或峰面积则是定量的基础。毛细管电泳理论指出,分离柱效随样品分子扩散系数或分子量的增大而上升,这就预示着CE 在细胞分离中具有独特的优势。

20世纪80年代以来,毛细管电泳技术在细菌分析、分离和鉴定中逐渐得到了运用。1987年njerten等展示了CE在细菌分析方面的前景,他们成功地分离了干酪乳杆菌(Lactobacillus casei)[10] 。1988年,Uhlenbruck等人首次利用毛细管电泳技术对细菌进行了分类。与此同时,Ebersole和McCormick用毛细管电泳对粪肠球菌(Enterococcus faecalis),化脓链球菌(Streptococcus pyogenes),无乳链球菌(Streptococcus agalactiae),肺炎链球菌(Streptococcus pneumoniae)和金黄色葡萄球菌(Staphylococcus aureus)5种细菌进行了分离,发现不同发育阶段的菌体细胞对应着不同的特征峰,而且大多数细菌在电泳后仍能保持活体状态[11]。细菌电泳在实际操作中要获得很好的准确性和重现性有一定难度。主要原因是细菌表面状况因培养条件的不同而有差异;其次在电泳过程中,有些细菌细胞可能会破碎;同时细菌的代谢产物在表面的积累或释放对电泳缓冲液也有影响;此外,细菌还可能在生长过程中形成紧密相连的聚合体。因此,细菌电泳的关键在于细菌的培养、缓冲液的选择及样品的前处理等[12]。

Armstrong等[13]首次将毛细管等电聚焦技术用于细菌的分析分离,能在18min内将E-coli、P.putida和深红沙雷氏菌(Serratia rubidae)很好地分离,得到每米l,600,000理论塔板数的极限分离柱效。与常规等电聚焦相比,昂贵两性电解质的微量消耗和高效分离效果是其引人注目的优点。但这种方式不能保证电泳分离后细菌的活性。在Armstrong研究组的工作中,以TBE—PEO缓冲液体系从人尿样中快速检测到引起尿路感染的病原菌腐生葡萄球菌(Staphylococcus saprophyticus)和E.coli 23501[14]。粉状奶制品添加物中的活性菌婴儿双歧杆菌(Bifidobacterium infantis)和药片中的嗜酸乳杆菌(Lactobacillus acidophilus)也能快速定性定量分析[15]。不仅如此,他们通过对细菌进行荧光染色,应用激光诱导荧光检测器,可将细菌的鉴定、浓度的测定和生理状态的检测在十几分钟内的一次电泳中实现[16]

2.3 CE在真菌检测中的应用

Turenne等[17]将PCR和自动荧光毛细管电泳系统相结合建立了快速鉴定真菌的方法,首先使用真菌通用引物1TS86、ITS4对各种真菌的ITS-2区域进行扩增,然后采用自动荧光毛细管电泳系统对扩增片段进行分析,依据不同真菌问扩增片段长度的差异而将其区分开。采用该法仅需不到7h就能完成,是一种适用于真菌血症和其他真菌感染的诊断方法。Chen等[18]采用通用引物1TS3、ITS4对多种酵母的1TS2区域进行扩增,然后进行分辨率达1bp的cE分析,依据扩增片段的长度差异鉴定各种酵母。研究表明,92%的临床菌株能够被正确鉴定,剩下的8%通过ITS-2的测序或RFLP而被鉴定。后来Chen等[19]又采用引物ITS1、ITS2对酵母的1TSI 1区域进行PCR扩增,然后进行CE分析。结果表明,l9种酵母可以通过ITS-1区域扩增片段的长度差异而得到鉴定。如果联合ITS-1和ITS-2区域扩增片段的长度差异,则可以鉴定30种酵母,其余的有相同长度扩增片段的l0种酵母,通过ITS区域的测序或包含ITS-1和ITS-2区域的RFLP可以进行鉴定。

3展望

毛细管电泳技术既是电泳分离技术的进步,又是分析仪器运用的创新。目前,毛细管电泳技术研究的重点在于扩大其应用范围,完善和发展应用方法。相信随着毛细管电泳技术的不断进步,它在微生物的分离、鉴别和定量分析发面将会取得更广阔的应用前景。

参考文献:

[1] 陈义.毛细管电泳技术及应用[M].北京:化学工业出版社,2000.

[2]Fann M,Chiu WK Wood的WH,et a1.Gene expres on chm-acteriics of CD28nul memory phenotyp CD8 T celsand its implication in TeeH aging.Immtmol Rev,2005,205:19O~2O6 [3]Shevchenko A,Wilm M,Vorm O,et a1.Mass spectrometric sequencing of proteins

silver-stained polyacrylamide gels.Anal Chem,1996,68:850—858

[4] 魏福祥仪器分析与应用[M] 北京:中国石化出版社2007.1.1

[5] 周世航张卓然毛细管电泳技术在微生物学研究中的应用[J]生物与感染

2006,23(7):23-25

[6]何华倪坤仪现代色谱分析[M]化学工业出版社2004

[7] Elxman DD,Weinberg GA,Edwards KM,et a1.GeneSeanreve transcription-PCR assay for detection of six common respiratory viruses in young children hospitalized with acute respiratory ilness.J Clin Microbiol,2003,41:4298—430

[8] Margraf IlL,Erali M,Wittwer CT.Genotyping hepatitis C virus by heteroduplex mobility analysis using temperature gradient capillary electrophoresis, J Clin Microbiol,20o4,42:45-51

[9] Mehrishi J N,Bauer J.Electrophoresis,2002,23:1984~1994.

[10] Kremser L,Blaas D,Kenndler E.Eleetrophoresis,2004,25:2282~2291.。

[11] Desai M,Armstrong D W.Microbiol Mol Biol R,2003,67:38~51

[12] 祝松何进一喻子牛毛细管电泳在细菌分离分析中的应用[J]微生物学通报

2005,32(3):33-35

[13] Armstrong D w,Schulte G,Schneiderheinze J M,et a1.Anal Chem,1999,71:5465~5469.

[14] Armstrong D W,Schneiderheinze J M.Anal Chem,2000,72:4474~4476

[15] Armstrong D W,Schneiderheinze J M,Kullman J P,et a1.FEMS Micmbiol Lett,2001,194:33~37.

[16] Armstrong D W,He L Anal Chem,2001,73:4551~4557。

[17] Turenne CY,Sanehe SE,Hoban DJ,et a1.Rapid identification offungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system.J Clin Microbiol,1999,37:1846—1851

[18] Chen YC,Eisner JD,Kattar MM,et a1.Identifieation of medically important yeasts using PCR-based detection of DNA sequence polymorphisms in the intemal transcribed spacer 2 region ofthe A genes.J Clin Mierobiol,2OOO,38:23o2-2310J

[19] Chen YC,Eisner JD,Kattar MM,et a1.Polymorphie internaltranscribed spacer region 1 DNA sequences identify medically important yeasts.J Clin Mierobiol,2001,39:4042—4051

毛细管电泳实验报告

毛细管电泳实验报告 高乃群S0 实验目的 1.了解毛细管电泳实验的原理 2.掌握毛细管电泳仪的操作方法,并设计样品组分的分析过程. 3.学会处理实验数据,分析实验结果. 实验原理C E所用的石英毛细管柱, 在pH>3情况下, 其内表面带负电, 和溶液接触时形成了一双电层。在高电压作用下, 双电层中的水合阳离子引起流体整体地朝负极方向移动的现象叫电渗, 粒子在毛细管内电解质中的迁移速度等于电泳和电渗流(EOF)两种速度的矢量和, 正离子的运动方向和电渗流一致, 故最先流出;中性粒子的电泳流速度为“零”,故其迁移速度相当于电渗流速度;负离子的运动方向和电渗流方向相反, 但因电渗流速度一般都大于电泳流速度, 故它将在中性粒子之后流出, 从而因各种粒子迁移速度不同而实现分离。 电渗是CE中推动流体前进的驱动力, 它使整个流体像一个塞子一样以均匀速度向前运动, 使整个流型呈近似扁平型的“塞式流”。它使溶质区带在毛细管内原则上不会扩张。 一般来说温度每提高1℃, 将使淌度增加2% (所谓淌度, 即指溶质在单位时间间隔内和单位电场上移动的距离)。降低缓冲液浓度可降低电流强度, 使温差变化减小。高离子强度缓冲液可阻止蛋白质吸附于管壁, 并可产生柱上浓度聚焦效应, 防止峰扩张, 改善峰形。减小管径在一定程度上缓解了由高电场引起的热量积聚, 但细管径使进样量减少, 造成进样、检测等技术上的困难。因此, 加快散热是减小自热引起的温差的重要途径。

实验设备:电泳仪。仪器及试剂: 缓冲溶液(buffer):20 mmol/L Na 2B 4 O 7 缓冲溶液。1mol/L NaOH溶液,二次 去离子水。未知样饮料(雪碧和醒目) 1.实验步骤仪器的预热和毛细管的冲洗:打开仪器和配套的工作站。工作温度设置为30℃,不加电压,冲洗毛细管,顺序依次是:1 mol/L NaOH溶液5 min, 二次水5 min,10 mmol/L NaH 2PO 4 -Na 2 HPO 4 1:1缓冲溶液5 min,冲洗过程中出 口(outlet)对准废液的位置,并不要升高托架。 2.混合标样的配制:毛细管冲洗的同时,配制标样苯甲酸浓度依次为、、、、1 mg/ml。 3.做标准曲线:待毛细管冲洗完毕,取1 ml混合标样,置于塑料样品管,放在电泳仪进口(Inlet)托架上sample的位置,然后调整出口(outlet)对准缓冲溶液(buffer),升高托架并固定,然后开始进样。进样压力30 mbar,进样时间5 s。进样后将进口(Inlet)托架的位置换回缓冲溶液(buffer),切记换回buffer 的位置!选择方法,修改合适的文件说明,然后开始分析,电压25 kV,时间约10 min。 4.未知浓度混合样品的测定:方法与条件同上,测试未知浓度混合样品,分析时间约25min,据苯甲酸钠标准曲线测雪碧与醒目这两种饮料中的苯甲酸钠的

毛细管电泳的基本原理及应用

毛细管电泳的基本原理及应用 摘要:毛细管电泳法是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法。该技术可分析的成分小至有机离子、大至生物大分子如蛋白质、核酸等。可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,比HPLC 分析高效、快速、微量。 关键词:毛细管电泳原理分离模式应用 1概述 毛细管电泳(Caillary Electrophoresis)简称CE,是一类以毛细管为分离通道,以高压直流场为驱动力的新型液相分离分析技术。CE的历史可以追溯到1967年瑞典Hjerten最先提出在直径为3mm的毛细管中做自由溶液的区带电泳(Capillary Zone Electro-phoresis,CZE)。但他没有完全克服传统电泳的弊端[1]。现在所说的毛细管电泳(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离。1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支: 胶束电动毛细管色谱(MEKC)。1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行。同年,Cohen 发表了毛细管凝胶电泳的工作。近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。 毛细管电泳和高效液相色谱(HPLC)一样,同是液相分离技术,因此在很大程度上HPCE与HPLC可以互为补充,但是无论从效率、速度、样品用量和成本来说,毛细管电泳都显示了一定的优势毛细管电泳(C E)除了比其它色谱分离分析方法具有效率更高、速度更快、样品和试剂耗量更少、应用面同样广泛等优点外,其仪器结构也比高效液相色谱(HPLC)简单。C E只需高压直流电源、进样装置、毛细管和检测器。 毛细管电泳具有分析速度快、分离效率高、试验成本低、消耗少、操作简便等特点,因此广泛应用于分子生物学、医学、药学、材料学以及与化学有关的化工、环保、食品、饮料等各个领域[2]。

毛细管电泳电化学发光联用技术及应用新进展

信阳师范学院 研究生课程论文 2014—2015学年第1学期 毛细管电泳电化学发光联用技术及应用新进展提交日期:2015 年 1 月 6 日研究生签名:

毛细管电泳电化学发光联用技术及应用新进展 姓名:学号:2 摘要:生命与健康是关系人类生活和可持续发展的永恒话题。为了检测食品中的有毒物质和人类身体内的有害物质,并达到快速检测和灵敏度高的目的,毛细管电泳(CE)和电化学发光(ECL)技术相结合的方法应运而生。这种方法充分利用了CE技术快速、灵敏、需样量少的优点及ECL线性范围宽和仪器简单的特点,使其在生命和医药等方面得到了广泛的应用。 关键词:毛细管电泳;电化学发光;生命;医药 引言 毛细管电泳法(Capillary Electrophoresis,CE)也叫做高效毛细管电泳(HPCE),是二十世纪八十年代问世的高效液相分离法之一[1],是将经典的电泳技术和现代微柱分离相结合的产物。它是一类以毛细管为分离通道,以高压直流电场为驱动力,以样品的多种特性(大小、电荷、等电点、极性、亲和行为、相分配特性等)为依据的液相微分离分析技术。与传统的分离分析方法相比,毛细管电泳显著特点是简单、高效、快速和微量。另外,毛细管电泳还有经济、清洁、易于自动化和环境污染小等优点。因此,毛细管电泳迅速发展为高效的分离和检测技术,广泛应用于物质的检测与分离。 电化学发光(electrochemiluminescence,ECL)是指电极表面通过电子的转移形成激发态,电子从激发态返回基态而产生的发光过程[2],由电极上施加的电压所引发和控制[3],以电激发为驱动力,通过电化学反应产生光信号。因此,电化学发光兼有化学发光的特点,是一种可控性强,灵敏度高的检测方法。 将毛细管电泳和电化学发光技术联用,产生了毛细管电泳-电化学发光检测技术(CE-ECL),该技术兼有CE微量、迅速、高效及ECL高选择性、高灵敏等特点。这些特点使CE-ECL检测技术在药物分析、生命分析等领域应用越来越广泛,在实际样品的分离和分析工作中也发挥着重要的作用。本文主要简述毛细管电泳-电化学发光联用技术在各个领域的应用进展。 1. 毛细管电泳-电化学发光联用技术

毛细管电泳及其应用

毛细管电泳及其应用 摘要:毛细管电泳技术(Capillary Electrophoresis, CE),是近二十年来发展最为迅速的新型液相分离分析技术之一。CE实际上包含电泳、色谱及其相互交叉的内容,是继高效液相色谱之后的又一重大进展,具有分离效率高、简单、经济、快速和微量、自动化程度高等优点。毛细管电泳这些特点使其成为一种极为有效的分离技术,目前已是生命科学及其它学科中一种常用的分析手段,已广泛应用于蛋白质、氨基酸、无机离子、有机化合物等的分离分析。关键词:毛细管电泳,分离效率高,生命科学 引言 毛细管电泳是在传统电泳技术的基础上逐步发展起来的。电泳技术的出现可以追溯到100多年前[1]。1807-1809年,俄国物理学家F.F.Reuss首次发现黏土颗粒的电迁移现象,并开始研究带电粒子在电场中的电迁移行为,测定它们的迁移速度。起初电泳只是作为一种物理化学现象来研究。电泳真正意义上进入分析化学被视为一种重要意义的技术,是在瑞士化学家Tiselius[2]公布了移动界面电泳技术的细节之后。他首先将电泳现象成功的应用于人血清的分离,获得了多种血清蛋白,他制成第一台电泳仪,并进行自由溶液电泳。Tisedius对电泳技术的发展和应用所做的巨大贡献,使他获得了1948年诺贝尔化学奖。但是传统电泳最大的局限是难以克服由高电压引起的焦耳热。1967年Hjerten[3]最先使用慢速旋转的内径为3 mm的石英玻璃管进行自由溶波电泳,以UV进行检测,成功地分离了蛋白质、多肽、无机离子、有机离子等,Hjerten最早证明可以把高电场用于细内径的毛细管电泳,但他没有完全克服传统电泳的弊端。1974年Virtanen提出使用细毛细管提高分离效率,阐明电渗流就像泵一样可以驱动液体流过毛细管,并说明了使用更细内径的毛细管做毛细管电泳的特点。1979年Everaerts和Mikkers[4]使用内径为200μm聚四氟乙烯毛细管,提高了毛细管的分离效率,成功分离了16种有机酸。1981年Jorgenson和Luckas[5]发表了划时代的研究工作,采用内径为75μm 石英毛细管进行实验,采用高电场电迁移进样,以灵敏的荧光检测器进行检测,使丹酞化氨基酸高效、快速分离,首次获得理论塔板数高达4x105/m的柱效。Jorgenson和Lucas等人的开创性工作,使CE发生了根本性的变革,标志着CE从此跨入高效毛细管电泳时代。 1983年Hjerten[6]将毛细管的内壁填充聚丙烯酰胺凝胶并将其用于毛细管电泳分离,发展了毛细管凝胶电泳(CGE)。CGE具有极高的分辨本领。凝胶作为支持介质的引入大大促进了电泳技术的发展,可用于蛋白质碎片的分离及DNA序列的快速分析。 1984年Terabe等[7]将胶束引入毛细管电泳,开创了毛细管电泳的重要分支—胶束电动毛细管色谱(MECC)。他首次将表面活性剂十二烷基硫酸钠(SDS)加入缓冲液中,在溶液中形成离子胶束作假固定相,实现了中性离子的分离,目前,MEKC己成为应用非常广泛的电泳模式之一。1985年Hjerten[8]等把平板等电聚焦电泳过程转移到毛细管内进行,发展了等电聚焦毛细管电泳(CIEF)。他是将带有两性基团的样品、载体两性电解质、缓冲剂和辅助添加剂的混合物注入毛细管内[9],当在毛细管两端加上直流电压时,载体两性电解质可以在管内形成一定范围的pH梯度,从而达到使复杂样品中各组分分离的目的。1987年,Karger等[10]对凝胶填充技术进行了改进,优化了CGE技术,极大提高了其分离效率并阐明了用小内径毛细管可进行毛细管凝胶电泳。同年Smith等[11]将毛细管通过电喷射接口与质谱相连,从而实现了质谱和毛细管电泳联用的检测法,毛细管电泳-电喷雾质谱联用技术以其高效及高准确性被广泛应用于很多领域。 毛细管电泳根据分离机理和介质不同,具有多种分离模式,每种模式的选择性不同。毛细管电泳现有以下六种经典分离模式:毛细管区带电泳(Capillary Zone Electrophoresis, CZE),CZE是毛细管电泳中应用最广泛的一种分离模式,CZE用以分析带电溶质,其分离机理是基

高效毛细管电泳实验

高效毛细管电泳实验 一、实验目的 1. 进一步理解毛细管电泳的基本原理; 2. 熟悉毛细管电泳仪器的构成; 3. 了解影响毛细管电泳分离的主要操作参数。 二、实验原理 1.电泳淌度 毛细管电泳(CE )是以电渗流 (EOF)为驱动力,以毛细管为分离通道,依据样品中组分之间淌度和分配行为上的差异而实现分离的一种液相微分离技术。离子在自由溶液中的迁移速率可以表示为: ν = μE (1) r 6 q πημ= (2) 式中ν是离子迁移速率,μ为电泳淌度,E 为电场强度。η为介质粘度,r 为离子的流体动力学半径,q 为荷电量。因此,离子的电泳淌度与其荷电量呈正比,与其半径及介质粘度呈反比。 2.电渗流和电渗淌度 电渗流(EOF )指毛细管内壁表面电荷所引起的管内液体的整体流动,来源于外加电场对管壁溶液双电层的作用。 在水溶液中多数固体表面根据材料性质的不同带有过剩的负电荷或正电荷。就石英毛细管而言,表面的硅羟基在pH 大于3以后就发生明显的解离,使表面带有负电荷。为了达到电荷平衡,溶液中的正离子就会聚集在表面附近,从而形成所谓双电层,如图1所示。这样,双电层与管壁之间就会产生一个电位差,叫做Zeta 电势。但毛细管两端施加一个电压时,组成扩散层的阳离子被吸引而向负极移动。由于这些离子是溶剂化的,故将拖动毛细管中的体相溶液一起向负极运动,这便形成了电渗流。 电渗流的大小可用速率和淌度来表示: ()E EO F ηεξν/= (3) 或者 ηεξμ/=EO F (4) 式中νEOF 为电渗流速率,μEOF 为电渗淌度,ξ为Zeta 电势,ε为介电常数。 3.毛细管电泳的分离模式 CE 有6种常用的分离模式,其中毛细管区带电泳(CZE )、胶束电动毛细管色谱(MEKC )和毛细管电色谱(CEC )最为常用。本实验的内容为CZE 。 4.毛细管电泳的基本参数

第五章 高效毛细管电泳分离技术

第五章高效毛细管电泳分离技术 第一节毛细管电泳技术发展简史及其特点 电泳是指带电粒子在电场作用下向电性相反的方向迁移的现象。据此对某些化学或生物化学组分进行分离的技术称为电泳技术。 从1930年瑞典科学家Arne Tiselius首次提出电泳法至今已有70年的历史。电泳法的发展大致可分为三个阶段。1950年以前属初创阶段,主要是界面移动自由电泳,一般在U型管内进行,无支持物。50年代至80年代中期出现了各种有支持物的电泳方法,如纸电泳、醋酸纤维电泳、琼脂糖电泳、聚丙烯酰胺凝胶电泳等,70年代后实现了仪器的自动化。80年代后期出现了毛细管电泳方法,实现了微型化、自动化、高效、快速分析,毛细管电泳技术已经成为同现代色谱技术相比的分析化学领域中的一个令人瞩目的分支。 毛细管电泳(Capillary Electrophoresis,CE)或高效毛细管电泳(High Performance Capillary Electrophoresis,HPCE)是指以毛细管为分离室、以高压电场为驱动力的一类新型现代电泳技术。毛细管电泳仪的基本结构见图5-1。

HV(0-+30KV) 图1 毛细管电泳仪的结构图 C—毛细管;D—检测器;E—电极槽;HV—直流高压电源;Pt—铂电极;S—样品;DA—数据采集处理系统 完善的毛细管电泳仪应具备(1)有多种施压模式;(2)恒温精度高,恒温范围宽;(3)精确的进样控制;(4)检测器的灵敏度高等条件。 毛细管电泳分离技术用的是内径为5-100μm,外径为370μm,长为10-100cm的弹性熔融石英毛细管,毛细管的特点是(1)体积小;(2)散热快,可承受高电场;(3)可使用自由溶液、凝胶等为支持电解质,在溶液介质下可产生平面形状的电渗流。 毛细管电泳分离技术与传统的平板电泳和现代液相色谱分离技术相比具有很多优点:(1)高效(105-107理论塔板/米);(2)快速(几十秒至几十分钟);(3)分离模式多,选择自由度大;(4)分析对象广,从无机离子到整个细胞;(5)高度自动化;

毛细管电泳技术发展及应用前景

毛细管电泳技术发展及应用前景 毛细管电泳技术(Capillary Electrophoresis, CE)又称高效毛细管电泳(HPCE)或毛细管分离法(CESM),毛细管电泳方法虽新工艺,但历史悠久,它是在电泳技术的基础上发展的一种分离技术。电泳作为一种技术出现,已有近百年的历史,但真正被视为一种在生物化学中有重要意义的技术,是由1937年A. Tiselius 首先提出。传统电泳最大的局限是难以克服由高电压引起的焦耳热,1967年Hjerten最先提出在直径为3mm的毛细管中做自由溶液的区带电泳(Capillary Zone Electro-phoresis, CZE)。但他没有完全克服传统电泳的弊端。现在所说的毛细管电泳技术(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离。1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支:胶束电动毛细管色谱(MEKC)。1987年Hjerten 等把传统的等电聚焦过程转移到毛细管内进行。同年,Cohen发表了毛细管凝胶电泳的工作。近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。 当电泳从凝胶板上移到毛细管中以后,发生了奇迹般的变化:分析灵敏度提高到能检测一个碱基的变化,分离效率达百万理论塔片数;分析片段能大能小,小到分辨单个核苷酸的序列,大到分离Mb到DNA;分析时间由原来的以小时计算缩减到以分、秒计算。CE可以说是经典电泳技术与现代微柱分离技术完美结合的产物。它使分析科学得以从微升水平进入纳升水平,并使单细胞分析,乃至单分子分析成为可能。长期困扰我们的生物大分子如蛋白质的分离分析也因此有了新的转机。 毛细管电泳技术是一类以毛细管为分离通道、以高压直流电场为驱动力,根据样品中各组分之间迁移速度和分配行为上的差异而实现分离的一类液相分离技术,迅速发展于80年代中后期,它实际上包含电泳技术和色谱技术及其交叉内容,是分析科学中继高效液相色谱之后的又一重大进展,它使分析科学得以从微升水平进入纳升水平,并使细胞分析,乃至单分子分析成为可能。是分析科学中继高效液相色谱之后的又一重大进展,是近几年来分析化学中发展最为迅速的领域之一。 毛细管电泳技术的基本原理是根据在电场作用下离子迁移的速度不同而对组分进行分离和分析,以两个电解槽和与之相连的内径为20~100μm的毛细管为工具,毛细管电泳所用的石英毛细管柱,在 pH>3的情况下,其内表面带负电,和缓冲液接触时形成双电层,在高压电场的作用下,形成双电层一侧的缓冲液由于带正电荷而向负极方向移动形成电渗流。同时,在缓冲液中,带电粒子在电场的作用下,以不同的速度向其所带电荷极性相反方向移动,形成电泳,电泳流速度即电泳淌度。在高压电场的作用下,根据在缓冲液中各组分之间迁移速度和分配行为上的差异,带正电荷的分子、中性分子和带负电荷的分子依次流出,带电粒子在毛细管缓冲液中的迁移速度等于电泳淌度和电渗流的矢量和,各种粒子由于所带电荷多少、质量、体积以及形状不同等因素引起迁移速度不同而实现分离;在毛细管靠负极的一端开一个视窗,可用各种检测器。目前已有多种灵敏度很高的检测器为毛细管电泳提供质量保证,如紫外检测器(UV)、激光诱导荧光检测器(LIF)、能提供三维图谱的二极管阵列检测器(DAD)以及电化学检测器(ECD)。由于毛细管的管径细小、散热快,即使是高的电场和温度,都不会向常规凝胶电泳那样使胶变性,影响分辨率。 毛细管电泳技术的分离模式和检测模式的发展同样也是多方面的,经典的分离模式有毛细管区带电泳、毛细管胶束电动色谱、毛细管凝胶电泳等;新方法的发展研究难度大,但近年来却有不小的进展,其中建立新的分离模式和联用技术最为突出。比如建立了阵列毛细管电泳(CAE),亲和毛细管电泳技术(ACE),芯片毛细管电泳(CCE),非水毛细管电泳技术(NACE);本文作者尝试将分子信标技术与毛细管电泳技术相结合进行基因检测,取得

毛细管电泳发展历史

毛细管电泳的发展历史 中文摘要 本文简要的回顾了毛细管电泳的发展历史,对其发展和应用现状进行概述,并对未来的发展提出一些设想,作为我们研究课题的重点,特别对毛细管电泳安培检测技术进行了较为详细的评述。从电导检测、电位检测和安培检测的三种方法用于毛细管电泳这项分离技术的发展过程,到基础理论的研究、检测池的设计与改进、电极的改进及其应用的简单介绍到未来的发展动向等方向逐一涉及,一般的药物、氨基酸和糖类的分析到目前应用的热点进行了综述。从毛细管电泳安培检测技术需要进一步完善和发展考虑,提出了本论文的设想,在毛细管电泳安培检测的方法学研究及其在药物分析中的应用方面做出一些有意义的工作。 鉴于在毛细管电泳安培检测技术中,用于分离的高压电场对安培检测有着严重干扰,影响检测的灵敏度,而且分离毛细管与工作电极对接也存在一定困难等原因,前人已做了大量的研究工作,并提出了种种解决办法,但还存在不尽如人意的地方。在原有的工作基础上,我们进一步进行了毛细管电泳安培检测的研究工作,设计制作了一种高压电场隔离接口和相应的安培检测池,并对工作电极进行了改进,兹将主要研究内容报告如下:第一部分概述了毛细管电泳的发展历史,对电导检测、电位检测特别是安培检测的基本原理及其应用工作进行了详细介绍,指出了三种检测技术的优缺点,以及人们为降低噪音、提高检测度方面所做的一些工作,最后还简单介绍了本文的目的、意义和内容。 第二部分设计制作了一种电场隔离接口和安培检测池,并对检测电极做了进一步改进。对高压电场隔离接口的强度、稳定性、平衡时间、导电效率及隔离电场性能等进行了详细的研究。结果表明:该接口稳定,隔离电场效果好,可以满足实际工作的需要;制作的安培检测池可以解决分离毛细管与工作电极对接困难的问题,其工作电极可以方便的插入分离毛细管而不碰壁。组装了一套毛细管电泳安培检测系统,并利用该系统分离检测了三中种对苯二酚,结果令人满意。此外,我们通过对电极的改进,削弱了在毛细管电泳安培检测中存在的峰扩展现象,进一步提离了分离效率。 第三部分在自组装的毛细管电泳安培系统上,进行了毛细管电泳安培检测在药物分析中的方法学研究,建立了此种药物的毛细管电泳安培检测方法。 1. 用毛细管电泳安培检测法同时测定了银黄注射液中氯原酸与黄芩苷的含量,研究了各种实验条件对分离效果的影响,得到了较优化的实验条件。以直径为100μm的铜微电极为工作电极,于电极电位+0.8V(vs.Ag/Ag CI)处,40mmoI/L的Na2B407(pH值为13.4)min为缓冲溶液时, 氯原酸与黄苓苷在12min内得到良好的分离. 氯原酸与黄苓苷分别在5.0×10-3~0.5mg/mL浓度范围内与电泳峰电流呈良好的线性关系, 检测下限分别为1.0

高效毛细管电泳

高效毛细管电泳-非接触式电导检测法的应用 ——瓶装矿泉水中Na+、K+、Ca2+、Mg2+的分离检测 摘要本实验采用毛细管电泳–非接触式电导检测法,以8mmol?L-1Tris 和6mmol?L-1酒石酸为电泳运行液,分离电压为+15 kV,采用标准加入法,对瓶装矿泉水中Na+、K+、Ca2+、Mg2+四种阳离子同时进行直接分离和检测。实验测得逸仙泉矿泉水中Na+、K+、Ca2+、Mg2+的含量分别为2.57mg·L1、13.46mg·L-1、4.99mg·L-1、1.82mg·L-1,发现K+、Mg2+含量均大大超出厂家提供的含量范围。 关键词高效毛细管电泳非接触电导检测法中大逸仙泉水分离检测标准加入法 1 引言 Na+、K+、Ca2+、Mg2+是人体内重要的无机阳离子,这些离子含量的高低直接影响人体的生理功能。Mg2+是人体细胞内的主要阳离子,浓集于线粒体中,是体内多种细胞基本生化反应的必需物质,在神经肌肉的机能正常运作、血糖转化等过程中扮演着重要角色。K+在人体内的主要作用是维持酸碱平衡,参与能量代谢以及维持神经肌肉的正常功能。人体中的钙元素主要以羟基磷酸钙晶体的形式存在于骨骼和牙齿中。Na+是细胞外液中带正电的主要离子,参与水的代谢,保证体内水的平衡,调节体内水分与渗透压,此外,糖代谢、氧的利用、维持正常血压也需要钠的参与。矿物质水中这些离子含量的高低决定了水质是否符合标准。因此,研究快速分离测定这些离子的含量很有实际的意义。 由于要同时测量四种离子含量,因此传统的对单一离子测量的方法不能用,毛细管电泳–非接触式电导检测法,可以同时对K+、Na+、Ca2+、Mg2+四种阳离子同时进行直接分离并且检测含量,相比已有的实验方法,本实验具有灵敏度高,操作简便,而且可以同时测定四种不同离子的含量,离子之间不存在相互干扰,极大地提高了实验效率,实验结果令人满意。 高效毛细管电泳的检测器中,非接触式电导检测(Capacitively Coupled Contactless Conductivity Detection, 简称C4D)是近年来发展起来一种新型的电导检测方法。非接触式电导检测法的电极与待测溶液隔离,避免了因电极与溶液接触而造成的诸多问题,有效地消除了电极中毒的问题,电极寿命长,抗干扰能力强,可检测物质的范围广。HPCE–C4D具有通用性好、灵敏高、分析成本低和环境友好的优点,在日常分析中具有广阔的应用前景。 2 实验部分 2.1仪器试剂

毛细管电泳技术及在微生物学中的应用

湖南农业大学研究生课程论文 学院:食品科技学院 年级专业:07级营养与食品卫生学 姓名:章沙沙学号:s200700294 课程论文题目:毛细管电泳技术及在微生物学中的应用课程名称:现代食品分析技术 评阅成绩: 评阅意见: 成绩评定教师签名: 日期:年月日

毛细管电泳技术及在微生物学中的应用 学生:章沙沙 (07级食品科技学院营养与食品卫生学,学号s200700294) 摘要: 毛细管电泳技术是一种新型高效液相分离技术,应用领域广泛。本文分别从毛细管电泳技术的发展概况及在微生物学检测中的应用加以综述。 关键词: 毛细管电泳;微生物;应用 毛细管电泳迅速发展于80年代中后期,是分析科学中继高效液相色谱技术之后的又一重大进展,使分析科学得以从微升水平进入纳升水平,并使单细胞分析乃至单分子分析成为可能[1]。毛细管电泳(CE)是一类以毛细管为分离通道,以高压直流电场为驱动力的新型液相分离技术。广泛应用于核酸、蛋白质、多肽、药物等大分子物质的分析,但是,不同于毛细管电泳在无机离子、有机小分子和生物大分子等方面取得的巨大成功,毛细管电泳在微生物方面的应用在最近几年才取得较大进展,并逐渐显现出巨大的应用潜力。在微生物学领域,毛细管电泳除了在微生物基因测序方面得到广泛应用外,在微生物学检测方面应用的报道不多见。本文主要介绍了毛细管电泳的发展、原理、特点、分离模式及在微生物检测中的应用。 1、毛细管电泳技术 1.1毛细管电泳发展历史 1937年瑞典化学家Tiselius[2]利用电泳技术第一次从人血清中分离出白蛋白和α、β、γ球蛋白,并研制成第一台电泳仪,使电泳作为一种分离分析技术有了突破性的进展。经典电泳法最大的局限性在于存在焦耳热,只能在低电场强度下操作,直接影响了其分离效率和分析速度的提高,为了解决这一问题,人们进行了多方探索。1981年,Jorgenson和Lukacs[3]使用内径75um的石英毛细管进行电泳,成功地对丹酰化氨基酸进行了快速,高效分离获得了40万块/m理论塔板的高效率。这一开创性工作成为电泳发展史上一个里程碑,使经典的电泳技术发展为高效毛细管电泳(HPCE)。从此,毛细管电泳在理论研究,分离模式,商品仪器,应用领域等各方面获得了迅猛发展。如今,HPCE可与GC、HPLC相媲美,成为现代分离科学的重要组成部分[4]。 1.2毛细管电泳基本原理和分离模式 按毛细管内分离介质和分离原理的不同,毛细管电泳有以下几种分离模式[5]: (1)毛细管区带电泳毛细管区带电泳(CZE)的分离原理是基于各个分离物质的净电荷与其质量比(比荷)间的差异而进行物质的分离。迄今CZE仍是应用最多的模式,应用范围包括氨基酸、肽、蛋白、离子等的分离。(2)毛细管凝胶电泳毛细管凝胶电泳(CGE)是将平板电泳的凝胶移到毛细管中作支持物进行电泳,不同体积的溶质分子在其分子筛作用的凝胶中得以分离。常用于蛋白质、寡聚核苷酸、核糖核酸、DNA片段分离和测序及聚合酶链反应(PCR)产物的分析。(3)毛细管胶束电动色谱毛细管胶束电动色谱(MECC)是采用表面活性剂在运动缓冲液内形成一疏水内核,外部带负电的动态胶束相,利用溶质具有不同的疏水性,在水相和胶束相间分配的差异进行分离。主要用于小分子、中性化合物和药物等的分离。(4)毛细管等电聚焦毛细管等电聚焦(CIEF)是用两性电解质在毛细管内建立pH梯度,使各种具

(安全生产)毛细管电泳分析方法在食品安全监控中的应用

毛细管电泳分析方法在食品安全监控中的应用 (华东师大化学系叶建农) 食品安全是指食品中不应含有可能损害或威胁人体健康的有毒、有害物质或因素,从而导致消费者急性或慢性毒害或感染疾病、或产生危及消费者及其后代健康的隐患。近年来,世界范围内食品安全方面的恶性和突发事件不断发生。据美国疾控中心研究报告估计,美国每年因食品中毒而死亡的人数约5000人左右。日本也先后发生出血性大肠埃希菌O157食品中毒事件,以及导致上万人中毒的雪印牛奶事件。目前我国食品安全形势不容乐观,食品中毒事件时有所闻。据不完全统计,我国每年实际发生的食物中毒例数在200万人次以上,其中有相当比例是由违禁食品添加剂引起,如2005年“苏丹红”事件,2006年“瘦肉精”事件,2008年“三聚氰氨”事件等。这类事件不仅严重危害人们身体健康,而且也对经济发展和国家形象产生及其负面的影响。客观而言,目前我国食品安全仍处于风险高发期和矛盾凸显期,有必要进行全方位的整治。其中的一个环节,就是要切实做好食品安全监控工作。 食品分析大致可分为两大类,即食品中营养成分分析,以及食品中化学添加剂、化学污染物的分析。由此可见,食品安全监控的主要内容,本质上是指能够准确分析和严格控制食品中化学添加剂及化学污染物的种类和含量。其中食品添加剂属限用品。根据我国卫生部2008年新修订的“食品添加剂使用卫生标准”

(GB2760-2007)规定,在一定前提下可合法使用的食品添加剂总数为1812种,共分为22大类。这一千多种食品添加剂虽然已经卫生部认可,但对其允许的添加范围及添加量却有严格的规定和限制。至于化学污染物则属违禁品,有时又叫禁用品,即在任何条件下均不得人为添加,如苏丹红、瘦肉精、孔雀石绿、三聚氰氨等。 从理论上讲,现有的化学分析方法都有可能在某种程度上应用于食品安全监控。如比色法、滴定法、水解法、蔡氏砷斑法、凯氏定氮法、薄层色谱法、气相色谱法、高效液相色谱法、色谱-质谱联用法、毛细管电泳法等。 毛细管电泳(Capillary Electrophoresis, CE)是近二十来发展最快的一种分离分析技术,具有分离效率高、所需样品量少、分析成本低等优点。毛细管电泳分析法是以毛细管为分离通道、以高压直流电场为驱动力,根据样品中各组分之间迁移速度的差异而实现分离的一种液相分离技术。由于食品组成的复杂性,检测前的各组分之间的分离是必不可少的。食品中各组分经毛细管分离后,即可选用合适的检测器进行检测,如紫外吸收检测(UV)、激光诱导荧光检测(LIF)、电化学检测(EC)等。 近年来,国内外化学工作者开展了大量的研究工作,探索和开发毛细管电泳分析方法在食品安全监控中的具体应用。众所周知,有机磷农药是目前使用量最大的杀虫剂,占全部农药用量的80%以上,广泛用于谷物、棉花、果树等农作物。有机磷农药

毛细管电泳原理及其应用

毛细管电泳原理及其应用 学院:海洋港口学院班级:14制药工程学号:1423014113 姓名:蒋佳丽时间:2015年1月7日 前言 毛细管电泳(capillary electrophoresis, CE)是近十几年来迅速发展起来的一种分离技术,虽说在上世纪六七十年代就有人对毛细管内电渗流形式做了理论探索并也开始尝试毛细管电泳技术,但都因为受到检测器灵敏度限制、电 泳过程中产生的焦耳热无法有效散失等因素的制约,影响分离效果。八十年代初,外壁涂有聚二酞亚胺,内径小于100}m 的熔融石英毛细管的使用[1]及检测器灵敏度的提高大大推动了毛细管电泳技术的发展,由于CE具有普通电泳和色谱 的优点及具有高效、高灵敏度、快速、低运行成本、犬信息量和易于自动化等特点,近年来在生物化学、临床诊断、 法医刑侦学等领域应用广泛。 一、CE设备及原理 毛细管电泳是以高压电场为驱动力,以毛细管为分离通道,根据样品各组分之间的淌度及分配上的行为差异而实现分离目的的一类液相分离技术。其仪器装置一般由以下几部分组成(见图一)1.高压电源;2.毛细管;3.在线检测器;4.电极及电极液;5.加样系统。毛细管是由熔融石英加工制成的(内径20一100}m,长度为20一100cm ),外壁涂有一层聚二酞亚胺以增加其柔韧性,内壁通常直接和溶液接触,有时也可根据需要涂上一层高聚物。与平板凝胶电泳类似的, 毛细管内也可填充支持介质,如琼脂糖,聚丙烯酞胺及甲基纤维素等。 图一毛细管电泳仪装置示意图(Tagliaro, 1998)[1] 在线检测器位于距样品盘约三分之二至五分之四毛细管总长处,对毛细管壁内部进行光学聚焦(在此处的毛细管外 壁的保护层是被烧掉或刮去的,以利于光的通透)。在线检测器通常有紫外、荧光和激光等多种检测方式。对DNA的分析通常使用紫外检测,对200bp的DNA片段的最小检测浓度是O.5mg/L。但对于生物样品中在和许多其他成分共存的痕量物质测定时,或对特殊分析(如DNA序列测定)时就要使用激光诱导的荧光检测器(laser induced fluorescence, LIF),使用LIF在非液相毛细管电泳中的检测灵敏度要比非激光诱导的荧光检测提高6倍[2],比紫外检测高100倍。另外,加入染料EB还可改善分离度,能将碱基长度相同但序列不同的DNA片段分开[3]。 毛细管中充满具有一定离子强度的缓冲液后,在其两端加上高电压,带电粒子在电场作用下以不同速度向其所带电荷反方向迁移,当pH>3时,毛细管内壁的石英分子因玫Siq分子的解离,而在表面形成一层负电荷,吸引缓冲液中的正离子,形成一个双电层。在高电压作用下,双电层水合阳离子层引起整个溶液在毛细管中向负极方向移动,形成电 渗流。带电粒子在毛细管内的电解质溶液中的迁移速度等于电泳和电渗流二者的矢量和,因此阳离子首先从负极流出;中性离子的速度等于电渗流速度,随后流出;而由于电渗流速度大于电泳速度,因此阴离子最后流出。 内壁石英分子除能造成电渗流外,还会吸附溶质中带正电荷的分子,从而影响分离效果。为了避免分析物被管壁 吸附,可选用缓冲液的pH大于样品混合物中蛋白质和多肤的等电点,或者选用pH接近pH2.0,此时毛细管内壁无解离的负电荷,但在这种酸性环境下,蛋白质容易失活,一般仅用于多肤分析。有时也可对毛细管内壁进行涂层,如中性

高效毛细管电泳及其在蛋白质_多肽分析中的应用

tion of ceriv astatin in mice,rats,and do gs in vivo[J]. Dr ug M etab D ispos,1998,26(7) 640 652. [19]L indon JC,Nicholson JK,Sidelman U G,et al.Directly coupled HPL C N M R and its application to drug metabolism[J].Dr ug M etab Rev,1997,29 705 746. [20]Sidemann UG,Braumann U,Hofmann M,et al.Direct ly coupled800MHz HPLC N MR spectroscopy of ur ine and its application to the identification of major phase metabolites o f tolfenamic acid[J].A nal Chem,1997,69 607 612. [21]William JE,Joseph M W,T odd M B,et al.L iquid chro matography/nuclear magnetic resonance spectrosco py and liquid chr omatog raphy/mass spectrometry identification of novel metabolites of the mult idrug resistance modulator LY335979in rat bile and human L iver microsomal incu bat ions[J].Dr ug metab D isp os,1998,26(1) 42 51. 高效毛细管电泳及其在蛋白质、多肽分析中的应用 孔 毅, 吴如金, 吴梧桐 (中国药科大学,江苏南京210009) 摘 要:高效毛细管电泳(HPCE)是一种分离效率高、检测灵敏度高、样品用量少的分析技术。本文简述HPCE的研究进展及基本原理,着重介绍了它在蛋白质及多肽的分离、纯度鉴定、性质研究、结构分析、临床检测、药代动力学研究等方面的应用。 关键词:高效毛细管电泳;蛋白质;多肽 中图分类号:O658.9;Q51 文献标识码:A 文章编号:1001-5094(2000)04-0204-05 High Performance C apillary Electrophoresis and Its Application in Analysis of Protein and Peptide K ON G Yi, WU Ru jin, WU W u tong (China Phar maceutical University,N anj ing210009,China) Abstract:H ig h performance capillary electrophoresis(HPCE)is characterized as an analysis method, w hich show ed high selectiv ity and high sensitivity,but needed only little sample.In this article,the de velopment of HPCE and its foundamental principle were briefly introduced,and its applications to sepa ration,purity determ ination,characterization study,structural analysis,clinical monitoring and phar macokinetics of protein and peptide were emphasized. Key words:H PCE;protein;peptide 蛋白质、多肽是生命科学中一类重要的生物大分子物质,是生物体实现其功能的物质基础。在医药领域,有许多疗效很好的蛋白质、多肽类药物,如促红细胞生成素、干扰素、白介素、重组人生长激素等都是近年开发的蛋白质类药物。在后基因组时代,蛋白质组学成为一门重要的新兴学科,其任务就是研究细胞内所有蛋白质的组成及其活动规律[1]。因此,许多研究机构和大财团都在投入人力物力对蛋白质及多肽进行研究,这些复杂的研究工作对分析手段提出了更高的要求。 高效毛细管电泳(HPCE)是近十几年发展起来的一项新的分析技术,它将电泳技术和色谱技术结合,是继高效液相色谱(H PLC)出现之后,分析科学领域的又一次革命。研究与实践表明HPCE具有以下特点:分离效率高(理论塔板数达106~107/ m);快速(20~30min内完成一次电泳操作);样品用量少(仅为纳升级,可对单细胞液进行分离分析);灵敏度高(用激光诱导荧光检测器,可达1 10 24 收稿日期:1999 10 14; 修回日期:1999 12 20

毛细管电泳出现问题分析

无样品峰出现 A、检查电流是否稳定: ①没有电流。 可能原因——毛细管堵塞或断裂。解决方法——用水冲洗毛细管,并观察是否有水流出,若无水流出请拆下卡盒检查毛细管两端和窗口是否断裂;毛细管没有断裂的话可以用水反向高压冲洗以试图解决此问题。缓冲溶液需要过滤,将样品过滤或者离心去除其中的颗粒。 ②电流波动很大,直至几乎消失。 可能原因——缓冲溶液中有气泡产生或者区带中样品析出。解决方法——将缓冲溶液超声脱气,如果还有此现象发生,则可能是样品区带有析出,可以通过降低样品浓度/ 延长ramp time 来试图解决这一问题;对于在缓冲溶液中溶解度不高的样品则需要在缓冲溶液中加入添加剂以解决此问题。 ③电流初始值较小,后逐渐增大。可能原因——样品进样量过大。解决方法——减少进样量,通常进样参数设置在0.5psi,5sec 左右。 ④电流正常。 可能原因:a 样品浓度过低:使用高浓度样品测试,如果无法解决则有可能是以下其他原因。b 检测波长设置不正确:请确认被分析物的特征吸收,检查方法中的检测波长设置。c 分离 极性错误:对于蛋白样品,请注意蛋白在分离条件下其PI及所带

电荷;对于核酸样品,通常条件下会带负电荷。d样品在 毛细管内壁吸附:对于蛋白及核酸样品应尽量采用涂层毛细管分 离,或采用极端pH条件或动态涂层防止样品吸附。e光学检测器或光纤损坏:进行标准样品的测试,如果没有对应的结果出现,则有可能存在硬件问题,请联系工程师。 B、检查毛细管窗口,是否有透明窗口: 可能原因一一忘记开毛细管窗口或窗口位置不正。 解决方法一一重新开毛细管检测窗口,或将窗口调整到正确位置。 二、样品峰出现拖尾 可能原因一一样品在毛细管内壁吸附。 解决方法一一对于蛋白及核酸样品应尽量采用涂层毛细管分离,或 采用极端pH条件或动态涂层防止样品吸附。 三、样品峰形不对称 A、检查毛细管入口: 可能原因一一毛细管入口切口不平齐。 解决方法一一重新切割毛细管入口,注意毛细管切割方法,不可以 用力过猛或反复刮擦。

高效毛细管电泳色谱仪的介绍

高效毛细管电泳色谱仪的介绍 高效毛细管电泳色谱仪(CE)是以毛细管为分离通道,以高压直流电场为驱动力,利用荷电粒子之间的淌度差异和分配系数差异进行分离。由于CE溶质区带的超小体积特性导致光程太短,圆柱形毛细管作为光学表面不够理想,对检测器灵敏度要求相当高。CE常用检测器有紫外检测器、激光诱导荧光检测器、质谱检测器和电化学检测器等。 一、紫外检测器: 紫外检测器是基于物质对紫外吸收进行检测,是成熟的检测器,在CE中应用广。 1、原理: 入射紫外光通过样品时,被吸收的多少符合朗伯-比耳定律。 检测点在毛细管的末端,检测点的毛细管的外涂层要烧掉。 2、检测方法: (1)固定波长: 光源为低紫外氘灯,用滤光片获得固定波长的光。 (2)可变波长: 光源为氘灯或钨灯,用单色器(棱镜或光栅)获得连续可调波长的光。 (3)快速扫描: 1)利用线性二极管阵列快速捕获紫外光。 2)利用硅光电倍增管作快速扫描。 3、特点: (1)通用性好,特别是对蛋白质的适用性很强。 (2)灵敏度不足。 4、提高灵敏度的方法: 由于CE检测池的光路长度为毛细管内径,一般不超过100μm,小内径的毛细管限制了紫外检测器的灵敏度,可采用以下几种方法来提高灵敏度。 (1)优化测定波长: 通过测定不同波长下的信噪比来选择测定波长,以提高灵敏度。

(2)减少检测噪音: 1)提高光源强度。 2)采用聚焦和狭缝等减少背景光的影响。 3)采用良好的信号放大系统。 (3)扩展吸光光路长度: 1)为了克服圆柱形毛细管表面引起的散射、失真等不利的光学特性和增加光路长度,可采用矩形、扁形、Z形和泡型等特殊毛细管。当然柱效会有所下降。 2)对于普通毛细管,可采用轴向照射和多次反射来增加光路长度。 ①轴向照射:将激光光束从毛细管末端沿管轴方向入射,在毛细管侧面进行检测。 ②多次反射:在毛细管壁镀上银,分别开入射窗和出射窗。当入射光以特定角度入射后,在毛细管内反射30~40次后从出射窗口射出。 二、激光诱导荧光检测器: 激光诱导荧光检测器采用激发光源使检测物质产生荧光进行检测。 检测下限为10ˉ12~10ˉ10mol/L。 三、质谱检测器: 在CE-MS联用中,毛细管区带电泳为常用。电子喷雾离子源可检测多种高质量的带电分子,从CE分离出来的分子经过接口后直接进入MS,是MS的离子源。 检测下限为10ˉ9~10ˉ7mol/L,通用性好,可获得溶质的结构信息,但接口复杂。 四、电化学检测器: 电化学检测器可避免光学类检测器遇到的光程太短的问题,是CE中灵敏的检测器之一。 1、电导检测器: 柱上电导检测是在毛细管壁上用激光钻两个孔,插上两根铂电极,再将孔封住进行检测。 检测下限为10ˉ7~10ˉ5mol/L,通用性好,但需专门装置和毛细管处理。 2、安培检测器: CE中微量样品可使库仑效率大大提高,可达40%以上,而在HPLC中很少超过10%。 检测下限为10ˉ9~10ˉ8mol/L,灵敏度高,选择性好,但仅适用于电活性物

相关文档
最新文档