桥式整流、电容滤波电路设计

桥式整流、电容滤波电路设计
桥式整流、电容滤波电路设计

整流、滤波电路设计

摘要

在现代工农业生产和日常生活中,广泛地使用着交流电。主要原因是与直流电相比,交流电在产生、输送和使用方面具有明显的优点和重大的经济意义。例如在远距离输电时,采用较高的电压可以减少线路上的损失。然而大部分的用电设备使用的是直流电,因此如何更加有效的将交流电转换成直流电成为不容忽视的问题,电压的稳定与否,与整流、滤波有着很大的关系,因此要制作一种数控电源必然少不了对整流、滤波电路的设计,本次目的是掌握桥式整流,电容滤波的设计方法。了解整流滤波电路的基本工作原理。

关键词:桥式整流电路,电容滤波电路,稳压电路

引言

电子系统的正常运行离不开稳定的电源,除了在某些特定场合下采用太阳能电池或化学电池作电源外,多数电路的直流电是由电网的交流电转换来的,能长期、连续、可靠、稳定地工作,给人们生产生活带来了极大的方便。电子设备的小型化和低成本化使电源以轻、薄、小和高效率为发展方向。传统的晶体管串联调整稳压电源,是连续控制的线性稳压电源,这种传统稳压电源级数比较成熟。并且已有大量集成化的线性稳压电源模块,具有稳定性能好、输出纹波电压小、使用可靠等特点。但其通常都需要体积大且笨重的工频变压器和隔离之用,另外,由于调整管上消耗较大的功率,所以需要采用大功率调整管并装有体积很大的散热器,于是它很难满足电子设备发展的要求。从而促成了高效率、体积小、重量轻的开关电源的迅速发展。而开关电源的稳定关键就在于整流、滤波电路的设计。

1 桥式整流电路工作原理

由图1可看出,电路中采用四个二极管,互相接成桥式结构。利用二极管的电流导向作用,在交流输入电压U2的正半周内,二极管D1、D3导通,D2、D4截止,在负载RL上得到上正下负的输出电压;在负半周内,正好相反,D1、D3截止,D2、D4导通,流过负载RL的电流方向与正半周一致。因此,利用变压器的一个副边绕组和四个二极管,使得在交流电源的正、负半周内,整流电路的负载上都有方向不变的脉动直流电压和电流。

图1整流电路

电压应满足下式:

U1≥U0max U1-U0min+U RIP+ΔU1式中,U0ma x-稳压电源输出最大值;(U1-U0)min-集成稳压器输入输出最小电压差;URIP-滤波器输出电压的纹波电压值(一般取U0,(U1-U0)min之和的10%);ΔU1-电网波动引起的输入电压的变化(一般取U0,(U1-U0)min,U RIP之和的10%).

对于集成三端稳压器,当(U1-U0)min=2~10V时,具有较好的稳压输出特性.故滤波器输出电压值U1≥15+3+1.8+1.98≥22V),取U1=22V.根据UI可确定变压器次级电压U2.U2=U1/(1.1~1.2)=22/1.1≈20V

在桥式整流电路中,变压器次级电流与滤波器输出电流的关系为:I2=(1.5-2)I1≈1.5×0.5=0.75A.取变压器的效率η=0.8,则变压器的容量为P=U2×I2/η=20X0.75/0.8=18.75(W).选择容量为20W的变压器.因为流过桥式电路中每只二极管的电流为I D=0.5I1max=0.5I0max=0.5×0.5=0.25(A).每只整流二极管承受的最大反向电压为U RM=1.414U2max=1.414×20×(1+10%)≈31(V),选用二极管IN4001,其参数为:I D=1A,U RM=100V.可见能满足要求。

2 电容滤波电路

整流电路输出的直流电压脉动较大,一般不能满足实际需要,必须用滤波电路滤除交流分量,得到平滑的直流电压。在小功率直流电源中,常用的滤波电路有电容滤波、Г型滤波和п滤波。在整流电路输出端与负载之间并联一只大容量的电容,如图2a,即可构成最简单的电容滤波器。其工作原理是利用电容两端的电压在电路状态改变时不能跃变的特性。

Tr

a

图2 电容滤波原理及波形图a.原理图,b. 波形图

加了一只电容后,二极管导通时,一方面给负载R L供电,一方面对电容C 充电。在忽略二极管正向压降后,充电时,充电时间常数τ充电=2R D C,其中R D为二极管的正向导通电阻,其值非常小,充电电压u C与上升的正弦电压u2一致,u o=u C≈u2,当u C充到u2的最大值时,u2开始下降,且下降速率逐渐加快。当|u2|<u C时,四个二极管均截止,电容C经负载R L放电,放电时间常数为τ放电=R L C,故放电较慢,直到负半周。在负半周,当|u2|>u C时,另外二个二极管(VD2、VD4)导通,再次给电容C充电,当u C充到u2的最大值时,u2开始下降,且下降速率逐渐加快。当|u2|<u C时,四个二极管再次截止,电容C经负载R L放电,重复上述过程。有电容滤波后,负载两端输出电压波形如图2b所示。

电容滤波电路结构简单、输出电压高、脉动小。但在接通电源的瞬间,将产生很大的充电电流,这种电流称为“浪涌电流”,同时,因负载电流太大,电容器放电的速度加快,会使负载电压变得不够平稳,所以电容滤波电路只使用于负载电流较小的场合。由上述讨论可知,当R L比较小时,即使滤波电容容量很大,脉动系数仍比较大。为进一步减小脉动系数,通常采用如图3所示的л型RC滤波电路。

图3π型RC滤波电路

3 稳压电路

当电网电压或负载电流发生变化时,滤波电路输出的直流电压的幅值也将随之变化,因此,稳压电路的作用是使整流滤波后的直流电压基本上不随交流电网电压和负载的变化而变化。

利用二极管的单向导电性组成整流电路,可将交流电压变为单向脉动电压。本章为便于分析整流电路,把整流二极管当作理想元件,即认为它的正向导通电

阻为零,而反向电阻为无穷大。但在实际应用中,应考虑到二极管有内阻,整流后所得波形,其输出幅度会减少0.6~1V,当整流电路输入电压大时,这部分压降可以忽略。但输入电压小时,例如输入为3V,则输出只有2V多,需要考虑二极管正向压降的影响。

在小功率直流电源中,常见的几种整流电路有单相半波、全波、桥式和三相整流电路等。

整流(和滤波)电路中既有交流量,又有直流量。对这些量经常采用不同的表述方法:输入(交流)——用有效值或最大值;输出(直流)——用平均值;二极管正向电流——用平均值;二极管反向电压——用最大值。一般滤波电路的设计原则是,取其放电时间常数R L C是其充电时间常数的2~5倍对于桥式整流电路,滤波电容的充电周期等于交流电源周期的一半.

如下图4是一般常用可调稳压电路

图4 可调稳压电路

结论

整流、滤波电路有很多构成方案,如整流电路就分别有:半波整流电路、单相全波整流电路、单相桥式整流电路;滤波电路又分为电容滤波和电感滤波。在这里我主要选择了桥式整流电路和电容滤波来完成自己的课题。

通过在网上和图书馆所找的资料,使我了解到了制作简易数控电源的一些基本步骤,有些芯片本来不懂的,但是经过查资料使我对有些不是懂的芯片有了一

定的了解,如果有时间,最好能够做出一个实物图就比较了解,但是时间实在太紧,不过经过对资料的整理,为我毕业设计提供了资料和思路,使我对这次的毕业设计充满了信心,相信在老师的带领下,我能很好的完成目标,同时也要感谢老师给我们宝贵经验指导。

参考文献

[1] 刘宝琴,许海根.数字电路与系统[M] .北京:清华大学出版社,1993:59-64.

[2] 樊英杰,许海根.电子技术实践教程[M].西安:西北工业大学出版社,2006:59-64.

[3] 陈永甫.新编555集成电路应用800例[M].北京:电子工业出版社,2000:3-4.

[4] 陈克安.集成电路速查大全[M].北京:西安电子科技大学出版社,1995:156.

[5] 赵学泉,张国化.新型电子电路应用指南[M].北京:电子工业出版社,1995:211.

[6] 余孟尝.数子电子技术基础简明教程[M].北京:高等教育出版社,2005:373-375.

[7] 扬素行.模拟电子技术基础简明教程[M].北京:高等教育出版社,1998:12.

[8] 贝冠祺.小功率电源变压器实用设计制作和修理[M].北京:人民邮电出版

社,1995:123.

[9] 王增福,魏永明.新编常用稳压电源电路[M].北京:电子工业出版社,2005:10-12.

[10] 老霍.变压器的阻抗变换功能[J].北京:电子学报,1999:12.

[11] Rudolf F.Graf,the Encyclopedia of Electronic Circuits,Tab Books Inc.1985:268.

[12] D.Roy Choudhury and Shail Jain.Linear Integrated Circuits.New Yoyk:John wiley and Sons Inc.1991:166.

全波整流滤波电路

二极管全波整流滤波电路 ①下面分两部分介绍其工作原理,即桥式整流电路与滤波电路两部分。 首先,介绍桥式整流电路,其工作原理为如下: 电路图 图10.02(a) 在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。根据图10.02(a)的电路图可知:当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。 当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。 在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。单相桥式整流电路的波形图见图10.02(b)。

下面介绍滤波电路的工作原理: (1)滤波的基本概念 滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。电容器C对直流开路,对交流阻抗小,所以C应该并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L 应与负载串联。经过滤波电路后,既可保留直流分量、又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。 (2)电容滤波电路 现以单相桥式电容滤波整流电路为例来说明。电容滤波电路如图10.06所示,在负载电阻上并联了一个滤波电容C。 若电路处于正半周,二极管D1、D3导通,变压器次端电压v2给电容器C充电。此时C相当于并联在v2上,所以输出波形同v2,是正弦形。当v2到达90°时,v2开始下降。先假设二极管关断,电容C就要以指数规律向负载RL放电。指数放电起始点的放电速率很大。 在刚过90°时,正弦曲线下降的速率很慢。所以刚过90°时二极管仍然导通。在超过90°后的某个点,正弦曲线下降的速率越来越快,当刚超过指数曲线起始放电速率时,二极管关断。 所以,在t1到t2时刻,二极管导电,C充电,v C=v L按正弦规律变化;t2到t3时刻二极管关断,v C=v L按指数曲线下降,放电时间常数为R L C。通过以上分析画出波形图如下: ②讨论C和RL的大小对输出电压的影响。

整流滤波稳压实验报告

整流滤波及稳压电路 学院:机电工程学院专业:电气工程及其自动化学号:14040410039 姓名:廖芳群 一、实验目的 1.掌握单相桥式整流电路的应用 2.掌握电容滤波电路的特性 3.掌握稳压管稳压的应用和测试 二、实验仪器 电路板,示波器,函数信号发生器等。 三、实验原理 直流稳压电源是所有电子设备的重要组成部分,它的基本任务是将电力网交流电压变换为电子设备所需要的交流电压值,然后利用二极管单向导电性将交流电压整流为单向脉冲的直流电压,再通过电容或电感等储能元件组成的滤波电路来减小其脉动成分,从而得到较平滑的直流电压。同时,由于该直流电压易受电网波动及负载变化的影响,必须加稳压电路,利用负反馈来维持输出直流电压的稳定。直流稳压电源的基本组成框图和工作波形如图一所示: 220V a b c 50Hz 图一 1、整流电路 利用二极管的单向导电作用,将电网的交流电转变成单方向的脉冲直流电,这就是整流。常用的整流电路有半波整流、桥式整流以及倍压整流。这次实验中主要采用桥式整流的方式获得单向脉冲的直流电源。 桥式整流电路(如图二)由四个二极管组成,负载电流也由两路二极管轮流导通(如V1,V2)而提供,波纹小,截止一路两个二极管(如V3,V4)分担反向电压,对整流管要求较低,是最常用的整流电路。

图二 2、 滤波电路 整流电路输出的是直流脉冲电压,这种脉冲电压中含有较大的交流成分,因而不能保证电子设备正常工作,尤为明显的是在音响设备中会出现较严重的交流哼声。因此需要进一步减小输出电压的这种脉动,使其更加平滑。滤波电路就是利用电容或电感在电路中的储能作用来完成此功能的。常用的滤波器有电容滤波和电感滤波,但是相同的滤波效果时,采用电容滤波比采用电感滤波更经济有效。如图三,以桥式整流为例,说明整流滤波的工作原理。 图三 3、 稳压电路 虽然整流滤波电路可使交流电变成平滑的直流电,但由于受到电网电压的波动、负载电阻的变化以及环境温度的变化,这些均会导致输出直流电压的不稳定。因此,大多数电子设备还需要采取一定的稳压电路(措施),以保证输出电压值的稳定。稳压电路的种类通常有稳压管稳压电路、串联型稳压电路、集成稳压电路和开关型稳压电路。 对稳压电路的主要要求如下: ⑴稳压系数s (i i U U U U /0/0/??=)小,稳定度高,即输出电压相对变化量要 远小于输入电压变化量。 ⑵输出电阻0R 小,L I U R ??=/00,0R 小,一般为m Ω量级,表示负载电流变化时,输出电压稳定。 ⑶温度系数T S 小,T U S T ??=/0(mV/℃),T S 表示温度变化时,输出电压稳定。 四、实验内容

电源滤波电路(图) 电源滤波电路解析

电源滤波电路、整流电源滤波电路分析 电源滤波电路 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 电阻滤波电路 RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合. 电感滤波电路 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。

(完整版)整流滤波电路实验报告

整流滤波电路实验报告 姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4 一、实验目的 1、研究半波整流电路、全波桥式整流电路。 2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。 3、整流滤波电路输出脉动电压的峰值。 4、初步掌握示波器显示与测量的技能。 二、实验仪器 示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。 三、实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整 流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤 波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四、实验步骤 1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。

3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。 改变电阻大小(200Ω、100Ω、50Ω、25Ω)

200Ω100Ω50Ω

25Ω 6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω)200Ω 100Ω

50Ω 25Ω 五、数据处理 1、当C 不变时,输出电压与电阻的关系。 输出电压与输入交流电压、纹波电压的关系如下: avg)r m V V V (输+= 又有i avg R C V ??=输89.2V )(r 所以当C 一定时,R 越大 就越小 )(r V avg 越大 输V

整流滤波电路实验报告(模板加实验图片)

学生姓名: XX 学号:00000000 专业班级:XXXXXXXXXXXXXX 实验时间:XXXX时XXX分第XX周星期X 座位号:XX 上面是我自己的信息,被我改成“XX”,下载者自行修改,最下面还有我做实验的图片,如果没做实验或者实验一塌糊涂可以参照,或者P成黑白or照着画,这5财富值,你看值,就下载!我很给力的!!!!! 整流滤波电路实验 一.实验目的 1.研究半波整流电路、全波桥式整流、滤波电路; 2.测绘电学原件的伏安特性曲线,学习图示法表示实验结果。 二.实验器材 6伏交流电源,双踪示波器,电解电容470μF×1、100μF×1,整流二极管IN4007×4,电阻箱,导线若干。 三.实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四.实验步骤

1、连接好示波器,将信号输入线与6V 交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。 3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。改变电阻大小(200Ω、100Ω、50Ω、25Ω) 6、更换10μF的电容,改变电阻大小(200Ω、100Ω、50Ω、25Ω) 7、分别记下并描绘出各波形图。 五.实验数据以及波形图

半波整流电容滤波电路分析

半波整流电容滤波电路分析 [摘要]本文首先介绍了半波整流过程,然后以桥式整流为例从物理角度和数学物理角度分别介绍了阻容滤波电路的波形和效果,指出了两种分析方法,得出了两种结果,最后指出了产生差别的原因。 [关键词]电压;电流;整流;滤波;充放电;傅里叶级数[DOI]1013939/jcnkizgsc201528062 任何电子设备都需要直流电源供电。获得直流电源最简单最经济的方法就是将交流电变为直流电。其中,半波整流电容滤波电路是最简单最基本的电路。这里试图从教学的角度对电路进行分析。 1 单相半波整流电路 电路如图1所示,为了问题的简化并突出重点,所有器件都认为是理想器件。变压器副边电压U2是正弦波。 图1 单相半波整流电路 当U2在正半周时,A点电位比B点高,二极管D加正向电压而导通,因为忽略了二极管正向导通压降,所以uo 与u2完全相同,则,负载电压uo、二极管管压降ud、流过负载的电流io和二极管的电流id 为: uo=u2

ud=0 io=id=0 当U2在负半周时,A点电位比B点低,二极管D加反向电压而截止,则,负载电压uo、二极管管压降ud、流过负载的电流io和二极管的电流id 为: uo=0 ud=u2 io=id=0 通过积分计算不难算出负载上输出电压、电流为 Uo=u2 045u2 IO=ID==045 输出电压的脉动系数(S)定义为输出电压的基波最大值与输出直流电压平均值之比。则 S===157如图2所示。 图2 半波整流电压电流波形 2 电容滤波电路 实际生活中桥式整流滤波电路应用广泛,这里以它为例分析一下电容滤波电路。 如图3(a)所示,不妨令电容初始电压为零,则当u2按正弦规律从零时刻上升时,D1、D3导通,电容开始充电,因为导线和二极管都是理想器件,所以,电容充电完全和u2一样按正弦规律上升,直至充到最大值U2。此后u2按正弦

桥式整流滤波电路实验

桥式整流、滤波及稳压电路 一、实验目的 1.学会半导体二极管和稳压管极性的简单测试,了解其工作性能和作用; 2.掌握单相桥式整流、滤波、稳压电路的工作原理和对应电压波形及测试方法; 3.掌握输入交流电压与输出直流电压之间的关系; 4.了解倍压整流的原理与方法。 二、实验原理 整流电路是将交流电变为直流电以供负载使用。直流稳压电源先通过整流电路把交流电变为脉动的直流电,再经各种滤波电路、稳压电路,使输出直流电压维持稳定。由整流、滤波、稳压环节构成的简单稳压电路如图1所示 图1 桥式整流、滤波、稳压电路 三、实验仪器设备 注意事项:切勿用毫安表测电压。注意万用表的交直流电压挡、欧姆挡的转换及量程的选择;防止误操作,避免电源短路、烧损二极管和电容; 四、实验内容与要求根据实验室提供的实验设备完成以下实验内容的设计: 1.用万用表测量二极管,学会用万用表检查二极管极性和性能的好坏。 2.设计并连接单相桥式整流电路,调节负载电阻,使负载电流分别为2mA和8mA,测量并记录输入交流电压、整流电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述

3.设计并连接具有滤波的单相桥式整流电路,调节负载电阻,使负载电流分别为2mA和8mA 时,测量并记录输入交流电压,整流滤波电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述电压的波形。 4. 在上一个电路(单相桥式整流、滤波电路)中,若改变滤波电容的容量,输出波形会发生什么样的变化?若改变负载电阻,输出波形会发生怎样的变化? 5.

6.设计并连接具有滤波、稳压的单相桥式整流电路,在下列两种情况下,测量并记录输入交流电压、整流滤波电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述电压的波形。 (2) 当负载电流保持5mA不变时,使电源电压波动,即使输入的交流电压有效值在15V左右变

整流滤波电路

第一节整流电路 电力网供给用户的是交流电,而各种无线电装置需要用直流电。整流,就是把交流电变为直流电的过程。利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。下面介绍利用晶体二极管组成的各种整流电路。 一、半波整流电路 图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和 负载电阻R fz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变 电压e2,D 再把交流电变换为脉动直流电。 下面从图5-2的波形图上看着二极管是怎样整流的。

变压器次级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的 波形如图5-2(a)所示。在0~π时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻R fz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,R fz,上无电压。在2π~3π时间内,重复0~π 时间的过 程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过R fz,在R fz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电 压U sc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流 得出的半波电压在整个周期内的平均值,即负载上的直流电压U sc=0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但 极性相反的两个电压e2a 、e2b ,构成e2a 、D1、R fz与e2b 、D2、R fz ,两个通电回路。

整流滤波稳压实验报告

整流滤波及稳压电路 一、实验目的 1.掌握单相桥式整流电路的应用 2.掌握电容滤波电路的特性 3.掌握稳压管稳压的应用和测试 二、实验仪器 电路板,示波器,函数信号发生器等。 三、实验原理 直流稳压电源是所有电子设备的重要组成部分,它的基本任务是将电力网交流电压变换为电子设备所需要的交流电压值,然后利用二极管单向导电性将交流电压整流为单向脉冲的直流电压,再通过电容或电感等储能元件组成的滤波电路来减小其脉动成分,从而得到较平滑的直流电压。同时,由于该直流电压易受电网波动及负载变化的影响,必须加稳压电路,利用负反馈来维持输出直流电压的稳定。直流稳压电源的基本组成框图和工作波形如图一所示: 220V a b c 50Hz →→→→ Uo 1、 整流电路 利用二极管的单向导电作用,将电网的交流电转变成单方向的脉冲直流电,这就是整流。常用的整流电路有半波整流、桥式整流以及倍压整流。这次实验中主要采用桥式整流的方式获得单向脉冲的直流电源。 桥式整流电路(如图二)由四个二极管组成,负载电流也由两路二极

管轮流导通(如V1,V2)而提供,波纹小,截止一路两个二极管(如V3,V4)分担反向电压,对整流管要求较低,是最常用的整流电路。 图二 2、 滤波电路 整流电路输出的是直流脉冲电压,这种脉冲电压中含有较大的交流成分,因而不能保证电子设备正常工作,尤为明显的是在音响设备中会出现较严重的交流哼声。因此需要进一步减小输出电压的这种脉动,使其更加平滑。滤波电路就是利用电容或电感在电路中的储能作用来完成此功能的。常用的滤波器有电容滤波和电感滤波,但是相同的滤波效果时,采用电容滤波比采用电感滤波更经济有效。如图三,以桥式整流为例,说明整流滤波的工作原理。 图三 3、 稳压电路 虽然整流滤波电路可使交流电变成平滑的直流电,但由于受到电网电压的波动、负载电阻的变化以及环境温度的变化,这些均会导致输出直流电压的不稳定。因此,大多数电子设备还需要采取一定的稳压电路(措施),以保证输出电压值的稳定。稳压电路的种类通常有稳压管稳压电路、串联型稳压电路、集成稳压电路和开关型稳压电路。 对稳压电路的主要要求如下: ⑴稳压系数s (i i U U U U /0/0/??=)小,稳定度高,即输出电压相对变化量要 远小于输入电压变化量。 ⑵输出电阻0R 小,L I U R ??=/00,0R 小,一般为m Ω量级,表示负载电流变化

整流电路、滤波电路及稳压电路

第七章整流电路、滤波电路及稳压电路 知识目标 1.掌握单相桥式整流电路的结构和工作原理。 2.了解电容滤波电路和电感滤波电路的作用。 3.了解稳压电路的工作原理和特点。 4.了解集成稳压器的使用方法。 技能目标 1.掌握单相桥式整流电路。 2.掌握集成稳压器的基本使用方法和连接方法。 3.能够使用万用表测量电压,能够使用双踪示波器观察测试波形。 4.能够根据直流稳压电源框架组装直流稳压电源。 第一节整流电路 一、整流与整流电路 利用二极管的单向导电性可以将交流电转换为直流电,这一过程称为整流,这种电路就称为整流电路。 常见的整流电路有半波整流电路和全波整流电路。 二、单相桥式整流电路的结构和特点 单相桥式整流电路利用整流二极管的单向导电性,将交流电变成单向脉动直流电,其组成结构如图7-1所示。 图7-1单相桥式整流电路 图7-1中,T r表示电源变压器,作用是将交流电网电压u1变成整流电路要求的交流电压;R L是直流供电的负载电阻;4只整流二极管VD1~VD4依次接成电桥的形式,故称桥式整流电路。 桥式整流电路的特点是:输出电压的直流成分得到提高,脉冲成分被降低,每只整流二极管承受的最大反向电压较小,变压器的利用效率高,因此被广泛使用。 单相桥式整流电路的实现 在实际应用中,单相桥式整流电路可以用四个独立的整流二极管实现,也可以用集成器件“桥堆”来实现。

图7-2所示为单相桥式整流电路的习惯简化画法。 图7-2单相桥式整流电路的习惯简化画法 三、单相桥式整流电路的工作原理 图7-3单相桥式整流电路波形 在图7-3单相桥式整流电路波形中,在u的正半周时,u2>0时,VD1、VD4导通,VD2、VD3截止,故有图示i D1(i D4)的波形; 同样,在u1的负半周时,u2<0时,VD1、VD4截止VD2、VD3导通,故有电流i D2(i D3)。 可见在u的正、负半周均有电流流过负载电阻R L,且电流方向一致,综合得到u o(i o)的波形。 低音炮音箱 如图7-4所示,日常生活中使用的低音炮音箱,有些采用了专业的桥式整流技术,通过内置的桥式整流电路,使得低频带通电路的信号顺畅与稳定,可以使声音更加纯净。 图7-4低音炮音箱 第二节滤波电路 经过整流电路后的输出电压已经是单相的直流电压,但是其中含有直流和交流的成分,电压的大小仍有变化,这种直流电称为脉动直流电。对于某些工作(如蓄电池充电),脉动电流已经可以满足要求,但是对于大多数电子设备,需要平滑的直流电,故整流电路后面都要接滤波电路,尽量减小交流成分,以减小整流电压的脉动程度,适合稳压电路的需要,这就

单向全波整流及滤波电路

“单向全波整流及滤波电路”教学设计方案 说课 一、授课内容 (一)教材内容:授课内容是由中国铁路出版社出版的、由董秀峰编著的《模拟电子技术》教材第七章直流稳压电源的第一节、第二节“单向桥式全波整流电路及滤波电路”中的内容。(二)内容分析: 整流及滤波是本章直流稳压电源教学中的教学重点。整流及滤波的概念虽然不复杂,但学生还是不容易掌握,容易混乱,且各种电子设备中稳压电源部分故障达到整个硬件故障近50%左右,整流及滤波实用性比较强。因此,整流及滤波是电子电路教学的重点内容,学生必须重点掌握,并能灵活运用,解决实际问题。 (三)教学重点: 1、单相桥式全波整流电路 2、电容滤波电路 (四)教学难点: 滤波电路的定量计算。 (五)教学特色:借助实物演示实验,使理论与实践紧密结合,学生有了直观感性认识;借助多媒体,采用启发式教学,从案例分析,启发思路。 (六)教学目标: 1、知识目标: (1)理解单相桥式全波整流及滤波电路的组成; (2)掌握单相桥式全波整流及滤波电路的工作原理、参数计算。 2、能力目标: (1)在直流稳压电源中出现故障能够分析查找故障点并排除; (2)培养学生分析问题,解决问题的实际能力。 3、情感目标: (1)通过课堂的学习交流,创造良好的学习氛围,增强师生感情,增强班级凝聚力; (2)以实际稳压电源演示实验,学生有了感性认识,使学生体验掌握整流及滤波概念后成功的快感,增强自信心。 二、说教法: 1、展示直流稳压电源实物,介绍直流稳压电源在各种电子产品中应用,看实际稳压电源演示实验,学生有了感性认识,激发了学习兴趣;采用启发式教学,再提出问题,由问题驱动引出概念,引出知识点,再讲授整流、滤波工作原理及分析方法。 2、坚持以“学生能力形成为核心”,在保证知识的系统性、完整性及严谨性的基础上,发挥教师的主导作用,讲授书本上学不到知识,传授本人实践方面经验,充分激发学生的学习兴趣,能够学以致用,使学生主动学习,实现师生方面很好的良性互动。 教案

《电工技术》试题与答案--整流滤波电路

第一章整流滤波电路 一、填空题 1、(1-1,低)把P型半导体N型半导体结合在一起,就形成 PN结。 2、(1-1,低)半导体二极管具有单向导电性,外加正偏电压导通,外加反偏电压截至。 3、(1-1,低)利用二极管的单向导电性,可将交流电变成直流电。 4、(1-1,低)根据二极管的单向导电性性,可使用万用表的R×1K挡测出其正负极,一般 其正反向的电阻阻值相差越大越好。 5、(1-1,低)锗二极管工作在导通区时正向压降大约是0.3,死区电压是。 6、(1-1,低)硅二极管的工作电压为0.7,锗二极管的工作电压为0.3。 7、(1-1,中)整流二极管的正向电阻越小,反向电阻越大,表明二极管的单向导 电性能越好。 8、(1-1,低)杂质半导体分型半导体和型半导体两大类。 9、(1-1,低)半导体二极管的主要参数有、,此外还有、、等参数,选 用二极管的时候也应注意。 10、(1-1,中)当加到二极管上的反向电压增大到一定数值时,反向电流会突然增大,此现象称为 现象雪崩。 11、(1-1,中)发光二极管是把能转变为能,它工作于状态;光电二极管是把能转 变为能,它工作于状态。 12、(1-2,中)整流是把转变为。滤波是将转变为。电容滤波器适用于的 场合,电感滤波器适用于的场合。 13、(1-1,中)设整流电路输入交流电压有效值为U2,则单相半波整流滤波电路的输出直流电压U L = ,单相桥式整流电容滤波器的输出直流电压U L(A V)= ,单相桥式整流电感滤波器的输出(A V) 直流电压U L(A V)= 。 14、(1-1,中)除了用于作普通整流的二极管以外,请再列举出2种用于其他功能的二极 管:,。 15、(1-1,低)常用的整流电路有和。 16、(1-2,中)为消除整流后直流电中的脉动成分,常将其通过滤波电路,常见的滤波电路 有,,复合滤波电路。 17、(1-2,难)电容滤波器的输出电压的脉动τ与有关,τ愈大,输出电压脉动愈,输出直流 电压也就愈。

单相桥式整流滤波电路仿真实验任务书

实验一单相桥式整流滤波电路 一、实验目的 (1)理解二极管全波整流电路的工作原理。 (2)了解各元件的工作性能和外形。 (3)观察单相桥式整流滤波电路的输入和输出电压波形。 (4)由单相桥式整流电路输出电压峰值计算输出电压的直流平均值,并与输入电压有效值进行比较。 (5)由单相桥式整流滤波电路输出电压峰值计算输出电压的直流平均值,并与输入电压有效值进行比较。 (6)由单相桥式整流电路输出电压峰值计算变压器副边电流有效值。 (7)测量全波整流电路中二极管两端的反向峰值电压。 (8)测量整流滤波电路输出脉动电压的峰-峰值。 (9)观察滤波电容接与不接对输出电压波形的影响,了解滤波电容的作用。 (10)观察滤波电容大小的变化对输出脉动电压的影响。 (11)观察负载电阻大小的变化对输出脉动电压的影响。 二、实验器材 虚拟实验设备 操作系统为Windows XP的计算机 1台 Electronics Workbench Multisim ~电子线路仿真软件 1套 示波器Oscilloscope 1台 硅桥MDA2501 1个 数字万用表1个 交流电压源1个 电阻(200Ω,2W)1个 电阻(1KΩ,2W)1个 电解电容(470μF,50V) 1个 电解电容(10μF,50V)1个 开关1个 实际工程实验设备 模拟实验箱1台 函数信号发生器1台 示波器1台 数字万用表1台 电阻(200Ω,2W)1个 电阻(1KΩ,2W)1个 电解电容(470μF,50V) 1个 电解电容(10μF,50V)1个 三、实验原理及实验电路

全波桥式整流电路有电阻负载时直流电压平均值U L与输入交流电压有效值U的关系为 U L= 桥式整流电路输出电压的脉动频率f0为交流电源频率f(=50Hz)的2倍,也等于交流电源周期T倒数的2倍,即 f0=2f=2/T 桥式整流电路中,每个二极管两端所加的反向峰值电压U m为交流电压有效值的2倍, 2U。 以保证安全选取整流二极管时最大反向峰值电压U Rm取2 整流滤波电路的平均直流输出电压U CL可用输出电压的峰值U P减去脉动电压峰-峰值U P-P 的一半来计算,即 U CL=(U P-U P-P)/2 在小电流输出的情况下,全波整流电容滤波电路(包括桥式整流电容滤波电路)的直流输出电压可估算为交流电压有效值的倍,即 U CL≈ 实验电路如图1-1所示。 四、实验步骤 1、变压器副边输出的测量 建立如图1-2(a)所示的电路,双击数字万用表的图标,打开其面板,设置为交流电压档。单击仿真开关,进行仿真分析,观察XSC1示波器屏幕上的波形,如图1-2(b)所示。按下仿真暂停按钮,用游标测量波形的最大值。描绘波形曲线,记录测量的数值和数字万用表(图1-2(c))显示的数字,并与计算值比较。 图1-2(a)变压器副边输出测量电路

单相桥式整流、滤波电路教案

课题:单相桥式整流、滤波电路 课型:讲练结合 一、学习目标 (一)职业技能: 1.掌握电路接线的基本技能,能完成单相整流滤波电路的搭建 2.学会用示波器观察单相桥式整流、滤波电路电压波形并比较整流与滤波前后的波形。 3.能正确使用双踪示波器和万用表完成对单相整流滤波电路的测试 (二)职业知识: 1 ?理解整流的含义,熟悉几种典型的整流电路 2?理解整流电路的工作原理,熟练掌握其相应的计算 及二极管的选用原则 3?理解滤波的概念,了解常用的滤波方式 4.理解电容滤波的工作原理,掌握滤波电容的选择要求(三)职业道德与情感: 1通过电路接线与搭建,提高学生排除常见故障的能力 2.提高学生分析问题和解决问题的能力 二、工作任务单 【任务一】单相整流滤波电路的接线搭建

【任务二】单相整流电路的分析 【任务三】单相整流电路的测试 【任务四】单相整流滤波电路的测试和识读 三、预备实践知识 1.电路接线的基本技能 2.双踪示波器和万用表的使用方法 四、预备理论知识 1.整流的含义及整流电路的工作原理 2.滤波的概念和滤波电路的工作原理 3.二极管和滤波电容的选用原则 五、教学重点、难点: 重点:单相桥式整流、滤波电路的工作原理与参数计算难点:单相桥式整流、滤波电路的工作原理 六、【知识回顾】 1.二极管的特性是_________________ O 2.理想二极管是指___________________ o 3.单相半波整流电路变压器次级输出电压和负载的电压U。的关系是什么? 七、教学过程: 引子:上一堂课我们讲述了单相半波整流滤波电

路,大家发现半波整流,只能整出上半个波形,电源利用率低,脉动大,效果不是很好,脉动虽有所减少,但依然存在,那么怎样才能提高电源的利用率呢?如

电感电容电阻滤波电路

电感电容电阻滤波电路 在电路中,当电流流过导体时,会产生电磁场,电磁场的大小除以电流的大小就是电感,电感的定义是L=phi/i, 单位是韦伯。 电感只能对非稳恒电流起作用,它的特点两端电压正比于通过他的电流的瞬时变化率(导数),比例系数就是它的“自感” 。 电感起作用的原因是它在通过非稳恒电流时产生变化的磁场,而这个磁场又会反过来影响电流,所以,这么说来,任何一个导体,只要它通过非稳恒电流,就会产生变化的磁场,就会反过来影响电流,所以任何导体都会有自感现象产生。 电阻-电容组合起低通滤波作用,这时输入端是两个元件两端,输出端是电容两端,对于后级电路来说,低、高频信号可以过去,但高频信号被电容短路了。(电容通高频信号,阻低频信号,通交流信号,阻直流信号,对于高频信号,电容现在相当与一根导线,所以将高频信号短路了) 对于电容-电阻组合则起高通滤波作用,这时输入端是两个元件两端,输出端是电阻两端,对于后级电路来说,低频信号由于电容存在,过不去,到不了后级电路(电容通高频信号,阻低频信号,通交流信号,阻直流信号),而高频信号却可以通过,所以为高通滤波。 如上图所示为10MHz低通滤波电路。该电路利用带宽高达100MHz的高速电流反馈运算放大器OPA603组成二阶巴特沃斯低通滤波器。转折频率为f0=1/2πRC,按图中所示参数,f0=10MHz,电路增益为1.6。 如上图所示为有源高通滤波电路。该电路的截止频率fc=100Hz。电路中,R1与R2之比和C1与C2之比可以是各种值。该电路采用R1=R2和C1=2C2。采用C1=C2和R1=2R2也可以。

滤波电路分类详解 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量。 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 电阻滤波电路 RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数 S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R 值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合. 电感滤波电路 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。 (A)电容滤波(B)C-R-C或RC-π型电阻滤波脉动系数S=(1/ωC2R')S' (C)L-C电感滤波(D)π型滤波或叫C-L-C滤波

RLC桥式整流滤波电路的频域分析及实验仿真

第24卷 第5期 邢 台 职 业 技 术 学 院 学 报 V ol.24 No.5 2007年10月 Journal of Xingtai Polytechnic College Oct . 2007 —————————————— 收稿日期:2007—02—03 作者简介:李加升(1965—),湖南安化人,益阳职业技术学院机电与电子工程系,副教授,硕士。 84 RLC 桥式整流滤波电路的频域分析及实验仿真 李加升1,戴瑜兴2 (1.湖南益阳职业技术学院, 湖南 益阳 413049;2.湖南大学 电气院, 湖南 长沙 410000) 摘 要:本文从频域的角度对RLC 桥式整流滤波电路进行了分析,并在EWB 里对该电路整 流和滤波后的电压波形分别进行了仿真。 关键词: RLC;桥式;滤波;频域;仿真 中图分类号: TN710 文献标识码: A 文章编号: 1008—6129(2007)05—0084—03 一、前言 以三角函数,复指数函数作为基元信号,对LTI(Linear time-invarnt )线性时不变系统建立的一种分析 方法,称为傅里叶频域分析法。[1] 时不变连续时间系统指的是在同样起始状态下,系统响应特性与激励 施加于系统的时刻无关。换句话说,若激励时延T 时间,响应也时延相同的时间T。即对任意T,满足 {x(t)→y(t)}?{x(T—t)→y(t—T)}。LTI 系统是一个同时满足线性性与时不变性的系统。[2] 二、RLC 桥式整流滤波电路的频域分析 如图1是——RLC 桥式整流滤波电路,也是一LTI 系统,下面我们从频域的角度来分析它。当给电源加——电压U S (t)=U m cos(ωt+?)时,经过整流得如图2的电压波形。[3]傅里叶级数展开式表示(最高取到四次谐波)为: u(t)=??????+?+.......)4cos(151)2cos(31214m 2t t U ωωπ 图1 RLC 桥式整流滤波电路 图2 电压波形 为了简化计算,假定U S (t)=110)V (100cos 2t π, L=5H,C=10μF,R=2K ?,则得: u(t)=[100+66.7cos(2ωt)-13.3cos(4ωt)+…….](V) 利用频域分析法,画出电路的相量模型图(如图3) 图3 相量模型图 求得总阻抗 Z=j ωL+R C j R C j +?ωω11=j ωL+R C j R +ω1=12+++?RC j R L j RLC ωωω 由串联电路分压原理得负载两端的电压为: ?R U =112+++?+?? CR j R L j RLC j CR j R R U ωωωω=L j RLC R U R ωω+???2(

实验11整流滤波电路

实验11 整流滤波电路 一.实验目的 1.熟悉单相整流、滤波电路的连接方法 2.学习单相整流、滤波电路的测试方法 3.加深理解整流、滤波电路的作用和特性 二.实验原理与说明 1.整流电路 有半波、全波和桥式整流三种电路,分别如图4-1(a)、图4-1(b)和图4-1(c)所示。 半波整流的输出电压为 V0=0.45V2 全波整流的输出电压为 V0=0.9V2 桥式整流的输出电压流为 V0=0.9V2 其中为V0平均值,V2为有效值 图4-1(a) 图4-1(b)图4-1(c) 2.滤波电路 在小功率的电子设备中,常用的是电容滤波电路。如图4-2所示。 当C≥(3~5)T/2R L时,其中T为电源周期,R L=R+Rw 输出电压为V0=(1.1~1.2)V2 图4-2 三.实验设备 名称数量型号 1.AC电源1台 2.示波器1台 3.万用表1只 4.二极管4只1N4007*4

5.电阻1只1KΩ*1 6.电位器1只10KΩ*1 7.电容2只10μF*1,470μF*1 8.短接桥和连接导线若干P8-1和50148 9.实验用9孔插件方板1块297mm ×300mm 四.实验步骤 1.桥式整流电路 按图2-1(c)接线,检查无误后进行通电测试。将万用表测出的电压值记录于表2-1中,示波器观察到的变压器副边电压波形绘于图2-3(a)中,将整流级电压绘于图2-3(b) 表2-1 2.整流滤波电路 按图4-2所示,连接整流、滤波电路,检查无误后进行通电测试,测滤波级输出电 表4-2 3.观察电容滤波特性 (1)保持负载不变,增大滤波电容,观察输出电压数值与波形变化情况,记录于表4-2中,绘图于图4-3(d)中。 (2)保持滤波电容不变,改变负载电阻,观察输出电压数值和波形变化情况,记录于表4-2与图4-3(e)、(f)中。 图2-3(a) 图2-3(b) 图2-3(c) 图2-3(d) 图2-3(e) 图2-3(f) 注意事项: 1、了解输出的电流大小和电压的高低。

桥式整流电路计算

桥式整流电路计算 桥式整流属于全波整流,它不是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V2的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。 桥式整流电路计算主要参数: 单相全波整流电路图 利用副边有中心抽头的变压器和两个二极管构成如下图所示的全波整流电路。从图中可见正负半周都有电流流过负载,提高了整流效率。 全波整流的特点: 输出电压V O高;脉动小;正负半周都有电流供给负载,因而变压器得到充分利用,效率较高。 主要参数: 桥式整流电路电感滤波原理 电感滤波电路利用电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用

桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。 桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰,一般只适应于低电压、大电流的场合。 例10.1.1桥式整流器滤波电路如图所示,已知V1是220V交流电源,频率为50Hz,要求直流电压V L=30V,负载电流I L=50mA。试求电源变压器副边电压v2的有效值,选择整流二极管及滤波电容。

桥式整流电路电容滤波电路 结论1:由于电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。

结论2:从图10.6可看出,滤波电路中二极管的导电角小于180o,导电时间缩短。因此,在短暂的导电时间内流过二极管很大的冲击电流,必须选择较大容量的二极管。 在纯电阻负载时: 有电容滤波时: 结论3:电容放电的时间τ=R L C越大,放电过程越慢,输出电压中脉动(纹波)成分越少,滤波效果越好。取τ≥(3~5)T/2,T为电源交流电压的周期。 整流电路输出电压计算 对于整流电压的输出电压大小,大家一定不陌生。很多人会说,输出平均值全波0.9倍,半波0.45倍的交流有效。但是在设计中,我们常常发现一个事实,例如在半波整流后,输出电压得到的不止0.45倍,9V交流整流后可能有11~12V。之前我一直很困惑,是我记错了计算倍数吗?翻了很多书籍,公式当然是没错的。那到底怎么回事? 可能之前我们在学校学这个方面知识点的时候太过注重整流电路,而忽略了脉动比的概念,所以造成我们现在很多人对这一简单的知识不是很清晰。其实这里是由于整流电路后面接的滤波电容有关的,查阅模电知识我们即可了解到,整流后往往会加滤波稳压,而滤波电路会改变整流输出的脉动比,并且和负载有关。因此最终整流后得到的电压除了跟整流方式有关,还和负载、滤波电容大小有关系。RL*C的数值直接影响输出电压的大小。因此滤波电容选择其实不是随意的,而是需要根据负载选取合适的值。 接入滤波电路后,输出电压平均值近似取值为1.2倍,负载开路取1.414倍。 RC=(3-5)T/2 来确定电容容量选择。其中T表示电网周期。

整流滤波实验报告

整流滤波的电路设计实验 一、实验目的:1、研究半波整流电路,全波整流电路。 2、电容滤波电路,观察滤波器在半波和全波整流中的滤波效果。 3、整流滤波电路输出脉动电压的峰值 4、进一步掌握示波器显示与测量的技能。 二、实验仪器:示波器,6v交流电源,面包板,电容(470uF、10uF)电阻(200Ω,100Ω,50Ω,25Ω),导线若干。 三、实验原理: 1、实验思路 利用二极管正向导通反向截至的特性,与RC电路的特性,通过二极管、电阻与电容的串并联设计出各种整流电路和滤波电路进行研究。 2、半波整流电路 变压器的次级绕组与负载相接,中间串联一个整流二极管,就是半波整流。利用二极管的单向导电性,只有半个周期内有电流流过负载,另半个周期被二极管所阻,没有电流。 2.1单相半波整流 只在交流电压的半个周期内才有电流流过负载的电路称为单相半波整流电路。 原理:如图4.1,利用二极管的单向导电性,在输入电压Ui为正的半个周期内,二极管正向偏置,处于导通状态,负载RL上得到半个周期的直流脉动电压和电流;而在Ui为负的半个周期内,二极管反向偏置,处于关断状态,电流基本上等于零。由于二极管的单向导电作用,将输入的交流电压变换成为负载RL两端的单向脉动电压,达到整流目的,其波形如图4.2。 3、全波桥式整流 前述半波整流只利用了交流电半个周期的正弦信号。为了提高整流效率,使交流电的正负半周信号都被利用,则应采用全波整流,现以全波桥式整流为例,其电路和相应的波形如图6.2.1-3所示。

若输入交流电仍为 t U t u P i ωsin )(= (8) 则经桥式整流后的输出电压u 0(t)为(一个周期) t U u t U u P P ωωsin sin 00-== π ωππ ω20≤≤≤≤t t (9) 其相应直流平均值为 ?≈==T P P U U dt t u T u 000637.02 )(1π (10) 由此可见,桥式整流后的直流电压脉动大大减少,平均电压比半波整流提高了一倍(忽略整流内阻时)。 (1) 滤波电路 经过整流后的电压(电流)仍然是有“脉动”的直流电,为了减少被波动,通常要加滤波器,常用的滤波电路有电容、电感滤波等。现介绍最简单的滤波电路。 电容滤波电路 电容滤波器是利用电容充电和放电来使脉动的直流电变成平稳的直流电。我们已经知道电容器的充、放电原理。图6.2.1-4所示为电容滤波器在带负载电阻后的工作情况。设在t 0时刻接通电源,整流元件的正向电阻很小,可略去不计,在t=t 1时,U C 达到峰值为i U 2。此后U i 以正弦规律下降直到t 2时刻,二极管D 不再导电,电容开始放电,U C 缓慢下降,一直到下一个周期。电压U i 上升到和U C 相等时,即t 3以后,二极管D 又开始导通,电容充电,直到t 4。在这以后,二极管D 又截止,U C 又按上述规律下降,如此周而复始,形成了周期性的电容器充电放电过程。在这个过程中,二极管D 并不是在整个半周内都导通的,从图上可以看到二极管D 只在t 3到t 4段内导通并向电容器充电。由于电容器的电压不能突变,故在这一小段时间内,它可以被看成是一个反电动势(类似蓄电池)。 由电容两端的电压不能突变的特点,达到输出波形趋于平滑的目的。经滤波后的输出波形如图6.2.1-5所示。

相关文档
最新文档