振荡器的工作基本原理

振荡器的工作基本原理
振荡器的工作基本原理

常见振荡器的工作原理

振荡器应用在在许多不同类型的电子设备中。比如说,石英表使用石英晶体振荡器跟踪时间。还有调幅收音机发射机使用振荡器为电台创建载波,调幅收音机接收机使用称为谐振电路的特殊形式的振荡器进行调谐。以及在计算机、金属探测仪甚至眩晕枪中都有振荡器。

下面我们就要从生活中找到振荡器,并且分析其工作原理。

比如说最常见的振荡器之一就是时钟的钟摆。如果推动钟摆开始摆动,它就会以某种频率振荡——每秒钟会来回摆动一定的次数。控制频率的主要是钟摆的长度。要使物体振荡,能量必须在两种形态之间来回转换。例如,在钟摆中,能量在势能和动能之间转换。当钟摆位于摆动的一端,其能量全部是势能,并准备落下。当钟摆在循环的中间,所有势能转换为动能,钟摆以最快的速度移动。当钟摆向另一侧运动时,所有动能又转为势能。这两种形态间的能量的转换就是导致振荡的原因。

最后由于摩擦的作用,任何物理振荡都会停止。要继续运动,必须在每次循环中添加少许能量。在摆钟里,保持钟摆移动的能量来自弹簧。钟摆在每次敲钟时都得到一点推力,以弥补因摩擦而失去的能量。

电子振荡器的工作原理与之相同。振荡器要正常工作,能量必须在两种形态之间来回转换。将电容器和电感器连接在一起,即可制成一个非常简单的振荡器。如果您阅读过电容器工作原理和电感器工作原理,就会知道电容器和电感器都能储存能量。电容器以静电场的形式储存能量,而电感器则使用磁场。假设有这样一个电路:

如果用电池为电容器充电,然后将电感器插入电路,将会发生以下情况:

1.电容器将通过电感器开始放电。同时电感器将建立磁场。

2.一旦电容器放电完毕,电感器将尝试保持电路中的电流,为电容器的另一个板充电。

3.当电感器的磁场消失后,电容器已再次充电(但充电极性相反),将再次通过电感器

放电。

这种振荡将持续,直到金属线中的电阻耗完能量为止。该振荡频率取决于电感器和电容器的大小。在简单的晶体收音机中,一个由电容器或电感器组成的振荡器充当收音机的调谐器。它通过以下方式连接到天线和地线:

然后来自于不同电台的成千上万的正弦波会到达我们使用的天线。电容器和电感器要以一个特定的频率谐振。符合此特定频率的正弦波将被谐振电路放大,而所有其他频率都将被忽略。在收音机中,谐振电路中的电容器或电感器都是可调的。当我们转动收音机上的调谐旋钮时,就是在进行调节,比如调节可变电容。改变电容器会改变谐振电路的谐振频率,由此也会改变谐振电路所放大的正弦波频率。这就是我们如何“收听”收音机的不同电台!真是运用的振荡器的工作原理达到的这样一个效果。

电子电器频道https://www.360docs.net/doc/9610412967.html,/jishu-dianzidianqi-cp-isp-mat

晶体振荡器课程设计

1石英晶体及其特性 (1) 1.1 石英晶体简介............................................... . ... 1.2石英晶体的阻抗频率特性...................................... 1 ... 2晶体管的部工作原理 (3) 3.晶体振荡器电路的类型及其工作原理 (4) 3.1串联型谐振晶体振荡器........................................ 4…??… 3.2并联谐振型晶体振荡器........................................ 6…??… 3.3泛音晶体振荡器................................................ 8 .. 4 确定工作点和回路参数(以皮尔斯电路为例) (10) 4.1主要技术指标 (10) 4.2确定工作点 (10) 4.3交流参数的确定 (11) 5提高振荡器的频率稳定度........................................... 1 2 6.总结 (13) 参考文献:........................................................ 1.4

Word 文档

1石英晶体及其特性 1.1石英晶体简介 石英是矿物质硅石的一种,化学成分是Sio2,形状是呈角锥形的六棱结晶体,具有各向异性的物理特性。按其自然形状有三个对称轴,电轴X,机械轴丫光轴Z。石英谐振器中的各种晶片,就是按与各轴不同角度,切割成正方形、长方形、圆形、或棒型的薄片,如图1的AT、BT、CT、DT 等切型。不同切型的晶片振动型式不,性能不同 1.2石英晶体的阻抗频率特性 石英谐振器的电路符号和等效电路如图121。C0称为静态电容,即晶体不振动时两极板间的等效电容,与晶片尺寸有关,一般约为几到几十pF。晶体作机械振动时的惯性以Lq、弹性用Cq振动时因磨擦造成的损耗用Rq来等效,它们的数值与晶片切割方位、形状和大小有关, 一般Lq为10 3102H,Cq为10 410 1pF,Rq 在几一几百欧之间。它

环形振荡器的工作原理

环形振荡器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

环形振荡器的工作原理 环形振荡器是利用门电路的固有传输延迟时间将奇数个反相器首尾相接而成,该电路没有稳态。因为在静态(假定没有振荡时)下任何一个反相器的输入和输出都不可能稳定在高电平或低电平,只能处于高、低电平之间,处于放大状态。 假定由于某种原因v11产生了微小的正跳变,经G1的传输延迟时间tpd后,v12产生了一个幅度更大的负跳变,在经过G2的传输延迟时间tpd后,使v13产生更大的正跳变,经G3的传输延迟时间tpd后,在vo产生一个更大的负跳变并反馈到G1输入端。可见,在经过3tpd后,v11又自动跳变为低电平,再经过3tpd之后,v11又将跳变为高电平。如此周而复始,便产生自激振荡。如图2所示,可见振荡周期为 T=6tpd 环形振荡器的改进原因 环形振荡器的突出优点是电路极为简单,但由于门电路的传输延迟时间极短,TTL门电路只有几十纳秒,CMOS电路也不过一二百纳秒,难以获得较低的振荡频率,而且频率不易调节,为克服这个缺点,有几种改进电路,下面给出对照图。如图3和图4所示。 环形振荡器的改进原理 接入RC 电路以后,不仅增大了门G2的传输延迟时间tpd2有助于获得较低的振荡频率。而且通过改变R 和C 的数值可以很方便地实现对频率的调节。 环形振荡器的实用电路 如图4,为了进一步加大RC和G2的传输延迟时间,在实用电路中将电容C 的接地端改接G1的输出端。如图10.3.5所示。例如当v12处发生负跳变时,经过电容C使v13首先跳变到一个负电平,然后再从这

LC正弦波振荡电路的仿真分析

摘要 振荡器的种类很多,适用的范围也不相同,但它们的基本原理都是相同的,都由放大器和选频网络组成,都要满足起振,平衡和稳定条件。然后通过所学的高频知识进行初步设计,由于受实践条件的限制,在设计好后,我利用了模拟软件进行了仿真与分析。为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是Multisim10.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。 关键词:LC振荡回路;仿真;正弦波信号;Multisim软件;

目录 一、绪论 (1) 二、方案确定 (1) 2.1电感反馈式三端振荡器 (2) 2.2电容反馈式三端振荡器 (3) 2.3 振荡平衡条件一般表达式 (4) 2.4起振条件和稳幅原理 (4) 三、LC振荡器的基本工作原理 (4) 四、总电路设计和仿真分析 (5) 4.1软件简介 (5) 4.2 总电路设计 (7) 4.3 进行仿真 (8) 4.4 各个原件对电路的影响 (11) 五、心得体会 (12) 参考文献 (13) 附录 (14) 电路原理图 (14) 元器件清单 (14)

一、绪论 在本课程设计中,对LC正弦波振荡器的仿真分析。正弦波振荡器用来产生正弦交流信号的电路,它广泛应用于通信、电视、仪器仪表和测量等系统中。在通信方面,正弦波震荡器可以用来产生运载信息的载波和作为接收信号的变频或调解时所需要的本机振荡信号。医用电疗仪中,用高频加热。在课程设计中,学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是Multisim10.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。 我利用了仿真软件对电路进行了一写的仿真分析,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。 本课程设计中要求设计的正弦波振荡器能够输出稳定正弦波信号,本设计中所涉及的仿真电路是比较简单的。但通过仿真得到的结论在实际的类似电路中有很普遍的意义。 二、方案确定 通过对高频电子线路相关知识的学习,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路和西勒电路)等。其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。我们这里研究的主要是LC三端式振荡器。

环形振荡器

环形振荡器 设计要求: 设计一环形振荡器,频率在120KHz 左右,尽量降低振荡频率和电源电压的相关性。 设计: 环形振荡器是有奇数个反相器构成的环形回路。电路如下图所示: 本设计中,由于振荡频率要求在120KHz 的低频,根据提供的工艺,寄生电容和电阻都很小,要实现如此之低的振荡频率需要非常多的反相器串联,电路冗长庞大。所以采用需要外加阻容元件降低工作频率。电路如下图所示。 反相器内部电路: 本设计要求尽量降低振荡频率和电源电压的相关性。造成这个相关性的原因主要来自电路的寄生电阻电容: 1. 对管的输出电阻Rn 或Rp 。 2 ()2n n THN VDD R KP W VDD V L =-可见VDD 越大,此电阻越小,振荡频率越高。 2. 寄生电容Cgd ,Cgs 。这两个参数对电源的相关性较小,但是也受一定的影响。 可见, 要有效降低振荡频率和电源电压的相关性,可采用外部的远大于寄生参数的元件来吸收寄生参数以达到目的。经分析,电路受电源影响较大的是对管的输出电阻Rn 或Rp, 它们的阻值大约为几千欧,这里,把外部的电阻取在400K 可以有效地降低相关性。根据振荡频率120KHz ,计算出τ=0.00833ms ,每一级的平均时延为/3τ=0.00278ms ,需要的电容

大小为3C R τ ==6.94pF 。这里设计的反相器输出端本身就有800fF 的电容,再考虑到寄生 电阻,电容,这里将外接电容的值取为5.5pF 。 Spice 网表文件: * Waveform probing commands .probe .options probefilename="ring_my1.dat" + probesdbfile="E:\Program Files\Tanner EDA\S-Edit\tutorial\schematic\ring_my1.sdb" + probetopmodule="ring_my1" .lib "E:\Gspice\HSPICE2002\H06MIXDDCT10V02.LIB" tt .lib "E:\Gspice\HSPICE2002\H06MIXDDCT10V02.LIB" resistor .lib "E:\Gspice\HSPICE2002\H06MIXDDCT10V02.LIB" bjt .SUBCKT inv in out Gnd Vdd c2 out Gnd 800ff m1p out in Vdd Vdd pmos L=5u W=12u mn1 out in Gnd Gnd nmos L=5u W=8u .ENDS * Main circuit: ring_my1 C1 N3 Gnd 5.5pF C2 N2 Gnd 5.5pF C3 a7 Gnd 5.5pF Xinv7 a7 OUT Gnd Vdd inv Xinv_1 N3 N5 Gnd Vdd inv Xinv_2 N2 N1 Gnd Vdd inv .print tran OUT R4 N2 OUT 400K TC=0.0, 0.0 R5 N1 N3 400K TC=0.0, 0.0 R6 N5 a7 400K TC=0.0, 0.0 .tran 50n 14000000n start=800000n VCC Vdd GND PWL (0 5 8000000n 4.5 9000000n 4 10000000n 3.5 11000000n 3 12000000n 2.5 13000000n 2) * End of main circuit: ring_my1 这里用的仿真软件是Tanner 系列的T-Spice 。 仿真:

有源晶振电路及工作原理简述

有源晶振电路及工作原理简述 有源晶振是由石英晶体组成的,石英晶片之所以能当为振荡器使用,是基于它的压电效应:在晶片的两个极上加一电场,会使晶体产生机械变形;在石英晶片上加上交变电压,晶体就会产生机械振动,同时机械变形振动又会产生交变电场,虽然这种交变电场的电压极其微弱,但其振动频率是十分稳定的。当外加交变电压的频率与晶片的固有频率(由晶片的尺寸和形状决定)相等时,机械振动的幅度将急剧增加,这种现象称为“压电谐振”。 压电谐振状态的建立和维持都必须借助于振荡器电路才能实现。图3是一个串联型振荡器,晶体管T1和T2构成的两级放大器,石英晶体XT与电容C2构成LC电路。在这个电路中,石英晶体相当于一个电感,C2为可变电容器,调节其容量即可使电路进入谐振状态。该振荡器供电电压为5V,输出波形为方波。 有源晶振引脚排列: 有源晶振引脚识别,实物图如上图(b)所示. 有个点标记的为1脚,按逆时针(管脚向下)分别为2、3、4。 方形有源晶振引脚分布: 1、正方的,使用DIP-8封装,打点的是1脚。 1-NC;4-GND;5-Output;8-VCC 2、长方的,使用DIP-14封装,打点的是1脚。 1-NC;7-GND;8-Output;14-VCC

注:有源晶振型号众多,而且每一种型号的引脚定义都有所不同,接法也有所不同,上述介绍仅供参考,实际使用中要确认其管脚列方式. 有源晶振通常的接法: 一脚悬空,二脚接地,三脚接输出,四脚接电压。 有源晶振与无源晶振的联系与区别 无源晶振与有源晶振的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振是有2个引脚的无极性元件,需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振有4只引脚,是一个完整的振荡器,其中除了石英晶体外,还有晶体管和阻容元件,因此体积较大。 石英晶体振荡器的频率稳定度可达10^-9/日,甚至10^-11。例如10MHz的振荡器,频率在一日之内的变化一般不大于0.1Hz。因此,完全可以将晶体振荡器视为恒定的基准频率源(石英表、电子表中都是利用石英晶体来做计时的基准频率)。从PC诞生至现在,主板上一直都使用一颗14.318MHz的石英晶体振荡器作为基准频率源。 有源晶振不需要DSP的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI型滤波网络,输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。 下图为晶体及晶振实特图,左边两个是晶振,右边14.38MHz的为晶体.

石英晶体振荡器原理

石英晶体振荡器的基本工作原理及作用 (1)石英晶体振荡器(简称晶振)的结构石英晶体振荡器是利用石英晶体(二氧化矽的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑胶封装的。(2)压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐 振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 (3)符号和等效电路石英晶体谐振器的符号和等效电路如图所示。当晶体不振动时,可把它看 成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个pF到几十pF。当晶体振荡时,机械振动的惯性可用电感L來等效。一般L的值为几十mH到几 百mH。晶片的弹性可用电容C來等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因 摩擦而造成的损耗用R來等效,它的數值约为100Ω。由于晶片的等效电感很大,而C很小, R也小,因此回路的品质因數Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只 与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定性。

环形振荡器版图设计

实验三:环形振荡器版图设计 一、实验目的 1、使用现有的布局实例创建新的布局; 2、仿真提取版图; 二、实验要求 1、打印出DRC报告; 2、输出CMOS环形振荡器的后置仿真结果,包括瞬态响应、振荡频率和平均功率。 三、实验工具 Virtuoso 四、实验内容 1、创建CMOS环形振荡器电路原理图; 2、创建CMOS环形振荡器的版图; 3、后仿真(Post-layout simulation,PLS)。

1、创建CMOS环形振荡器的电路原理图 在library manager界面选中lab1(自己创建的库),并点击菜单栏上的file->new->cell view,创建CMOS环形振荡器的电路原理图。 图1 CMOS环形振荡器电路原理图的创建 因为CMOS环形振荡器是由几个CMOS反相器组成的,在前面两个实验中已经创建好了CMOS反相器的电路原理图,所以可以直接调用CMOS反相器,在schematic editing窗口利用快捷键’i’打开添加实例窗口,选择之前所创建的CMOS反相器,如图2所示,连续放置5个。 图2 添加CMOS反相器 将5个CMOS反相器一次首尾相连,接着创建一个输出引脚,放置在最后一个CMOS反相器后,并通过wire将它们连接起来,具体如图3所示:

图3 CMOS环形振荡器电路原理图 2、创建CMOS环形振荡器的版图 与创建CMOS反相器的版图类似,也是在library manager窗口先选中lab1,在选择file->new->cell view,在弹出的窗口中输入环形振荡器的信息如图4所示: 图4 CMOS环形振荡器版图的创建 在layout editing中添加5个CMOS反相器,并将它们摆放在一起,中间的金属正好相接,如图5所示: 图5 CMOS环形振荡器版图

实验 石英晶体振荡器(严选材料)

实验四石英晶体振荡器 一、实验目的 1、熟悉石英晶体振荡器的基本工作原理; 2、掌握静态工作点对晶体振荡器工作的影响。 3、掌握晶体振荡器频率稳定度高的特点,了解晶体振荡器工作频率微调的 方法。 二、实验原理 1、电路与工作原理 一种晶体振荡器的交流通路如图4-1所示。若将晶体短路,则L1、C2、C3就构成了典型的电容三点式振荡器(考毕兹电路)。因此,图4-1的电路是一种典型的串联型晶体振荡器电路(共基接法)。若取L1=4.3μH、C2=820pF、C3=180pF,C4=20nF,则可算得LC并联谐振回路的谐振频率f≈6MHz,与晶体工作频率相同。图中,C4是微调电容,用来微调振荡频率 C5是耦合电容,R5是负载电阻。很显然,R5越小,负载越重,输出振荡幅度将越小。 图4-1 晶体振荡器交流通路 2、实验电路

如图4-2所示。1R03、1C02为去耦元件,1C01为旁路电容,并构成共基接法。1W01用以调整振荡器的静态工作点(主要影响起振条件)。1C05为输出耦合电容。1Q02为射随器,用以提高带负载能力。实际上,图4-2电路的交流通路即为图4-1所示的电路。 三、实验内容 1、观察振荡器输出波形,测量振荡频率和振荡电压峰值Vp-p。 2、观察静态工作点等因素对晶体振荡器振荡幅度和频率的影响。 四、实验步骤 (一)模块上电 将晶体振荡器模块⑤,接通电源,此时电源指示灯点亮。 (二)测量晶体振荡器的振荡频率 把示波器接到1P01端,顺时针调整电位器1W01,以改变晶体管静态工作点,读取振荡频率(应为6MHZ)。 (三)观察静态工作点变化对振荡器工作的影响

正弦波振荡器的基本原理

正弦波振荡器的基本原理

————————————————————————————————作者:————————————————————————————————日期:

正弦波振荡器的基本原理 1. 自激振荡的概念 电路中无外加输入信号,而在输出端有一定频率和幅度的信号输出,这种现象称为电路的自激振荡。 当 S 合于 1 时ui¢ = ui输出电压为 uo ; 当 S 合于 2 时,ui¢ = uf 如果 uf = ui ,输出电压 uo 不变。即产生自激振荡。 2. 自激振荡的平衡条件

当 uf = ui 时,电路能维持振荡。 uo = Aui uf = Fuo A ——基本放大电路的电压放大倍数; F ——反馈电路的反馈系数。 得自激振荡器平衡条件:AF = 1 。 自激振荡器平衡条件:AF = 1

(1) 振幅平衡条件: 即:反馈电压与输入电压的大小相等;Uf = Ui (2) 相位平衡条件: fA ——输入信号经放大电路的相移量; fF ——输出信号经反馈网络产生的相移量。 即:反馈电压与输入电压同相, 为正反馈; 结论:自激振荡电路是一个具有足够强正反馈的放大电路。 3. 自激振荡的建立 振荡电路利用外界微弱的干扰信号(如刚接通电源时各极电压、电流的扰动)作为初始信号,该信号包含各种频率成分,经放大器放大后,

由选频网络选出某一频率的信号,经正反馈电路送回到输入端、再放大、再选频、再反馈······,使输出信号从无到有,从小到大,从而建立起振荡。 由于晶体管的非线性及直流电源供给的能量有限,输出信号不会无限制地增大。 可见,产生自激振荡的条件是:AF ≥ 1 。 4. 正弦波振荡器的基本组成 放大电路:为满足振幅平衡条件必不可少的电路。 正反馈电路:为满足相位平衡条件必不可少的电路。 选频电路:为输出单一频率正弦波信号所必须的电路。 5.正弦波振荡器的类型: RC 正弦波振荡器:选频电路由 R、C 元件组成。 LC 正弦波振荡器:选频电路由 L、C 元件组成。

压控振荡器原理和应用说明

压控振荡器(VCO 一应用范围 用于各种发射机载波源、扩频通讯载波源或作为混频器本振源。 二基本工作原理 利用变容管结电容Cj 随反向偏置电压VT 变化而变化的特点(VT=OV 时Cj 是最大值,一 般变容管VT 落在2V-8V 压间,Cj 呈线性变化,VT 在8-10V 则一般为非线性变化,如图1 所示,VT 在10-20V 时,非线性十分明显),结合低噪声振荡电路设计制作成为振荡器,当 改变变容管的控制电压,振荡器振荡频率随之改变,这样的振荡器称作压控振荡器(VCO 。 压控振荡器的调谐电压 VT 要针对所要求的产品类别及典型应用环境(例如用户提供调谐要 求,在锁相环使用中泵源提供的输出控制电压范围等 )来选择或设计,不同的压控振荡器, 对调谐电压VT 有不同的要求,一般而言,对调谐线性有较高要求者, VT 选在1-10V ,对宽 频带调谐时,VT 则多选择1-20V 或1-24V 。图1为变容二极管的V — C 特性曲线。 图1变容二极管的V — C 特性曲线 三压控振荡器的基本参数 1工作频率:规定调谐电压范围内的频率范围称作工作频率,通常单位为“ MHZ 或 “GHz 。 2输出功率:在工作频段内输出功率标称值,用 Po 表示。通常单位为“ dBmW 。 3输出功率平稳度:指在输出振荡频率范围内,功率波动最大值,用△ P 表示,通常 单位为“ dBmW 。 4调谐灵敏度:定义为调谐电压每变化1V 时,引起振荡频率的变化量,用 MHz/ △ VT 表示,在线性区,灵敏度最咼,在非线性区灵敏度降低。 5谐波抑制:定义在测试频点,二次谐波抑制 =10Log (P 基波/P 谐波)(dBmw )。 6推频系数:定义为供电电压每变化1V 时,引起的测试频点振荡频率的变化量,用 MHz/V 表 示。 7相位噪声:可以表述为,由于寄生寄相引起的杂散噪声频谱,在偏移主振 f0为fm 的带内,各杂散能量的总和按fin 平均值+15f0点频谱能量之比,单位为dBC/Hz 相位噪 声特点是频谱能量集中在f0附近,因此fm 越小,相噪测量值就越大,目前测量相噪选定 WV) 0 8 10

高频课程设计_LC振荡器_克拉泼.(DOC)

高频电子线路课程设计报告设计题目:高频正弦信号发生器 2015年 1月 6 日

目录 一、设计任务与要求 (1) 二、设计方案 (1) 2.1电感反馈式三端振荡器 (2) 2.2电容反馈式三端振荡器 (2) 2.3克拉波电路振荡器 (6) 三、设计内容 (8) 3.1LC振荡器的基本工作原理 (8) 3.2克拉泼电路原理图 (9) 3.2.1振荡原理 (9) 3.3克拉泼振荡器仿真 (10) 3.4.1软件简介 (10) 3.4.2进行仿真 (10) 3.4.3电容参数改变对波形的影响 (11) 四、总结 (17) 五、主要参考文献 (18) 六、附录.................................................................................... .. (18)

一、设计任务与要求 为了熟悉《高频电子线路》课程中所学到的知识,在本课程设计中,我和队友(石鹏涛、甘文鹏)对LC正弦波振荡器进行了分析和研究。通过对几种常见的振荡器(电感反馈式三端振荡器、电容反馈式三端振荡器、改进型电容反馈式振荡器)进行分析论证,我们最终选择了克拉泼振荡器。 在本次课程设计中,设计要求产生10~20Mhz的振荡频率。振荡器的种类很多,适用的范围也不相同,但它们的基本原理都是相同的,都由放大器和选频网络组成,都要满足起振,平衡和稳定条件。然后通过所学的高频知识进行初步设计,由于受实践条件的限制,在设计好后,我利用了模拟软件进行了仿真与分析。为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我们选用的仿真软件是Multisim11.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。 最后我们利用了仿真软件对电路进行了一写的仿真分析,如改变电容的参数,分析对电路产生的影响等,再考虑输出频率和振幅的稳定性,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。 二:设计方案 通过学习高频电子线路的相关知识,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路)等。通过老师所讲和查阅相关资料可知,克拉泼振荡电路具有该电路频率稳定性非常高,振幅稳定,适合做波段振荡器等优点。所以在本设计中拟采用改进型电容反馈式--克拉泼电路振荡器。 下面对几种振荡器进行分析论证: 2.1电感反馈式三端振荡器

晶振的工作原理

晶振的工作原理 一、什么是晶振? 晶振是石英振荡器的简称,英文名为Crystal,它是时钟电路中最重要的部件,它的主要作用是向显卡、网卡、主板等配件的各部分提供基准频率,它就像个标尺,工作频率不稳定会造成相关设备工作频率不稳定,自然容易出现问题。 晶振还有个作用是在电路产生震荡电流,发出时钟信号. 晶振是晶体振荡器的简称。它用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。 晶振在数字电路的基本作用是提供一个时序控制的标准时刻。数字电路的工作是根据电路设计,在某个时刻专门完成特定的任务,如果没有一个时序控制的标准时刻,整个数字电路就会成为“聋子”,不知道什么时刻该做什么事情了。 晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。 晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。

电路中,为了得到交流信号,可以用RC、LC谐振电路取得,但这些电路的振荡频率并不稳定。在要求得到高稳定频率的电路中,必须使用石英晶体振荡电路。石英晶体具有高品质因数,振荡电路采用了恒温、稳压等方式以后,振荡频率稳定度可以达到10^(-9)至10 ^(-11)。广泛应用在通讯、时钟、手表、计算机……需要高稳定信号的场合。 石英晶振不分正负极, 外壳是地线,其两条不分正负 二、晶振的使用 晶振,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。 晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。 一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容

振荡电路工作原理详细分析

振荡电路工作原理详细分析注:这只是我个人的理解,仅供参考,如不正确,请原谅! 1、电路图和波形图 2、工作原理:晶体管工作于共发射极方式。集电极电压通过变压器反馈回基级,而变压器绕组的接法实现正反馈。其工作过程根据三极管的工作状态分为三个阶段:t1、t2、t3(如上图): 说明:此分析过程是在电路稳定震荡后,以一个完整波形周期为例进行分析,即起始Uce=12v。而对于电路刚接通时,工作原理完全相同,只是做波形图时,起始电压Uce=0v。 1)、电路接通后,进入t1阶段(晶体管为饱和状态)。 在t1的初始阶段,电路接通,流过初级线圈的电流不能突变,使得集电极电压Uce急速减小,由于时间很短,在波形中表现为下降沿很陡。而经过线圈耦合,会使基极电压Ube急速增大。此时,三极

管工作在饱和状态(Ube>=Uce)。基极电流ib失去对集电极电流ic 的控制。之后,随着时间增加,Uce会逐渐增加,Ube通过基极与发射机之间的放电而逐渐减少。基极电压Ube下降使得ib减小。 2)、当ib减小到ic /β时, 晶体管又进入放大状态,即t2阶段。 于是,ib的减小引起ic的减小,造成变压器绕组上感应电动势方向的改变,这一改变的趋势进一步引起ib的减小。如此又开始强烈的循环,直到晶体管迅速改变为截止状态。这一过程也很快,对应于脉冲的下降沿。在此过程中,电流强烈的变化趋势使得感应线圈上出现一个很大的感应电动势,Ube变成一个很大的负值。 3)、当晶体管截止后(t3阶段),ic=0,Uce经初级线圈逐渐上升到12v(变压器线圈中储存有少量能量,逐渐释放)。此时,直流12v电源通过27欧电阻和反馈线圈对基极电压充电,Ube逐渐上升,当Ube上升到0.7v左右时,晶体管重新开始导通(硅管完全导通的电压大约是0.7v)。于是下一个周期开始,重复上述各个阶段。其震荡周期T=t1+t2+t3;

高频电子线路课程设计-电容三点式LC振荡器的设计与制作

高频课设实验报告 实验项目电容三点式LC振荡器的设计与制作系别 专业 班级/学号 学生姓名 实验日期 成绩 指导教师

电容三点式 LC 振荡器的设计与制作 一、实验目的 1.了解电子元器件和高频电子线路实验系统。 2.掌握电容三点式LC 振荡电路的实验原理。 3.掌握静态工作点、耦合电容、反馈系数、等效Q 值对振荡器振荡幅度和频率的影响4.了解负载变化对振荡器振荡幅度的影响。 二、实验电路实验原理 1.概述 2.L C振荡器的起振条件 一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振平衡条件和相位平衡条件。 3.LC振荡器的频率稳定度 频率稳定度表示:在一定时间或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:△f0/f0来表示(f0为所选择的测试频率:△f0为振荡频率的频率误差,Δf0=f02 -f01:f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高 Q 值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。 4.LC振荡器的调整和参数选择 以实验采用改进型电容三点振荡电路(西勒电路)为例,交流等效电路如图1-1 所示。 (1)静态工作点的调整 合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏有一定的影响。偏置电路一般采用分压式电路。当振荡器稳定工作时,振荡管工作在非线性

状态,通常是依靠晶体管本身的非线性实现稳幅。若选择晶体管进入饱和区来实现稳幅,则将使振荡回路的等效 Q 值降低,输出波形变差,频率稳定度降低。因此,一般在小功率振荡器中总是使静态工作点远离饱和区靠近截止区。 (2)振荡频率 f 的计算 式中 CT为 C1、C2和 C3的串联值,因 C1(300p)>>C3(75p),C2(1000P)>> C3(75p),故 CT≈C3,所以,振荡频率主要由 L、C 和 C3 决定。 (3)反馈系数F的选择 反馈系数 F不宜过大或过小,一般经验数据 F≈0.1~0.5,本实验取F=0.3 5.克拉波和西勒振荡电路 图 1-2 为串联改进型电容三点式振荡电路——克拉泼振荡电路。图1-3 为并联改进型电容三点式振荡电路——西勒振荡电路。 6.电容三点式 LC 振荡器电路 电容三点式LC振荡器电路如图1-4所示。图中1K01打到“S”位置(右侧)时,为改进型克拉泼振荡电路,打到“P”位置(左侧)时,为改进型西勒振荡电路。开关IS03控制回路电容的变化。调整1W01可改变振荡器三极管的电源电压。1Q02为射极跟随器。1TP02为振荡器直流电压测量点。1W02用来改变输出幅度。 二、实验目的

环形振荡器

集成电路设计实践报告 题目:基于Cadence的反相器设计 班级: 学号: 姓名: 1.关于Cadence EDA软件

Cadence EDA软件是当前在各类工作站上广泛使用的一种功能最为完备的电子设计自动化辅助工具,其布局/布线工具与电路仿真工具的性能超群,世界上绝大多数IC生产厂商都可以直接接收由它们生成的IC版图和仿真结果。 对于全定制的设计,首先应输入电路原理图,然后对其要完成的功能进行仿真,以便对设计功能进行验证并对设计参数进行优化。仿真结束后,进行电路的IC版图设计,设计完成后要进行版图的设计规则检查和设计参数的提取,以检查版图设计是否符合工艺要求。完成了版图的设计后,还要将版图电路与原理图电路进行对比,即LVS(Layout Versus Schematic)。确定无误后,用从版图中提取的包括各种寄生参数在内的数据进行所谓的后仿真(Post Simulation),该后仿真能够比较好地反映IC制造完成后电路的实际工作情况。一旦仿真结果满足设计要求,就可以将版图数据提交给生产厂商进行流片生产。 2.反相器设计 2.1实验目的 1、掌握用Composer绘制倒相器的电路图; 2、掌握用Analog Artist进行倒相器的电路仿真。 3、通过Vrtuoso工具进行倒相器的版图设计,尺寸按照要求绘制; 4、对倒相器的版图进行DRC、ERC、LVS验证。 2.2实验步骤 2.2.1反相器原理图的绘制 1 在终端提示符下,键入icfb&,启动Cadence EDA软件。 2 在弹出的Library Manager窗口中执行File->New->Library,将会弹出如下图所示的窗口,在Name栏中输入设计库的名字,然后还需要为设计选择一个已经存在的工艺库。具体做法是点击Attach to existing tech library前面的按钮,然后选择相应的工艺文件,当然在进行电路设计及仿真时也可以不选定工艺文件,最后点击OK。 3、在Library Manager窗口中先选择刚才新建立的库,再在菜单文件选项中选择执行File->New->Cell View选择工具栏中的“添加元件”,弹出添加元件的窗口,点击Add Instance窗口中的Browse,会弹出Component Browser窗口,选定Library为analogLib,并使得Flatten的复选框选中,一些常用的元器件就在Analoglib库中列出来了。

晶体振荡器电路+PCB布线设计指南

AN2867 应用笔记 ST微控制器振荡器电路 设计指南 前言 大多数设计者都熟悉基于Pierce(皮尔斯)栅拓扑结构的振荡器,但很少有人真正了解它是如何工 作的,更遑论如何正确的设计。我们经常看到,在振荡器工作不正常之前,多数人是不愿付出 太多精力来关注振荡器的设计的,而此时产品通常已经量产;许多系统或项目因为它们的晶振 无法正常工作而被推迟部署或运行。情况不应该是如此。在设计阶段,以及产品量产前的阶 段,振荡器应该得到适当的关注。设计者应当避免一场恶梦般的情景:发往外地的产品被大批 量地送回来。 本应用指南介绍了Pierce振荡器的基本知识,并提供一些指导作法来帮助用户如何规划一个好的 振荡器设计,如何确定不同的外部器件的具体参数以及如何为振荡器设计一个良好的印刷电路 板。 在本应用指南的结尾处,有一个简易的晶振及外围器件选型指南,其中为STM32推荐了一些晶 振型号(针对HSE及LSE),可以帮助用户快速上手。

目录ST微控制器振荡器电路设计指南目录 1石英晶振的特性及模型3 2振荡器原理5 3Pierce振荡器6 4Pierce振荡器设计7 4.1反馈电阻R F7 4.2负载电容C L7 4.3振荡器的增益裕量8 4.4驱动级别DL外部电阻R Ext计算8 4.4.1驱动级别DL计算8 4.4.2另一个驱动级别测量方法9 4.4.3外部电阻R Ext计算 10 4.5启动时间10 4.6晶振的牵引度(Pullability) 10 5挑选晶振及外部器件的简易指南 11 6针对STM32?微控制器的一些推荐晶振 12 6.1HSE部分12 6.1.1推荐的8MHz晶振型号 12 6.1.2推荐的8MHz陶瓷振荡器型号 12 6.2LSE部分12 7关于PCB的提示 13 8结论14

晶体振荡器工作原理

晶体振荡器工作原理 石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。 石英晶体振荡器的基本原理 石英晶体振荡器的结构 石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。 压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 符号和等效电路 当晶体不振动时,可把它看成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个PF到几十PF。当晶体振荡时,机械振动的惯性可用电感L来等效。一般L的值为几十mH 到几百mH。晶片的弹性可用电容C来等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因摩擦而造成的损耗用R来等效,它的数值约为100Ω。由于晶片的等效电感很大,而C很小,R也小,因此回路的品质因数Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定度。 谐振频率 从石英晶体谐振器的等效电路可知,它有两个谐振频率,即(1)当L、C、R支路发生串联谐振时,它的等效阻抗最小(等于R)。串联揩振频率用fs表示,石英晶体对于串联揩振频率fs呈纯阻性,(2)当频率高于fs时L、C、R支路呈感性,可与电容C。发生并联谐振,其并联频率用fd表示。根据石英晶体的等效电路,可定性画出它的电抗—频率特性曲线。可见当频率低于串联谐振频率fs 或者频率高于并联揩振频率fd时,石英晶体呈容性。仅在fs<f<fd极窄的范围内,石英晶体呈感性。 石英晶体振荡器类型特点 石英晶体振荡器是由品质因素极高的石英晶体振子(即谐振器和振荡电路组成。晶体的品质、切割取向、晶体振子的结构及电路形式等,共同决定振荡器的性能。国际电工委员会(IEC)将石英晶体振荡器分为4类:普通晶体振荡(TCXO),电压控制式晶体振荡器(VCXO),温度补偿式晶体振荡(TCXO),恒温控制式

晶振的作用与原理

晶振的作用与原理 一,晶振的作用 (1)晶振是石英振荡器的简称,英文名为Crystal,它是时钟电路中最重要的部件,它的主要作用是向显卡、网卡、主板等配件的各部分提供基准频率,它就像个标尺,工作频率不稳定会造成相关设备工作频率不稳定,自然容易出现问题。 (2)晶振还有个作用是在电路产生震荡电流,发出时钟信号.晶振是晶体振荡器的简称。它用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。 (3)晶振在数字电路的基本作用是提供一个时序控制的标准时刻。数字电路的工作是根据电路设计,在某个时刻专门完成特定的任务,如果没有一个时序控制的标准时刻,整个数字电路就会成为“聋子”,不知道什么时刻该做什么事情了。 (4)晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。

如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。 (5)电路中,为了得到交流信号,可以用RC、LC谐振电路取得,但这些电路的振荡频率并不稳定。在要求得到高稳定频率的电路中,必须使用石英晶体振荡电路。石英晶体具有高品质因数,振荡电路采用了恒温、稳压等方式以后,振荡频率稳定度可以达到10^(-9)至10^(-11)。广泛应用在通讯、时钟、手表、计算机……需要高稳定信号的场合。石英晶振不分正负极, 外壳是地线,其两条不分正负 二,晶振的原理; 石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本结构大致是从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。

LC振荡器

摘要 振荡器(英文:oscillator)是用来产生重复电子讯号(通常是正弦波或方波)的电子元件,能将直流电转换为具有一定频率交流电信号输出的电子电路或装置。其构成的电路叫振荡电路。其中,LC振荡器因其使用方便和灵活性大而得到广泛的应用。因此,了解LC振荡器电路的特性显得尤为重要。本次实验将讨论各个LC振荡电路各元件与反馈系数|F|、角频率w之间的关系。 关键词:LC振荡;MATLAB;反馈系数;频率

Abstract The oscillator is used to generate repeat electronic signal (usually a sine wave or square wave) of electronic components, can the DC conversion to electronic circuit or device with a certain frequency AC signal output. Constitute a circuit called the oscillation circuit. Among them, the LC oscillator because of its convenience and flexibility and has been widely applied. Therefore, to understand the characteristics of LC oscillator circuit is very important. This study will discuss the relationship between the various LC oscillation circuit components and feedback coefficient |F|, frequency . Keywords: LC oscillation; MATLAB; frequency feedback coefficient;

相关文档
最新文档