c系列离心式冷水机组设计选型手册

c系列离心式冷水机组设计选型手册
c系列离心式冷水机组设计选型手册

第六部分 离心机系列
第一章 C 系列离心式冷水机组
一、产品概述
1、产品特点 格力 C 系列离心式冷水机组经多年潜心研究推出,采用了国际上先进的设计制造技术和微机控制系 统,集可靠性高、高效节能,运行平稳、调节范围宽等优点于一身。格力 C 系列离心式冷水机组在标准 工况下的制冷量范围为:1000~7200kW,采用环保制冷剂 R134a,具有 380V、6000V、10000V 三种规格电 源。可广泛用于大型办公楼宇、医院、学校、商场以及工艺流程。 1)高可靠性 ◆ 专业设计工具—Concepts NREC 离心式压缩机采用国际先进技术-美国 Concepts NREC 公司软件设计制 造,共享航空发动机设计制造领域顶尖技术;通过 Ansys、DyRoBeS 等分析 软件对机组振动、临界转速进行校核,从根本上保证机组的可靠性。 ◆ 可靠的叶轮 叶轮材料为高强度铝合金,铣加工制造而成,强度高,抗腐蚀性强;经过了叶型检测、动平衡、超 转速等一系列严格的测试,高效可靠。 ◆ 先进的数控加工设备 公司拥有德国 DMG 五轴加工中心和日本东芝大型卧式镗铣中心多台,保证 压缩机零件最佳加工精度。 ◆ 权威的测试中心 公司拥有业内最先进的离心机组超大型在线检测试验台(合肥机械研究 所研制),严格按照国标 GB/T10870、GB/T18430 等的要求执行,测试能力 达 7200kW,每台机组出厂前都经过了严格的全性能测试,以确保出厂机组 的可靠性。

2)高效节能 ◆ 高效三元叶轮 三元流动原理设计的新型高效叶轮由后弯型长短叶片组成,保证了机组满负 荷、部分负荷时的效率;可调扩压器结构调节气流通道面积,极大改善了机组部分 负荷性能。 ◆ 超高效换热管与新型换热器 专为离心机组设计的新型换热器使制冷剂分布更均匀,温度场更合理,提高了 换热效率;同时,换热器采用的超高效换热管进一步降低了传热热阻,大大提升了 机组的制冷量和能效比。 ◆ 自动无级调节 采用进口导叶对冷量进行连续调节,实现水温的精确控制;压缩机在最小负荷位置启动,可在 10~ 100%负荷内进行无级调节,与实际负荷完全匹配。
3)控制先进 ◆ 高级的控制平台 控制系统使用高性能的 32 位 CPU 和 DSP 数字信号处理器,非常高的 数据采集精度和超强的数据处理能力确保了系统控制很好的实时性和控 制的精度。彩色液晶触摸屏人机界面确保了良好的人机交互。轻松实现 全自动控制和调试时手动控制。 ◆ 先进的控制算法 采用先进的智能 Fuzzy-PID 复合控制算法。智能 Fuzzy-PID 复合控制是指智能技术、模糊技术与常 规的 PID 控制算法相结合的控制方法,能确保系统具有更快的响应时间,更好的稳态性能。 ◆ 彩色触摸屏液晶显示 采用彩色液晶触摸屏作为显示人机交互,采用文字、图像、表格和曲线等多种显示方式,可以实现 对机组的全面监控和轻松控制。多角度记录和显示机组的运行状态、各传感器状态、各阀门状态以及运 行参数。采用事件记录方式记录机组重要动作和故障,事件记录次数多达一千多次。 ◆ 多种远程控制方式 具备多种远程接入和控制方式,方便用户灵活选择,以实现远距离监控机组的运行和接入楼宇自动 化管理系统。

2、产品命名规则 LS 1 序号 1 2 3 4 5 6 7 8 B 2 LX 3 5600 4 S 5 H 6 V 7 G 8 可选项 LS-冷水机组 B-半封闭式压缩机 LX-离心式压缩机 名义制冷量,单位:kW 缺省-单级;S-双级 缺省-380V;M-6000V;H-10000V 缺省-定频;V-变频 缺省-普通型;G-高能效
代号描述 机组代号 压缩机型式 压缩机类型 名义制冷量 压缩机级数 电机电压 变频 能效代号
二、产品的性能与规格
1、产品外形图


变频启动柜

定频系列: 380V-3Ph-50Hz: LSBLX1000G LSBLX2000G LSBLX3000G LSBLX4000G LSBLX1200G LSBLX2200G LSBLX3200G LSBLX4400G LSBLX1400G LSBLX2400G LSBLX3400G LSBLX1600G LSBLX2600G LSBLX3600G LSBLX1800G LSBLX2800G LSBLX3800G
10000V-3Ph-50Hz: LSBLX1000HG LSBLX2000HG LSBLX3000HG LSBLX4000HG LSBLX6000SHG LSBLX1200HG LSBLX2200HG LSBLX3200HG LSBLX4400HG LSBLX6400SHG LSBLX1400HG LSBLX2400HG LSBLX3400HG LSBLX4800HG LSBLX6800SHG LSBLX1600HG LSBLX2600HG LSBLX3600HG LSBLX5200HG LSBLX7200SHG LSBLX1800HG LSBLX2800HG LSBLX3800HG LSBLX5600SHG
变频系列: LSBLX1000VG LSBLX2000VG LSBLX3000VG LSBLX4000VG LSBLX1200VG LSBLX2200VG LSBLX3200VG LSBLX4400VG LSBLX1400VG LSBLX2400VG LSBLX3400VG LSBLX1600VG LSBLX2600VG LSBLX3600VG LSBLX1800VG LSBLX2800VG LSBLX3800VG

2、产品性能参数表
型号 LSBLX_G 冷量调节 制冷量 % kW RT 压缩机型式 操作系统 1000 284 1200 1400 1600 341 398 456 1800 511 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 10~100 2000 568 2200 625 单级 中文彩色液晶触摸屏 压缩机油压差保护;供油温度高温保护;油泵过载保护;启动动作异常保护;缺相逆 相-启动柜保护;喘振保护;主机绕组过热保护;压缩机高压保护;压缩机低压保护; 防冻保护;水流开关保护;频繁启停保护;传感器故障保护;变频器故障保护 V-ph-Hz kW 188 450 60 172 80 2 mm m3/h kPa mm mm mm mm kg kg 200 215 75 2 200 4150 1730 2150 6900 7350 224 500 60 206 80 2 200 258 75 2 200 261 550 60 241 80 2 200 301 75 2 200 290 575 60 275 80 2 200 344 75 2 200 380/6000/10000V 3N~ 50Hz 321 600 60 310 80 2 250 387 75 2 250 4150 1900 2250 8800 352 625 60 344 80 2 250 430 75 2 250 4150 1900 2250 9200 386 R134a kg 650 60 378 80 2 250 473 75 2 250 4150 1900 2250 9600 700 80 413 90 2 250 516 85 2 250 4530 2070 2500 725 80 447 90 2 250 559 85 2 250 4530 2070 2500 750 80 482 90 2 250 602 85 2 250 4530 2070 2500 775 80 516 90 2 300 645 85 2 300 4530 2120 2500 800 80 550 90 2 300 688 85 2 300 4530 2120 2500 418 449 480 521 554 2400 682 2600 740 2800 796 3000 854 3200 909
安全保护装置
电机
电源 功率 名称 充注量 种类 灌注量 型式 水流量
制冷剂
冷冻油
68 号合成脂类润滑油 L
3
满液式壳管换热器 m /h kPa
蒸发器
水压降 流程数 接管尺寸 型式 水流量
卧式壳管换热器
冷凝器
水压降 流程数 接管尺寸 宽
4150 4150 4150 1730 1730 1730 2150 2150 2150 7200 7500 8000 7750 8250 8750
外型尺寸
深 高
机组重量
净重 运行重量
10800 11200 11600 12200 12600
9250 10000 10500 12000 12500 13000 13500 14000

型号 LSBLX_G 冷量调节 制冷量 % kW RT 压缩机型式 操作系统
3400
3600
3800
4000
4400
4800
5200
5600
6000
6400
6800
7200
10~100 3400 967 3600 1023 3800 1081 4000 1136 单级 中文彩色液晶触摸屏 压缩机油压差保护;供油温度高温保护;油泵过载保护;启动动作异常保护;缺相逆相-启 动柜保护;喘振保护;主机绕组过热保护;压缩机高压保护;压缩机低压保护;防冻保护; 水流开关保护;频繁启停保护;传感器故障保护;变频器故障保护 380/6000/10000V 3N~ 50Hz 582 825 80 585 90 2 mm m3/h kPa mm mm mm mm kg kg 300 731 85 2 300 4530 2120 2500 634 900 100 619 115 2 300 774 115 2 350 4750 2330 2750 662 925 100 654 115 2 300 817 115 2 350 4750 2330 2750 686 950 100 688 115 2 300 860 115 2 350 4750 2330 2750 749 1000 100 757 115 2 350 946 115 2 350 4750 2380 2750 825 1050 100 826 115 2 350 1032 115 2 350 4750 2380 2750 892 1100 100 894 115 2 350 1118 115 2 350 4750 2380 2750 R134a kg L m3/h kPa 1150 125 963 125 2 350 1204 125 2 400 5350 2620 3100 1200 125 1032 125 2 350 1290 125 2 400 5350 2620 3100 1250 125 1101 125 2 400 1376 125 2 450 5350 2820 3100 1300 125 1170 125 2 400 1462 125 2 450 5350 2820 3100 1400 125 1238 125 2 400 1548 125 2 450 5350 2820 3100 68 号合成脂类润滑油 满液式壳管换热器 6000/10000V 3N~ 50Hz 942 1004 1069 1135 1198 4400 1251 4800 1364 5200 1479 5600 1591 6000 1706 6400 1818 双级 6800 1934 7200 2044
安全保护装置
电机 制冷剂 冷冻油
电源 功率 名称 充注量 种类 灌注量 型式 水流量
V-ph-Hz kW
蒸发器
水压降 流程数 接管尺寸 型式 水流量
卧式壳管换热器
冷凝器
水压降 流程数 接管尺寸 宽
外型尺寸
深 高
机组重量
净重 运行重量
13000 14600 14800 15200 15800 16600 17400 22500 23800 25500 26100 26500 14500 15600 16100 16600 17200 18000 18800 25500 27100 29000 29700 30500
说明: ① ② ③ ④ ⑤ ⑥ 制冷量按照国家标准 GB/T18430.1-2007 设计,机组制冷量是在名义制冷工况下测定的。 主机提供冷冻水泵﹑冷却水泵﹑冷却塔的控制输出接口,其交流接触器由用户自备。 冷冻水﹑冷却水出入口连接法兰盘由厂家提供。 本公司保留变更产品设计恕不预先通知的权利。 具体的机组参数以产品铭牌为准。 如有特殊要求,请另行联系。

名义制冷工况 冷冻水 水流量[m /(h.kW)] 0.172
3
冷却水 出水温度(℃) 7 进水温度(℃) 30 水流量[m /(h.kW)] 0.215
3
工作范围 冷冻水 出水温度(℃) 5~15 进出水温差(℃) 2.5~8 出水温度(℃) 22~37 冷却水 进出水温差(℃) 3.5~8
3、产品能力修正

三、产品安装
1、安装基础与环境 1) 安装环境 ◆ 制冷机应避免接近火源和易燃物。若与锅炉等发热体安装在一起,应充分注意热辐射的影响。 ◆ 最好选用室温在 40℃以下,通风通畅的场所,(因高温是故障的原因并且加快腐蚀)在 40℃时 的环境相对湿度应在 90%以下,不允许室外或露天安装、存放。 ◆ 应选取灰尘少的场所(灰尘是电故障的原因)。 ◆ 现场应采光良好,以便于维护、检查。 ◆ 为满足维护、检修和清扫蒸发器-冷凝器换热管的需要,机组四周必须留有足够的空间(具体尺 寸各机组的维修空间示意图)。 ◆ 为便于机器起吊和检修,应安装行车或转臂吊车,并确保机房要有足够的高度。 ◆ 机组周围及整个机房应能实现完全排水。 ◆ 避免太阳光直射。
2) 安装基础 离心式制冷压缩机的转子经过严格的静平衡与动平衡,因此其对基础的动载荷很小,基础尺寸见表 “机组基础尺寸”。为了防止机组基脚部位的腐蚀,要求机组四周排水通畅,机器底座钢板对应的基础 平面应光滑平整,具体要求为: ◆ 各基础面之间的最大高低差(水平度)应为 3mm 以内。 ◆ 为便于制冷机维修检查,基础高度应高于地面 100mm。 ◆ 在制冷机组的四周应设置排水沟。 ◆ 底座钢板与制冷机组本体脚板之间不得有间隙。应用调整垫塞入底座钢板与混凝土基础之间, 将底座钢板调至水平(它们之间的高度差应在每米 0.5mm 以内)。 ◆ 吊起制冷机,将减振橡胶垫放置在底座钢板上,再将制冷机放到减振橡胶垫上。 ◆ 底座钢板和调整垫周围二次灌浆固定。

机组本 体底板
用户自备 底座钢板
300
A
地脚螺栓M30(用户自备) 冷凝器中心线
A-A
500
F
A
螺母M30(用户自备) 垫圈30(用户自备) 地面
45°
机组本体底板 橡胶垫板厚15 底座钢板
350
300 大于100 250 70 125 250
蒸发器中心线
灌浆高度 500
厚20(用户自备) 机组就位后灌浆
E
200X200
机组安装基础示意图
机组基础尺寸 机组型号 LSBLX1000(H)(V)G LSBLX1200(H)(V)G LSBLX1400(H)(V)G LSBLX1600(H)(V)G LSBLX1800(H)(V)G LSBLX2000(H)(V)G LSBLX2200(H)(V)G LSBLX2400(H)(V)G LSBLX2600(H)(V)G LSBLX2800(H)(V)G LSBLX3000(H)(V)G LSBLX3200(H)(V)G E 3290 3290 3290 3290 3290 3290 3290 3590 3590 3590 3590 3590 F 1480 1480 1480 1480 1650 1650 1650 1820 1820 1820 1870 1870 机组型号 LSBLX3400(H)(V)G LSBLX3600(H)(V)G LSBLX3800(H)(V)G LSBLX4000(H)(V)G LSBLX4400(H)(V)G LSBLX4800HG LSBLX5200HG LSBLX5600SHG LSBLX6000SHG LSBLX6400SHG LSBLX6800SHG LSBLX7200SHG E
(单位:mm) F 1870 2080 2080 2080 2130 2130 2130 2370 2370 2570 2570 2570
3590 3790 3790 3790 3790 3790 3790 4190 4190 4190 4190 4190

2、机组部件示意图





⑥ ⑦


机组部件名称 标记 ① ② ③ ④ ⑤ 名称 蒸发器 电控柜 压缩机 电机 冷凝器 标记 ⑥ ⑦ ⑧ ⑨ 名称 冷却水出水 冷却水进水 冷冻水进水 冷冻水出水

3、安装及维修空间尺寸
顶部维修空间A
拔管 长度 B
电机
维修 C 空间
D 修空 维 面 侧

空 D 修 维 面 侧

维修空间示意图
安装尺寸及维修空间(单位:mm) 机组型号 LSBLX1000(H)(V)G ~ LSBLX2200(H)(V)G LSBLX2400(H)(V)G ~ LSBLX3400(H)(V)G LSBLX3600(H)(V)G ~ LSBLX4400(H)(V)G LSBLX4800HG ~ LSBLX5200HG LSBLX5600SHG ~ LSBLX7200SHG A 1500 1500 1500 1500 1500 B 3500 3800 4000 4000 4400 C 1500 1650 1800 1800 1800 D 1220 1320 1320 1320 1520

4、产品电气安装 1)高压离心机机组工程接线示意图: 注:由于设计改进,机组外型可能会稍有更新,以实物为准。
配线说明: ① 线①为从客户高压配电柜至启动柜的电源线,要求电源规格为 10kV 3N~ 50Hz。电源线从启动柜下端 进入,线径要求随机组功率调整。 ② 线②为从启动柜至离心机组主电机的动力线。动力线从启动柜下端出线,线径要求随机组功率调整。 ③ 线③为从客户低压配电柜至离心机组油泵控制柜的电源线(三相带零线、地线),线径要求为 2.5mm2 或以上。电源规格为 380V 3N~ 50Hz。 ④ 线④为启动柜至离心机组主控制柜的信号控制线(具体连接参看下图)。线径要求为 1.0mm2 或以 上。 ⑤ 线⑤为从离心机主控制柜至水泵控制柜及远程开关机的信号控制线(具体连接参看下图)。线径要求 为 1.0mm2 或以上。注:水泵控制柜由客户提供。 ⑥ 以上所有配线均由客户自备。

高压离心机组工程接线原理图
2)低压离心机机组工程接线示意图: 注:由于设计改进,机组外型可能会稍有更新,以实物为准。

配线说明: ① 线①为从客户配电柜至启动柜的电源线(三相带零线、地线),要求电源规格为 380V 3N~ 50Hz。电 源线从启动柜上端进入,线径要求随机组功率调整。 ② 线②为从启动柜至离心机组主电机的动力线(星三角启动,6 根动力线,带地线)。动力线从启动柜 下端出线,线径要求随机组功率调整。 ③ 线③为从启动柜至离心机组油泵控制柜的电源线(三相带零线、地线),线径要求为 2.5mm2 或以 上。 ④ 线④为从启动柜至离心机组主控制柜的信号控制线(具体连接参看下图)。线径要求为 1.0mm2 或以 上。 ⑤ 线⑤为从离心机主控制柜至水泵控制柜及远程开关机的信号控制线(具体连接参看下图)。线径要求 为 1.0mm2 或以上。注:水泵控制柜由客户提供。 ⑥ 以上所有配线均由客户自备。
低压离心机组工程接线原理图

四、供货范围
S=标准配置件;O=用户自备件;P=用户选购件 供货内容 主机 制冷剂 润滑油 低压启动柜 高压启动柜 油过滤器 型号规格 台 R134a 68 号合成脂类润滑油 台 台 个 类别 S S S S P P 适于 380V 电压机组 适于 10kV、6kV 电压机组 备注

离心式冷水机组的结构及原理

离心式冷水机组系统介绍 目前用于中央空调的离心式冷水机组主要由离心制冷压缩机、主电动机、蒸发器(满液式卧式壳管式)、冷凝器(水冷式满液式卧式壳管式)、节流装置、压缩机入口能量调节机构、抽气回收装置、润滑油系统、安全保护装置、主电动机喷液 蒸发冷却系统、油回收装置及微电脑控制系统等组成,并共用底座。其外形和系 1.离心式冷水机组特点 离心式冷水机组属大冷量的冷水机组,它有以下主要优点: (1)压缩机输气量大,单机制冷量大,结构紧凑,重量轻,单位制冷量重量小,相同制冷量下比活塞式机组轻80%以上,占地面积小; (2)性能系数高; (3)叶轮作旋转运动,运转平稳,振动小,噪声较低; (4)调节方便,在较大的冷量范围内能较经济地实现无级调节; (5)无气阀、填料、活塞环等易损件,工作比较可靠。 离心式冷水机组的缺点主要是: (1)由于转速高,对材料强度、加工精度和制造质量要求严格; (2)单级压缩机在低负荷时易发生喘振; (3)当运行工况偏离设计工况时,效率下降较快; (4)制冷量随蒸发温度降低而减少的幅度比活塞式快,制冷量随转数降低而急剧下降。 2.离心式冷水机组的组成 构成离心式冷水机组的部件中,区别于活塞式、螺杆式冷水机组的主要部件是离心压缩机,此外,其他主要辅助设备比如换热设备、润滑油系统、抽气回收装置 等均有自己特点,在这进行简单介绍。 1)压缩机 空调用离心式冷水机组,通常都采用单级压缩,除非单机制冷量特别大(例如4500kW以上),或者刻意追求压缩机的效率,才采用2级或3级压缩。单级离心制冷压缩机由进口调节装置、叶轮、扩压器、蜗室组成;多级离心制冷压缩机除 了末级外,在每级的扩压器后面还有弯道和回流界,以引导气流进入下一 级。由于离心式冷水机组在实际使用中的一些特殊要求,使得离心式制冷压 缩机在结构上有其一些特点: ①离心式冷水机组采用的制冷剂的分子量都很大,音速低,在压缩机流道中 的马赫数M比较高(特别是在叶轮进口的相对速度马赫数和叶轮出口的绝对速度 马赫数一般都达到亚音速甚至跨音速),这就要求在叶轮构型时特别注意气流组织,避免或减少气流在叶轮流遭中产生激波损失,同时适应制冷剂气体的容积流量在叶轮内变化很大的特点。 ②冷水机组在实际使用中,由于气候和热负荷的变化,需要的制冷量变化很 大,并且要求在冷负荷变化时,机组的效率也尽可能高。作为制造厂来说,对于 不同规格的系列产品,希望零部件的通用化程度越高越好。对于离心制冷压缩机,其叶轮的出口角小,则压缩机的性能曲线比较平坦,绝热效率较高,还能减少因采用同一蜗室而造成的匹配失当和效率降低,有利于变工况运行。 ③离心式压缩机是通过旋转的叶轮叶片肘制冷剂蒸气做功而提高其压力的。

详解离心式冷水机组

详解离心式冷水机组 制冷原理: 热力学第一定律:自然界一切物质都具有能量,它能够从一种形式转换为另一种形式,从一个物体传递给另一个物体,在转换和传递过程中能量的数量不变。热力学第二定律:热量能自发地从高温物体传向低温物体,而不能自发地从低温物体传向高温物体。要使热量从低温物体向高温物体传递,必须借助外功,即消耗一定的热能或机械能。 制冷:消耗一定的能量(机械能或热能)作为补偿,将热量从低温物体(被冷却介质)传向高温物体(环境介质)的过程。 工质:在热力装置及制冷装置中,不断循环流动以实现能量转换的物质。 潜热:用来使状态发生变化的热量增加或移走,温度不发生变化。 显热:用来使温度发生变化的热量增加或移走状态不发生变化。 饱和温度:在一个给定的压力下的制冷剂的温度,此

时液体和气体共存。对于一种制冷剂,压力和温度存在一个固定的对应关系。当制冷剂蒸发或冷凝时的温度。 过热度:在一个给定压力下,气体的实际温度与在该压力下的饱和温度的温差。 过冷度:在一个给定压力下,液体的实际温度与在该压力下的饱和温度的温差。 排气过热度:在一个给定压力下,实际的排气温度与饱和冷凝温度的温差。排气过热度是吸气过热度与从压缩机的能量增加的显热的和。 单级蒸气压缩式制冷循环工作原理: 基本组成部件:压缩机、冷凝器、节流阀、蒸发器。 基本空调循环:(HFC134a)

提升力:压缩机提升制冷剂气体从蒸发压力到冷凝压力的能力,提升力(或参照相应的压头)能用温度来测定。 单级蒸气压缩式制冷循环工作原理:

传热温差——在一个给定的换热器中,壳体中 液体的温度与管中出口液体温度之间的差值 A.蒸发器传热温差 蒸发器壳体中的制冷剂与管中流体 出口温度的差值 正常 3o-5o 故障 8o-10o 1.制冷剂充注量过少 2.蒸发管有脏物 3.制冷剂中混有油 4.隔板密封垫安装不当或断裂引 起流体旁通 5.隔板断裂或腐蚀引起流体旁通 B.冷凝器传热温差 冷凝器制冷剂与冷凝器出水温度 的差值 正常 3o-5o 故障 8o-10o 1.蒸发管有脏物 2.冷凝器水流量不足 3.隔板密封垫安装不当或断裂引 起冷却水旁通 4.隔板断裂或腐蚀引冷却水起流 体旁通 压缩机型式:

AHU空气处理机组选型手册

目录1.如何确定机组型号 2.AHU定义及常用场合功能排布 3.各种功能段使用介绍

第一部分 如何确定机组型号 1.箱体(客户有要求的除外) 2.机组高度2300mm及以下,整机运输;机组高度23mm以上,散件运输。 当机组总高模数大于等于25或宽度模数大于25时,底座槽钢采用100mm,其余均为80mm。 3.表冷器选型 表冷选型出水温度偏差±0.5℃范围内 水阻在110KPa以内(水阻太大时可将盘管前后分级,或左右分) 迎面风速>2.9m/s时,要加挡水板(在湿度较大的地区,如广州、深圳等地,建议冷盘管迎面风速高于2.8m/s 时,即加装挡水板) 选盘管时冷量需乘以1.06的安全系数 4.风机选型 机组全压>1200Pa时,选用后倾风机 风机出风口风速:直接出风风机,风口风速≤13m/s 不直接出风风机,风口风速≤15m/s 电机极数的选择:风机转速<600r/min,选用6极电机 风机转速600--3000r/min,选用4极电机 风机转速>3000r/min,选用2极电机 无蜗壳风机:必须找厂家选型,无涡壳风机功能段排布上均流在风机段之前。 对于风机电机直联的注意一般都要配变频电机。 5.机组带转轮除湿机的,一般转轮除湿段和机组前后功能段都是通过帆布软接,注意前后预留中间段,帆布软接一般是根据现场情况配,工厂不带。 6.所有的加湿器都要加接水盘,高压喷雾和喷淋还要加装挡水板和开门。喷淋前后都要预留中间段,并且开门。喷淋段本身也要开门。 7.没有特殊要求不允许机组配置外置板式加袋式共滑道。

8.如果要装压差计,初中效不能同框架或者滑道。 9.加湿出风段在一起时,出风段需要设置门。 10.机组配置紫外线灯的,注意机组的宽度是否大于紫外线灯的长度。不同规格紫外线灯的长度:20W——604mm 30W——908.8mm 40W——1213.6mm 11.湿膜加湿分直排水和循环水两种,我们通常采用的是直排水的。湿膜在功能段上作为加湿用还是作为挡水板是有区别的,所以报价及EOF中要明确。 12.在对噪音要求较高的场合,一般会配置900mm长的消声段,舒适性场合一般选用孔板+玻璃棉形式的消声器,净化场合采用微穿孔的消声器。 13.风阀执行器 开关量

渣浆泵管路设计及阀门选型

水泵在管道管线上的选型配管要求 为了提高水泵的吸入性能,水泵吸入管路应尽可能缩短,尽量少拐弯(弯头最好用大曲率半径),以减少管道阻力损失。为防止泵产生汽蚀,泵吸入管路应尽可能避免积聚气体的囊形部位,不能避免时,应在囊形部位设DN15或DN20的排气阀。当泵的吸入管为垂直方向时,吸入管上若配置异径管,则应配置偏心异径管,以免形成气囊。 为了避免管道、阀门的重量及管道热应力所产生的力和力矩超过泵进出口的最大允许外载荷,在泵的吸入和排出管道上须设置管架。泵管口允许最大载荷应由水泵制造厂提供。垂直进口或垂直出口的泵,为了减少对泵管口的作用力,管口上方管线须设管架,其平面位置要尽量靠近管口,可以利用管廊纵梁支吊管线,所以常把泵布置在管廊下。 输送密度小于650Kg/m3的液体,如液化石油气、液氨等,泵的吸入管道应有1/10~1/100的坡度坡向泵,使气化产生的气体返回吸入罐内,以避免泵产生汽蚀。单吸泵的进口处,最好配置一段约3倍进口直径的直管。 对于双吸泵,为了避免双向吸入水平离心泵的汽蚀,双吸入管要对称布置,以保证两边流量分配均匀。垂直管道通过弯头直接连接,但泵的轴线一定要垂直于弯头所在的平面。此时,进口配管要求尽量短,弯头接异径管,再接进口法兰。在其它条件下,泵进口前应有不小于3倍管径的直管段。 泵出口的切断阀和止回阀之间用泄液阀放净。管径大于DN50时,也可在止回阀的阀盖上开孔装放净阀。同规格泵的进出口阀门尽量采用同一标高。 非金属泵的进出口管线上阀门的重量决不可压在泵体上,应设置管架,防止压坏泵体与开关阀门时扭动阀门前后的管线。 蒸汽往复泵的排汽管线应少拐弯,在可能积聚冷凝水的部位设排放管,放空量大的还要装设消音器。进汽管线应在进汽阀前设冷凝水排放管,防止水击汽缸。 蒸汽往复泵在运行中一般有较大的振动,与泵连接的管线应很好地固定。 当水泵出口中心线和管廊柱子中心线间距离大于0.6m,出口管线上的旋启式止回阀应放在水平位置,此时不允许在阀盖上装放净阀。 当管线架在和电动机的上方时,为不影响起重设备吊装,管线要有足够的高度。输送腐蚀性液体的管线不宜布置在原动设备的上方。 管廊下部管线的管底至地坪的净距离不应小于4m,,以满足检修要求。 当管线架在泵体上方时,管底距地面净空高度应不小于2.2m。

离心式冷水机组技术要求

第四部分技术要求 1、招标范围: 1.1 中央空调冷源设备:离心式冷水机组两台(二台变频)。 1.2 本次招标的设备,如果需要配置控制柜的,该控制柜必须由该设备制造商连同设备一并提供。并在控制柜内预留一定的空间,配合消防施工单位对漏电火灾报警系统的安装和调试。 2、离心式冷水机组主要技术参数 2.1 数量:2台,两台均为为变频;要求BA接口; 2.2 单台制冷量:2813KW(800RT); 2.3 选用对臭氧层无破坏的HFC-134a冷媒或R123冷媒; 2.4 年制冷剂泄漏率:< 0.5%; 2.5 机组运行噪音:≤86dB(A) ; 2.6 冷冻水出/入口温度:7/12℃; 2.7 冷却水出/入口温度:37/32℃; 2.8 蒸发器水侧污垢系数:0.018m2·℃/KW;蒸发器水压降≤0.09Mpa; 2.9 冷凝器水侧污垢系数:0.044 m2·℃/KW;冷凝器水压降≤0.09Mpa; 2.10 电源:采用三相380V/50Hz; 2.11 封闭式或开式电机(建议使用三级压缩半封闭式) 2.12 启动方式:软启动; 2.13 耗电指标(满负荷时):国家工况3级能耗比:COP>5.1,用电负荷:512KW; 2.14 冷量调节范围:10-100%;指明机组在定冷却水温下的喘振点; 2.15 蒸发器、冷凝器水室承压1.6MPa; 2.16 设计使用寿命:25年以上; 3、冷水机组总体要求 3.1 设备外形构造尺寸满足现场安装条件。冷冻机房布置见暖通施工图。 3.2 每台冷水机组配制冷剂检测器。 3.3 控制柜、启动柜、地脚螺栓(如需要)、减震器等配套设备原厂随机配带。变频器有电磁干扰,必须配谐波过滤器。所有设备都应在设备制造商工厂装配、接线,并随同所有的启动装置、控制器、仪器和安全装置一同运输;采用适合长途运输和搬运的包装。设备至其控制柜、启动柜的接线由设备厂家提供并安装。 3.4提供电脑选型参数表(包括满负荷校核及恒定冷却水温部分负荷校核)。参数表必须加盖生产厂家公章。必要时进行现场电脑选型复核。 3.5 离心机组采用环保无淘汰期限的HFC-134a冷媒或R123冷媒。机组要求在工厂测试完毕后充注氮气运输至工地,调试前进行二次正压、负压检漏。 3.6建议采用约克、凯利、格力等合资品牌或国内知名品牌。或品牌知名度和信誉不低于以上3家的厂商。 4、冷水机组技术要求 4.1 压缩机: 4.1.1 需注明压缩机类型、密封的形式,本次招标要求压缩机选用主机同名品牌产品; 4.1.2 压缩机:投标产品采用单级或多级,半封闭压缩机或开启式压缩机; 4.1.3 压缩机其制造和检验应符合相关行业标准(请投标人列明投标设备负荷的行业标准); 4.1.4 提供整机在63 Hz、125 Hz、250 Hz、500 Hz、1kHz、2kHz、4kHz、8kHz倍频段下的噪音值; 4.1.5 压缩机使用的材料:简要说明压缩机主要部件(壳体、转子、轴承等)所选用的材料及产地;

泵的计算与选型导则

泵的计算与选型导则 T-PE002502C-2003 1 总则 1.1 目的 为使SEI工艺系统设计人员合理、准确、可靠地进行泵系统有关计算和选型的设计,特编制本导则。 1.2 范围 本导则适用于石油化工装置工艺系统设计中有关离心泵和往复泵系统计算和选型设计。 1.3 引用文件 下列文件中的条款通过本导则的引用而成为本导则的条款,其最新版本适用于本导则。 HG/T 20570.4 《泵和压缩机压差分析》 HG/T 20570.5 《泵的系统特性计算和设备相对安装高度的确定》 GB/T 7021 《离心泵名词术语》 GB/T 7785 《往复泵分类和名词术语》 GB/T13006 《离心泵、混流泵和轴流泵气蚀余量》 2 术语 2.1 扬程pump head 泵产生的总水头。其值等于泵出口总水头和入口总水头的代数差。符号:H,单位:m。 1)水头head 单位重量的流体具有的能量。以液柱高度表示的值。单位:m。 2)总水头otal head 液体具有的压力水头、位置水头和速度水头之和。单位:m。 3)出口总水头(排出扬程)total discharge head 换算到基准面上的泵出口截面总水头。单位:m。 4)入口总水头(吸入扬程)total suction head 换算到基准面上的泵入口截面总水头。单位:m。 2.2 规定扬程specified pump head 对应于合同单上规定流量的扬程。 2.3 静扬程(总静压头)total static head 泵装置上吐出液面和吸入液面之间总水头之差。等于几何高度加上吐出液面和吸入液面之间压力水头之差。单位:m。 2.4 理论扬程theoretical pump head 泵给予单位重量液体的能量,通常指未考虑泵内损失时的理论值。单位:m。

离心式冷水机组的结构及原理

离心式冷水机组的结构及原理 目前,用于中央空调的离心式冷水机组,主要由离心制冷压缩机、主电动机、蒸发器(满液式卧式壳管式)、冷凝器(水冷式满液式卧式壳管式)、节流装置、压缩机入口能量调节机构、抽气回收装置、润滑油系统、安全保护装置、主电动机喷液蒸发冷却系统、油回收装置及微电脑控制系统等组成,并共用底座。其外形和系统组成如图4.13及图4.14所示。

1.离心式冷水机组特点 离心式冷水机组属大冷量的冷水机组,它有以下主要优点: (1)压缩机输气量大,单机制冷量大,结构紧凑,重量轻,单位制冷量重量小,相同制冷量下比活塞式机组轻80%以上,占地面积小; (2)性能系数高; (3)叶轮作旋转运动,运转平稳,振动小,噪声较低; (4)调节方便,在较大的冷量范围内能较经济地实现无级调节; (5)无气阀、填料、活塞环等易损件,工作比较可靠。 离心式冷水机组的缺点主要是: (1)由于转速高,对材料强度、加工精度和制造质量要求严格; (2)单级压缩机在低负荷时易发生喘振; (3)当运行工况偏离设计工况时,效率下降较快; (4)制冷量随蒸发温度降低而减少的幅度比活塞式快,制冷量随转数降低而急剧下降。 2.离心式冷水机组的组成 构成离心式冷水机组的部件中,区别于活塞式、螺杆式冷水机组的主要部件是离心压缩机,此外,其他主要辅助设备比如换热设备、润滑油系统、抽气回收装置等均有自己特点,在这进行简单介绍。 1)压缩机 空调用离心式冷水机组,通常都采用单级压缩,除非单机制冷量特别大(例如4500kW以上),或者刻意追求压缩机的效率,才采用2级或3级压缩。单级离心制冷压缩机由进口调节装置、叶轮、扩压器、蜗室组成;多级离心制冷压缩机除了末级外,在每级的扩压器后面还有弯道和回流界,以引导气流进入下一级。图4.15示出了离心式制冷压缩机的典型结构。 图4.15 离心式制冷压缩机的典型结构 (a)单级离心式制冷压缩机;(b)多级离心制冷压缩机的中间级 1一齿轮箱体;2一机壳门;3一轮盖密封座;1一叶轮;2一扩压器; 4一叶轮;5一叶片调节机构;6—进口壳体;3一弯道;4一回流器; 7一轮盖密封;8一轮盘密封;9一右轴承;5一级内密封;6一中间加气孔 10一左轴承;11一推力盘;12—后壳体 由于离心式冷水机组在实际使用中的一些特殊要求,使得离心式制冷压缩机在结构上有其一些特点: ①离心式冷水机组采用的制冷剂的分子量都很大,音速低,在压缩机流道中的马赫数M比较高(特别是在叶轮进口的相对速度马赫数和叶轮出口的绝对速度马赫数一般都达到亚音速甚至跨音速),这就要求在叶轮构型时特别注意气流组织,避免或减少气流在叶轮流遭中产生激波损失,同时适应制冷剂气体的容积流量在叶轮内变化很大的特点。

空调设计设备选型指南

内容: 1 水冷冷水机空调系统 ☆主要设备 (1)制冷主机(2)冷冻水泵(3)冷却水泵(4)冷却塔 (5)电子水处理仪(6)水过滤器(7)膨胀水箱 (8)末端装置(组合式空调机组、柜式空调机组、风机盘管等) 2 冷、热源的选择 1. 冷、热源系统设计选型注意的几个方面 1.1 各种冷、热源系统的能效特性 1.2 冷、热源系统的部分负荷性能 1.3 冷、热源系统的投资费用 1.4 冷、热源系统的运行费用 1.5 冷、热源系统的环境行为 2. 冷源设备选择 2.1 冷水机组的总装机容量 冷水机组的总装机容量应以正确的空调负荷计算为准,可不作任何附加,避免所选冷水机组的总装机容量偏大,造成大马拉小车或机组闲置的情况。 2.2 冷水机组台数选择 制冷机组一般以选用2~4台为宜,中小型规模宜选用2台,较大型可选用3台,特大型可选用4台。机组之间要考虑其互为备用和切换使用的可能性。 同一机房内可采用不同 类型、不同容量的机组搭配的组合式方案,以节约能耗。并联运行的机组中至少应选择一台自动化程度较高、调节性能较好、能保证部分负荷下能高效运行的机组。 为保证运转的安全可靠性,当小型工程仅设1台时,应选用调节性能优良、运行可靠的机型,如选择多台压缩机分路联控的机组,即多机头联控型机组。 2.3 冷水机组机型选择 2.3.1水冷电动压缩式冷水机组的机型宜按制冷量范围,并经过性能价格比 进行选择。 2.3.2冷水机组机型选择

电机驱动压缩机的蒸气压缩循环冷水机组,在额定制冷工况和规定条件下,性能系数(COP)不应低于以下规 定。 2.3.3冷水机组的制冷量和耗功率 冷水机组铭牌上的制冷量和耗功率,或样本技术性能表中的制冷量和耗功率是机组名义工况下的制冷量和耗功率,只能作冷水机组初选时参考。冷水机组在设计工况或使用工况下的制冷量和耗功率应根据设计工况或使用工况(主要指冷水出水温度、冷却水进水温度)按机组变工况性能表、变工况性能曲线或变工况性能修正系数来确定。 2.4热源设备 2.4.1热源设备类型 提供空调热水的锅炉按其使用能源的不同,主要分为两大类:(1)电热水锅炉(2)燃气、燃油热水锅炉 电热水锅炉 电热水锅炉的优点是使用方便,清洁卫生,无排放物,安全,无燃烧爆炸危险,自动控制水温,可无人值守。 《公共建筑节能设计标准》(GB50189-2005)规定:除了符合下列情况之一外,不得采用电热锅炉、电热水器作为直接采暖和空气调节系统的热源:电力充足、供电政策支持和电价优惠地区的建筑; 以供冷为主,采暖负荷较小且无法利用热泵提供热源的建筑; 无集中供热与燃气源,用煤、油等燃料受到环保或消防严格限制的建筑; 夜间可利用低谷电进行蓄热、且蓄热电锅炉不在日间用电高峰和平段时间启用的建筑; 利用可再生能源发电地区的建筑; 内、外区合一的变风量系统中需要对局部外区进行加热的建筑.

离心式冷水机组技术参数

离心式冷水机组 一、技术参数及功能要求 1)离心式冷水机组制冷量1934KW。 2)冷却水量395 m3/h;冷冻水量:333 m3/h;工作压力:1.0Mpa。3)电机功率379KW;变频驱动 4)制冷剂HFC-R 134a充注量:522KG; 单台制冷量调节范围10%-100%。5)供冷水进水温度12℃,出水温度7℃ 冷却水进水温度32℃,出水温度37℃ 6)供热水进水温度12℃,出水温度50℃ 7)在室外零下10℃情况下能够正常运行。 8)温度精度小于±0.3℃,机组使用寿命大于20年。 9)机组根据运行状况和用户设定值,超过这一限值则发出警报。 10)控制柜内配置:变频器、开关、保护器及主要部件为西门子、ABB、施耐德品牌。 11)应有冰蓄冷系统。 12)热水回收系统。 13)微处理器控制盘具有显示、设定及报表功能,中文显示。 微处理器控制盘应预留I/O端子,供将来扩充用。 14)远程控制功能。 15)冷却水、冷冻水、流量扬程、污垢系数、水阻损失、进出水管管径与设计匹配。 16)菜单式界面显示运行工况,控制设定点及系统整定值。

17)独立启动、停机占用时间用于本机和CNN运行模式。18)冷水出水温度控制。 19)冷水进水温度控制。 20)热气旁通。 21)需求量限制。 22)手动/自动远距离启动。 23)启机/停机顺序。 24)预润滑/后润滑 25)水流量预流动/后流动 26)压缩机启动柜运行联锁 27)冷水低温再循环 28)压缩机启动次数和运行时间记录 29)安全装置手动复位 30)轴承高油温 31)电机高温 32)制冷剂(冷凝器)高压 33)制冷剂(蒸发器)低温 34)润滑油低压差 35)压缩机(制冷剂)排气高温 36)电压过低保护,电压过高保护 37)油泵电压过载 38)蒸发器和冷却器断水

离心式冷水机组操作维护手册(麦克维尔)

目录 介绍 概述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 安装 机组结构┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4收货与起吊┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8落位与安装┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8水路系统┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9水泵┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9蒸发器与冷凝器水路┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9油冷却器管路┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10水冷式油冷却器┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10制冷剂冷却油冷却器┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14安全排空管道┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14电气┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16制冷电气系统基本原理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16动力线的接线┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄17配有启动器的机组动力线的接线┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄19控制器的接线┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄19调试控制线路┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20保护电容┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20 操作 操作者职责┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄22铭牌┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄22 MicroTech 控制器┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄22能量控制系统┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄27导叶操作┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄27测量值┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30导叶速度调整┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30油路系统┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄31油泵┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32热气旁通系统┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄34 维护 例行维护┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄35润滑油┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄35更换油过滤器┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄35制冷循环┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄36

渣浆泵型号意义

一、.渣浆泵的用途 渣浆泵可广泛用于矿山,电力、冶金、煤炭、环保等行业输送含有磨蚀性固体颗粒的浆体。如 冶金选 渣浆泵 矿厂矿浆输送,火电厂水力除灰、洗煤厂煤浆及重介输送,疏浚河道,河流清淤等。在化工产业,也可输送一些含有结晶的腐蚀性浆体。 首先,在选矿厂的应用,80%左右都是用在矿山行业选矿厂。由于矿石初选工况较为恶劣,因此在这一工段,渣浆泵的使用寿命普遍较低。当然,不同的矿石,磨蚀性也不一样。如在精矿输送等工段相对磨蚀性减小,泵的整体使用寿命也就较长。所以一般用户在采购过程中经常问到供应商的产品的使用寿命问题时候,严格讲任何一家生产商等都不会毫无根据的为用户承诺一个准确使用寿命周期,因为过流部件的使用寿命(耐磨耐腐蚀件)的寿命取决于多种不同因素,工况的的多样性和复杂性导致同样品质的材质的使用寿命是有差异的。但是在前期选型阶段可以让有实力的生产厂家为其做合理工况选型设计。 其次,在电力行业,主要是火力发电厂。目前我国电厂中主要是火力发电和水利发电,在火电厂中,由于用大量燃煤发电,燃煤后的炉渣或者灰渣需要清除,渣浆泵被用在除灰渣的作用,炉渣通过混合一定量的水后,通过渣浆泵将其输送到灰渣堆放的地方,因此有时渣浆泵在电厂也成为灰渣泵。 再次,在洗煤行业,由于工况不同,较大煤块,煤矸石容易堵塞,对于渣浆泵的设计要求很高。淮北矿务局下属某洗煤厂05年采用经特殊设计的、替代原来从澳大利亚进口的渣浆泵,至今运转正常,输送较大煤块、煤矸石无堵塞,使用磨损寿命超过了国外进口泵。 在海水选砂领域,渣浆泵应用也开始逐渐被客户认可。但是在海水里选砂,河道里挖沙,渣浆泵更容易被称为砂泵,挖泥泵。尽管叫法不一,但是从结构特点和泵的性能原理上来讲,都可以通称为渣浆泵。因此在这海水选砂中我们经常称为砂泵,在河道清淤里面习惯上叫挖泥泵。 渣浆泵的用途虽然广泛,但是正确的应用是十分重要的。渣浆泵由于其名称本身的局限性使得一些非本行业的人对此产生误解,事实上,泥浆泵,杂质泵,挖泥泵,清淤泵,等都在渣浆泵的应用范围。 二、渣浆泵型号解释及意义

螺杆式与离心式冷水机组比较(正)

螺杆式与离心式冷水机组的比较 一、两种机型的简介: 离心机:离心机是依靠离心式压缩机中高速旋转的叶轮产生的离心力来提高制冷剂蒸气压力,以获得对蒸气的压缩过程,然后经冷凝节流降压,蒸发等过程来实现制冷,其组成部件主要有离心式压缩机、蒸发器、冷凝器、节流机构、抽气回收装置、润滑系统和电气控制冷凝器、节流机构、抽气回收装置、润滑系统和电气控制柜等。它具有单机制冷量大的特点,但存在压力过高密封问题较难解决、工作转速过高等缺点。 螺杆机:螺杆机属于技术较为先进的一种机型。它是利用螺杆式压缩机中两个阴、阳转子的相互啮合,在机壳内回转而完成吸气、压缩与排气过程。其组成部件主要有螺杆式压缩机、冷凝器、蒸发器、热力膨胀阀以及其它控制元件,较离心机要少。它具有结构紧凑、运行平衡可靠、易损件少、部分负荷效率高及使用寿命长等特点。 二、两种机组的市场状况: 离心机:由于离心式冷水机组适用的市场范围相对较小,2008离心式冷水机组的市场销售额大约在25亿元的水平,仅占中央空调全部市场容量的10%。 分析整个国内市场离心机组生产企业的销售情况,销售额超过3亿以上的企业只有几个,主要集中在几大欧美品牌,这几年国内也有一些企业进入这个市场,也取得了一些成绩。 由于离心机组生产企业不多,整体利润还相当可观。这几年离心机组的市场年增长率都在15%左右。 螺杆机:螺杆式冷水机组拥有众多技术优势,如具有效率高、噪声低、振动小、可靠性高、易损件少、运行平稳等,被广泛应用在酒店、商场、医院及现代代的工厂和办公大楼的制冷及空调工程。 2008年螺杆机的销售额约为56亿,约占全部市场销售额的37%,相当于离心机、水冷柜机和模块机之和。 螺杆机市场现在正呈“两极分化”的状态,其容量朝更大和更小的方向发展。 我国最早出现的中央空调产品是水冷螺杆机组,其优点是高效节能。目前国内各类型号建筑中正使用的最多就是水冷螺杆机组。现在,建筑节能已被列为今后能源工作的重点,水冷螺杆机组高效节能的优势使其再次成为销售热点,发展前景非常乐观。

涡旋式冷水机组选用指南

涡旋式冷水机组选用指南 一、适用范围 单机容量小,适用于小型空调系统。 二、产品选用要点 1. 1.涡旋式冷水机组的主要控制参数为能效比,额定制冷量,输入功率以及 制冷剂类型、电源电压等。 2. 2.冷水机组的选用应根据冷负荷及用途来考虑。 3. 3.选用冷水机组时,优先考虑性能系数值较高的机组。根据资料统计,一 般冷水机组全年在100% 负荷下运行时间约占总运行时间的1/4 以下。总运行时间内100%、75%、50%、25% 负荷的运行时间比例大致为2.3%、41.5%、 46.1%、10.1%。因此,在选用冷水机组时应优先考虑效率曲线比较平坦的机 型。同时,在设计选用时应考虑冷水机组负荷的调节范围。 4. 4.选用冷水机组时,应注意名义工况的条件。冷水机组的实际产冷量与下 列因素有关: a)a)冷水出水温度和流量; b)b)冷却水的进水温度、流量以及污垢系数。 5. 5.选用冷水机组时,应注意该型号机组的正常工作范围,主要是主电机的 电流限值是名义工况下的轴功率的电流值。 6. 6.在设计选用中应注意:在名义工况流量下,冷水的出口温度不应超过 15℃,风冷机组室外干球温度不应超过43℃。若必须超过上述范围时,应了解压缩机的使用范围是否允许,所配主电机的功率是否足够。 7.7.注:机组的节能评价值为表中能效等级2级。

三、施工安装要点 1. 1.冷水机组安装应考虑隔振消声措施。安装在室外时,电气控制设备和控 制柜应放置室内。控制柜的安装位置,应能有效避免柜内受潮甚至结露。 2. 2.冷水机组的混凝土基础应平整,在减振器上安装时,各减振器的预压缩 量应均匀一致,偏差量小于2mm。 3. 3.连接冷水机组的管道应设有柔性接头,系统管道的重量不应由冷水机组 支承。 4. 4.冷水机组的吊装应采用设备的吊装点,禁止在设备上随意捆吊绳。 四、执行标准 产品标准 GB19577-2004《冷水机组能效限定值及能源效率等级》 GB/T18430.1-2001《蒸气压缩循环冷水(热泵)机组工商业用或类似用途的冷水(热泵)机组》 GB9237-2001《制冷和供热用机械制冷系统安全要求》 工程标准 GB50189-2005《公共建筑节能设计标准》 GB50019-2003《采暖通风与空气调节设计规范》 GB50243-2002《通风与空调工程施工质量验收规范》 五、相关标准图集 07K304《空调机房设计与安装》

空调系统设备选型

空调系统设备选型 1 水冷冷水机空调系统 ☆主要设备 (1)制冷主机(2)冷冻水泵(3)冷却水泵(4)冷却塔 (5)电子水处理仪(6)水过滤器(7)膨胀水箱 (8)末端装置(组合式空调机组、柜式空调机组、风机盘管等)2 冷、热源的选择 1. 冷、热源系统设计选型注意的几个方面 1.1 各种冷、热源系统的能效特性 1.2 冷、热源系统的部分负荷性能 1.3 冷、热源系统的投资费用 1.4 冷、热源系统的运行费用 1.5 冷、热源系统的环境行为 2. 冷源设备选择 2.1 冷水机组的总装机容量 冷水机组的总装机容量应以正确的空调负荷计算为准,可不作任何附加,避免所选冷水机组的总装机容量偏大,造成大马拉小车或机组闲置的情况。 2.2 冷水机组台数选择 制冷机组一般以选用2~4台为宜,中小型规模宜选用2台,较大型可选用3台,特大型可选用4台。机组之间要考虑其互为备用和切换使用的可能性。同一机房内可采用不同

类型、不同容量的机组搭配的组合式方案,以节约能耗。并联运行的机组中至少应选择一台自动化程度较高、调节性能较好、能保证部分负荷下能高效运行的机组。 为保证运转的安全可靠性,当小型工程仅设1台时,应选用调节性能优良、运行可靠的机型,如选择多台压缩机分路联控的机组,即多机头联控型机组。 2.3 冷水机组机型选择 2.3.1水冷电动压缩式冷水机组的机型宜按制冷量范围,并经 过性能价格比进行选择。 冷水机组机型冷量范围(kW)参考价格(元/kcal/h)往复活塞式≤700 0.5~0.6 螺杆式116~1758 0.6~0.7 离心式≥1758 0.5~0.6 2.3.2冷水机组机型选择 电机驱动压缩机的蒸气压缩循环冷水机组,在额定制冷工况和规定条件下,性能系数(COP)不应低于以下规定。水冷冷水机组机型额定制冷量(kW)性能系数(W/W)活塞式/涡旋式<528 3.8 528~1163 4.0 >1163 4.2 螺杆式<528 4.10 528~1163 4.30

冷水机组规格书

目录 1.技术要求3 1.1 概述3 1.2 设计标准规范4 1.3 定义5 1.4 工作条件6 1.5 基本要求7 1.6 部件、材料要求10 1.7 冷水机组控制方式12 1.8 与相关系统技术接口17 1.9 安全装置17 1.10 选型要求19

1.技术要求 1.1概述 北京地铁亦庄线线路起点位于宋庄路与石榴庄路交叉口南侧,以地下线形式沿宋庄路向南,至顶秀家园后转向东,在凉水河北侧与凉水河并行,下穿南四环后沿四环南侧向东;线路在龙爪树路转向南,沿规划龙爪树路穿过小红门中心区,下穿通久路及高压走廊,在三台山村西侧出地面,以高架线形式上跨成寿寺路及凉水河,进入旧宫地区;在旧宫镇东边缘上跨旧宫北路,之后线路转向东,跨越凉水河及南五环后进入开发区;开发区内线路沿亦庄文化园西路、宏达路、康定街等预留轨道位置到达通惠排干渠;过通惠排干渠后转入地下,以地下线方式沿规划站前街到达亦庄新城东部的亦庄火车站。起点设置宋家庄停车场、终点设置车辆段各一处。 本线路途经丰台、朝阳、大兴、通州四个辖区和亦庄开发区,正线全长23.23km,地下线长约8.95km,高架线路13.95km,U型槽及路基段0.69km。宋家庄出入段线长1.38km,亦庄火车站出入段线0.77km。 全线共设车站14 座,其中地下车站6 座,高架车站8 座。全线换乘车站共5座,宋家庄站与M5、M10换乘,旧宫东站及荣京街站与L5换乘,经海路站与M12换乘,亦庄火车站与京津城际及S6线换乘。 为满足地铁乘客和运营人员的舒适性环境要求和满足运营车站各系统系统设备正常运转的工艺环境需要,提高服务水平,亦庄线设置通风空调系统。通风空调系统要保证地铁和列车内部空气环境的空气质量、温度、湿度、气流组织、气流速度和噪声等均能满足人员的生理及心里条件要求和设备正常运转的需要。 北京地铁亦庄线项目通风空调系统制式采用闭式系统,开、闭式运行。空调通风系统由以下四部分组成:隧道通风系统、车站公共区通风空调系统<简称车站大系统)、车站设备管理用房通风空调系统<简称车站小系统)和空调水系统。 地铁地下车站一般为地下二层结构,地下一层为站厅层,地下二层为站台层。车站冷冻机房一般布置室内地下一层或地下二层。冷冻机房内设有水冷螺杆式冷水机组、冷冻水泵、冷却水泵、分水器、集水器等设备,为车站公共区及设备管理用房提供空调冷源。 车站冷冻机房制冷设备群控系统使冷冻机房的相关设备自成一个网络控制系

r离心式冷水机组技术说明

19XR离心式冷水机组技术标准 执行标准: 企业标准 “19XR系列封闭型离心式冷水机组”Q/JBBR9 –2000 相关标准: ①中国标准 “蒸汽压缩循环冷水(热泵)机组工商业用 和类似用途的冷水(热泵)机组”GB/T ②美国标准 “采用蒸汽压缩循环的冷水机组”ARI 550/590-1998 压力容器: 制造许可证编号: RZZ 沪—82—00 许可证级别 BR1 “钢制压力容器”ASME 环境管理体系认证: 机械工业环境管理体系认证中心证书编号: 质量体系标准: ISO9001 挪威船级社(RvA DNV)Certificate No. QSC—3655制造标准符合下列标准要求: 《容积式和冷水机组性能试验方法》 GB10870-2001 《容积式和离心式冷水机组安全要求》 JB/T8654-1997 《制冷装置用压力容器》 JB/T6917-1998 ARI标准认证 ASME压力容器安全标准

产品组成系统说明,产品主要技术数据和性能的详细描述及提供产品实物彩色样本。 产品组成系统说明 离心式冷水机组成套包括: -按照中国国家压力容器标准和规范进行改型设计、制造和测试的蒸发器和冷凝器,产品水侧工作压力冷凝器为,蒸发器为。 - 02XR单级高效离心式压缩机组件,包括液态制冷剂冷却的封闭电机、油泵组件等。 -机组的接管及连接线。 -润滑系统(已充注润滑油)。 -R134a冷媒 -微电脑控制中心和温度、压力传感器 -线性浮阀节流系统。 -启动柜 -蒸发器和封闭电机保温层 -水平调整板及橡胶隔震垫 水平调整板放在机组底脚下(中间隔置橡胶隔震垫),以使机组处于水平位置,并减少振动的影响。 群控系统交货清单包括(不限于以下设备,详细参见群控报价清单): - 冷水机组系统管理控制器 CSM - 通用控制器模块及输出/输入模块 CC6400&I/O、接口、电控箱 - CCN监控软件Comfort VIEW、计算机、打印机、UPS电源 - 流量计、传感器、阀门 -桥架及安装工程

渣浆泵选型计算.doc

渣浆泵各种选型计算公式 各行业标准中渣浆泵选型公式列出,公式中各符号都进行了统一。1)典型渣浆法 管路特性: 清水Hf=ΔH+(1+ξ)(V^2)/(2g) 浆体Hmo=ΔΗ+0.72Ko(Vl^2)+0.58Ko(V^2) 泵的特性: 浆体Hm=ΔΗ+0.72Ko(Vl^2)+0.58Ko(V^2) 清水Hs=Hs*HR 2)选煤厂法1 管路特性: 清水Hf=ΔH+iL+2 浆体Hmo=ΔΗ+imL+2 泵的特性: 浆体Hm=ΔΗ+imL+2 清水Hs=H/Km 3)除灰计算法 管路特性: 清水Hf=ΔH+1.05iL 浆体Hmo=ΔΗγm+1.05imL 泵的特性 浆体Hm=1.1Hmo 清水Hs=Hs*γm*Km 4)尾矿计算法 管路特性:

清水Hf=ΔH+iL+∑hi 浆体Hmo=ΔΗγm+imL+∑hi 泵的特性: 浆体Hm=ΔΗγm+imL+∑hi 清水Hs=Hs*γm*Km*Kh 5)充填采矿法 管路特性: 清水Hf=ΔH+1.05iL+∑hi 浆体Hmo=ΔΗγm+imL+∑hi 泵的特性: 浆体Hm=ΔΗγm+imL+∑hi 清水Hs=Hs*Km*Kh 6)冶金矿山法 管路特性: 清水Hf=ΔH+iL+∑hi 浆体Hmo=ΔΗγm+imL+∑hi 泵的特性: 浆体Hm=ΔΗγm+imL+∑hi 清水Hs=Hs*γm*Kh 式中的符号及意义 Hf、Hmo,Hm、Hs管路的清水水头和浆体的水头,泵体的浆体扬程和清水扬程;ΔH扬程损耗; L管道长; i、im清水和浆体的摩擦阻力系数; Kh=1-0.25Cw γm浆体比重;

Ko=H/(V^2),清水计算管路水头与速度平方之比。 Vl临界沉降速度。 Km=Hm/(Vm^2)浆体计算管路水头与速度平方之比。

泵基础知识与水泵选型与空调水泵变频控制

泵的基础知识与水泵选型及空调水泵的变频控制泵属于流体机械的一种,流体机械是指以流体为工作介质和能量载体的机械设备。流体机械根据能量传递的方向不同,可分为原动机(水轮机、汽轮机)和工作机(泵、风机、压缩机)。泵属于工作机,即消耗能量的机械。 从泵的性能范围看,巨型泵的流量每小时可达几十万立方米以上,而微型泵的流量每小时则在几十毫升以下;泵的压力可从常压到高19.61Mpa(200kgf/cm2)以上;被输送液体的温度最低达-200摄氏度以下,最高可达800摄氏度以上。泵输送液体的种类繁多,诸如输送水(清水、污水等)、油液、酸碱液、悬浮液、和液态金属等。 在化工和石油部门的生产中,原料、半成品和成品大多是液体,而将原料制成半成品和成品,需要经过复杂的工艺过程,泵在这些过程中起到了输送液体和提供化学反应的压力流量的作用,此外,在很多装置中还用泵来调节温度。 1)工作原理可分为又分为叶片式、容积式和其它形式。 ①叶片式泵,依靠旋转的叶轮对液体的动力作用,把能量连续地传递给液体,使液体的动能(为主)和压力能增加,随后通过压出室将动能转换为压力能,又可分为离心泵、轴流泵、部分流泵和旋涡泵等。 ②容积式泵,依靠包容液体的密封工作空间容积的周期性变化,把能量周期性地传递给液体,使液体的压力增加至将液体强行排出,根据工作元件的运动形式又可分为往复泵和回转泵。 ③其他类型的泵,以其他形式传递能量。如射流泵依靠高速喷射的工作流体将需输送的流体吸入泵后混合,进行动量交换以传递能量;水锤泵利用制动时流动中的部分水被升到一定高度传递能量;电磁泵是使通电的液态金属在电磁力作用下产生流动而实现输送。另外,泵也可按输送液体的性质、驱动方法、结构、用途等进行分类。

(完整word版)冷水机组设备选型

一、冷水机组选型 本设计选用螺杆式冷水机组。 机组选型计算: 整栋大楼的最大冷负荷 Q=2473KW,考虑风机、风管、水管、冷水管及水箱温升引起的附加冷负荷,修正后:Q=1.1*2473=2720KW 根据以上数据选择冷水机组见下表(表 1.1) 表1.1 冷水机组性能参数 该冷水机组采用R134a制冷工质,两台机组完全运行时,总制冷量为:2784 KW,可满足最大负荷的情况;运行一台30HXC400A时,制冷量为:1392KW,满足约50%最大负荷的情况。 二、冷却塔选型 冷水机组所需要冷却水的流量及其参数 冷却塔的水流量 = 冷却水系统水量×1.2 =287*2*1.2 =688 m3/h 具体参数为:进水温度为 32℃,出水温度为37℃,湿球温度为28℃ 根据此选择马利冷却塔2台,其参数如下表(表 1.2) 表1.2 冷却塔性能参数 三、膨胀水箱的选择

膨胀水箱的容积是有系统中水容量和最大水温变化幅度决定,可由下式计算: S P tV V ?=α M 3 式中 P V 膨胀水箱的有效容积,m 3 ; α 水的体积膨胀系数,0006.0=α,L/℃; t ? 最大水温变化值; S V 系统内的水容量,m 3。可以按表1.3确定 表1.3 水系统中总水容量(L/m 2建筑面积) 根据上表 S V =1.2×17228=20673 L S P tV V ?=α=0.0006×( 60-20 ) ×20673 =496 L = 0.496 m3 由以上得膨胀水箱的有效容积后,可从采暖通风标准图集T905(一)进行配管管径选择,选定方形水箱型号为1#。具体参数见下表(表1.4) 表1.4 膨胀水箱各项参数表 四、水泵的选择 1、水泵的选择原则 水泵的形式的选择与水管系统的特点、安装条件、运行调节要求和经济性等有关。选择水泵所依据的流量L 和压头P 如下确定: 水泵扬程为: P=(1.1~1.2)Hmax ,kPa

相关文档
最新文档