20.3_菱形的判定(含答案)

20.3_菱形的判定(含答案)
20.3_菱形的判定(含答案)

菱形的判定

一、选择题

1.下列四边形中不一定为菱形的是()

A.对角线相等的平行四边形 B.每条对角线平分一组对角的四边形

C.对角线互相垂直的平行四边形 D.用两个全等的等边三角形拼成的四边形

2.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD= BC; ⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有().

A.1种 B.2种 C.3种 D.4种

3.菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和43cm B.4cm和83cm C.8cm和83cm D.4cm和43cm

二、填空题

4.如图1所示,已知□ABCD,AC,BD相交于点O,?添加一个条件使平行四边形为菱形,添加的条件为________.(只写出符合要求的一个即可)

图1 图2

5.如图2所示,D,E,F分别是△ABC的边BC,CA,AB上的点,且DE∥AB,DF∥CA,要使四边形AFDE 是菱形,则要增加的条件是________.(只写出符合要求的一个即可)

6.菱形ABCD的周长为48cm,∠BAD: ∠ABC= 1:?2,?则BD=?_____,?菱形的面积是______.7.在菱形ABCD中,AB=4,AB边上的高DE垂直平分边AB,则BD=_____,AC=_____.

四、思考题

9.如图,矩形ABCD的对角线相交于点O,PD∥AC,PC∥BD,PD,PC相交于点P,四边形PCOD是菱形吗?试说明理由.

]

2、如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.

3如图所示,四边形ABCD、DEBF都是矩形,AB=BF,AD、

BE相交于M,BC、DF交于N,求证:四边形BMDN是菱

形.

1、用两个边长为a的等边三角形纸片拼成的四边形是

___________

2、有一组邻边相等的四边形是菱形()

3、对角线互相垂直的四边形是菱形()

4、对角线互相平分垂直的四边形是菱形()

5、如图,△ABC中,AD平分∠BAC,DE∥AC,与AB相交于点E,DF∥AB,与AC相交于点F,试说明四边形AEDF是菱形。

反思:

参考答案

一、1.A 点拨:本题用排除法作答.

2.D 点拨:根据菱形的判定方法判断,注意不要漏解.

3.C 点拨:如图所示,若∠ABC=60°,则△ABC 为等边三角形,? 所以AC=AB=

14×32=8(cm ),AO=12

AC=4cm . 因为AC⊥BD,

在Rt△AOB 中,由勾股定理,得OB=222284AB OA -=-=43(cm )

,? 所以BD=2OB=83cm .

二、4.AB=BC 点拨:还可添加AC⊥BD 或∠ABD=∠CBD 等. 5.点D 在∠BAC 的平分线上(或AE=AF )

6.12cm ;723cm 2

点拨:如图所示,过D 作DE⊥AB 于E , 因为AD∥BC,?所以∠BAD+∠ABC=180°. 又因为∠BAD:∠ABC=1:2,所以∠BAD=60°,

因为AB=AD ,所以△ABD 是等边三角形,所以BD=AD=12cm .所以AE=6cm . 在Rt △AED 中,由勾股定理,得AE 2+ED 2=AD 2,62+ED 2=122,所以ED 2=108, 所以ED=63cm ,所以S 菱形ABCD =12×63=723(cm 2).

7.4;43 点拨:如图所示,因为DE 垂直平分AB ,

又因为DA=AB ,所以DA=DB=4.所以△ABD 是等边三角形,所以∠BAD=60°, 由已知可得AE=2.在Rt△AED 中,?AE 2

+DE 2

=AD 2

,即22

+DE 2

=42

,所以DE 2

=12,

所以DE=23,因为1

2

AC·BD=AB·DE,即

1

2

AC ·4=4×23,所以AC=43.

三、8.解:四边形ABCD是菱形,因为四边形ABCD中,AB∥CD,且AB=CD,

所以四边形ABCD是平行四边形,又因为AB=BC,所以 ABCD是菱形.

点拨:根据已知条件,不难得出四边形ABCD为平行四边形,又AB=BC,即一组邻边相等,由菱形的定义可以判别该四边形为菱形.

四、9.解:四边形PCOD是菱形.理由如下:

因为PD∥OC,PC∥OD,?所以四边形PCOD是平行四边形.

又因为四边形ABCD是矩形,所以OC=OD,

所以平行四边形PCOD是菱形.

20.3 菱形的判B卷

一、七彩题

1.(一题多解题)如图所示,△ABC中,∠ACB=90°,∠ABC的平分线BD?交AC于点D,CH⊥AB于H,且交BD于点F,DE⊥AB于E,四边形CDEF是菱形吗?请说明理由.

C

K

D

A

C

F

H

G

E B

D A

C

F

H G

E

B

二、知识交叉题

2.(科内交叉题)如图所示,已知△ABC 中,AB=AC ,D 是BC 的中点,过点D?作DE⊥AB,DF⊥AC,垂足分别为E ,F ,再过E ,F 作EG⊥AC,FH⊥AB,垂足分别为G ,H ,且EG ,?FH 相交于点K ,试说明EF 和

DK 之间的关系.

三、实际应用题

3.菱形以其特殊的对称美而备受人们喜爱,在生产生活中有极其广泛的应用.如图所示是一块长30cm ,宽20cm 的长方形的瓷砖,E ,F ,G ,H 分别是边BC ,CD ,DA ,?AB 的中点,涂黑部分为淡蓝色花纹,中间部分为白色.现有一面长4.2m ,宽2.8m?的墙壁准备贴这种瓷砖,试问: (1)这面墙壁最少要贴这种瓷砖多少块?

(2)全部贴满瓷砖后,这面墙壁最多会出现多少 个面积相等的菱形??其中有花纹的菱形有多少个?

四、经典中考题

4.(宜宾)已知:如图所示,菱形ABCD 中,E ,F 分别是CB ,CD 上的点,且BE=DF . (1)试说明:AE=AF ;

(2)若∠B=60°,点E ,F 分别为BC 和CD 的中点,试说明:△AEF

为等边三角形.

五、探究学习篇

1.(结论开放题)如图所示,在菱形ABCD中,E,F分别是BC,CD上的点,且CE=CF.请你仔细观察图,除了菱形自身已经具备的性质和题目中的条件外,请你选取一个角度提出一个问题,并加以说明.

2.阅读下列材料,完成后面的问题:如图,在ABCD中,∠BAD的平分线AE与BC相交于点E,∠ABC 的平分线BF与AD相交于点F,AE?与BF?相交于点O,?求证:?四边形ABEF是菱形.证明:①因为四边形ABCD是平行四边形;②所以AD∥BC;③所以∠ABE+∠BAF= 180°;④因为AE,

BF分别平分∠BAF,∠ABE;⑤所以∠1=∠2=1

2

∠BAF,∠3=∠4=

1

2

∠ABE; ⑥所以∠1+∠3=

1

2

(∠ABE+∠BAF)

=90°;⑦所以∠AOB=90°;⑧所以AE⊥BF; ⑨所以四边形ABEF是菱形,问:(1)上述证明是否正确?

答:___________;

(2)如有错误,在第______步推理错误,应在第_____步后添加如下证明过程:

参考答案

一、1.解法一:四边形CDEF是菱形.

理由:如图所示,因为∠1=∠2,∠ACB=90°,DE⊥AB,

又BD=?BD,?所以△CBD≌△EBD,所以CD=DE,

因为∠1+∠4=90°,∠2+∠5=90°,∠1=∠2,∠3=∠5,?

所以∠3=∠4.所以CF=CD.所以CF=DE.

因为CH⊥AB,DE⊥AB,所以CH∥DE.所以CF//DE.?

所以四边形CDEF是平行四边形.

又因为CF=CD,所以□CDEF是菱形.

解法二:四边形CDEF是菱形.理由:如答图20-3-4所示,连结CE交DF于点O.

因为∠1=∠2,∠BCD=∠BED=90°,BD=BD,所以△BCD≌△BED.所以BC=BE.

又因为∠1=∠2,所以BD⊥CE,且OC=OE.

因为∠1+∠4=90°,∠2+∠5=90°,∠1=∠2,∠3=∠5,

所以∠3= ∠4.所以CF=CD.

又因为CE⊥DF,所以OF=OD.所以四边形CDEF是平行四边形,?

又因为DF⊥CE,所以 CDEF是菱形.

点拨:解法一利用了菱形的定义,?解法二利用了“对角线互相垂直的平行四边形是菱形”的方法,本题除以上两种解法外,还可利用“四条边都相等的四边形是菱形”的方法解决,请同学们再进行探讨.

二、2.解:EF与DK互相垂直平分.理由:因为DE⊥AB,FH⊥AB,所以DE∥FH.?

因为DF⊥AC,EG⊥AC,所以DF∥EG.所以四边形DEKF是平行四边形.

因为AB=AC,所以∠B=∠C.又因为BD=CD,∠BED=∠CFD=90°,

所以△BDE≌△CDF,所以DE=DF.所以DEKF是菱形,?

所以EF与DK互相垂直平分.

点拨:要说明EF与DK互相垂直平分,只要说明四边形DEKF是菱形,?要说明四边形DEKF是菱形,可先说明四边形DEKF是平行四边形,再说明一组邻边相等即可.

三、3.解:(1)因为墙壁的总面积为4.2×2.8=11.76(m2),每块瓷砖的面积为0.3×0.2=0.06(m2),所以最少需要贴这种瓷砖11.76÷0.06=196(块).

(2)因为每相邻4块瓷砖构成一个有花纹的菱形(如图),

在长4.2m,宽2.8m的墙壁上贴长30cm,宽20cm的长方形瓷砖,

可贴4.2÷0.3=14(列),2.8÷0.2=14(?行).

因此构成的有花纹的菱形共13列13行,所以有花纹的菱形共13×13=169(个).

同时,白色菱形的个数与瓷砖的块数相同,故有白色菱形196个.

从而面积相等的菱形最多有169+196=365(个).

四、4.解:(1)因为四边形ABCD是菱形,所以AB=AD,∠B=∠D,

又因为BE=DF,?所以△ABE≌△ADF,所以AE=AF.(2)连结AC.

因为AB=BC,∠B=60°,所以△ABC 是等边三角形,因为E是BC的中点,

所以AE⊥BC,所以∠BAE=90°-60°=30°,

同理∠DAF=30°.因为∠BAD=180°-∠B=120°,

所以∠EAF=∠BAD-∠BAE-∠DAF=60°.又因为AE=AF,?

所以△AEF是等边三角形.

八下数学每日一练:菱形的判定与性质练习题及答案_2020年单选题版

八下数学每日一练:菱形的判定与性质练习题及答案_2020年单选题版答案答案答案2020年八下数学:图形的性质_四边形_菱形的判定与性质练习题 ~~第1题~~ (2019西湖.八下期末) 如图,分别以Rt △ABC 的斜边AB ,直角边AC 为边向外作等边△ABD 和△ACE ,F 为AB 的中点,DE ,AB 相交于点G .连接EF ,若∠BAC =30°,下列结论:①EF ⊥AC ;②四边形ADFE 为菱形;③AD =4AG ;④△ DBF ≌△EFA .则正确结论的序号是( ) A . ①③ B . ②④ C . ①③④ D . ②③④ 考点: 线段垂直平分线的判定;全等三角形的判定与性质;等边三角形的性质;直角三角形斜边上的中线;菱形的判定与性质; ~~第2题~~ (2019嘉兴.八下期末) 如图,将平行四边形纸片ABCD 折叠,使顶点D 恰好落在AB 边上的点M 处,折痕为AN ,那么对于结论 :①MN ∥BC ,②MN=AM.下列说法正确的是( ) A . ①②都错 B . ①对②错 C . ①错②对 D . ①②都对 考点: 平行四边形的性质;菱形的判定与性质;翻折变换(折叠问题);~~第3题~~ (2019淮安.八下期中) 下列命题是真命题的是( ) A . 四边都相等的四边形是矩形 B . 菱形的对角线相等 C . 对角线互相垂直的平行四边形是正方形 D . 顺次连接矩形各边中点所得的四边形是菱形 考点: 菱形的判定与性质;矩形的判定;正方形的判定;~~第4题~~ (2019淮安.八下期中) 如图,△ABC 是边长为1的等边三角形,分别取AC ,BC 边的中点D ,E ,连接DE ,作EF ∥AC 得到四边形EDAF ,它的周长记作C ;分别取EF ,BE 的中点D , E , 连接D E , 作E F ∥EF ,得到四边形E D FF ,它的周长记作C 照此规律作下去,则C 等于( ) A . B . C . D . 111111*********

华师大版初中数学八年级下册19.2.2菱形的判定教案

19.2.2 菱形的判定 一、教学目标 1.经历探究菱形判定条件的过程,通过操作、观察、猜想、证明的过程,?培养学生的科学探索精神. 2.探索并掌握菱形的判定方法. 3.利用菱形的判定方法进行合理的论证和计算. 二、教学重点菱形的判定方法. 教学难点探究菱形的判定条件并合理利用它进行论证和计算. 教具准备多媒体课件.把中点固定在一起的两根细木条. 三、教学过程 一、创设问题情境,引入新课 想一想:菱形和矩形分别比平行四边形多了哪些性质?怎样判定一个四边形是矩形? (让学生回忆并说出菱形和矩形各自的性质,教师用对比的形式播放课件) 矩形菱形 性质1.四个角都是直角1.四条边都相等2.对角线相等2.对角线互相垂直 且平分一组对角 判定1.有一个角是直角的平行四边形2.三个角是直角的四边形 3.角线相等的平行四边形 师:看看上表,大家可以猜到,我们就研究如何判定一个四边形是菱形的问题. 二、探究菱形的判定条件 生:可以用菱形的定义判定.也就是说:有一组邻边相等的平行四边形是菱形. 师:很好.大家再用类比的方法想一想,受矩形判定条件的启发,你对菱形的判定条件有什么猜想. 生甲:矩形定义是平行四边形基础上限制角,于是有“三个角是直角的四边形是矩形”;

菱形的定义是平行四边形基础上限制边,是不是可以得到:“四条边都相等的四边形是菱形”呢? 生乙:矩形的对角线相等,于是有对角线相等的平行四边形是矩形;菱形的对角线互相垂直,是不是可以猜想:对角线互相垂直的平行四边形是菱形. 师:猜得有理.下面请大家做一做,看有什么新发现. 操作要求: 用一长一短的两根细木条,在它们的中点处固定一个小钉;做成一个可转动的十字,四周围上一根橡皮筋(如图(1)),做成一个四边形,转动木条,?这个四边形什么时候变成菱形? 学生活动: 通过操作、观察、思考、讨论最后发现并证明猜想和观察到的结论. 生甲:将中点固定在一起,说明对角线互相平分,所以这是一个平行四边形. 生乙:转动十字架,变成菱形时,看起来对角线要互相垂直. 生丙:那就是说对角线垂直的平行四边形是菱形. 生乙:我觉得也可以说成:对角线互相垂直平分的四边形是菱形. 生甲:是的,这两种说法都对.对角线平分能得到平行四边形嘛. 师:同学们的研究和分析合情合理,能不能证明这个命题呢? 生:能:如图(1)(b ) 90OB OD AO AO AOB AOD =??=???∠=∠=?? △AOB ≌△AOD ?AB=AD . 又四边形ABCD 是平行四边形, ∴四边形ABCD 是菱形. 师:大家做得很好.这样,我们就得到了一个变形的判定定理. 判定定理1:对角线互相垂直的平行四边形是菱形. 推论:对角线互相垂直,平分的四边形的是菱形. 应用举例:

菱形的判定专项练习30题(有答案)ok

菱形的判定专项练习30题(有答案) 1.如图,梯形ABCD中,AD∥BC,BA=AD=DC=BC,点E为BC的中点. (1)求证:四边形ABED是菱形; (2)过A点作AF⊥BC于点F,若BD=4cm,求AF的长. 2.如图,四边形ABCD中,对角线AC、BD相交于点O,且AC⊥BD.点M,N分别在BD、AC上,且AO=ON=NC,BM=MO=OD. 求证:BC=2DN. 3.如图,在△ABC中,AB=AC,D,E,F分别是BC,AB,AC的中点. (1)求证:四边形AEDF是菱形; (2)若AB=12cm,求菱形AEDF的周长. 4.如图,在?ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E,F.已知BE=BP.求证:(1)∠E=∠F; (2)?ABCD是菱形. 菱形的判定--- 1

5.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF. (1)求证:AF=DC; (2)若∠BAC=90°,求证:四边形AFBD是菱形. 6.已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形. 7.如图,在一个含30°的三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,再将三角板绕点C顺时针方向旋转60°得到△DEC,点F在AC上,连接AE. (1)求证:四边形ADCE是菱形. (2)连接BF并延长交AE于G,连接CG.请问:四边形ABCG是什么特殊平行四边形?为什么? 8.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E F,并且DE=DF.求证:四边形ABCD是菱形. 9.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,以AD,AE为边作?ADFE交BC于点G,H,且EH=EC. 求证:(1)∠B=∠C; (2)?ADFE是菱形. 菱形的判定--- 2

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

菱形的判定(教学设计)

菱形的判定 一、教学目标:经历菱形的判定方法的探究过程,掌握菱形的三种判定方法. 二、教学重点:菱形判定方法的探究. 三、教学难点:菱形判定方法的探究及灵活运用. 四、教学过程: 活动1、引入新课,激发兴趣 1、复习 (1)菱形的定义:一组邻边相等的平行四边形是菱形。 (2)菱形的性质1 菱形的两组对边分别平行,四条边都相等; 性质2 菱形的两组对角分别相等,邻角互补; 性质3 菱形的两条对角线互相平分,菱形的两条对角线互相 垂直,且每一条对角线平分一组对角。 2、导入 (1)如果一个四边形是一个平行四边形,则只要再有什么条件就可以判定它是一个菱形?依据是什么? 根据菱形的定义可知: 一组邻边相等的平行四边形是菱形. 所以只要再有一组邻边相等的条件即可. (2)要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?活动2、探究与归纳菱形的第二个判定方法 【问题牵引】 用一长一短两根细木条,在它们的中点处固定一个小钉子,做成一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形。 问: 任意转动木条,这个四边形总有什么特征?你能证明你发现的结论吗? 继续转动木条,观察什么时候橡皮筋周围的四边形变成菱形?你能证明你的猜想吗?

学生猜想:对角线互相垂直的平行四边形是菱形。 教师提问:这个命题的前提是什么?结论是什么? 学生用几何语言表示命题如下: 已知:在□ABCD 中,对角线AC ⊥BD , 求证:□ABCD 是菱形。 分析:我们可根据菱形的定义来证明这个平行四边形是菱形,由平行四边形的性质得到BO=DO ,由∠AOB=∠AOD=90o及AO=AO ,得ΔAOB ≌ΔAOD ,可得到AB=AD (或根据线段垂直平分线性质定理,得到AB=AD) ,最后证得□ABCD 是菱形。 【归纳定理】 通过探究和进一步证明可以归纳得到菱形的第二个判定方法(判定定理1): 对角线互相垂直的平行四边形是菱形。 提示:此方法包括两个条件——(1)是一个平行四边形;(2)两条对角线互相垂直。对角线互相垂直且平分的四边形是菱形。 活动3、菱形第二个判定方法的应用 例3 如图,如图,□ABCD 的对角线AC 、BD 相交 于点O ,且AB=5,AO=4,BO=3,求证:□ABCD 是菱形。 思路点拨:由于平行四边形对角线互相平分,构 成了△ABO 是一个三角形,?而AB=5,AO=4,BO=3,由勾股定理的逆定理可知∠AOB=90°,证出对角线互相垂直,这样可利用菱形第二个判定方法证得。 活动4、探究与归纳菱形的第三个判定方法 【操作探究】过程: 先画两条等长的线段AB 、AD ,然后分别以B 、D 为圆心,AB 为半径画弧,得到两弧的交点C ,连接BC 、CD ,就得到了一个四边形,提问:观察画图的过程,你能说明得到的四边形为什么是菱形吗?你能得到什么结论? 学生观察思考后,展开讨论,指出该四边形四条边相等,即有两组对边相等,它首先是一个平行四边形,又有一组邻边相等,根据菱形定义即可判定该四边形是菱形。得出从一般的四边形直接判定菱形的方法:四边相等的四边形是菱形。 O D C B A

极限的计算、证明

极限的论证计算,其一般方法可归纳如下 1、 直接用定义()等δεε--,N 证明极限 例、试证明01 lim =∞→n n 证:要使ε<-01n ,只须ε 1 >n ,故 0>?ε,11 +?? ? ???=?εN ,N n >?,有ε<-01 n 2、 适当放大,然后用定义或定理求极限或证明极限 例、证明:0! lim =∞→n a n n ,0>a 证:已知0>a 是一个常数 ?∴正整数k ,使得k a ≤ ()ε 1!,01+???? ????=?>?∴+εεk a N k ,当N n >时,有 ε<-0! n a n 3、用两边夹定理在判定极限存在的同时求出极限 例、求()() n n n n 264212531lim ??-??∞ → 解: ()()()()n n n n n 212264212753264212531?-??-??=??-?? ()()()()n n n n n n 41 125312642211253264?-????=?-??> ∴ ()()n n n 41 2642125312 >??? ? ????-??

两边开n 2次方: ()()121 21412642125311222→?=>??-??>n n n n n n n n 由两边夹:()() 1264212531lim =??-??∞ →n n n n 4、 利用等价性原理把求一般极限的问题化为无穷小量的极限问 题 例、设0≠→l S n ()∞→n ,0>p 为常数,求证:p p n l S →()∞→n 证:00→-≤-≤l S l S n n ,得 l S n →()∞→n 记 n n l S α+=,其中 0→n α()∞→n 再记n n l S α+=()n n l l l βα+=??? ? ? ?+=11,其中0→=l n n αβ()∞→n 则有()p n p p n l S β+=1。 若取定自然数p K >,则当1

矩形、菱形的判定

22.3(3)矩形、菱形的判定 教学目标 1.经历从特殊的平行四边形的性质逆向探索特殊的平行四边形判定方法的过程,掌握矩形、菱形的常用判别方法,并能运用这些知识进行有关的证明和计算. 2.通过矩形、菱形判定的探索过程,积累数学活动的经验,提高合情推理能力;结合性质和判定定理以及相关问题的证明,进一步发展逻辑思维能力和提高推理论证的表达能力. 教学重点及难点 掌握矩形、菱形的判定,知道它们之间的关系以及与平行四边形的关系.进一步发展逻辑思维能力和提高推理论证的表达能力. 教学用具准备 课件 教学过程设计 一、温故知新 1.平行四边形的判定 (5个方法) 2.矩形、菱形的性质复习——有别于平行四边形的特殊性质: [及矩形、菱形作为特殊的平行四边形的特殊性质回顾;便于本节课的顺利开展. 二、矩形、菱形的判定探讨 思考: 如何从矩形、菱形特殊的性质出发,得出矩形、菱形的判定? 定义可以作为第一条判定: 即:有一个角是直角的平行四边形是矩形. 有一组邻边相等的平行四边形是菱形. [说明] 定义是作为判定的第一依据,因此,所有的定义都可以作为第一个判定 方法. 其他方法呢? “1)从边;2)从角;3)从对角线”的角度考虑. 1.矩形: ——矩形的特殊性在于直角和对角线 不妨给出关于矩形判定的命题:(讨论、交流) 比如:四个角是直角的四边形是矩形.

三个角是直角的四边形是矩形. 对角线相等的平行四边形是矩形.…… 分析上述给出的命题,证明讨论; 得出矩形的判定定理:三个角是直角的四边形是矩形. 对角线相等的平行四边形是矩形. 2.菱形: ——类似矩形进行讨论. 并得出菱形的判定定理:四条边相等的四边形是菱形. 对角线互相垂直的平行四边形是菱形. [说明]作为特殊的平行四边形,矩形、菱形在角、边、对角线方面都有特殊的性质.因此,引导学生不妨就从其特殊性开始考虑.矩形详加探究之后,对应得到菱形的判定方法. 3.总结矩形菱形的判定 形出发作一总结;上课时,借助PPT ,缓缓放出本课结论,有不错的效果. 三、定理运用, 1.例题选讲 例1:如图:矩形ABCD 的对角线AC ,BD 相交于点O ,E,F,G,H 分别 在AO,BO,CO,DO 上,且AE=BF=CG=DH. 求证:四边形EFGH 是矩形. 分析:首先,矩形的判定方法有哪些? 其次,本题可以用哪种方法? 过程说理. 例2:已知如图:EF 是□ABCD 的对角线AC 的垂直平分线,EF 与边AD,BC 分别交 于点E,F. 求证:四边形AECF 是菱形 O H G F E D C B A O E D A

菱形 复习中难题 含答案

菱形复习中难题含答案 1.菱形的概念:有一组邻边相等的平行四边形叫做菱形 2.菱形的性质 (1)具有平行四边形的一切性质 (2)菱形的四条边相等 (3)菱形的对角线互相垂直,并且每一条对角线平分一组对角 (4)菱形是轴对称图形 3.菱形的判定 (1)定义:有一组邻边相等的平行四边形是菱形 (2)定理1:四边都相等的四边形是菱形 (3)定理2:对角线互相垂直的平行四边形是菱形 4.菱形的面积 S菱形=底边长×高=两条对角线乘积的一半 (★★)若菱形的一条对角线与边的夹角为25°,则这个菱形各内角的度数 为. 【答案】50°、130°、50°、130°. (★★)1.菱形ABCD的周长为20,两对角线长3:4,则菱形的面积为. 【答案】24. (★★)2.如图,E、F分别为菱形ABCD中BC、CD边上的点,△AEF是等边三角形,且AE=AB,求∠B和∠C的度数.

F E D C B A 【答案】利用三角形内角和180度和同旁内角互补来解决问题,易得∠B=80°和∠C=100°. (★★)菱形的两条对角线与各边一起围成三角形中,共有全等的等腰三角形的对数是. 【答案】4. (★★)用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是().A.一组临边相等的四边形是菱形 B.四边相等的四边形是菱形 C.对角线互相垂直的平行四边形是菱形 D.每条对角线平分一组对角的平行四边形是菱形 D C B A (★★★)若菱形一边上的高的垂足是这边的中点,则这个菱形的最大内角是. 答案:120°. (★★★)1.菱形的对称轴共有条. 【答案】2.

2.已知:如图,菱形ABCD的对角线交于点O,且AO、BO的长分别是方程x2-2mx+4(m-1)=0的两根,菱形ABCD的周长为20,求m的值. 【答案】先解方程求得两根分别为2和(2m-2),再根据周长为20求得m的值为5. (★★★)3.菱形的周长为20cm,一条对角线长为8cm,则菱形的面积为. 【答案】24. (★★)下列命题错误的有(填写序号). ①菱形四个角都相等. ②对角线互相垂直且相等的四边形是矩形. ③对角线互相垂直且相等的四边形是菱形. ④对角线互相平分,且每一条对角线平分一组对角的四边形是菱形. 【答案】①②③. (★★)1.已知四边形ABCD中,过点A、C分别作BD的平行线,过点B、D分别作AC的平行线,如果所作的四条直线围成一个菱形,则四边形ABCD必须是() A.矩形B.菱形C.AC=BD的任意四边形D.平行四边形 【答案】C (★★)2.(1)用两个边长为a的等边三角形拼成的是形. (2)用两个全等的等腰三角形拼成的是形. (3)用两个全等的直角三角形拼成的是形. 【答案】(1)菱形;(2)菱形和平行四边形;(3)矩形和平行四边形. (★★)如图,在△ABC中,AB=AC,M点是BC的中点,MG⊥AB于点G,MD⊥AC于点D,GF⊥AC于点F,DE⊥AB于点E,GF与DE相交于点H,求证:四边形GMDH是菱形.

22.3菱形的判定常考题(含有详细的答案解析)

菱形的判定2 一、选择题 1、在平面直角坐标系中,已知点A(0,2),B(﹣2,0),C(0,﹣2),D(2,0),则以这四个点为顶点的四边形ABCD是() A、矩形 B、菱形 C、正方形 D、梯形 2如图,下列条件之一能使平行四边形ABCD是菱形的为() ①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD. A、①③ B、②③ C、③④ D、①②③ 3、能判定一个四边形是菱形的条件是() A、对角线相等且互相垂直 B、对角线相等且互相平分 C、对角线互相垂直 D、对角线互相垂直平分 4、四边形的四边长顺次为a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,则此四边形一定是() A、平行四边形 B、矩形 C、菱形 D、正方形 填空 1、如图,如果要使平行四边形ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是_________. 2、如图,平行四边形ABCD中,AF、CE分别是∠BAD和∠BCD的角平分线,根据现有的图形,请添加一个条件,使 四边形AECF为菱形,则添加的一个条件可以是_________.(只需写出一个即可,图中不能再添加别的“点”和“线”) 3、在四边形ABCD中,对角线AC、BD交于点O,从(1)AB=CD;(2)AB∥CD;(3)OA=OC;(4)OB=OD;(5)AC⊥BD;(6)AC平分∠BAD这六个条件中,选取三个推出四边形ABCD是菱形.如(1)(2)(5)=>ABCD是菱形,再写出符合要求的两个:_________=>ABCD是菱形;_________=>ABCD是菱形

三、解答题(共11小题) 1、如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE, CE. (1)求证:△ABE≌△ACE; (2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由. 2、如图,在?ABCD中,E,F分别为边AB,CD的中点,连接DE、BF、BD. (1)求证:△ADE≌△CBF. (2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论. 3、(2007?娄底)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F. (1)求证:AE=DF; (2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由. 4、(2011?常州)已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形. 5、如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M. (1)求证:△ABC≌△DCB; (2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.

极限计算方法总结

极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且; 5)13(lim 2=-→x x ;??? ≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。

菱形的判定方法的应用

菱形的判定方法的应用(1) 菱形是特殊的平行四边形,它的常用判定方法有: (1)四条边都相等的四边形是菱形; (2)有一组临边相等的平行四边形是菱形; (3)对角线互相垂直的平行四边形是菱形; 下面,就给同学们说说如何应用这些方法进行判定一个四边形是菱形。 一、四条边都相等的四边形是菱形 例1(08年,郴州)如图1,ΔABC 为等腰三角形,把它沿底边BC 翻折后,得到ΔDBC .请你判断四边形ABDC 的形状,并说出你的理由. 分析:翻折就是对称,也就是全等。 解:四边形ABCD 为菱形。 理由是: 由翻折,得:△ABC ≌△DBC . 所以,,AC CD AB BD == 因为,△ABC 为等腰三角形, 所以,AB AC = 所以,AC =CD =AB =BD , 故,四边形ABCD 为菱形 点评:本题主要是应用对称的知识得出一组临边相等,在运用等腰三角形的两腰相等得到四条边都相等来解答。 二、有一组临边相等的平行四边形是菱形 例2(08年,永州)如图△ABC 与△CDE 都是等边三角形,点E 、F 分别在AC 、BC 上,且EF∥AB (1)求证:四边形EFCD 是菱形; (2)设CD =4,求D 、F 两点间的距离. 分析:在四边形EFCD 中,由题意我们知道有一组临边ED 和CD 相等是很容易得到的,只要在说明这个四边形是平行四边形即可以。 (1)证明: ABC Q △与CDE △都是等边三角形 ED CD ∴= 60A DCE BCA DCE ∴∠=∠=∠=∠=o AB CD DE CF ∴∥,∥ 又Q EF AB ∥ ∴EF ∥CD , 四边形EFCD 是平行四边形, ∴平行四边形EFCD 是菱形。 (2)解:连结DF ,与CE 相交于点G 由4CD =,可知2CG = ∴224223DG =-= 43DF ∴= 点评:观察是解答问题的途径和窗口。 三、对角线互相垂直的平行四边形是菱形 例3(08年,上海)如图11,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线 C A B D 图1

菱形练习题(含答案)

特殊的平行四边形——菱形 一.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 二.菱形的性质:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质: 1.菱形的四条边相等。 2.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。 3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。 三.菱形的判定办法:1.用菱形的定义:有一组邻边相等的平行四边形是菱形; 2.四条边都相等的四边形是菱形; 3.对角线垂直的平行四边形是菱形; 4.对角线互相垂直平分的四边形是菱形。 四.菱形的面积:等于两条对角线乘积的一半.(有关菱形问题可转化为直角三角形或 等腰三角形的问题来解决.),周长=边长的4倍 复习: 1.如图,在ABC △中,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF DC =,连接CF . (1)求证:D 是BC 的中点;(2)若AB AC =,试猜测四边形ADCF 的形状,并证明. 解答:(1)证明:AF BC ∥,AFE DBE ∴∠=∠.∵E 是AD 的中点,AE DE ∴=. 又AEF DEB ∠=∠,AEF DEB ∴△≌△.AF DB ∴=.∵AF DC =,DB DC ∴=. (2)解:四边形ADCF 是矩形,证明:∵AF DC ∥,AF DC =,∴四边形ADCF 是平 行四边形.∵AB AC =,D 是BC 的中点,AD BC ∴⊥.即90ADC ∠=.∴四边形ADCF 是矩形. 菱形例题讲解: 1.已知点D 在△ABC 的BC 边上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .若AD 平分∠BAC , 试判断四边形AEDF 的形状,并说明理由. 解答:四边形AEDF 是菱形,∵DE ∥AC ,∠ADE=∠DAF ,同理∠DAE=∠FDA ,∵AD=DA , ∴△ADE ≌△DAF ,∴AE=DF ; ∵DE ∥AC ,DF ∥AB ,∴四边形AEDF 是平行四边形,∴∠DAF=∠FDA .∴AF=DF .∴平行四边形AEDF 为菱形. 2.已知:如图,在梯形ABCD 中,AB ∥CD ,BC=CD ,AD ⊥BD ,E 为AB 中点,求证:四边形BCDE 是菱形. 证明:∵AD ⊥BD ,∴△ABD 是Rt △∵E 是AB 的中点,∴BE=DE ,∴∠EDB=∠EBD , ∵CB=CD ,∴∠CDB=∠CBD ,∵AB ∥CD ,∴∠EBD=∠CDB , ∴∠EDB=∠EBD=∠CDB=∠CBD ,∵BD=BD ,∴△EBD ≌△CBD (ASA ),∴BE=BC , ∴CB=CD=BE=DE ,∴菱形BCDE .(四边相等的四边形是菱形) 3.如图,△ABC 与△CDE 都是等边三角形,点E 、F 分别在AC 、BC 上,且EF ∥AB , (1)求证:四边形EFCD 是菱形;(2)设CD=4,求D 、F 两点间的距离. 解答:(1)证明:∵△ABC 与△CDE 都是等边三角形,∴ED=CD=CE .∵EF ∥AB ∴∠EFC=∠ACB=∠FEC=60°, ∴EF=FC=EC ∴四边形EFCD 是菱形. (2)解:连接DF ,与CE 相交于点G ,由CD=4,可知CG=2, ∴ ∴. 4.如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于点E 、F .求证:四边形AFCE 是菱形. 证明:∵AE ∥FC .∴∠EAC=∠FCA .又∵∠AOE=∠COF ,AO=CO ,∴△AOE ≌△COF . ∴EO=FO .又EF ⊥AC ,∴AC 是EF 的垂直平分线. ∵EF 是AC 的垂直平分线.∴四边形AFCE 为菱形 5.在 ABCD 中,E F ,分别为边AB CD ,的中点,连接DE BF BD ,,. (1)求证:ADE CBF △≌△. (2)若AD BD ⊥,则四边形BFDE 是什么特殊四边形?请证明你的结论. 解:(1)在平行四边形ABCD 中,∠A =∠C ,AD =CB ,AB =CD .∵E ,F 分别为AB ,CD 的中点∴AE =CF , (S A S )A E D C F B ∴△≌△. (2)若AD ⊥BD ,则四边形BFDE 是菱形. 证明:AD BD ⊥,ABD ∴△是Rt △, 且AB 是斜边(或90ADB ∠=),E 是AB 的中点,12 DE AB BE ∴==.由题意可EB DF ∥且EB DF =, ∴四边形BFDE 是平行四边形,∴四边形BFDE 是菱形. O D C B A

矩形、正方形和菱形的判定方法

,、考点分析: 矩形、正方形和菱形是特殊的平行四边形,是考试中重 要的考 点。 二、教学目标: 1.掌握矩形、正方形和菱形的判定方法 三、教学内容 正方形巩固练习 例题1如图,正方形ABCD 勺边长为12,点E 是BC 上的一点,BE=5,点F 是BD 上 一动点?( 1) AF 与FC 相等吗?试说明理由.(2)设折线EFC 的长为y ,试求 y 的最小值,并说明点F 此时的位置. 【解】(1) AF 与FC 相等,其理由如下: 可证:△ ABF ^△ CBF 二 AF=CF (2)连接AE,则AE 与BD 的交点就是此时F 点的位置 此时y 有最小值,最小值为.122 52 =13. 例题2 如图,正方形ABCD 中, P 是对角线AC 上一动点,PEIAB PF ⊥ BC 垂 足分别为 E 、F 小红同学发现:PD ⊥ EF ,且PD=EF 且矩形 PEBF 的周长不 变?不知小红的发现是否正确,请说说你的看法. 【解】小红的发现是正确,其理由如下: D 第28题图

连接BP,延长DP交EF于Q. (1):四边形ABCD是正方形 ??? CB=CD∠ BCP∠ DCP=45 ???△ BCP^△DCP ??? PD=PB 又???PEIAB PF⊥ BC, ???∠ BEP=/ BFP=Z EBF=90 ,二四边形BEPF是矩形

???PB=EF,??? PD=EF (2):PEIAB PF⊥ BC ???△ AEP^n△ CFP^均为等腰直角三角形 ??? AE=PE,CF=PF ???矩形PEBF的周长=AB+BC=2AB为定值) (3):PF// CD ???∠ FPQ∠ PDC ???△ BCP^△ DCP ?∠PDC∠ PBF ???四边形PEBF是矩形,?∠PBF=/ PEF ?∠PEF=Z FPQ 又τ∠ PEF+∠ PFE=90 , ?∠ FPQ∠ PFE=90 ?∠PQF=90 ,??? PDL EF. 【另证】延长EP交CD于点R,则CFPF为正方形 ?可证△ PEF^△ RDF ?∠PEF=Z PDR 又τ∠ DPR∠ EPQ 而∠ PDR∠ DPR=90 ,?∠ PEF+∠ EPQ=90 ?∠EQP=90°,??? PD L EF. 课堂练习1如图1,在边长为5的正方形 ABCD 中,点E、F分别是 BC 、 DC 边上的点,且AE — EF, BE =2 (1)如图2 ,延长EF交正方形外角平分线CP于点P ,试判断AE与EP的大小关系,并说明理由; (2)在图2的AB边上是否存在一点M ,使得四边形DMEP是平行四边形? 若存在,请给予证明;若不存在,请说明理由? 梯形 图1 图2

初三数学-菱形的判定

初三数学 菱形的判定 、教学目标: 1、掌握菱形的判定方法。 2、能运用菱形的判定方法解决有关冋题。 二、教学重点:熟练掌握菱形的判定方法 教学难点:能运用菱形的判定方法解决有关问题。 三、教学过程 (一)复习回顾:菱形的特征 (1)_____________________ 对边_____________________,四条边都 (2)_______________ 对角。 (3)____________________ 对角线___________________________ ,对角线分别这节课我们来探索从平行四边形出发,加上什么条件可以得到菱形: (二)讲授新课 1、菱形的识别: 方法一:有一组邻边______________ 的平行四边形是菱形。(定义) 几何语言::乎BCD中,A吐 _________ 严BCD是。 下面请用菱形的定义来证明“对角线互相垂直的平行四边形是菱形” 已知:如图,________________________________________ 求证:______________________________________________ 证明: 方法二:对角线互相垂直的平行四边形是菱形 (即:平行四边形+对角线菱形 几何语言:如图??? MBCD中,丄 二.ABCD 是。 方法三:四条边都的四边形是菱形。 几何语言:???四边形ABCD中, AB BC CD DA ???四边形ABCD是菱形。 小结:判定一个图形是菱形的方法: (1) __________________________________ 平行四边形+ 菱形 (2) __________________________________ 平行四边形+ 菱形 (3) _______________________ 的四边形—菱形

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证 明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;???≥<=∞→时当不存在, 时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理 1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+ →1 )1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如: 133sin lim 0=→x x x ,e x x x =--→21 0)21(lim ,e x x x =+∞→3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价

《菱形的判定》教案

19.2. 2 菱形的判定 备课人:王芳备课时间:2013/05/16 一、教学内容分析: 菱形是一种特殊的平行四边形,比平行四边行多了“一组邻边相等”,因此判定可以在四边形或平行四边形的基础上再补充条件。教学时要注意几种图形的区别。 二、教学目标: (一)知识与技能:理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算。 (二)过程与方法:经历探究菱形判定条件的过程,探索掌握菱形的判定方法。 (三)情感态度与价值观:在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力。 三、重点、难点: 1.教学重点:菱形的两个判定方法。 2.教学难点:判定方法的证明方法及运用。 四、教具准备:多媒体课件;圆规;三角板。 五、教学过程: (一)温故知新: 想一想:菱形的定义及其性质? (让学生回忆并说出菱形的定义及其性质,教师同时播放课件) 菱形的定义:有一组邻边相等的平行四边形叫做菱形。 菱形的性质:1.菱形的两组对边分别平行;菱形的四条边都相等。 2.菱形的两组对角分别相等;菱形的邻角互补。 3.菱形的两条对角线互相垂直且平分,并且每一条对角线平分一组对 角。 思考:如果一个四边形是平行四边形,那么只要再添加一个什么条件,就可以判定它就是一个菱形?根据什么? 师板书:有一组邻边相等的平行四边形是菱形。 (教师明确指出:菱形的定义具有两重性,既是菱形的性质,又可以作为菱形的一种判定方法) 教师强调菱形定义中的两个条件,并让学生明白自己已学过菱形的一种判定方法,为学习另外两种判定方法做准备。

(二)操作探究,发现新知: 1.从“对角线”的角度探究:对角线互相垂直的平行四边形是菱形或对角线互相垂直且平分的四边形是菱形。 (教师再利用多媒体进行演示对角线互相垂直的平行四边形是菱形这一结论) 教师利用多媒体出示探究一: 一个可转动的十字,四周围上一根橡皮筋,做成一个四边形。 然后教师提问:“这个四边形是什么四边形?转动木条,你有 什么发现?”引导学生观察,得出结论。 教师出示命题1:对角线互相垂直的平行四边形是菱形。 师:你会证明吗?如何证明一个文字命题呢? 教师叙述一般过程: 第一:根据题意,画出图形。 第二:分清命题的题设和结论,结合图形,写出已知和求证。 第三:写出证明过程(有时需要写依据)。 第四:归纳结论。 师生活动:鼓励学生独立思考、小组交流、全班展示的方式展开探究,以合作者、参与者的身份指导学生用各种方法证明猜想。 得出结论: 菱形的判定方法1:对角线互相垂直的平行四边形是菱形。 或对角线互相垂直且平分的四边形是菱形。 2.从“边”的角度探究:四边相等的四边形是菱形。 教师利用多媒体出示探究二: 先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB 交点C,连接BC、CD,就得到了一个四边形。 (1)猜一猜,这是什么四边形? C (2 教师出示命题2:四边相等的四边形是菱形。 师:这个命题又该怎样证明呢?(教师引导学生完成证明) 然后教师再利用多媒体进行演示。 师生活动:鼓励学生独立思考、小组交流、全班展示的方式展开探究,以合作者、参 与者的身份指导学生用各种方法证明猜想。 得出结论: 菱形的判定方法2:四边相等的四边形是菱形。 (三)归纳新知:

相关文档
最新文档