变压器中性点接地与不接地

变压器中性点接地与不接地
变压器中性点接地与不接地

变压器中性点接地与不接地系统

1.1 变压器中性点接地系统的优缺点:

(1)优点:对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可*性。

(2)缺点:对电源中性点接地系统,由于单相短路电流Is 很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等;

1.2 变压器中性点不接地系统的优、缺点:

(1)优点:对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可*性。

(2)缺点:对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。

2 各种电压等级供电线路的接地方式

(1)在110kv及以上的高压或超高压系统中,一般采用中性点接地系统,其目的是为了降低电气设备绝缘水平,免除由于单相接地后继续运行而形成的不对称性。(2)工厂供电系统采用电压在1kv~35kv,一般为中性点不接地系统,因工厂供电距离短,对地电容小(Xc 大),单相接地电流小,这样可以运行一段时间,提高了系统的稳定性和供电可*性,对通讯干扰小等优点。在煤矿井下,我国、西德等国禁止中性点接地,其主要目的是为安全,减小了单相接地电流,但即使小的单相接地电流,煤矿井下也不允许存在,因此在煤矿井下,安装有检漏继电器,就是当电网对地绝缘阻抗降低到危险值或人触及一相导体或电网一相接地时,能很快地切断电源,防止触电、漏电事故,提前切断故障设备。

(3)1kv以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。 3 电气设备的保护接地 3.1 保护接地

将电气设备的金属外壳通过接地线与接地体相接,其原理是分流原理(如图1)。由于人体电阻Rr远大于接地电阻Rd,所以Ir《Id。保护接地,适应于变压器中性点不接地的供电系统中。但在干燥场所,交流电压50V及以下,或直流电压110V及以下的电气设备,金属外壳可不接地;在干燥且有木质、沥青等不良导电地面的场所,交流额定电压380V及以下,或直流额定电压440V及以下的电气设备金属外壳,除另有规定外(在爆炸危险场所仍应接地),可不接地。电气设备在高处时,不应采取保护接地措施,否则会把大地电位引向高处,反而增加触电危险。 3.2 保护接地时应注意问题

由同一变压器(中性点不接地)供电系统中各电气设备不应分别接地,而应形成一个保护接地系统。这样做不仅降低了接地电阻,而且也防止了不同电气设备的不同相,同时碰壳(接地)所带来的危险。形成保护接地系统后,这时两相短路电流主要通过接地网流通,因而提高了两相短路电流的数值,保证过流保护装置可*动作。 4 电气设备保护接零

4.1 保护接零

由于低电压网(380V/220V)中性点不接地只有个别场合,如矿井、游泳池等,而一般低压电网都采用了中性点接地的三相四线制供电系统。在这种电网中工作的设备,其金属外壳要与零线紧密相接,即保护接零,如图2所示。保护接零的目的,也是为了保证安全,当设备发生一相碰壳时,则造成单相短路,使保护装置迅速动作,切断故障设备。

按中性线与保护线的组合情况,保护接零分以下三种情况:

(1)整个系统中性线N与保护线PE是合一的,如图2,通常适用于三相负荷比较平衡且单相负荷容量较

变压器中性点接地方式分析与探讨

变压器中性点接地方式分析与探讨 [摘要] 概述目前电网中变压器中性点接地方式,进行分析与探讨,提出看法和发展方向 [关键词] 中性点方式优点缺点发展方向 1.概述 中压电网以35KV、10KV、6KV三个电压电压应用较为普遍,其均为中性点非接地系统,但是随着供电网络的发展,特别是采用电缆线路的用户日益增加,使得系统单相接地电容电流不断增加,导致电网内单相接地故障扩展为事故。我国电气设备设计规范中规定35KV电网如果单相接地电容电流大于10A,3KV —10KV电网如果接地电容电流大于30A,都需要采用中性点经消弧线圈接地方式,而《城市电网规划设计导则》(施行)第59条中规定“35KV、10KV城网,当电缆线路较长、系统电容电流较大时,也可以采用电阻方式”。因对中压电网中性点接地方式,世界各国也有不同的观点及运行经验,就我国而言,对此在理论界、工程界也是讨论的热点问题,在中压电网改造中,其中性点的接地方式问题,现已引起多方面的关注,面临着发展方向的决策问题。 2.中性点不同的接地方式与供电的可靠性 在我国中压电网的供电系统中,大部分为小电流接地系统(即中性点不接地或经消弧线圈或电阻接地系统)。我国采用经消弧线圈接地方式已运行多年,但近几年有部分区域采用中性点经小电阻接地方式,为此对这两种接地方式作以分析,对于中性点不接地系统,因其是一种过度形式,其随着电网的发展最终将发展到上述两种方式。 2.1中性点经小电阻接地方式 世界上以美国为主的部分国家采用中性点经小电阻接地方式原因是美国在历史上过高的估计了弧光接地过电压的危害性而采用此种方式用以泄放线路上的过剩电荷来限制此种过电压。中性点经小电阻接地方式中,一般选择电阻的值较小。在系统单相接地时,控制流过接地点的电流在500A左右,也有的控制在100A左右,通过流过接地点的电流来启动零序保护动作,切除故障线路。其优缺点是: 2.1.1.系统单相接地时,健全相电压不升高或生幅较小,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择。 2.1.2.接地时由于流过故障线路的电流较大零序过流保护有较好的灵敏度可以

变压器中性点接地刀闸的操作

变压器中性点接地刀闸的操作 变压器中性点接地刀闸的切换,是变压器操作中的重要内容之一。在电网实际操作中,应注意以下事项: 1.对变压器进行操作前,一般应先推上变压器中性点接地刀闸,操作完毕后,再将变压器中性点刀闸置于系统要求的位置,以防止操作过电压危及设备安全。 2.在三圈变压器高压侧停电,中、低压侧运行的方式下,应推上高压侧中性点接地刀闸。 因为在这种方式下,虽然变压器高压侧开关在断开位置,但其高压绕组仍处于运行状态,为 保证该方式下变压器高压侧发生故障时,零序电流等保护能够正确动作,故应推上变压器中 性点接地刀闸。 3.变压器停电检修时,应拉开其中性点接地刀闸。不论是中性点直接接地还是中性点不接地系统,正常运行中其中性点都存在一定的位移电压,该中性点位移电压在系统发生单相 接地等故障时会增大。如果在停电检修时不将检修设备中性点与运用中设备的中性点断开, 就有可能使这些电压通过中性点传递到检修设备上去,危及人身和设备的安全。因此,拉开 被检修设备的中性点地刀,应作为现场保证安全的技术措施之一予以落实。

4.同一厂站多台变压器间中性点接地刀闸的切换,为保证电网不失去应有的接地点,应采用先合后拉的操作方式,即先合上备用接地点刀闸,再拉开工作接地点刀闸。 5.自耦变压器和绝缘有特殊要求的变压器中性点,应采取直接接地方式,不宜切换。由于自耦变压器的特殊结构,其一、二次绕组之间不仅存在磁的联系,而且还有电的联系,为避免高压侧网络发生单相接地故障时,在低压绕组上出现超过其绝缘水平的过电压,其中性点必须直接接地。对于绝缘有特殊要求的变压器,为防止过电压危及设备安全,其中性点也宜直接接地。 6.对变压器中性点接地刀闸的操作,必须同步进行零序保护的切换。在一、二次切换操作过程中,操作人员必须根据现场变压器零序保护的配置和实际接线,合理安排一、二次操作步骤,严防不合理的操作顺序引发操作事故。 7.变压器中性点接地运行方式的变更,应根据系统总体要求,按照保持网络零序阻抗基本不变的原则,由调度下令进行

变压器中性点接地方式的选择

变压器中性点接地方式的选择 变压器中性点接地方式的选择原则: 系统中变压器的中性点是否接地运行原则是:应尽量保持变电所零序阻抗基本不变,以保持系统中零序电流的分布不变,并使零序电流电压保护有足够的灵敏度和变压器不致于产生过电压危险,一般变压器中性点接地有如下原则: (1)电源端的变电所只有一台变压器时,其变压器的中性点应直接接地运行。 (2)变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,再将另一台中性点不接地变压器改为中性点直接接地运行。若由于某些原因,变电所正常情况下必须有两台变压器中性点直接接地运行,则当其中一台中性点直接接地变压器停运时,应将第三台变压器改为中性点直接接地的运行。 (3)双母线运行的变电所有三台及以上变压器时,应按两台变压器中性点直接接地的方式运行,并把它们分别接于不同的母线上,当其中一台中性点直接接地变压器停运时,应将另一台中性点不接地变压器改为中性点直接接地运行。 (4)低电压侧无电源的变压器的中性点应不接地运行,以提高保护的灵敏度和简化保护接线。 (5)对于其他由于特殊原因的不满足上述规定者,应按特殊情况临时处理,例如,可采用改变保护定值,停用保护或增加变压器接地运行台数等方法进行处理,以保证保护和系统的正常运行。

系统中各变压器中性点接地情况: 已知条件已给出: (1)网络运行方式 最大运行方式:机组全投 最小运行方式:B厂停1号机组,D厂停2号机组。 (2)各变压器中性点接地情况 发电厂B: 最大运行方式运行时,变压器2号(或3号)中性点接地,未接地的变压器中性点设置接地开关,用于接地倒换。 最小运行方式运行时, 3号变压器中性点直接接地。 发电厂D: 最大运行方式运行时,110KV母线下,变压器1(或2)中性点接地,未接地的变压器中性点设置接地开关,用于接地倒换;35KV母线下,5号变压器中性点不直接接地。 最小运行方式运行时,110KV母线下,变压器1中性点接地,35KV母线下,5号变压器中性点不直接接地。 发电厂C: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。 发电厂E: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。 发电厂F: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理 (2007-01-07 22:41:40) 转载▼ 分类:工作 目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。这两种保护的原理接线如图23所示 中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。 中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。 零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。一次启动电流通常取100A 左右,时间取0.5s。110kV变压器中性点放电间隙长度根据其绝缘可取115~ 158mm ,击穿电压可取63kV(有效值)。当中性点电压超过击穿电压(还没有达到危及变压器中性点绝缘的电压)时,间隙击穿,中性点有零序电流通过,保护启动后,经0.5s延时切变压器三侧断路器。 零序电压保护由过电压继电器16、时间继电器17、信号继电器18及压板19组成,电压定植按躲过接地故障母线上出现的最高零序电压整定,110kV系统一般取150V;当接地点的选择有困难、接地故障母线3Uo电压较高时,也可整定为180V,动作时间取0.5s。

中性点接地方式

1 中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。 中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2 中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。 中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。 此外,由于电网存在电容和电感元件,在一定条件下,因倒闸操作或故障,容易引发线性谐振或铁磁谐振,这时馈线较短的电网会激发高频谐振,产生较高谐振过电压,导致电压互感器击穿。对馈线较长的电网却易激发起分频铁磁谐振,在分频谐振时,电压互感器呈较小阻抗,其通过电流将成倍增加,引起熔丝熔断或电压互感器过

变压器中性点接地方式分析与探讨(7)

筑龙网W W W .Z H U L O N G .C O M 变压器中性点接地方式分析与探讨 周志敏 1.概 述 中压电网以35KV、10KV、6KV 三个电压电压应用较为普遍,其均为中性点非接地系统,但是随着供电网络的发展,特别是采用电缆线路的用户日益增加,使得系统单相接地电容电流不断增加,导致电网内单相接地故障扩展为事故。我国电气设备设计规范中规定35KV 电网如果单相接地电容电流大于10A,3KV—10KV 电网如果接地电容电流大于30A,都需要采用中性点经消弧线圈接地方式,而《城市电网规划设计导则》(施行)第59条中规定“35KV、10KV 城网,当电缆线路较长、系统电容电流较大时,也可以采用电阻方式”。因对中压电网中性点接地方式,世界各国也有不同的观点及运行经验,就我国而言,对此在理论界、工程界 也是讨论的热点问题,在中压电网改造中,其中性点的接地方式问题,现已引起多方面的关注,面临着发展方向的决策问题。 2.中性点不同的接地方式与供电的可靠性 在我国中压电网的供电系统中,大部分为小电流接地系统(即中性点不接地或经消弧线圈或电阻接地系统)。我国采用经消弧线圈接地方式已运行多年,但近几年有部分区域采用中性点经小电阻接地方式,为此对这两种接地方式作以分析,对于中性点不接地系统,因其是一种过度形式,其随着电网的发展最终将发展到上述两种方式。 2.1中性点经小电阻接地方式 世界上以美国为主的部分国家采用中性点经小电阻接地方式 原因是美国在历史上过高的估计了弧光接地过电压的危害性 而采用此种方式用以泄放线路 上的过剩电荷来限制此种过电压。中性点经小电阻接地方式中,一般选择电阻的值较小。在系统单相接地时,控制流过接地点的电流在500A 左右,也有的控制在100A 左右,通过流过接地点的电流来启动零序保护动作,切除故障线路。其优缺点是: 2.1.1.系统单相接地时,健全相电压不升高或生幅较小,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择。 2.1.2.接地时由于流过故障线路的电流较大零序过流保护有较好的灵敏度

低压电网中性点接地与不接地的利弊

低压电网中性点接地与不接地的利弊 北京农业机械化学院电气化系罗光荣 为了低压用电的安全,尤其是农业电网用电的安全,我国普遍推广使用触电保安器。保安器分为电压型和电流型两大类,它们对电网我中点的接地有不同的要求,电压型保安器要求电网中点不直接接地(实际是经过保安器的内部阻抗接地),而安装电流型保安器,则要求中点直接接地,因此认真深入地研究低压电网中点接地方式的利弊,对于安全用电工作是一项十分迫切的任务。并且它还关系到保安器研制工作的动向,为此我们对接地作一些分析。 一、国内外概况: 根据国外资料,电力网发展的初期,低压电网对地都是绝缘的,中点不接地,但是后来随着高压电网的发展,使了降压变压器,由于高低压线圈可能相互短路,低压线圈对地产生高压,对电气设备及人身安全造成危害,因此出现了中点接地系统。如今,低压电网中点接地已成为世界发展的趋势。绝大多数国家都是采用中性点接地系统,这个总的发展方向是肯定的。由于中点对地绝缘,在某些场合有一定的优点,但在一些特殊的场合,还采用中点不接地,例如日本的医院及游泳池,使用隔离变压器,中点就不接地。有些有易燃气体的化工厂、煤矿等也采用中点对地绝缘。日本也还有一些大工厂采用不接地方式,捷克在矿井采用500伏中点不接地系统。 我国解放前,低压电网,有接地的,也有不接地的,解放之后逐步趋于统一,就是380/220伏中点接地的低压电网。 但1962年以后有些省和地区,采用中点不接地系统,例如江苏省推广使用电犁,为了人身安全,安装简易型保安器,采用了不接地系统。当时广东、河南有些地区也采用不接地系统。目前我国广大农村,中点接地和不接地两种方式同时并用,为此我们有必要对其优缺点作一些探讨。 二、中点接地与非接地系统的优点缺点比较: 1、不接地系统: 优点:能限制接地电流 当电网的容量较少时,对地的分布电容也小,如果绝缘电阻很高,则人触及带电体时,通过人体的电流仅为不大的电容电流(如图1),因此是安全的。 此外从漏电引起的火灾来说,不接地系统也比较理想,因漏电接地电源很小,不易产生大的火花而引起火灾。 缺点:

低压电网中性点接地与不接地的利弊

低压电网中性点接地与不 接地的利弊 This model paper was revised by the Standardization Office on December 10, 2020

低压电网中性点接地与不接地的利弊北京农业机械化学院电气化系罗光荣 为了低压用电的安全,尤其是农业电网用电的安全,我国普遍推广使用触电保安器。保安器分为电压型和电流型两大类,它们对电网我中点的接地有不同的要求,电压型保安器要求电网中点不直接接地(实际是经过保安器的内部阻抗接地),而安装电流型保安器,则要求中点直接接地,因此认真深入地研究低压电网中点接地方式的利弊,对于安全用电工作是一项十分迫切的任务。并且它还关系到保安器研制工作的动向,为此我们对接地作一些分析。 一、国内外概况: 根据国外资料,电力网发展的初期,低压电网对地都是绝缘的,中点不接地,但是后来随着高压电网的发展,使了降压变压器,由于高低压线圈可能相互短路,低压线圈对地产生高压,对电气设备及人身安全造成危害,因此出现了中点接地系统。如今,低压电网中点接地已成为世界发展的趋势。绝大多数国家都是采用中性点接地系统,这个总的发展方向是肯定的。由于中点对地绝缘,在某些场合有一定的优点,但在一些特殊的场合,还采用中点不接地,例如日本的医院及游泳池,使用隔离变压器,中点就不接地。有些有易燃气体的化工厂、煤矿等也采用中点对地绝缘。日本也还有一些大工厂采用不接地方式,捷克在矿井采用500伏中点不接地系统。 我国解放前,低压电网,有接地的,也有不接地的,解放之后逐步趋于统一,就是380/220伏中点接地的低压电网。 但1962年以后有些省和地区,采用中点不接地系统,例如江苏省推广使用电犁,为了人身安全,安装简易型保安器,采用了不接地系统。当时广东、河南有些地区也采用不接地系统。目前我国广大农村,中点接地和不接地两种方式同时并用,为此我们有必要对其优缺点作一些探讨。 二、中点接地与非接地系统的优点缺点比较: 1、不接地系统: 优点:能限制接地电流 当电网的容量较少时,对地的分布电容也小,如果绝缘电阻很高,则人触及带电体时,通过人体的电流仅为不大的电容电流(如图1),因此是安全的。 此外从漏电引起的火灾来说,不接地系统也比较理想,因漏电接地电源很小,不易产生大的火花而引起火灾。

电力系统中性点接地方式

电力系统中性点接地方式简述 电力系统中性点是指星形连接的变压器或发电机的中性点。 电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系。 电力系统中性点接地方式是人们防止系统事故的一项重要应用技术,具有理论研究与实践经验密切结合的特点,因而是电力系统实现安全与经济运行的技术基础。 电力系统中性点接地方式主要是技术问题,但也是经济问题。在选定方案的决策过程中,应结合系统的现状与发展规划进行技术经济比较,全面考虑,使系统具有更优的技术经济指标,避免因决策失误而造成不良后果。 简言之,电力系统的中性点接地方式是一个系统工程问题。 接地,出于不同的目的,将电气装置中某一部位经接地线和接地体与大地作良好的电气连接称为接地。 根据接地的目的不同,分为工作接地和保护接地。 工作接地是指为运行需要而将电力系统或设备的某一点接地。如变压器中性点直接接地或经消弧线圈接地、避雷器接地等都属于工作接地。 保护接地是指为防止人身触电事故而将电气设备的某一点接地。如将电气设备的金属外壳接地、互感器二次线圈接地等。 接地方式主要有2种,即直接接地系统和不接地系统。 1.中性点直接接地系统

中性点直接接地系统——又称大电流系统;适于110kV以上的供电系统,380V以下低压系统。直接接地系统发生单相接地是会使保护马上动作切除电源与故障点。 随着电力系统电压等级的增高和系统容量增大,设备绝缘费用所占比重也越来越大。中性点不接地方式的优点已居于次要地位,主要考虑降低绝缘投资。所以,110kV及以上系统均采用中性点直接接地方式。对于380V以下的低压系统,由于中性点接地可使相电压固定不变,并可方便地获得相电压供单相设备用电,所以除了特定的场合以外(如矿井),亦多采用中性点接地方式。 对于高压系统,如110kV以上的供电系统,电压高,设备绝缘会高,如果中性点不接地,当单相接地时,未接地的二相就要能够承受√ 3倍的过电压,瓷绝缘子体积就要增大近一倍,原来1米长的绝缘子就要增加到1.732米以上,不但制造起来不容易,安装也是问题,会使设备投资大大增加;另外110kV以上系统由于电压高,杆塔的高度也高,不容易出现单相接地的情况,因而就是出现了接地就跳闸也不会影响多少供电可靠性,因而从投资的经济性考虑,在110kV以上供电系统,多采用中性点直接接地系统。 在低压380/220V系统中,有许多单相用电设备,如果中性点不接地运行,则发生单相接地后,有可能未接地的相电压会升高,因过电压烧毁家用电器,从安全性考虑,必须采用中性点直接接地系统,将中性点牢牢接地。 1kV以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。 中性点直接接地系统的优点:发生单相接地时,其它两完好相对地电压不会升高,因此可降低绝缘费用,保证安全。

接地变压器的作用

接地变压器的作用 我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。 但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果; 1),单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。 2),由于持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路; 3),产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸;这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。 为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。为了解决这样的办法.接地变压器(简称接地变)就在这样的情况下产生了。接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。 另外接地变有电磁特性,对正序、负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。也既当系统发生接地故障时,在绕组中将流过正序、负序和零序电流。 该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。接地变的工作状态,由于很多接地变只提供中性点接地小电阻,而不需带负载。所以很多接地变就是属于无二次的。接地变在电网正常运行时,接地变相当于空载状态。但是,当电网发生故障时,只在短时间内通过故障电流,中性点经小电阻接地电网发生单相接地故障时,高灵敏度的零序保护判断并短时切除故障线路,接地变只在接地故障至故障线路零序保护动作切除故障线路这段时间内起作用,其中性点接地电阻和接地变才会通过IR= (U为系统相电压,R1为中性点接地电阻,R2为接地故障回路附加电阻)的零序电路。根据上述分析,接地变的运行特点是;长时空载,短时过载。 总之,接地变是人为的制造一个中性点,用来连接接地电阻。当系统发生接地故障时,对正序负序电流呈高阻抗,对零序电流呈低阻抗性使接地保护可靠动作。 变电站内现在一般采用的接地变压器有两个用途,1.供给变电站使用的低压交流电源,2.在10kV侧形成人为的中性点,同消弧线圈相结合,用于10kV发生接地时补偿接地电容电流,消除接地点电弧,其原理如下: - 1 -

配电网中性点不同接地方式的优缺点

编号:SM-ZD-71752 配电网中性点不同接地方 式的优缺点 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

配电网中性点不同接地方式的优缺 点 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 配电网中性点与参考地的电气连接方式,按运行需要可将中性点不接地、经消弧线圈接地、经(高、中、低值)电阻器接地、经低值电抗器接地及直接接地等。这些中性点接地方式各具独有的优缺点。 1 配电网中性点不接地的优缺点 配电网中性点不接地是指中性点没有人为与大地连接。事实上,这样的配电网是通过电网对地电容接地。 中性点不接地系统主要优点: 电网发生单相接地故障时稳态工频电流小。这样

·如雷击绝缘闪络瞬时故障可自动清除,无需跳闸。 ·如金属性接地故障,可单相接地运行,改善了电网不间断供电,提高了供电可靠性。 ·接地电流小,降低了地电位升高。减小了跨步电压和接触电压。减小了对信息系统的干扰。减小了对低压网的反击等。 经济方面:节省了接地设备,接地系统投资少。 中性点不接地系统的缺点: a与中性点电阻器接地系统相比,产生的过电压高(弧光过电压和铁磁谐振过电压等),对弱绝缘击穿概率大。 b在间歇性电弧接地故障时产生的高频振荡电流大,达

变压器中性点接地与不接地系统

变压器中性点接地与不接地系统 1.1变压器中性点接地系统的优缺点: (1)优点: 对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可*性。 (2)缺点: 对电源中性点接地系统,由于单相短路电流Is很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等; 1.2变压器中性点不接地系统的优、缺点: (1)优点: 对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可*性。 (2)缺点: 对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。 2各种电压等级供电线路的接地方式 (1)在110kv及以上的高压或超高压系统中,一般采用中性点接地系统,其目的是为了降低电气设备绝缘水平,免除由于单相接地后继续运行而形成的不对称性。 (2)工厂供电系统采用电压在1kv~35kv,一般为中性点不接地系统,因工厂供电距离短,对地电容小(Xc大),单相接地电流小,这样可以运行一段时间,提高了系统的稳定性和供电可*性,对通讯干扰小等优点。

在煤矿井下,我国、西德等国禁止中性点接地,其主要目的是为安全,减小了单相接地电流,但即使小的单相接地电流,煤矿井下也不允许存在,因此在煤矿井下,安装有检漏继电器,就是当电网对地绝缘阻抗降低到危险值或人触及一相导体或电网一相接地时,能很快地切断电源,防止触电、漏电事故,提前切断故障设备。 (3)1kv以下的供电系统(伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。 3电气设备的保护接地 3.1保护接地 将电气设备的金属外壳通过接地线与接地体相接,其原理是分流原理(如图1)。由于人体电阻Rr远大于接地电阻Rd,所以Ir《Id。保护接地,适应于变压器中性点不接地的供电系统中。但在干燥场所,交流电压50V及以下,或直流电压110V及以下的电气设备,金属外壳可不接地;在干燥且有木质、沥青等不良导电地面的场所,交流额定电压380V及以下,或直流额定电压440V及以下的电气设备金属外壳,除另有规定外(在爆炸危险场所仍应接地),可不接地。 电气设备在高处时,不应采取保护接地措施,否则会把大地电位引向高处,反而增加触电危险。 3.2保护接地时应注意问题 由同一变压器(中性点不接地)供电系统中各电气设备不应分别接地,而应形成一个保护接地系统。 这样做不仅降低了接地电阻,而且也防止了不同电气设备的不同相,同时碰壳(接地)所带来的危险。形成保护接地系统后,这时两相短路电流主要通过接地网流通,因而提高了两相短路电流的数值,保证过流保护装置可*动作。 4电气设备保护接零 4.1保护接零

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成

变压器中性点直接接地零序电流保护和中性点间隙接地保 护的构成 目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。这两种保护的原理接线如图E-127所示 中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。 中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。 零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。一次启动电流通常取100A左右,时间取0.5s。110kV变压器中性点放电间隙长度根据其绝缘可取115~158mm,击穿电压可取63kV(有效值)。当中性点电压超过击穿电压(还没有达到危及变压器中性点绝缘的电压)时,间隙击穿,中性点有零序电流通过,保护启动后,经0.5s延时切变压器三侧断路器。 零序电压保护由过电压继电器16、时间继电器17、信号继电器18及压板19组成,电压定植按躲过接地故障母线上出现的最高零序电压整定,110kV系统一般取150V;

低压电网中性点接地与不接地的利弊

低压电网中性点接地与不接地的利弊北京农业机械化学院电气化系罗光荣 为了低压用电的安全,尤其是农业电网用电的安全,我国普遍推广使用触电保安器。保安器分为电压型和电流型两大类,它们对电网我中点的接地有不同的要求,电压型保安器要求电网中点不直接接地(实际是经过保安器的内部阻抗接地),而安装电流型保安器,则要求中点直接接地,因此认真深入地研究低压电网中点接地方式的利弊,对于安全用电工作是一项十分迫切的任务。并且它还关系到保安器研制工作的动向,为此我们对接地作一些分析。 一、国内外概况: 根据国外资料,电力网发展的初期,低压电网对地都是绝缘的,中点不接地,但是后来随着高压电网的发展,使了降压变压器,由于高低压线圈可能相互短路,低压线圈对地产生高压,对电气设备及人身安全造成危害,因此出现了中点接地系统。如今,低压电网中点接地已成为世界发展的趋势。绝大多数国家都是采用中性点接地系统,这个总的发展方向是肯定的。由于中点对地绝缘,在某些场合有一定的优点,但在一些特殊的场合,还采用中点不接地,例如日本的医院及游泳池,使用隔离变压器,中点就不接地。有些有易燃气体的化工厂、煤矿等也采用中点对地绝缘。日本也还有一些大工厂采用不接地方式,捷克在矿井采用500伏中点不接地系统。 我国解放前,低压电网,有接地的,也有不接地的,解放之后逐步趋于统一,就是380/220伏中点接地的低压电网。 但1962年以后有些省和地区,采用中点不接地系统,例如江苏省推广使用电犁,为了人身安全,安装简易型保安器,采用了不接地系统。当时广东、河南有些地区也采用不接地系统。目前我国广大农村,中点接地和不接地两种方式同时并用,为此我们有必要对其优缺点作一些探讨。 二、中点接地与非接地系统的优点缺点比较: 1、不接地系统: 优点:能限制接地电流 当电网的容量较少时,对地的分布电容也小,如果绝缘电阻很高,则人触及带电体时,通过人体的电流仅为不大的电容电流(如图1),因此是安全的。 此外从漏电引起的火灾来说,不接地系统也比较理想,因漏电接地电源很小,不易产生大的火花而引起火灾。 缺点:

中性点直接接地系统中低压电动机接地保护配置原则的浅析

中性点直接接地系统中低压电动机接地保护配置原则的浅析 陈进1 杨涛2 (1鄂州供电公司检修公司2鄂州电力勘察设计有限责任公司湖北鄂州436000) 摘要:文章根据《火力发电厂厂用电设计技术规定》及《电力工程电气设计手册1》中的规定和计算表格及曲线,分析了低压厂用电系统中性点为直接接地时,不同容量的电动机单相接地短路保护的实现方式,提出了经济、合理的配置低压电动机单相接地短路保护措施。 关键词:中性点接地;单相接地短路保护;相间短路保护 中图分类号:TM732 文献标识码:Adoi:10.3969/j.issn.1665-2272.2014.07.073 1概述 在火力发电厂厂用电系统的供电负荷中,低压厂用电动机的种类繁多、数量庞大,其重要性也各不相同,如何根据“厂技规”中低压厂用电动机的配置原则,经济、合理的配置低压厂用电动机单相接地短路保护,保证整个低压厂用电系统安全、可靠的运行,具有重要的现实意义。本文结合“厂技规”的规定,重点分析了几种不同容量的低压厂用电动机的相间短路保护对单项接地短路保护的灵敏性,提出了低压厂用电动机在几种典型的配置接线方式下单相接地短路保护的实现方式。 2低压常用电动机单相接地短路保护的配置原则 “厂技规”第41页、42页完整地描述了低压厂用电动机的保护配置原则,其中对低压厂用电动机单相接地短路保护的配置原则作了明确规定,全文引用如下:

低压厂用电系统中性点为直接接地时,对容量为100kW以上的电动机宜装设单相接地短路保护。 对55kW及以上的电动机如相间短路保护能满足单相接地短路的灵敏性时,可由相间短路保护兼作接地短路保护;当不能满足时,应另装设接地短路保护。 保护装置由1个接于零序电流互感器上的电流继电器构成,瞬时动作于断路器跳闸。355kW及以上的电动机的单相接地短路保护措施 根据“手册1”第310页的设备选择表,以下面的1组数据对55kW及以上的低压厂用电动机的单相接地短路保护进行分析;电动机的额定功率Pe=110kW,额定电流Ie=201.9A,起动电流Iq=1413.3A,所选电缆截面3×185,ΔU≤5%,允许长度为L=277m。 低压厂用电动机电流速段保护动作电流的整定值可根据《电力工程电气设计手册2》(电气二次部分)③(以下简称“手册2”)第215页的计算公式(23-3)进行计算,即:Idz=Kk·Iqd=2×1413.3=2826.6A(Kk为可靠系数,取2)。根据“厂技规”第32页9.1.1的规定,动作于跳闸的单相接地保护的灵敏度不小于1.5,当由相间短路保护兼作接地短路保护时,在电动机的出口单相接地的短路电流应不小于1.5×2826.6=4239.9A,以低压厂用变压器为干式变压器,其容量为1600kVA(Ud=8%),根据“厂技规”第134页的关系曲线,当L≤53m时,Id(1)≥4240>4239.9,电动机的相间短路保护兼作接地短路保护时满足灵敏度的要求。 根据上面的分析,当低压厂用电系统中性点为直接接地时,对容量为100kW以上的电动机,考虑到相间短路的整定值高,满足单相接地短路保护的灵敏性时供电距离短。在实际的工程设计时,大量的供电距离稍远的100kW以上的低压电动机,是应装设单相接地短路保护的,只有极少量供电距离很近的100kW以上的低压电动机,其相间短路保护兼作短路保护时能满足灵敏度的要求,考虑到容量为100kW以上的电动机本身的价值高、数量少,相间短路保护兼作接地保护时满足灵敏度要求的几率小,另外装设一套灵敏性高的

变压器的各类中性点接地知识

变压器的各类中性点接地知识 变压器的各类中性点接地知识? 1、变压器停送电操作时,其中性点为什么一定要接地? 答:这主要是为防止过电压损坏被投退变压器而采取的一种措施。 对一侧有电源的受电变压器,当其断路器非全相断、合时,若其中性点不接地有以下危险:(1)变压器电源侧中性对地电压最大可达相电压,这可能损坏变压器绝缘。 (2)当变压器高、低压绕组之间有电容,这种电容会造成高压对低压的“传递过电压”。(3)当变压器高低压绕组之间电容耦合,低压侧会有电压达到谐振条件时,可能会出现谐振过电压,损坏绝缘。 对于低压侧有电源的送电变压器: (1)由于低压侧有电源,在并入系统前,变压器高压侧发生单相接地,若中性点未接地,则其中性点对地电压将是相电压,这可能损坏变压器绝缘。 (2)非全相并入系统时,在一相与系统相连时,由于发电机和系统的频率不同,变压器中性点又未接地,该变压器中性点对地电压最高将是二倍相电压,未合相的电压最高可达2.73倍相电压,将造成绝缘损坏事故。: 2、变压器中性点间隙接地保护是怎样构成的? 变压器中性点间隙接地保护采用零序电流继电器与零序电压继电器并联方式,带有0.5S 的限时构成。 当系统发生接地故障时,在放电间隙放电时有零序电流,则使设在放电间隙接地一端的专用电流互感器的零序电流继电器动作;若放电间隙不放电,则利用零序电压继电器动作。当发生间隙性弧光接地时,间隙保护共用的时间元件不得中途返回,以保证间隙接地保护的可靠动作。 3、对空载变压器送电时,变压器中性点必须接地。 答案电力系统的暂态稳定是指电力系统在某种运行方式下突然受到大的扰动后,经过一个机电暂态过程达到新的稳定运行状态或回到原来的稳定状态。 答:对空载变压器送电时,若中性点不接地会有以下危险: ⑴变压器电源侧中性点对地电压最大可达相电压,这可能损坏变压器绝缘; ⑵变压器的高、低压绕组之间有电容,这种电容会造成高压对低压的“传递过电压”; ⑶当变压器高、低压绕组之间电容耦合,可能会出现谐振过电压,损坏绝缘。 因此,对空载变压器送电时,变压器中性点必须接地。 4、变压器中性点接地方式的安排一般如何考虑? 变压器中性点接地方式的安排应尽量保持变电所的零序阻抗阻抗基本不变。遇到因变压器检修等原因使变电所的零序阻抗有较大变化的特殊运行方式时,应根据规程规定或实际情况临时处理。 变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,将另一台中性点不接地变压器改为直接接地 5、切换变压器中性点接地开关如何操作?

变压器中性点接地电阻柜工作原理

目录 1. 概述................................................ - 1 - 2. 引用标准............................................ - 2 - 3. 型号含义............................................ - 2 - 4. 产品特点............................................ - 2 - 5. 使用条件............................................ - 3 - 6. 变压器中性点接地电阻柜工作原理 ...................... - 4 - 7. 变压器中性点接地电阻柜主要技术参数 .................. - 5 - 8. 变压器中性点接地电阻柜接线原理图 .................... - 6 - 9. 发电机中性点接地电阻柜工作原理 ...................... - 6 - 10. 发电机中性点接地电阻柜主要技术参数 .................. - 7 - 11. 发电机中性点接地电阻柜接线原理图 .................... - 7 - 12. 中性点接地电阻柜结构及安装尺寸 ...................... - 8 - 13. 订货须知............................................ - 9 -

1.概述 电网中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。中性点电阻接地系统近年来在我国城市电网和工业企业的配电网中得到越来越广泛的应用。中性点经电阻接地系统在世界上很多国家,比如美国,欧洲,日本,俄罗斯等有着很多年的成熟可靠运行经验。 在6-35KV电网,我国基本上采用中性点不接地或消弧线圈(谐振)接地方式。近20多年来一些城市电网负荷迅速增长、电缆线路增加很快、系统电容电流急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门在广泛考察、了解国外配电网中性点接地情况的基础上,结合本地电网的具体情况,经过充分的分析、研究,逐步采用中性点经电阻接地方式。例如广州、深圳、上海、北京、珠海、天津、厦门、南京、苏州工业园区、无锡、汕头、惠州、顺德、东莞等。中性点经电阻接地方式在上述城市配网中已有多年运行经验,经过数个变电站及电厂实际应用证明,采用中性点接地是降低中压配电网内部过电压及消除谐振过电压的最有效的方式,对降低系统过电压水平、提高系统可靠性具有良好的效果。。 现在,中性点经电阻接地方式已被写入电力行业规程,电力行业标DL/T620-1997《交流电气装置的过电压保护和绝缘配合》第3.1.4条规定:“6-35KV主要由电缆线路构成的送、配电系统,单相接地故障电容电流较大时,可采用低电阻接地方式,但应考虑供电可靠性要求、故障时瞬态电压、瞬态电流对电气设备的影响、对通信的影响和继电保护技术要求以及本地的运行经验等。”第3.1.5条规定:“6KV和10KV配电系统以及发电厂厂用电系统,单相接地故障电容电流较小时,为防止谐振,间隙性电弧接地过电压等对设备的危害,可用高电阻接地方式。” HT—DZ型中性点接地电阻柜适用于6~35kV、50Hz中压配电电网中,是用于连接变压器或发电机与大地之间的一种限流保护电气设备。当配电网内部出现故障时(二相短路、单相接地、单相断路等),配电网中性点将产生偏移,此时中性点接地电阻将配电网中性点经电阻强制接地并限制其故障电流,使继电保护设备有足够时间进行检测实现跳闸和备 - 1 -

相关文档
最新文档