风电机组的防雷和防雷标准

风电机组的防雷和防雷标准
风电机组的防雷和防雷标准

风电机组的防雷和防雷标准

1 引言

在我国风电发展初期,风电场大部分集中在年平均雷电日较少的新疆和内蒙古等地区,采用的主要是450kW 级以下的风电机组,雷害问题并不突出。随着我国风电场建设速度不断加快、规模不断扩大以及风电机组的日益大型化,风电机组的雷害也日益显露。现阶段,我国风电场开发不断向高海拔和沿海地区拓展,大功率风电机组的塔架最高已经超过120m,是风电场中最高大的构筑物。在风电机组的20年寿命期内,难免会遭遇到雷电的直击。中国可再生能源学会风能专业委员会于2009 年9月在肇庆召开的叶片专业组年会,将叶片的防雷作为一个重要问题进行了研讨,说明风电机组防雷已经引起专家的高度重视。

国际电工委员会(IEC)第88 工作委员会(IEC TC 88)在编制风电机组系列标准IEC 61400 时,编制了一个技术报告(TR),作为IEC 61400 系列标准的第24 部分于2002 年6 月出版,其初衷是想为这个相对年经的工业提供防雷知识。该标准在几年的实践中证明,技术报告对防止和减少风电机组的雷害是有效的。但是随着大型风电机组的发展和风电场向外海的拓展,雷害问题比2002 年以前更加复杂和突出。因此,有必要制订一个风电机组防雷标准以供风电行业人员使用。将IEC 61400 由技术报告(TR)升级为技术标准(TS)便提上了议事日程。

2 风电机组的雷害

IEC 61400-24 2002 中,阐明了不同于其他建筑物的风电机组雷害问题,机组的结构特点、工作原理以及所处场地等因素使其容易遭受雷害。人们已经了解建筑物高度对雷击过程的影响。高度超过60m 的建筑物会发生侧击,即部分雷电击中建筑物侧面而不是建筑物顶部。风电机组塔架是高于6 0m 的构筑物,所以侧击概率比建筑物大很多,并造成严重损害。另外,从雷电机理可知,与上行雷相关的起始连续电流转移的电荷量可以高达300C,也就是说,上行雷造成的对建筑物的损坏比例随着高度增加而增加,当塔架高度超过100m 时上行雷击的概率升高。而风电机组一般设置在风力强大的高于周围地区的制高点,并且远离其他高大物体,例如海岸、丘陵、山脊,这些地区正是雷电多发区,因此更能吸引雷电。

据德国、丹麦、瑞典等欧洲国家统计,雷电引起故障的频率是,每年每百台机组达3.9 次到8 次。直接雷击可以使叶片遭到损毁;雷电电磁脉冲(雷电感应过电压)等间接雷击可以使发电机、变压器、变流器等电气设备和控制、通信、SCADA 等电子系统遭受灾难性损坏;也有极个别的轮毂、齿轮箱、液压系统、偏航系统和传动系统及机械制动器等雷击损坏的报道。其中控制系统、传感器、通信、SCADA 等弱电部件遭受雷害的概率较大,这是因为这些弱电器件的耐过电压和过电流的能力较弱,雷电电磁脉冲会使其损坏,但由于维修方便,直接和间接经济损失与由于叶片损坏所造成的损失相比不算很大。

叶片在遭到直击雷时损坏都比较严重,且遭到损毁的叶片不易修复。离岸或在边远地区设置的机组,物资运输极其困难,维修人员的开销很大,同时风电场停止运行的收入损失也是巨大的。因此,叶片的雷害最引人关注。

另外一个问题是现代大型风电机组的叶片用不能传导雷电流的复合材料制成,例如玻璃纤维增强塑料或木材层压板。在叶片未加防护时,一旦被雷电击中就会造成损坏。因此,对这类叶片作防雷要求是必要的。用玻璃纤维增强塑料制成的机舱外壳,也应当采取防直接雷击措施。

1 引言

在我国风电发展初期,风电场大部分集中在年平均雷电日较少的新疆和内蒙古等地区,采用的主要是450kW 级以下的风电机组,雷害问题并不突出。随着我国风电场建设速度不断加快、规模不断扩大以及风电机组的日益大型化,风电机组的雷害也日益显露。现阶段,我国风电场开发不断向高海拔和沿海地区拓展,大功率风电机组的塔架最高已经超过120m,是风电场中最高大的构筑物。在风电机组的20年寿命期内,难免会遭遇到雷电的直击。中国可再生能源学会风能专业委员会于2009 年9月在肇庆召开的叶片专业组年会,将叶片的防雷作为一个重要问题进行了研讨,说明风电机组防雷已经引起专家的高度重视。国际电工委员会(IEC)第88 工作委员会(IEC TC 88)在编制风电机组系列标准IEC 61400 时,编制了一个技术报告(TR),作为IEC 61400 系列标准的第24 部分于2002 年6 月出版,其初衷是想为这个相对年经的工业提供防雷知识。该标准在几年的实践中证明,技术报告对防止和减少风电机组的雷害是有效的。但是随着大型风电机组的发展和风电场向外海的拓展,雷害问题比2002 年以前更加复杂和突出。因此,有必要制订一个风电机组防雷标准以供风电行业人员使用。将IEC 61400 由技术报告(TR)升级为技术标准(TS)便提上了议事日程。

2 风电机组的雷害

IEC 61400-24 2002 中,阐明了不同于其他建筑物的风电机组雷害问题,机组的结构特点、工作原理以及所处场地等因素使其容易遭受雷害。人们已经了解建筑物高度对雷击过程的影响。高度超过60m 的建筑物会发生侧击,即部分雷电击中建筑物侧面而不是建筑物顶部。风电机组塔架是高于60m 的构筑物,所以侧击概率比建筑物大很多,并造成严重损害。另外,从雷电机理可知,与上行雷相关的起始连续电流转移的电荷量可以高达300C,也就是说,上行雷造成的对建筑物的损坏比例随着高度增加而增加,当塔架高度超过100m 时上行雷击的概率升高。而风电机组一般设置在风力强大的高于周围地区的制高点,并且远离其他高大物体,例如海岸、丘陵、山脊,这些地区正是雷电多发区,因此更能吸引雷电。

据德国、丹麦、瑞典等欧洲国家统计,雷电引起故障的频率是,每年每百台机组达3.9 次到8 次。直接雷击可以使叶片遭到损毁;雷电电磁脉冲(雷电感应过电压)等间接雷击可以使发电机、变压器、变流器等电气设备和控制、通信、SCADA 等电子系统遭受灾难性损坏;也有极个别的轮毂、齿轮箱、液压系统、偏航系统和传动系统及机械制动器等雷击损坏的报道。其中控制系统、传感器、通信、SCADA 等弱电部件遭受雷害的概率较大,这是因为这些弱电器件的耐过电压和过电流的能力较弱,雷电电磁脉冲会使其损坏,但由于维修方便,直接和间接经济损失与由于叶片损坏所造成的损失相比不算很大。

叶片在遭到直击雷时损坏都比较严重,且遭到损毁的叶片不易修复。离岸或在边远地区设置的机组,物资运输极其困难,维修人员的开销很大,同时风电场停止运行的收入损失也是巨大的。因此,叶片的雷害最引人关注。

另外一个问题是现代大型风电机组的叶片用不能传导雷电流的复合材料制成,例如玻璃纤维增强塑料或木材层压板。在叶片未加防护时,一旦被雷电击中就会造成损坏。因此,对这类叶片作防雷要求是必要的。用玻璃纤维增强塑料制成的机舱外壳,也应当采取防直接雷击措施。

风电机组是不断旋转运动的机械,于是又出现了一个特殊问题——雷击的风险出现在旋转叶片上多处,并且不止一个叶片遭到雷击。原因是一次雷击包含有几个不连续的脉冲,即雷击的连续性,一次雷击的持续时间达到1s,这一时间足以使多个叶片暴露在雷电中(例如一个3 叶片的风电机组的旋转速度为20 r/m in,那么每个叶片的运动速度就为120°/s)。

雷击叶片时,雷电流通过整个机组构筑物入地,包括桨距轴承、轮毂和主轴轴承、齿轮、发动机轴承、底座、偏航轴承和塔架。雷电流流经齿轮和轴承可使其损坏,特别是在滚轮和滚道之间以及齿轮与轮齿间有润滑层时,损坏更严重。

风电机组的防雷问题,可以理解为有成千上万高度超过100m 的高大建筑物,位于荒郊野地,很容易遭受雷击。这些构筑物内有复杂的电气和控制设备,外部用复合材料制成,还有长达60m 的旋转的叶片。过去各国的经验已经证明,位于雷电频发地区的风电机组,在它服务寿命期内,都会遭到数次雷击。因此,风电机组的防雷必须引起人们的注意。

3 IEC 61400技术标准概要

3.1 IEC 61400技术标准编制背景2006 年,国际电工委员会(IEC)第81 委员会(TC81)完成了系列标准IEC 62305 :2006 Protection againstLightning,我国于2008 年将其等同采用为国家标准,即GB/T 21714—2008《雷电防护》。这时,IEC TC 88 第24 项目组提出以IEC 62305 :2006 为主要参考文件,将IEC 61400 :2002 由技术报告升级为技术标准。第24 项目组希望有更多的防雷专家与风电机组的制造商合作,将防雷专家咨询变为防雷专家参与完成防雷工作。虽然,风电机组的防雷还有一些未解决的难题(如叶片的有效防雷),但过去几十年的研究和经验证明,只要采取的措施得当,风电机组是可以防范雷电损坏的。

新的IEC 61400-24 注重将现存的IEC 62305 系列防雷标准、IEC 61000 系列EMC 标准、电机系统标准、电气系统标准兼顾,并考虑将叶片和最新的航空工业的研究成果和发布的标准SAE/EUROCAE 等应用到风电机组上,以达到保护电器和控制系统以及整个机组结构的目的。新的标准强调用试验证明防护系统设计的有效性,提出对叶片进行高电压大电流试验。高电压大电流试验最初用来进行飞机结构合格检验,现在许多叶片制造厂家已经用来检验叶片和风电机组雷电导流系统中的分离部件的导流和耐流能力。

3.2 新IEC 61400-24处理的主要题目

3.2.1 风电机组雷电环境定义

新IEC 61400-24 认为,IEC 62305-1定义的雷电流参数基本上也可用于风电机组的雷电防护系统设计以及防雷部件的选择和测试。

在IEC 62305-1 中,根据构筑物预期的雷击电流大小,将雷电防护水平分为表1 所示的几类。

我国各地雷电环境不同,预期的雷电流大小也不一样,应当根据我国不同地域使用和规定防护水平。要考虑我国大多数地区雷电直接击中叶片时,电流达到200kA 的概率极小。

风电机组中的易损器件是接闪器(安装在叶尖)、接闪器系统、滑动接触器、火花间隙和电涌保护器(SPD)等,雷击转移的总电荷是确定材料易损(熔化)以及维修需求的关键参数。增加易损器件的耐受雷电能力,重新设计这些部件的可靠性,使风电机组在其寿命期内可以抵御磨损和破裂。

图1 设置在山峰上的风电机组高度H的确定示意图

3.2.2 风电机组雷害风险评估

IEC 61400-24 :2002 按照IEC/TR2 61662 Ed. 1.0 来评估风电机组的雷害。新标准遵循IEC 6230 5-2 RiskManagement(风险管理)的雷电环境和风险评估程序评估风电机组的雷害,使其符合风电机组的情况。新标准建议计算等效雷击截收面积时,风电机组的高度应为轮毂高度与风轮半径之和的高度,同时还要考虑地形的变化(图1)。

图2 供电和通信电缆连接的将风电机组和其它建筑物连接时的雷电截收面积

在计算等效雷击截收面积时, 考虑高度为Ha 的风电机组等效雷击截收面积以及与机组连接的高度为Hb 的建筑物等效雷击截收面积之和,还有与之相连的地下电缆长度Lc 相关的面积(图2)。

图3 雷电防护区LPZ的应用(图中,1为LPZ1区,2为LPZ2区)

图4 滚球法在风电机组中的应用(图中,滚球覆盖以外的地区为LPZ0A区)

3.2.3 风电机组各部件的防雷

新标准建议风电机组采用IEC 62305-3 Physical Damageto Structures and Life Hazard(建筑物的物理损坏和生命危险)规定的防雷程序,所有的分部件都按照Ⅰ类防护水平设计防雷措施。

(1)叶片

风电机组的叶片几何结构复杂,长度超过60m,且由导电不良的增强型纤维复合材料制成,安装在高度超过100m 的高塔上,垂直旋转(水平轴风电机组),并暴露在直击雷下,因此它的防雷比IEC 62305 -3 所说的建筑物要复杂。

IEC 62305 系列标准根据建筑物遭到雷击的可能性和建筑物所处环境的雷电电磁脉冲强度将建筑物划分为若干防雷区,图3 是风电机组的防护区示意图。图4 是滚球法用于风电机组的示意图。叶片是风电机组中最暴露的部分,用滚球法可以看到,叶片的大部分位置处于LPZ0A 区(图4),并经受全部电磁场和机械(压力波)影响以及雷电流、电场、磁场和雷击的能量。因此,叶片必须加以防护。对叶片的保护是否足够,应当看其设计和安置叶片接闪器系统后能否有效的截获雷电,以及导流系统能否疏导与Ⅰ类防雷水平一致的雷电流(除非风险分析证明表1 所示的LPL Ⅱ和LPL Ⅲ已经足够)。

图5 防雷型复合材料叶片

虽然滚球法指出了雷电可能袭击叶片表面的大部分地方,但现场经验证明大部分雷电还是击中叶尖位置,只有少数击中叶片的其他地方。新标准推断IEC 62305-3 的接闪器保护范围的计算方法(滚球法、保护角法等)并不完全适用于风电机组,所以还需大量的室内试验和现场调查才能真正作出叶片雷害机理的解释。新标准要求叶片制造商要在叶片设计室进行接闪系统和导流系统截获雷电和传导雷电流的能力的试验。笔者认为我国是一个多雷的国家,各地雷害频度和雷击强烈程度有很大的差异。为了既能防雷,又能降低成本,需要按照不同的风电场雷电环境,设计叶片并进行不同电流和电压等级的试验。

新标准推荐了如图5 的防雷型叶片,要求设计叶片时要考虑叶片在遭到雷击时,接闪器要准确地截获雷闪,电气传导部件例如尖轴、炭纤维复合材料和叶片中传感器导流线等必须有良好的传导雷电流的功能。

(2)机舱和其他构件

风电机组机舱和其他构件(如轮毂、塔架),应当有接闪能力,尽可能使用大的金属构件作接闪器。还要将金属构件做等电位连接,将雷电流传导到接地系统。机舱上气象仪表、航空灯等的避雷针、引下线以及搭接线的尺寸要满足IEC62305-3的要求。

总之,机舱和其它构件的防雷可以直接采用IEC62305 系列标准所描述的方法。按图4 所示,风电机组应划分为若干防雷区LPZ,设计人员应计算雷电风险水平,并根据等电位搭接、电磁屏蔽和采用SPD 等设计防雷系统。

新标准对机舱和其他构件的防雷有详细的规定。

(3)机械驱动系统和偏航系统

机械驱动系统的防雷非常重要,因为风电机组的驱动系统有巨大的转动轴承、传动轴、齿轮、液压和电气执行系统,在雷电击中叶片时,它们都处于雷电流的径路上,巨大的雷电流可以使其受到机械损坏。新标准建议机械驱动系统的所有部件都要经受住雷电流或运动部件间的雷电弧而不受损害,例如,轴承和执行机构用滑动接触器或火花间隙进行防护。这些部件设计成可以将雷电流从被保护部件上转移或减少雷

电流流经部件的数值,直到该雷电流小到部件可以承受的水平。新标准要求这种防护系统的有效性可以用大电流试验检测,在试验室时要根据实验结果分析出有效的结论,并且应当计算出易耗部件如滑动接触器和间隙的寿命。

(4)电气系统、电子系统和系统安装

风电机组的电气系统、电子系统和系统安装应当经受住雷电电磁脉冲而不损坏。据雷害统计显示,大多数雷害与风电机组的电气系统、电子系统有关。

新标准要求所提供的雷电电磁脉冲防护措施(LPMS)应能消除或避免这些系统的雷害。这就要求利用IEC62305-4 的防护区的综合防护概念采取以下措施:

——接地

——搭接

——电磁屏蔽和合理布线(系统安装)

——能量协调一致的SPD

——隔离、电路设计、平衡电路、串联阻抗等

总之,新标准参考了有关低压电气系统和安装标准,包括机械设备高压和低压电气系统标准IEC 602 04-1、IEC 60204-11、建筑物电气安装标准IEC 60363、电磁兼容(EMC)安装以及接地和布线指南,尤为重要的是以建筑物内电气电子设备防雷标准IEC 623050 - 4 为依据。

标准要求采用的SPD 和低压系统与IEC 61643-1 一致、通信和信号系统与IEC 61643-21 一致,选择和安装时,应当与IEC 60364-4-44、IEC 60364-5-53 一致,电源防护系统应与IEC61643-12 一致,控制和通信系统防护应与IEC 61643-22 一致。

新标准提供了如何保证SPD 协调一致、SPD 和被保护设备耐受能力协调一致的指南,并提供了检验设计和选择SPD 是否合适的检验方法。

标准根据IEC 60099-4,建议除非进行了高压绝缘配合研究并证明不必进行防护外,高压电力系统的防护采用不含空气间隙的金属氧化物避雷器,并根据IEC6009-5 选择使用。

3.2.4 风电机组的接地和搭接

接地系统的任务是消散雷电流和防止风电机组损坏,还用来保护人员和牲畜免受雷击。若电气系统遭到损坏,在防护设备动作并安全切断故障电流前,使整个地电位上升到与同时出现的接触电压和跨步电压一个安全水平。这些要求一般由电气规范给出,因此,风电场必须建立一个良好的接地系统。

从防雷角度讲,接地系统在消散和传导高频率和高能量的雷电流入地时,还应当不产生危险的热效应和电动力效应。

新标准描述了IEC 62305-3 中的基本接地系统,强烈建议接地系统应当包括建筑物的基础部分的金属,使用建筑物基础中的大金属部件可以使接地电阻尽可能的低,将接地系统和建筑物基础中的金属部分分离,将会使钢筋混凝土基础遭遇危险。

所以,建议用水平接地导体,沿电缆径路将接地系统和各个独立的塔架基础连为一体,形成综合接地

网。这样,整个风电场的接地电阻都低,减少了风电场中各个构筑物间的电位差,还减少了直击雷袭击地下电缆的可能。最近一两年,欧美国家对这一观点有相当深刻的认识。而据笔者了解,我国的许多设计单位正好忽视了这一点,笔者认为在多雷区,一定要重视综合接地网的建设。

新标准详细地讨论了各种风电机组基础接地系统的设计,并给出了接地系统的维修和检查指南。

3.2.5 人身安全

在陆地上安装大型风电机组,包括组装和拆卸大型吊车,往往会花费几天的时间。在风电机组安装前还要花费数周时间进行现场策划。这期间,有许多人在现场作业,要考虑雷击风电场的风险。

起重机、发电机在作业时应尽可能的接地。

普遍认为圆筒形的塔架是一个接近完美的法拉第笼,因此在塔内工作是安全的。雷击时工作人员应当转移到塔内直到雷云离开,其他安全地方是金属顶的车辆、金属容器内等。

4 叶片及部件的雷击试验

新标准规定,新型叶片防雷系统开发时,应当检查其设计是否具有转移雷电的能力。测试时使用的叶片标本,包括尖叶和可以足够代表完整性的防雷设计的尖叶内侧以及导流线系统、连接部件和设计的其他防雷部件。试验包括高压拦截试验和大电流实体损坏试验。

测试规范包括测试目的、每项测试详细指导、试品选择、测试波形、测量和数据记录、数据解释、试验步骤等。

4.1 高压拦截试验

高压拦截试验用来确定跨越非导电材料如风电机组叶片和机舱的特定雷击点和击穿路径。因为在测试时流过的电流仅仅代表低峰值的雷电先导电流,而不是更加剧烈的雷击电流,拦截试验的目的仅仅是找到可能发生雷击的路径。这些试验对试品造成的损害和电流试验相比是微弱的。

图6 叶片高压击穿路径试验(样品应在表示先导不同的接近方向的几个位置进行试验)

图7 高压搜索通路测试

大电流实体损坏测试用来评估雷电流的实际损坏。新标准提供的试验方法适用于完整的叶尖设计和导流线,如连接部件等的一部分。

高压拦截试验专门测试风电机组叶片,也可以用来测试用玻璃纤维或其他非导电材料制造的机舱。该测试还可用来确定:

——先导拦截点和闪络或叶片和其他非导电材料穿透路径

的位置

——优化防护装置(接闪器)的位置

——沿或通过绝缘表面闪络或穿透路径

——防护设备的性能

新标准共安排了三个高压拦截试验,分别适用于叶片设计、开发、评估外表面积和导流带的开发试验。每次测试的安排都是为了得到电的活动现象,如在雷击叶片前,测试样本(不是在外电极)出现电晕、流光和先导。

图6 是高压发生器、试品、外电极的安排示意之一,三个高压拦截试验用的是同一高压雷击发生器,不同的只是试品的安排不同。

采用的高压试验波形应当是双指数开关型冲击电压,波头上升时间为50μs~250μs,持续时间超过2 000μs。选择这一波形的原因是,这一波形最能代表构筑物接受先导时的电场近场。

图6 的试验是最理想的试验,因为它总是可以安排较大尺寸的外电极(例如实验室地板的导电表面)使叶片试验样品周围有更真实的电场环境。

新标准还定义了高压搜索通路测试(swept channel test),在叶片旋转时,叶片表面暴露在先导下的时候,在首次雷击到达前,先导可能沿叶片面“搜索”一个短的路径。该测试用图7 描述,它可以用来评估:

——非导电(即电介质)复合材料表面可能的穿透位置

——非导电材料表面闪络路径

——实施防雷的防护设备(如导雷线)性能

图8 绝缘材料制成的叶片大电流试验

4.2 大电流实体损坏试验

大电流实体损坏试验用来确定由于叶片或机舱表面截获雷电和雷电流流离截获点时的影响。

图8 是叶片的这种测试示意,它不但可以用来测试暴露在直击雷或感应雷电流下的叶片在大电流时可能产生的损坏,还可以测试机舱在直击雷或感应雷电流下可能产生的损坏,以及接头和设备的耐雷电流能力。

这些测试用来确定雷电通道或大电流及大能量通过雷击点时对叶片上雷击点位置可能造成的直接影响(实体损坏),如叶片的接闪系统和导线、金属箔、导流线和雷电流通路的配件与连接器,以评估电弧发生点的损坏、发热点资料、接闪器上的金属熔蚀、防护材料和设备是否充足以及磁力影响。

5 结论和建议

雷害对风电机组的负面影响越来越受到风电行业的重视,可以预见,在风电机组容量增大和机身高度增加,控制系统大量采用耐过电压过电流能力极低而工作效率极高的微电子设备后,大容量机组雷害的严重性将会日益突出,造成的间接经济损失也将加大。尤其是将来离岸安装风电机组时,雷害的问题会更加突出。新IEC61400-24 标准建议实施的风电机组综合防护,将会有效减少雷害。所谓“综合防护”首先要提高风电机组自身的抗雷电能力,叶片及雷电流入地路径中的所有部件(包括桨距轴承、轮毂和主轴轴承、齿轮、发动机轴承、底座、偏航轴承和塔架)应能通畅地将雷电流导入大地,而自身完好无损。对于低压电气系统和电子系统以及高压电力系统必须装置“合适的”、“能量配合”的电涌保护设备。风电场要有与相关建筑物、构筑物和风电场设备、传输电缆连为一体的综合接地系统。

因此笔者建议,风电机组各部件制造厂家要根据风电场所在地场雷电强度的不同等级,设计不同耐雷强度的叶片等可能遭到直击雷袭击的部件。有关认证机构要将关键部件的耐雷特性试验纳入认证范围,制造商的型式试验应加入雷击试验的内容,如新标准所规定的“高压拦截试验”和“大电流实体损坏试验”。

新IEC61400-24 应该会等效采标为我国国家标准,现在有必要研究该标准的实施对我国风电机组制造行业可能带来的积极影响。

风电机组的防雷保护分析

风电机组的防雷保护分析 摘要:近年来我国风电厂建设规模提升较快,风电厂的安全运行对于风电能源 的使用具有直接影响。本文从风电机组雷击破坏原理和具体形式分析入手,探讨 了风电机组防雷保护的原则与具体措施。 关键字:风电机组,防雷保护 1 引言 现阶段开发技术最先进,开发规模最大的可再生能源是风能,风电能源已经 成为我国新能源产业中不可缺少的组成部分。我国风电机组的装机容量逐年提升,大直径叶轮建设规模不断提升,同时能够在复杂环境中应用的风电机组研制速度 加快,使得我国风电机组在海上、高原、丘陵及平原地带广泛建设。雷电释放过 程会对风电机组造成巨大的损害,其中包括叶片损坏、控制元器件损毁、绝缘击 穿等。分析风电机组的防雷保护,对于保证风电机组在雷雨天气时的正常运行, 提升风电机组的安全运行效率具有重要意义。 2 雷电对于风电机组的破坏原理 雷电是带电荷雷云与大地之间的强烈放电现象,而雷电对于风电机组的破坏,可理解为带电雷云和风电机组之间的放电现象。分析风电机组的防雷保护,最重 要的是科学判断雷击放电过程中的雷电参数和电流波形,与风电机组破坏关系最 密切的包括峰值电流和电流陡度等。 统计雷电破坏对于风电机组的影响,主要表现为以下4种形式,首先是设备 直接遭雷击而造成损坏,其次是雷电产生的能量沿着设备中的信号线或电源线侵 入内部,导致元器件损坏,再次是接地设备在雷击时遭遇瞬时高电压而损坏,最 后由于设备的安装不当,容易受到雷击电场或磁场的影响,导致元器件灵敏度失调。 (1)峰值电流。当雷击电流经过风电机组时,会导致风电机组温度急剧上升,内部元器件容易在热效应的作用下损坏。进一步分析热效应强度,主要是与雷电 释放的能量大小有关,这其中最核心的参数就是峰值电流。与此同时,当雷电能 量流经风电机组时,会产生较大的电磁力,部分情况下会导致叶片等弯曲断裂。 (2)电流陡度。风电机组在遭受雷击的过程中经常会造成控制系统或电子器件损坏,其主要原因是存在感应过电压。感应过电压与雷电流的陡度密切相关, 雷电流陡度越大,感应电压就越高。 3 风电机组的防雷保护原则 在风电机组的防雷保护设计中,应遵循以下4个原则,首先,保证设计的方 法与当今的主流设备相适应,其次,在防雷设计中应充分考虑投资的合理性,兼 顾经济性,再次,防雷设计应具备较长的使用寿命,最后,尽可能的遵循国际标 准和规范,方便系统的后期维护。 现阶段进行风电机组防雷保护所依据的最根本原则是弗兰克林避雷法,即充 分发挥避雷设备的特性,引发雷电场的激烈,将雷电引到防雷设备中,达到保护 风电机组的目的。在实际应用中,可在叶片的内部和机舱的顶部安装导体装置, 并通过主轴、齿轮、机身等设备,将雷电传到大地,释放雷电能量。与此同时为 尽可能的降低电磁感应干扰影响,需在保护空间内部增装屏蔽设备和sdp保护设备,并在大尺寸金属件交接部位进行等电位连接。 不同风电机组所处的环境相差较大,应在防雷设计中深入研究所在地的地理

防止风电机组严重损坏专项要求措施.

龙源电力集团股份有限公司风电企业防止风电机组严重损坏专项措施 一、防止火灾措施 1.禁止风电机组机舱内壁粘贴海绵。对降噪或保温等有特殊要求的机组,机舱内所使用的降噪或保温材料必须采用阻燃材料。 2.机组检修工作结束后,应做到工完、料净、场地清,控制柜、机舱内部及塔筒平台处不得留有工具、废弃的备件、易耗品等杂物。 3.对风电机组机舱内及塔筒各层平台的渗漏油必须及时进行彻底清理,并查堵渗漏点;机组内部严禁存留易燃易爆物品及沾油废弃物。 4.风电机组内部严禁吸烟,火种不得带入风电机组;机组内动火必须开动火工作票,动火工作间断、终结时,现场人员必须停留观察至少15分钟,确认现场无火种残留后方可离开。 5.风电机组底部和机舱均应按照国家标准配置出厂检验合格的干粉灭火器,单个灭火器容量不小于2公斤,按要求固定在容易发现和取到的位置。新购买的干粉灭火器换充粉期限为2年,自第一次换粉起以后每年换粉一次。灭火器

在更换及检测期间,应保证留有备用。 6.禁止使用电感式镇流器的照明灯具,灯具外壳严禁采用可燃材料(可燃材料指GB 8624-2012《建筑材料及制品燃烧性能分级》规定的B2、B3类材料)。 7.风电机组照明电源回路必须安装漏电保护器,漏电保护器应按国家标准进行定期测试,做好记录,保护动作不可靠的要立即更换。 8.在定期维护和点检中必须检查机组内的电缆外套有无破损和绝缘老化,电气元件及控制柜内部有无积灰、污损腐蚀、过热变色、放电、异物进入等问题,发现异常立即处理。 9.风电机组所有电气回路电缆的走线应使用电缆支架或布置在专用电缆槽内,并可靠固定;机舱内机械刹车、联轴器和滑环等旋转部件周边的各类电缆、油管,应根据条件在其周围增加隔离、阻燃措施。 10.风电机组内所有电缆的保护外套必须选用阻燃材料,对不符合要求的保护外套应进行更换,如保护外套出现绑扎松动、磨损和老化情况,应立即检查电缆绝缘并进行处理。 11.对于机舱至底部控制柜采用导电轨连接或采用中间接线盒连接的机组,每次登塔时必须对导电轨接线盒外观进行检查,发现异常应立即停机处理。每次定期维护必须检查导电轨和接线盒内连接母排连接是否可靠,有无发热变色或

风电机组叶片防雷检查

关于叶片防雷及接地的避免措施和检查方法整理如下,希望有所帮助。 一、目前叶片雷击基本为:雷电释放巨大能量,使叶片结构温度急剧升高,分解叶片内部气体高温膨胀, 压力上升造成爆裂破坏(更有叶片内存在水分而产生高温气体,爆裂)。叶片防雷系统的主要目标是避免雷电直击叶片本体而导致叶片损害。经过统计:不管叶片是用木头或玻璃纤维制成,或是叶片包导电体,雷电导致损害的范围取决于叶片的形式。叶片全绝缘并不减少被雷击的危险,而且会增加损害的次数。多数情况下被雷击的区域在叶尖背面(或称吸力面)。根据以上叙述,叶片防雷设计一般在叶尖装有接闪器捕捉雷电,再通过敷设在叶片内腔连接到叶片根部的导引线使雷电导入大地,约束雷电,保护叶片。 二、按IEC61400-24标准的推荐值,叶片防雷击铜质电缆导线截面积最小为50平方毫米。如果为高发区, 可适当增加铜质电缆导线截面积。 三、我集团近期刚出的一个检查标准: 1、叶片吊装前,逐片检查叶片疏水孔通畅。 2、叶片吊装前,逐片检查叶片表面是否存在损伤。 3、叶片吊装前,应逐片检查叶片防雷引下线连接是否完好、防雷引下线截面是否损伤,检测叶片接闪器到叶片根部法兰之间的直流电阻,并做好检测记录。若叶片接闪器到叶片根部法兰之间的直流电阻值

高于20 mΩ,应仔细检查防雷引下线各连接点联接是否存在问题。 叶片接闪器到叶片根部法兰之间直流电阻测量采用直流微欧计、双臂电桥或直流电阻测试仪(仪器分辨率不低于 1 mΩ),采用四端子法测量,检查叶片叶尖及叶片上全部接闪点与叶片根部法兰之间直流电阻,每点应测三次取平均值。 4、机组吊装前后,应检查变桨轴承、主轴承、偏航轴承上的泄雷装置(碳刷、滑环、放电间隙 等)的完好性,并确认塔筒跨接线连接可靠。 表1 防雷检查及测试验收清单

风电机组的防雷和防雷标准[详]

风电机组的防雷和防雷标准 1 引言 在我国风电发展初期,风电场大部分集中在年平均雷电日较少的新疆和内蒙古等地区,采用的主要是450kW 级以下的风电机组,雷害问题并不突出。随着我国风电场建设速度不断加快、规模不断扩大以及风电机组的日益大型化,风电机组的雷害也日益显露。现阶段,我国风电场开发不断向高海拔和沿海地区拓展,大功率风电机组的塔架最高已经超过120m,是风电场中最高大的构筑物。在风电机组的20年寿命期内,难免会遭遇到雷电的直击。中国可再生能源学会风能专业委员会于2009 年9月在肇庆召开的叶片专业组年会,将叶片的防雷作为一个重要问题进行了研讨,说明风电机组防雷已经引起专家的高度重视。 国际电工委员会(IEC)第88 工作委员会(IEC TC 88)在编制风电机组系列标准IEC 61400 时,编制了一个技术报告(TR),作为IEC 61400 系列标准的第24 部分于2002 年6 月出版,其初衷是想为这个相对年经的工业提供防雷知识。该标准在几年的实践中证明,技术报告对防止和减少风电机组的雷害是有效的。但是随着大型风电机组的发展和风电场向外海的拓展,雷害问题比2002 年以前更加复杂和突出。因此,有必要制订一个风电机组防雷标准以供风电行业人员使用。将IEC 6 1400 由技术报告(TR)升级为技术标准(TS)便提上了议事日程。 2 风电机组的雷害 IEC 61400-24 2002 中,阐明了不同于其他建筑物的风电机组雷害问题,机组的结构特点、工作原理以及所处场地等因素使其容易遭受雷害。人们已经了解建筑物高度对雷击过程的影响。高度超过60m 的建筑物会发生侧击,即部分雷电击中建筑物侧面而不是建筑物顶部。风电机组塔架是高于60m 的构筑物,所以侧击概率比建筑物大很多,并造成严重损害。另外,从雷电机理可知,与

华能如东海上风电110KV升压站防雷接地施工方案

方案报审表 工程名称:华能如东300MW海上风电场工程110KV海上升压站建造及安装编号:

程师批准,并附预算结果。 华能如东300MW海上风电场工程 南区及北区海上110kV升压站防雷接地安装方案 批准:年月日 审核:年月日 编写:年月日

上海振华重工(集团)股份有限公司华能海上升压站项目经理部 2016年07月15日 目录 方案报审表 (1) 南区及北区海上110kV升压站防雷接地安装方案 (2) 批准:年月日 (2) 审核:年月日 (2) 编写:年月日 (2) 上海振华重工(集团)股份有限公司华能海上升压站项目经理部 (3) 2016年07月15日 (3) 1.编制依据 (1) 2.工程概况及防雷简介 (1) 3. 施工条件 (2) 4.作业流程及施工方法 (3) 5.技术质量要求 (9) 6. 安全文明施工 (9) 7. 环境保护措施 (10) 8. 强制性条文执行 (10) 附件一:危险源辩识与风险评价一览表 (11)

附件二:环境因素调查及评价表 (12)

1.编制依据 1.1华东勘测设计研究院有限公司设计的华能如东300MW海上风电场工程南区、北区海上升压站接地布置图和防雷保护图纸。 1.2《电气装置安装工程接地装置施工及验收规范》(GB 50169—2006)。 1.3《交流电气装置的接地设计规范》(GB50065-2011) 1.4《IEEE Guide for Safety in AC Substation Grounding》IEEEstd 80标准 1.5《建筑物防雷设计规范》(GB 50057-2010) 2.工程概况及防雷简介 2.1工程概况 本工程总装机容量为300MW,本风电场配套设置2座110kV海上升压站、1座220kV 陆上升压站,所有的电能通过海上升压站升压汇集后通过110kV海底电缆送到陆上升压站升压到220kV后送到外部电网。110kV海上升压站位于39号和40号风机之间(北区110kV 海上升压站)和18号机位附近(南区110kV海上升压站)的海域,220kV陆上升压站位于小洋口港闸南侧和海缆登陆点附近。两座110kV海上升压站采用包括上部组块和下部结构的布置模式。下部结构为导管架型式,上部组块完成建造与安装调试后,整体运输至海上完成安装工作。 南区和北区110kV海上升压站上部组块布置基本相同,共三层布置。一层布置工具间、备品备件间、救生装置、事故油罐等设备并兼为电缆层,35kV和110kV海缆通过J型管穿过本层甲板,然后采用电缆桥架敷设,根据设备高度要求及甲板层作为结构转换成的要求,层高6.5m。北区和南区二层中间布置主变室和GIS室,主变和GIS上空,主变散热装置和本体分开布置;北区和南区还都布置有40.5kV开关室、接地变室和配电室和暖通机房;北区GIS室左侧设置蓄电池室、电抗器室和柴油机变压器室,南区GIS室左侧布置蓄电池室和避难室;二层层高5.0m。北区和南区三层中间为主变室和GIS室区域上空,还布置有通讯继保室、中控室、水泵房、暖通机房、导盘室和柴油机房等,三层层高4.5m。 本工程所处区域年平均雷暴日为33.3日,根据《建筑物防雷设计规范》(GB 50057-2010),本工程海上升压站属于第三类防雷建筑物。 2.2直击雷保护: 海上升压站内需要进行直击雷保护的设备有:顶部平台甲板、VAST天线、气象站、VHF

风电机组的防雷检测方法

风电机组的防雷检测方法 发表时间:2018-09-13T10:25:12.363Z 来源:《科技新时代》2018年7期作者:杨武王建波2 [导读] 本文从风电机组构成着手,对风电机组防雷安全检测方法研究,使风电机组防雷检测具有更强针对性和可操作性。 (1吐鲁番市气象局,新疆吐鲁番 838000;2湖南省气象技术装备中心,湖南长沙 410000) 摘要:近年来,风电行业成为雷灾影响最严重行业之一。由于风电机组安装环境及自身结构、运行方式具有一定特殊性,使得当前风电机组防雷检测也具有其特点,本文从风电机组构成着手,对风电机组防雷安全检测方法研究,使风电机组防雷检测具有更强针对性和可操作性。 关键词:风电机组;接地装置;等电位连接;电涌保护器SPD;传感器 引言 随着我国新能源事业发展,近年来风电行业进入快速发展阶段。风电机组作为风力发电主要设备,是否能安全运行关系到整个风电市场持续健康发展。一直以来,风电机组防雷安全检测都是一个受到风电设计、生产、安装调试、运行等各环节高度重视问题。 1 风电机组防雷安全检测现状 尽管电力行业有关于防雷设计相关国家标准或行业标准,但由于风电机组防雷安全检测涉及技术问题很多,加之国内使用风电设备以进口或引进国外技术生产为主,各国采用标准不一,对风电机组防雷要求也各不同。造成目前我国风电防雷检测相关标准缺乏针对性和可操作性,使得从事风电机组防雷检测的技术人员莫衷一是,这也是风电行业防雷安全检测亟需加强和解决的问题。 2 风电机组工作原理与构成 2.1工作原理 风力发电就是将自然界中风能利用叶轮转化成旋转的机械能,然后经由低速主轴,利用齿轮箱将转动速度提高至异步发电机转速,再由高速联轴器带动发电机产生出电能,最后通过变流器励磁把由发电机定子输出电能并到电网中。风电机组由传动、电气控制、偏航及支承系统等组成。 2.2基本构成 风力发电机组传动系统由叶轮、主轴、主轴承、齿轮箱、联轴器、发电机组成。叶片因位置相对较高易受直接雷击;而雷电电弧可能引起主轴承、齿轮箱齿轮材料表面凹陷和融化,引起啮合面之间磨损加剧;由主轴侵入雷电过电压可能造成发电机定子绕组、主绝缘击穿。 偏航系统由偏航电机、偏航齿箱、回转支承等组成。雷电对偏航系统危害主要是损坏偏航电机、接近开关的光传感器、限位开关、偏航控制器等。 支承系统包括塔架(筒)、基础环、钢筋混凝土基础,塔架(筒)既是传递雷电流引下线,又对内部设备与线路起到很好屏蔽作用,对整个电气、控制系统防雷起到不可替代作用。基础也是整个风力发电机组接地网。 电气与控制系统是风电机组正常运行核心,由控制电路、主电路、传感器和接口电路组成。电气控制系统温度传感器、转速传感器、液压传感器等属敏感元器件,易被雷电损坏。 3防雷安全检测主要内容 ①机舱尾部风向风速仪与叶片接闪器; ②机组接地装置; ③控制柜与配电柜内电涌保护器; ④用于引导雷电流入地防雷接地引下线; ⑤机舱与塔筒内滑环、电刷、发电机、齿轮箱、主轴承、金属管道、金属爬梯、构架等大尺寸金属物等电位连接; ⑥控制系统各类传感器。 4防雷安全检测主要方法 4.1外部防雷装置检测 风电机组外部防雷装置包括接闪器、引下线、接地装置。一是应检查机组外部防雷装置外观、材料、规格尺寸是否符合GB50057-2010等相关规范要求。以目测法定期检查叶片、风向风速仪接闪器是否有锈蚀和被雷击损坏烧灼痕迹等。二是检查接闪装置接地连接线连接是否稳固。三是应根据接闪器高度与距离计算机舱上风向风速仪是否处在LPZ0B区内。四是用等电位仪测试叶片接闪装置与轮毂引下线连接点、机舱上接闪杆与引下线直流过渡电阻,要求过渡电阻≤0.2Ω。五是检查引下线敷设与连接,高度≤40m塔筒、塔杆,可只设一根引下线;>40 m时应设两根引下线。可利用螺栓或焊接连接的一座金属爬梯作为两根引下线使用。分段连接金属塔筒用作引下线时,每段塔筒连接螺栓应利用不少于处的25mm2紫铜编织带跨接,底座环与下塔段连接为3根25mm2紫铜编织带跨接。钢筋混凝土结构塔筒应利用钢筋混凝土内竖直钢筋作为引下线。六是按照GB/T 17949.1—2000规定的检测方法用接地电阻测试仪测量接地装置工频接地电阻,测试选择多点测量比对,其工频接地电阻≤4Ω。 4.2等电位检测 一是检查风电机组等电位连接材料规格是否符合GB/Z25427—2010要求。等电位直流过渡电阻值测试应采用空载电压4V~24V,最小电流为0.2A测试仪器检测,直流过渡电阻值≤0.2Ω。二是检测LPZ0A区内金属构件、所有穿过各后续防雷分区界面处导电物与防雷装置直流过渡电阻。检查滑环、电刷、发电机、齿轮箱、机械制动器和控制柜等金属结构件与机舱底板等电位连接。三是检查塔筒内所有金属导体、控制柜、配电柜与塔底防雷装置等电位连接。特别检查机舱与塔筒内控制柜内部传感器屏蔽层与柜内屏蔽接地排等电位连接。其中风速仪、风向标厂家出厂时一般都是从屏蔽层焊接出一根黄绿双色线,接线时将风速仪风向标黄绿双色线一起接至机舱柜端子排。 4.3电涌保护器检测 一是检查风电机组安装的电涌保护器是否经过国家认可的检测实验室检测,符合GB 18802.1-2011、GB/T 18802.21等相关规范要求。二是检查配电柜、控制柜内SPD表面是否平整、光洁,如有划伤、裂痕和烧灼痕或变形则应立即更换。三是检查SPD状态指示是否正

风电“防汛、防风、防雷”三防专项应急预案(20200815053953)

风电场工程安装工程防洪防汛应急预案 施工单位(章) 年月日 专业资料

准:日 年月审 I—I-- 1 ------ 日 年 日 核: 编写:月 专业资料.

目录 I编制目的 (1) 2编制依据 (1) 3适用范围 (1) 4应急预案类别 (1) 5应急工作原则 (1) 6危险源与风险分析 (1) 7组织机构及职责 (2) 8预防与预警 (2) 9应急准备 (3) 10应急响应 (4) II应急结束 (5) 12后期处置 (5) 13演练 (6) 专业资料 1编制目的 在发生险情时能够及时落实相应的防范行动,迅速、有序的开展应急救援,减少事故危害,最大限度降低事故造成的损失,防止事故扩大或恶化,在事故影响得到控制后尽快使生产、工作恢复正常状态。

2编制依据 1、《中华人民共和国防洪法》 2、《中华人民共和国安全生产法》 3、《建设工程安全生产条例》 4、《国家安全生产事故灾害应急预案》 3适用范围 本《预案》适用于华能通榆新华1C标段风电工程汛期紧急情况,包括: (1)洪灾、强降雨、台风、雷电天气等自然灾害 (2)地质灾害对风机、箱变等设备的影响 (3)严重漏电 4应急预案类别 本《预案》是针对预防特殊天气造成的灾害编制的专项预案 5应急工作原则 (1)以人为本,安全第一。把保障人员生命安全和身体健康、最大限度预防和减少事故灾难造成的人员伤亡和财产损失作为首要任务。 (2)统一领导,分级负责。在项目公司“安全生产委员会”的统一领导下,“安全监查工作组”、“应急领导小组”各负其责。 6危险源与风险分析 (1)雷雨天气 A风机遭到雷击后引起机舱及塔筒内电缆起火 B室外端子箱、断路器进雨水 C生活水泵房进水设备被淹 专业资料 D起重机遭遇雷击 (2)大风天气 A刮起的外物击伤箱变 B刮起的外物搭落在线路上造成短路 C设备防雨帽、标牌等附件脱落 7组织机构及职责 三防应急领导小组组织机构

风电防雷接地-14页文档资料

风电防雷接地 1 风机的防雷特点 电闪雷鸣释放的巨大能量,会造成风机叶片爆裂、电气绝缘击穿、自动化控制和通信元件烧毁…… 1.1 一般雷击率 在年均10雷电日地区,建筑物高度h与一般雷击率n的关系见表1。 1.2 环境 风力发电特点是:风机分散安置在旷野,大型风机叶片高点(轮毂高度加风轮半径)达60~70 m,易受雷击;风力发电机组的电气绝缘低(发电机电压690 V、大量使用自动化控制和通信元件)。因此,就防雷来说,其环境远比常规发电机组的环境恶劣。 1.3 严重性 风力发电机组是风电场的贵重设备,价格占风电工程投资60%以上。若其遭受雷击(特别是叶片和发电机贵重部件遭受雷击),除了损失修复期间应该发电所得之外,还要负担受损部件的拆装和更新的巨大费用。丹麦LM公司资料介绍:1994年,害损坏超过6%,修理费用估计至少1 500万克朗(当年丹麦装机540 MW,平均2.8万克朗/MW) 。按LM公司估计,世界每年有1%~2%的转轮叶片受到雷电袭击。叶片受雷击的损坏中,多数在叶尖是容易被修补的,但少数情况则要更换整个叶片。雷击风机常常引起机电系统的过电压,造成风机自动化控制和通信元件的烧毁、发电机击穿、电气设备损坏等事故。所以,雷害是威胁风机安全经济运行的严重问题。 2 叶片防雷研究 雷击造成叶片损坏的机理是:雷电释放巨大能量,使叶片结构温度急剧升高,分解气体高温膨胀,压力上升造成爆裂破坏。 美国瞬变特性研究院用人工电晕发生器,在全复合材料的叶片做雷击试验,高电压、长电弧冲击(3.5 MV,20 kA)加在无防雷设置的叶片上,结论是叶片必须加装防雷装置。

TACKE公司设计了玻璃钢防雷叶片(图1),叶片顶端铆装一个不锈钢叶尖,用铜丝网贴在叶片两面,将叶尖与叶根连为一导电体。铜丝网一方面可将叶尖的雷电引导至大地,也防止雷击叶片主体。 丹麦LM公司于1994年获得叶片防雷的科研项目,由丹麦能源部资助,包括丹麦研究院雷电专家、风机生产厂、工业保险业、风电场和商业组织在内,目的在于调查研究雷电导致叶片损害,开发安全耐用的防雷叶片。研究人员在实验室进行一系列的仿真测试,电压达1.6 MV,电流到200 kA,进行雷电冲击,验证叶片结构能力和雷电安全性。研究表明:不管叶片是用木头或玻璃纤维制成,或是叶片包导电体,雷电导致损害的范围取决于叶片的形式。叶片全绝缘并不减少被雷击的危险,而且会增加损害的次数。研究还表明:多数情况下被雷击的区域在叶尖背面(或称吸力面)。在研究的基础上,LM叶片防雷性能得到了发展,在叶尖装有接闪器(图2)捕捉雷电,再通过叶片内腔导引线使雷电导入大地,约束雷电,保护叶片,设计简单和耐用。如果接闪器或传导系统附件需要更换,只是机械性的改换。 3 雷害资料数据 3.1 我国个别案例 1995年8月,浙江苍南风电场1台FD16型55 k W风机受雷击,从叶尖到叶根开裂损坏报废。 我国各风场的雷害,没有统计资料。 3.2 丹麦和德国统计的雷击数据 3.2.1 风机雷击率 丹麦1200台、德国1400台风机遭雷击数据见表2。 德国雷击率比丹麦高出1倍。除了地点不同,收集时间短(一般认为需要15 a),或许有德国的风机平均总高度44.3 m比丹麦的35.5 m高等因素。 3.2.2 雷击地区分布 德国1992~1995年雷击地区分布数据见表3。

_风电机组叶片雷电防护金属网防雷研究

风电机组叶片雷电防护金属网 防雷研究 文 | 周家东,熊秀,付磊,范晓宇 随着风电机组的单机容量不断增大,轮毂高度和叶轮直径的不断增加,以及高原、沿海、海上等新型机组的开发,大型机组越来越容易遭受雷击。而风电机组的叶片又始终处于机组的最高位置,是最容易受雷击的部件,会对机组叶片造成不可逆的机械损伤,在整个机组的雷击损坏维修成本中,它的维修费用最高。所以在叶片设计初期就做好防雷措施,将大大降低后期的维护成本。 目前,叶片防雷的主要方法有三种:接闪器与引下线、分段式导流条和雷电防护金属网。接闪器与引下线是目前使用最广泛的雷电防护方法,但是随着叶片长度的增加,实际的雷电并不总是打到叶尖,有时也会对叶身造成很大的破坏。分段式导流条是叶片雷电防护中一种新兴的方法,通过分段式导流条和接闪器与引下线系统的配合使用可以扩大接闪器的接闪面积,对叶片起到很好的防护效果。而雷电防护金属网是一种既可以充当接闪器起到接闪的作用,又能充当引下线起到很好的传导雷电的作用的防雷方法。但是国内外对雷电防护金属网的雷电防护研究的比较少,本文基于上述的背景,采用本公司自主设计研发的两种用于机组叶片上的雷电防护金属网,进行了机组叶片雷电防护金属网的防雷研究,对机组叶片雷电防护具有重要的意义。 雷电防护金属网介绍 雷电防护金属网作为一种重要的雷电防护方法,在飞机上已经取得非常成功的应用,近年来延性金属铜网和铝网也开始成为叶片雷电防护中必不可少的材料。 一、金属网的介绍 目前国内外常见的雷电防护金属网包括金属编织网、延性金属冲孔网以及延性金属斜拉网三种。金属编织网是由金属丝在经纬两个方向编织而成。编织丝网的缺点是在 复合曲率的表面难以覆盖,影响气动性能;而且编织丝网金属丝之间搭接电阻比较大,雷电防护效果远不如延性金属网;编制金属丝网由于雷电流产生的强大电磁力也容易断裂和瓦解。 延性金属冲孔网是金属板经钢板冲剪机冲剪加工处理后,形成固定网眼状况的张料物体。而延性金属斜拉网是由拉伸网冲剪机经过冲剪和拉伸,使金属板扩张成定好的 尺寸。因此延性金属斜拉网和冲孔网相比,生产中不会产生废料,成本低;而且网眼连接十分牢固,不会有断梗和断丝的现象;更重要的是延性金属斜拉网梗丝均匀,不会出现电流传导截面突变,影响导电性能。 二、金属网雷电防护机理(一)金属网导流基本机理 金属网格的雷电防护,其实质就是利用金属自身良好 图1 延性金属冲孔网图片 图2 延性金属斜拉网图片

风力发电场防雷接地工程方案

风力发电场 防雷接地工程方案 一、概述 目前,风力发电被称为明日世界的能源。由于它属于可再生能源,为人与自然和谐发展提供了基础。而且不像火电、核电、水电会造成环境问题,所以符合社会可持续发展对能源的要求。所以,风力发电已在我国达到了举足轻重的地位。 然而,风力发电机组是在空旷、自然、外露的环境下工作,不可避免的会遭受到直接雷击。由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大。主体高度约80米、叶片长度约40米、即最高点高度约为120米的风机,在雷雨天气时极易遭受直接雷击。它是自然界中对风力发电机组安全运行危害最大的一种灾害。雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。 风机的防雷是一个综合性的防雷工程,防雷设计的到位与否,直接关系到风机在雷雨天气时能否正常工作,并且确保风机内的各种设备不受损害。 本方案针对风力发电机组的防雷接地。 二、风力发电厂地貌及接地电阻要求 风力发电场位于河北张家口地区,风力发电功率为1500kw。土壤电阻率比较高,超过450Ω.m。由于有岩石的存在,造成不同深度的土壤电阻率分布不均匀。风机接地电阻要求做到4欧姆。风机基础占地面积大约14×14平方米,距其10m处有一台箱式变压器,其接地电阻值的要求为4欧姆。 三、接地材料的选择及地网设计 接地是指将风机的外壳与大地连接一起,以便在正常运行、事故接地和遭受雷击的情况下,将其接地点的电位固定在允许范围内,从而保证人身和设备安全。风机的接地系统是风机防雷保护系统中一个关键环节。在地网开挖面积有限、土壤电阻率较高的环境条件下,要能达到上面的技术要求,用传统常规

防止风电机组严重损坏专项措施

龙源电力集团股份有限公司风电企业 防止风电机组严重损坏专项措施 一、防止火灾措施 1.禁止风电机组机舱内壁粘贴海绵。对降噪或保温等有特殊要求的机组,机舱内所使用的降噪或保温材料必须采用阻燃材料。 2.机组检修工作结束后,应做到工完、料净、场地清,控制柜、机舱内部及塔筒平台处不得留有工具、废弃的备件、易耗品等杂物。 3.对风电机组机舱内及塔筒各层平台的渗漏油必须及时进行彻底清理,并查堵渗漏点;机组内部严禁存留易燃易爆物品及沾油废弃物。 4.风电机组内部严禁吸烟,火种不得带入风电机组;机组内动火必须开动火工作票,动火工作间断、终结时,现场人员必须停留观察至少15分钟,确认现场无火种残留后方可离开。 5.风电机组底部和机舱均应按照国家标准配置出厂检验合格的干粉灭火器,单个灭火器容量不小于2公斤,按要求固定在容易发现和取到的位置。新购买的干粉灭火器换充

粉期限为2年,自第一次换粉起以后每年换粉一次。灭火器在更换及检测期间,应保证留有备用。 6.禁止使用电感式镇流器的照明灯具,灯具外壳严禁采用可燃材料(可燃材料指GB 8624-2012《建筑材料及制品燃烧性能分级》规定的B2、B3类材料)。 7.风电机组照明电源回路必须安装漏电保护器,漏电保护器应按国家标准进行定期测试,做好记录,保护动作不可靠的要立即更换。 8.在定期维护和点检中必须检查机组内的电缆外套有无破损和绝缘老化,电气元件及控制柜内部有无积灰、污损腐蚀、过热变色、放电、异物进入等问题,发现异常立即处理。 9.风电机组所有电气回路电缆的走线应使用电缆支架或布置在专用电缆槽内,并可靠固定;机舱内机械刹车、联轴器和滑环等旋转部件周边的各类电缆、油管,应根据条件在其周围增加隔离、阻燃措施。 10.风电机组内所有电缆的保护外套必须选用阻燃材料,对不符合要求的保护外套应进行更换,如保护外套出现绑扎松动、磨损和老化情况,应立即检查电缆绝缘并进行处理。 11.对于机舱至底部控制柜采用导电轨连接或采用中间接线盒连接的机组,每次登塔时必须对导电轨接线盒外观进

风电叶片的雷击损坏维修及防雷改造

风电叶片的雷击损坏维修及防雷改造 庄严 全国风力机械标准化技术委员会IEC TC88/SAC TC50 前言:随着风电整机出质保的比例不断增加,机组、叶片因雷损失的比例也不断扩大。2014年业主统计发下按有200余只叶片损坏,其中因雷损失比例高达80%。造成目前叶片因雷损失比例增高的主要原因是叶片防雷设计基本没有进行雷击设计验证、叶片防雷系统有效接闪率低、接闪器设计冗余不足导致的。本文将对叶片的因雷损失进行分析,并提出一种针对既有叶片的防雷改造方案。 关键词:叶片防雷有效接闪率雷击导流器 1.叶片防雷系统的缺陷 叶片防雷是一个近年逐渐被提及的问题,早期对于叶片厂、业主而言很少会提及叶片的防雷问题,主要原因在于装机总量低,因雷导致的叶片损坏比例小。而随着全国装机总量的不断突破,装机密度的不断增加,雷电灾害引起的防雷问题,逐渐得到了业主、叶片厂和行业的重视。早期的叶片主要被国外企业所控制,对于国外企业的叶片防雷系统设计耐受水平较低,并不适用与高雷暴活动区域。主要原因在于:以欧洲为代表的叶片制造企业所处的为主均泉流雷电活动较低的地区,年均雷暴活动密度不足每平方公里5个闪电(地闪),这个数据从德国和丹麦多年雷击统计可以发现,在德国和丹麦多年统计的雷击数据总量不如我国一年发生雷击总量;在这种气候条件背景下,

国外的叶片防雷设计一直处于较低的耐受水平。而对于国内,我国多数地区属于强雷暴活动区域,加之装机密度高,单位区域的雷电活动比例远远高于国外,因此,采用较低防雷耐受水平的产品在国内必然会出现水土不服的问题,叶片因雷损坏率高就说明了这个问题。 其次,从技术从面上看,早期的叶片防雷系统并没有进行防雷系统的实验验证。无法从叶片的出厂报告中获知叶片防雷系统的有效接闪率是多少,叶片可耐受的超值雷电流峰值是多少。任何应用于风电行业的产品都是经过试验验证的,而最为重要部件的叶片防雷系统却很少听到有那个厂家做过叶片的雷击试验验证。这就导致了行业中叶片防雷系统有效接闪率低下、防雷系统无效的现状。 第三,作为叶片防雷系统中最为重要的接闪器、引下线均没有做过任何电流载荷测试。在一个标称为可耐受首次雷击200KA的叶片上我们发现,在通过40KA雷电流的时候接铝合金闪器就已经出现了严重金属升华,造成叶片表面蒙皮因高温造成开裂及损伤。

风力发电机组防雷接地施工专项方案

目录 1.编制目的................................................................................................................................................. 2.风电厂地貌及接地电阻要求 ............................................................................................................ 3.编制依据............................................................................................................................................. 4.防雷接地系统 ....................................................................................................................................... 4.1总接地网 ..................................................................................................................................... 4.2风力发电机组接地布置.......................................................................................................... 4.3集电线路铁塔接地型式.......................................................................................................... 5.接地材料................................................................................................................................................. 5.1材料选择 ..................................................................................................................................... 5.2材质要求 ..................................................................................................................................... 6.质量保证措施.................................................................................................................................... 7.安全保证措施.................................................................................................................................... 防雷接地施工专项方案

风力发电机组的防雷技术

风力发电机组的防雷技术 1 引言 随着人们对可再生能源利用价值认识的提高,以及风电机组制造、控制和其它相关技术的不断进步,风力发电在近十几年来的发展非常迅速,到2001 年底全世界的风电总装机容量已超过24GW[1]。与此同时,风电机组的单机容量和风电场的总装机容量也不断增长,因此风电场的安全运行问题也越来越受到人们的关注。影响风电场安全运行的因素很多,其中遭受雷击是一个非常重要的方面。随着单机容量的增大,风电机组的塔筒越来越高,再加上大型风电机组一般安装于开阔地带或山地,因此风电机组遭受雷击的概率也较大。 以德国风电场遭受雷击的情况为例。德国风电部门对近年来该国风电机组的故障情况进行了统计,其中1992~1999年间风电机组雷击事故情况如表1 所示[2]。由表可见,多年以来德国风电场每100风机年的雷击数基本维持在10 %左右。另外,调查结果还表明,在所有引发风电机组故障的因素中,外部因素(如风暴、结冰、雷击以及电网故障等)占16 %以上,其中雷击事故约占4%。 由于雷电现象具有非常大的随机性,因此不可能完全避免风电机组遭受雷击,只能在风电机组的设计、制造和安装过程中,采取防雷措施,使雷击造成的损失减到最小。本文从雷电发生的机理和雷击过程入手,对风电机组的防雷技术进行了阐述分析。 2 雷击损坏机理 雷电现象是带异性电荷的雷云间或是带电荷雷云与大地间的放电现象。风电机组遭受雷击的过程实际上就是带电雷云与风电机组间的放电。在所有雷击放电形式中,雷云对大地的正极性放电或大地对雷云的负极性放电具有较大的电流和较高的能量[3,4]。雷击保护最关注的是每一次雷击放电的电流波形和雷电参数。雷电参数包括峰值电流、转移电荷及电流陡度等。风电机组遭受雷击损坏的机理与这些参数密切相关。 (1)峰值电流 当雷电流流过被击物时,会导致被击物温度的升高,风电机组叶片的损坏在很多情况下与此热效应有关。热效应从根本上来说与雷击放电所包含的能量有关,其中峰值电流起到很大的作用。当雷电流流过被击物时(如叶片中的导体)还可能产生很大的电磁力,电磁力的作用也有可能使其弯曲甚至断裂。另外,雷电流通道中可能出现电弧。电弧产生的膨胀过压与雷电流波形的积分有关,其燃

风力发电机叶片的维护讲解

酒泉职业技术学院 毕业设计(论文) 11 级风能与动力技术专业 题目:风力机叶片的故障分析及维护 毕业时间:二O一四年六月 学生姓名:王立伟 指导教师:甄亮 班级:风能与动力技术(1)班 2013年11月2日

酒泉职业技术学院届各专业毕业论文(设计)成绩评定表

目录 摘要 (3) 一、风机叶片简介 (3) 二、维护叶片的目的 (3) 三、叶片产生问题的原因及故障分析 (4) (一)叶片产生问题的原因类型 (4) (二)风机叶片的常见损坏类型及诊断方法 (9) 四、叶片的维护 (13) (一)叶片裂纹维护 (13) (二)叶片砂眼形成与维护 (13) (三)叶尖的维护 (13) 总结 (14) 参考文献 (15) 致谢 (16)

风力机叶片的故障分析及维护 摘要:叶片是风力发电机将风能转化为机械能的重要部件之一,是获取较高风能利用系数和经济效益的基础,叶片状态的好坏直接影响到整机的性能和发电效率,应该引起风电企业的高度重视。风机多是安装在环境恶劣、海拔高、气候复杂的地区,而叶片又恰恰是工作在高空、全天候条件下,经常受到空气介质、大气射线、沙尘、雷电、暴雨、冰雪的侵袭,其故障率在整机中约占三分之一以上。定期检查,早期发现,尽快采取措施,把问题解决在萌芽状态是避免事故、减少风险、稳定电场收益的最有效方式。。 关键词:叶片;故障分析;维护 一、风机叶片简介 风力发电机叶片是一个复合材料制成的薄壳结构,结构上分根部、外壳、龙骨三个部分。类型多种,有尖头、平头、钩头、带襟翼的尖部等。制造工艺主要包括阳模→翻阴模→铺层→加热固化→脱模→打磨表面→喷漆等。设计难点包括叶型的空气动力学设计、强度、疲劳、噪声设计、复合材料铺层设计。工艺难点主要包括阳模加工、模翻制、树脂系统选用。叶片是一个大型的复合材料结构,其重量的90%以上由复合材料组成,每台发电机一般有三支叶片,每台发电机需要用复合材料达四吨之多。 二、维护叶片的目的 风机叶片是风电机组关键部件之一,其性能直接影响到整个系统的性能。叶片工作在高空,环境十分恶劣,空气中各种介质几乎每时每刻都在侵蚀着叶片, 春夏秋冬、酷暑严寒、雷电、冰雹、雨雪、沙尘随时都有可能对风机产生危害,隐患每天都有可能演变成事故。据统计,风电场的事故多发期多是在盛风发电期,而由叶片产生的事故要占到事故的三分之一,叶片发生事故电场必须停止发电,开始抢修,严重的还必须更换叶片,这必将导致高额的维修费用,也给风电场带来很大的经济损失。在我国风电开发还处于一个发展阶段,风场管理和配套服务机制尚不完善,尤其是风电企业对叶片的维护还没有引起充分认识,投入严重不足,风电场运转存在许多隐患,随时都会出现许多意想不到的事故,直接影响到风电场的送电和经济效益。根据对风电场的调查和有关数据分析,并参阅了许多国外风电场维护的成功经验,我们对风电场的日常维护的必要性有

风电防雷

风机防雷分析 风能是可再生洁净能源,利用风力发电是当前技术最成熟、最具备规模开发条件的电力资源。随着风力发电机组的单机容量越来越大,为了吸收更多风能,风机的高度随着轮毂高度和叶轮直径增高不断升高,雷击的风险不断增加,可以说雷击已成为自然界中对风力发电机组安全运行危害最大的自然灾害。 风力发电机为什么要做雷电防护? 发生雷击时,闪电电流通过所有风力发电机组件传导至地面,由于风力发电机位于疾风区,通常选址在丘陵或山脊上,其高度远高于周围的地形地物,再加上风力发电机安装地点土壤电阻率通常较高,对雷电流的传导性能相对较差,特别容易受到直击雷、侧击雷和感应雷的袭击,因此,对风力发电机组件采取防雷措施是非常必要的。 风力发电机哪些部位要做雷电防护? IEC TR 61400-24《风力涡轮发电机系统–雷电防护》指出:现代风力发电机的防雷通常不同于普通建筑物的防雷,它需要重点解决叶片和轮毂、齿轮箱、轴承、传动装置、发电机、电气部分、控制系统等雷电防护问题。IEC TR 61400-24给出了德国易遭受雷击的风机主要部件的统计,详见图示。 风力发电机雷电防护内容

目前国际上还没有专门针对风力发电的雷电防护标准,只能参照IEC 61024-1、IEC 61024-1-2、IEC 61312-2 、IEC 61312-3、IEC 61312-4和IEC 61312-5等标准的相关内容,通过对风机内机械、传动、电气和电子系统的屏蔽、等电位连接、浪涌保护器(SPD)和接地装置,人为的把雷击造成的损坏降到可接受的水平。 风机因雷击损坏的成本 来自德国的统计数据表明,风机遭雷击的部件的维修费用(包括人工费、部件费和吊装费等)很高,其中叶片损坏的维修费用最昂贵。风力发电机遭雷击损坏后,由于故障损害的分析和后续的维修,加上订货期和运输期,会造成一段时间的停工期。由这个停工期不仅使发电量损失,而且减少了风场所有者经济上的收入。据国外的统计,雷击故障比平均其它故障造成的停机影响都大。 风电机组防雷问题 在运行中的风力发电机组将会遭受雷击的事却是屡见不鲜,损坏设备,造成巨大损失,甚至危及人身安全。为此,根据国外部分防雷研究成果及雷害统计资料数据,说明雷电危害风力发电机组的严峻性。列举了国际著名风力发电机组厂家的防雷设计标准要求,从中看出当前防雷设计的差异。指出要改善风力发电机防雷性能状况,必须从设计标准、制造规范、建设质量等根本环节着手,并应尽快建立我国风电行业(包括风机防雷)技术规范。

相关文档
最新文档