高速铁路路基设计规范

高速铁路路基设计规范
高速铁路路基设计规范

6 路基

6.1 一般规定

6.1.1 路基工程应加强地质调绘和勘探、试验工作,查明基底、路堑边坡、支挡结构基础等的岩土结构及其物理力学性质,查明不良地质情况,查明填料性质和分布等,在取得可靠地质资料的基础上开展设计。

6.1.2 路基主体工程应按土工结构物进行设计,设计使用年限应为100年。

6.1.3 基床表层的强度应能承受列车荷载的长期作用,刚度应满足列车运行时产生的弹性变形控制在一定范围内的要求,厚度应使扩散到其底层面上的动应力不超出基床底层土的承载能力。基床表层填料应具有较高的强度及良好的水稳性和压实性能,能够防止道砟压入基床及基床土进入道床,防止地表水侵入导致基床软化及产生翻浆冒泥、冻胀等基床病害。

6.1.4 路基填料的材质、级配、水稳性等应满足高速铁路的要求,填筑压实应符合相关标准。

6.1.5 路堤填筑前应进行现场填筑试验。

6.1.6 路基与桥台、横向结构物、隧道及路堤与路堑、有砟轨道与无砟轨道等连接处均应设置过渡段,保证刚度及变形在线路纵向的均匀变化。

6.1.7 路基工后沉降值应控制在允许范围内,地基处理措施应根据地形和地质条件、路堤高度、填料及工期等进行计算分析确定。对路基与桥台及路基与横向结构物过渡段、地层变化较大处和不同地基处理措施连接处,应采取逐渐过渡的地基处理方法,减少不均匀沉降。路基施工应进行系统的沉降观测,铺轨前应根据沉降观测资料进行分析评估,确定路基工后沉降满足要求后方可进行轨道铺设。

6.1.8 路基支挡加固防护工程应满足高速铁路路基安全稳定的要求,路基边坡宜采用绿色植物防护,并兼顾景观与环境保护、水土保持、节约土地等要求。

6.1.9 路基排水工程应系统规划,满足防、排水要求,并及时实施。

6.1.10 路基设计应重视防灾减灾,提高路基抵抗连续强降雨、洪水及地震等自然灾害的能力。

6.1.11 路基上的轨道及列车荷载换算土柱高度和分布宽度应符合表6.1.11的规定。

表6.1.11 轨道和列车荷载换算土柱高度及分布宽度

6.1.12 车站两端正线、利用既有铁路地段、联络线、动车组走行线和养护维修列车走行线等路基设计标准按其设计最高速度确定,路基基床结构变化处应设置长度不小于10m的渐变段。

6.1.13 路基工程应加强接口设计,合理设置电缆槽、电缆过轨、接触网支柱基础、声屏障基础及综合接地等相关工程,避免因相关工程破坏路基排水系统、影响路基强度及稳定。

6.2 路基面形状及宽度

6.2.1 无砟轨道支承层(或底座)底部范围内路基面可水平设置,支承层(或底座)外侧路基面两侧设置不小于4%的横向排水坡。有砟轨道路基面形状应为三角形,由路基面中心向两侧设置不小于4%的横向排水坡。曲线加宽时,路基面仍应保持三角形。

6.2.2 有砟轨道路基两侧的路肩宽度,双线不应小于1.4m,单线不应小于1.5m。

6.2.3 直线地段标准路基面宽度应按表6.2.3采用。

表6.2.3 路基面标准宽度

6.2.4 路基面在无砟轨道正线曲线地段一般不加宽,当轨道结构和接触网支柱等设施的设置有特殊要求时,根据具体情况分析确定;有砟轨道正线曲线地段加宽值应在曲线外侧按表6.2.4的规定加宽。曲线加宽值应在缓和曲线内渐变。

表6.2.4 有砟轨道曲线地段路基面加宽值

6.2.5 路基标准横断面如图6.2.5-1~8所示。

单位:m

图 6.2.5-1 无砟轨道双线路堤标准横断面示意图

h

图 6.2.5-2 无砟轨道双线硬质岩路堑标准横断面示意图

图 6.2.5-3 无砟轨道双线非硬质岩路堑标准横断面示意图

单位:m 图 6.2.5-4 无砟轨道单线路堤标准横断面示意图

单位:m 图6.2.5-5 有砟轨道双线路堤标准横断面示意图

图6.2.5-6 有砟轨道双线硬质岩路堑标准横断面示意图

图6.2.5-7 有砟轨道双线非硬质岩路堑标准横断面示意图

单位:m

图 6.2.5-8 有砟轨道单线路基标准横断面示意图

6.3 基 床

6.3.1 路基基床应由基床表层和基床底层构成。基床表层厚度无砟轨为0.4m ,有砟轨道为0.7m ,基床底层厚度为2.3m 。

6.3.2 基床表层应填筑级配碎石,压实标准应符合表6.3.2-1的规定。

表6.3.2-1 基床表层压实标准

注: 无砟轨道可采用K30或Ev2。当采用Ev2时,其控制标准为Ev2≥120 MPa 且 Ev2/Ev1≤2.3。

其材料规格应符合下列规定:

1基床表层级配碎石材料由开山块石、天然卵石或砂砾石经破碎筛选而成。

2基床表层级配碎石的粒径级配应符合表6.3.2-2的规定。其不均匀系数C u 不得小于15,0.02mm 以下颗粒质量百分率不得大于3%。粒径级配曲线如图6.3.2所示。

表6.3.2-2 基床表层级配碎石粒径级配

注:括号内数字适用于寒冷地区铁路。

0 10 20 30 40 50 60 70 80 90100

100

10 1

0.1

过筛质量百分率(%)

方孔筛边长(mm )

图6.3.2 基床表层级配碎石粒径级配曲线

3基床表层级配碎石与下部填土之间应满足D15<4d85的要求。当不能满足时,基床表层应采用颗粒级配不同的双层结构,或在基床底层表面铺设土工合成材料。当下部填土为改良土时,可不受此项规定限制。

4在粒径大于22.4mm的粗颗粒中带有破碎面的颗粒所占的质量百分率不小于30%。

5级配碎石粒径大于1.7mm颗粒的洛杉矶磨耗率不大于30%,硫酸钠溶液浸泡损失率不大于6%。粒径小于0.5mm的细颗粒的液限不大于25%,塑性指数小于6。不得含有黏土及其它杂质。

6.3.3基床底层应采用A、B组填料或改良土,A、B组填料粒径级配应满足压实性能要求,寒冷地区冻结影响范围填料应满足防冻胀要求。基床底层压实标准应符合表6.3.3的规定。

表6.3.3 基床底层填料及压实标准

注:1.无砟轨道可采用K30或Ev2。当采用Ev2时,其控制标准为Ev2≥80 MPa且Ev2/Ev1≤2.5。

2.括号内数字为寒冷地区化学改良土考虑冻融循环作用所需强度值。

6.4 路堤

6.4.1 基床以下路堤宜选用A、B组填料和C组碎石、砾石类填料,其粒径级配应满足压实性能要求;当选用C组细粒土填料时,应根据填料性质进行改良。基床以下路堤压实标准应符合表6.4.1的规定。

表6.4.1 基床以下路堤填料及压实标准

注:无砟轨道可采用K30或Ev2。当采用Ev2时,其控制标准为Ev2≥45MPa且Ev2/Ev1≤2.6。

6.4.2 路基工后沉降应符合下列规定:

1 无砟轨道路基工后沉降应满足扣件调整能力和线路竖曲线圆顺的要求。工后沉降不宜超过15mm ;沉降比较均匀并且调整轨面高程后的竖曲线半径满足式6.4.2的要求时,允许的工后沉降为30mm 。

2

4.0sj sh V R (式6.4.2)

路基与桥梁、隧道或横向结构物交界处的差异沉降不应大于5mm ,过渡段沉降造成的路基与桥梁、隧道的折角不应大于1/1000。

2 有砟轨道路基工后沉降应满足表6.4.2要求。

表6.4.2 路基工后沉降控制标准

6.4.3 软土路堤的稳定安全系数考虑列车荷载作用时不应小于1.25。 6.4.4 软土地基沉降可按本规范附录B 计算,沉降计算值应经实际工程观测资料检验修正。

6.4.5 软土及松软土路基应结合工程实际,选择代表性地段提前修筑试验段。

6.4.6 受洪水或河流冲刷及长期受水浸泡的路堤部位,应采用水稳性好的渗水性材料填筑,并应放缓边坡坡率、设置边坡平台、加强边坡防护。

6.4.7 雨季滞水及排水不畅的低洼地段,浸水影响范围应以渗水性材料填筑,并应采取排水疏导措施。

6.4.8 在高地下水位(地下水位距地表不大于0.5m )的黏性土地基上填筑路堤时,路堤底部应填筑渗水性材料。有条件时,宜采取降低地下水位的措施。

6.4.9 路堤边坡坡率可根据路基填料、路堤高度、地震力、基底地质条件、水文气候条件等因素综合分析确定。

6.4.10 路基填料应满足压实要求,其最大粒径在基床底层内应小于60mm ,在基床以下路堤内应小于75mm 。

6.4.11 地震区路堤应选用震动稳定性较好的填料,基底垫层材料应采用碎石(卵石)或粗砂夹碎(卵)石,不得采用细砂或中砂。

6.4.12 在可液化地基上填筑路堤时,应根据具体情况,采取换填、设置反压护道或地基加固等抗震措施。

6.4.13 黄土地段路基应加强防排水措施,采取封闭防水、拦截、疏导的处理原则,设置防冲刷、防渗漏和有利于水土保持的综合排水设施及防护工程,并妥善处理农田水利设施与路基的相互干扰。

当黄土具湿陷性或压缩性较高时,应根据地基土层性质、路堤填高、路基变形控制要求,确定湿陷性黄土处理措施。采用无砟轨道时,应消除地基的全部湿陷量。

6.4.14 岩溶地段路基应结合工程实际(岩溶地表形态、地表径流、地下水活动等)判别岩溶对路基工程的危害性,选择适宜的处理措施。

6.4.15 人为坑洞地段路基应根据坑洞的形成年代、埋深、坑洞高度、顶板岩性及力学性质、水文地质、工程地质条件等综合分析,分别采用明挖回填或钻孔充填、注浆等工程措施。

6.4.16 膨胀土路基应分析膨胀土作为地基的变形特性,可采取挖除换填等处理措施,并加强防排水及边坡防护工程。

6.5 路堑

6.5.1 不易风化的硬质岩基床应按以下规定进行处理:

1 铺设无砟轨道时,开挖至路基面,直接在开挖面上施做支承层或底座。

2 铺设有砟轨道时,开挖至路基面以下0.2m处,开挖面由路基中心向两侧设4%的横向排水坡,其上填筑级配碎石。

3 开挖面上的松动岩石应予清除。开挖面不平整处应采用强度等级不低于C25的混凝土嵌补。

6.5.2 软质岩、强风化的硬质岩及土质基床应满足表6.3.2、6.3.3的要求;基床范围内的地基应无P s<1.5MPa或σ0<0.18MPa的土层。不能满足

时,应进行加固处理,并符合下列规定:

1 基床表层应换填级配碎石并满足第6.3.2条要求;

2 天然地基满足基床底层土质要求时,可采取翻挖回填或加强碾压夯实的措施;

3 天然地基不满足基床底层土质要求时,可采取换填、地基改良或加固措施,换填范围应根据具体情况计算分析确定;

4 基床翻挖、换填或改良、加固处理时,应采取加强排水和防渗等措施,分层压实应执行基床相应部位标准。

6.5.3 膨胀土、湿陷性黄土等特殊土的基床部分应视具体情况进行挖除换填、设置隔水防渗等措施,基床以下的膨胀土、湿陷性黄土等应在路基变形分析的基础上,采取封闭防水、排水或地基处理措施。

6.5.4 半填半挖路基轨道下横跨挖方与填方时,挖方部分可通过换填调整与填方部分的强度及刚度差异,换填厚度宜根据填方部分高度及地基条件确定。

6.5.5 路堑均应设置侧沟平台,平台宽度不宜小于1.0m。在土石分界处、透水和不透水层交界面处及路堑边坡高度较大时,均应设置边坡平台,平台宽度不宜小于2.0m,并应满足路堑边坡稳定需要,边坡平台上应做好防水及加固措施。

6.5.6 路堑边坡形式和坡率应根据地层的工程地质、水文地质、气象条件和防排水措施及施工方法等因素通过力学分析综合确定。

6.6 过渡段

6.6.1 路堤与桥台连接处应设置过渡段,可采用沿线路纵向倒梯形过渡形式,如图6.6.1所示,并应符合下列规定:

1 过渡段长度按下式确定,且不小于20m。

L=a+(H-h)×n (式6.6.1-1)式中L——过渡段长度(m);

H——台后路堤高度(m);

h——基床表层厚度(m);

a——倒梯形底部沿线路方向长度,取3~5m;

n——常数,取2~5。

2 过渡段路基基床表层应满足本规范第6.3.2条的要求,并掺入5%水泥。基床表层以下倒梯形部分分层填筑掺入3%水泥的级配碎石,级配碎石的级配范围应符合表6.6.1的规定,压实标准应满足压实系数K≥0.95、地基系数K30≥150MPa/m、动态变形模量E vd≥50MPa。

Ⅰ-Ⅰ

图 6.6.1 台尾过渡段设置示意图

3 过渡段桥台基坑应以混凝土回填或以碎石、二八灰土分层填筑并用小型平板振动机压实,并使地基系数K30≥60MPa/m。

表6.6.1 碎石级配范围

注:颗粒中针状、片状碎石含量不大于20%;质软、易破碎的碎石含量不得超过10%。

4 过渡段地基需要加固时应考虑与相邻地段协调渐变。

5 过渡段还应满足轨道特殊结构的要求。

6 过渡段路堤应与其连接的路堤同时施工,并按大致相同的高度分层填筑。

7 过渡段处理措施及施工工艺应结合工程实际,进行现场试验。

6.6.2 路堤与横向结构物(立交框构、箱涵等)连接处,应设置过渡段,可采用沿线路纵向倒梯形过渡形式,如图6.6.2所示。横向结构物顶部及过渡段路基基床表层应满足本规范第6.3.2条的要求;过渡段填料、压实标准及基坑回填应符合本规范第6.6.1条的规定,寒冷地区过渡段设置应充分考虑与横向结构物接触区冻结影响范围填料的防冻,如图6.6.2-2所示。横向结构物顶面填土厚度不大于1.0m时,横向结构物及两侧20m范围基床表层级配碎石应掺加5%水泥,如图6.6.2-3所示。

Ⅰ-Ⅰ

图 6.6.2-1 一般路堤与横向结构物(h>1.0m)过渡段示意图

注:图中t为最大冻结厚度,当t1<0.3m时涵顶全部填筑防冻填料。

图 6.6.2-2 寒冷地区路堤与横向结构物(h>1.0m)过渡段示意图

图 6.6.2-3 路堤与横向结构物(h≤1.0m)过渡段示意图

6.6.3 路堤与路堑连接处应设置过渡段。过渡段可采用下列设置方式:

1 当路堤与路堑连接处为硬质岩石路堑时,在路堑一侧顺原地面纵向开挖台阶,台阶高度0.6m左右。并应在路堤一侧设置过渡段,如图6.6.3-1。过渡段填筑要求应符合第6.6.1条第2款的规定。

单位:米

图6.6.3-1 硬质岩石堤堑过渡段示意图

2 当路堤与路堑连接处为软质岩石或土质路堑时,应顺原地面纵向开挖台阶,台阶高度0.6m左右。如图6.6.3-2,其开挖部分填筑要求应与路堤相同。

单位:米

图6.6.3-2 软质岩石或土质堤堑过渡段示意图

6.6.4 土质、软质岩及强风化硬质岩路堑与隧道连接地段,应设置过渡段,并采用渐变厚度的混凝土或掺入5%水泥的级配碎石填筑。

6.6.5 无砟轨道与有砟轨道连接处路基应设置过渡段,满足轨道形式过渡要求。

6.6.6 两桥之间、桥隧之间及两隧之间的短路基宜采取适宜措施,平顺过渡;当两桥间为小于150m非硬质岩路堑时,路基基础可采用桩板结构或保证刚度平顺过渡的工程措施处理。

6.7 路基排水

6.7.1 路基排水设施设计使用年限不应少于30年,设计降雨的重现期应采用50年。

6.7.2 路基面排水设计应综合考虑轨道形式、电缆槽、接触网立柱基础、声屏障基础等因素。

线间排水应根据线路、气候条件及对轨道电路的影响等综合考虑,有条件时,优先采用横向直排方式。当轨道结构要求采用集水井排水时,集水井的位置、排水管的材质和结构尺寸及埋设深度和方式应根据荷载、降雨量和防冻、防渗要求等综合确定。

6.7.3 侧沟、天沟、排水沟应采用混凝土浇筑或预制拼装,不得采用浆砌片石。

6.7.4 低矮路堤或路堑地段,地下水位较高或无固定含水层时,可采用明沟、排水槽、渗水暗沟、边坡渗沟、支撑渗沟等设施排除地下水;埋藏较深的地下水或固定含水层危害路基时,可采用渗水隧洞、渗井、渗管或仰斜式钻孔等设施排除地下水。渗水暗沟等地下排水设施应设置反滤层。

渗水暗沟和渗水隧洞的纵坡不宜小于5‰,条件困难时亦不应小于2‰,在出口位置应采用较陡纵坡。

在易产生冻害的地区,渗水暗沟和渗水隧洞应设置在最大冻结深度以下不小于0.25m处,或采用必要的防冻设施。严寒地区出水口应采取防冻措施。

6.7.5 路基排水设备应与桥涵、隧道、车站等排水设施衔接配合,与水土保持及农田水利设施的综合利用相结合。排水设施布置应符合下列规定:

1 路堤地段在天然护道外,单侧或双侧设置排水沟。

2 路堑地段应于路肩两侧设置侧沟,堑顶以外单侧或双侧设置天沟。

3 年降水量大于等于400mm地区,路堑边坡平台宜设置边坡平台截水沟。

4 地面横坡明显地段的排水沟、天沟可在横坡上方一侧设置。当地面横坡不明显时,宜在路基两侧设置。

5 地面排水设施的纵坡不应小于2‰。

6 排水沟沟顶应高出设计水位不小于0.2m。

6.7.6 路基排水宜根据所处地点排水条件纳入相关排水工程系统设计。

6.8 路基防护

6.8.1 路堤边坡应设置坡面防护工程,根据周围环境、填料性质、气候条件、边坡高度、浸水及冲刷等具体情况因地制宜确定防护形式,并符

合下列规定:

1 当路堤边坡适宜进行植物防护,且能保证路基边坡的稳定时,宜采用绿色植物防护措施,不宜采用全坡面圬工防护。

2 当路堤边坡高度较高时,可在两侧边坡内分层铺设宽度不小于3m 的土工格栅等土工合成材料。

3浸水地段受水流冲刷的路基边坡应根据流速、流向及冲刷深度,采用抗冲刷能力强的防护措施。

6.8.2 土质、软质岩及全、强风化的硬质岩路堑的边坡坡面(含边坡平台、侧沟平台)均应进行防护或加固,并符合下列规定:

1 土质路堑边坡可采用植物防护措施,较高的土质路堑边坡视地层性质可采取骨架或锚杆框架梁等措施。

2 软质岩、强风化的硬质岩路堑应根据岩体结构、结构面产状、风化程度、地下水及气候条件等确定边坡加固措施,可采用喷混植生、锚杆框架梁内喷混或客土植生等措施防护。

6.8.3 较完整的硬质岩路堑边坡应采用预裂、光面爆破并结合嵌补及锚杆框架梁防护。当边坡岩体破碎、节理发育时,根据边坡高度可采用喷混植生、锚杆框架内梁内喷混或客土植生等措施防护,边坡较高时可在锚杆框架梁内打设锚杆挂钢绳网防护。

6.8.4 骨架护坡一般应采用带截水槽的结构,骨架埋置深度应大于0.6m,间距不宜大于3m。

6.8.5 地下水发育及膨胀土路堑边坡宜结合边坡防护,采用边坡支撑渗沟加固,必要时结合深层排水孔加强地下水排泄。

6.9 路基支挡

6.9.1 在陡坡路基、深路堑、临近城镇等地段,为保证路基边坡稳定,降低边坡高度,减少拆迁和占地,可设置支挡结构。

6.9.2 支挡结构物计算时,列车及轨道荷载换算土柱高度及分布宽度可按表6.1.11进行设计,当路肩墙高度较低时,可采用路基面满铺荷载模

式计算。运架梁车通过时,路堤及路肩支挡结构应考虑运架梁车等特殊荷载的影响。

6.9.3 运架梁车荷载宜换算为双土柱,采用下式进行荷载换算:

L

B NG

H 00γ=

(式6.9.4) 式中:N -横向分布的车辆数,取1;

G -1辆汽车的重力,按重车计算(kN );

B 0-横向分布车辆轮胎中心之间的宽度加单侧轮胎外缘之间的距离,m ;

L -前后轴距加轮胎纵向着地长度(m ); γ-土的密度( kN/m 3)。

6.9.4 在城市及风景区周边宜根据现场条件,宜采用与周围景观协调的悬臂式、扶壁式、桩板式及加筋土挡墙等轻型支挡结构。地震区宜采用加筋土挡墙等柔性支挡结构。

6.9.5 重力式支挡结构高度,路堤墙不宜大于6m ,路肩墙不宜大于8m 。 6.9.6 重力式挡土墙应采用混凝土砌筑,墙背反滤层宜采用袋装砂夹卵砾石或土工合成材料。

6.10 路基变形观测及评估

6.10.1 在路基上铺设轨道前,应对路基变形作系统的评估,以保证路基变形满足相关要求。

路基填筑完成或施加预压荷载后应有不少于6个月的观测和调整期,观测数据不足以评估或工后沉降评估不能满足要求时,应继续观测或者采取必要的加速或控制沉降的措施。

6.10.2 路基沉降观测应以路基面沉降和地基沉降观测为主,可设置沉降板、观测桩或剖面沉降观测装置等。

1 路基沉降观测断面的设置及观测断面的观测内容应根据沉降控制要求、地形地质条件、地基处理方法、路堤高度、堆载预压等具体情况并结

合施工工期和沉降预测方法确定。

2 沉降观测断面的间距一般不宜大于50m,地势平坦、地基条件均匀良好、高度小于5m的路堤及路堑可放宽到100m;过渡段和地形地质条件变化较大的地段应适当加密。

6.10.3 观测仪器可采用精密水准仪、剖面沉降仪和经纬仪,应满足测量精度控制要求。

6.10.4 路基沉降观测的频次不应低于表6.10.4的规定。当环境条件发生变化时应及时观测。

表6.10.4 路基沉降观测频次

6.10.5 沉降水准测量的重复精度不低于±1mm,读数取位至0.1mm;剖面沉降观测的重复精度不低于±4mm/30m。

6.10.6 路基评估应根据有关设计、施工和监理的资料及交接检验和复检的结果进行综合分析。

6.10.7 路基沉降预测应采用曲线回归法,并满足以下要求:

1 根据实际观测数据作多种曲线的回归分析,确定沉降变形的趋势,曲线回归的相关系数不应低于0.92。

2 沉降预测的可靠性应经过验证,间隔3~6个月的两次预测的偏差不应大于8mm。

3 轨道铺设前最终的沉降预测应符合其预测准确性的基本要求,即从

路基填筑完成或堆载预压以后沉降和沉降预测的时间t应满足下列条件:

s(t)/s(t=∞)≥75%(式6.10.7)式中:

s(t)——从路基填筑完成或堆载预压时起产生的沉降;

s(t=∞)——从路基填筑完成或堆载预压时起的预测总沉降。

6.10.8 路基工后沉降的评估应结合路基各断面之间的相互关系以及相邻桥隧的沉降情况进行综合分析,路基的工后沉降以及各断面之间、路基与相邻桥隧之间的不均匀沉降应满足钢轨扣件调整和线路竖曲线圆顺的要求,差异沉降满足轨道结构的要求。

6.11 接口设计

6.11.1 路基上的各种预埋设备及基础应与路基填筑统筹规划、系统设计、分步实施,保证路基强度、稳定性及防排水性能。

6.11.2 电缆槽可设置于接触网支柱外侧路肩上,并应注意与桥梁、隧道及电缆井在平面上的平顺连接。

6.11.3 声屏障基础应设置于路肩外侧,并与路基面排水系统协调。

6.11.4 路基地段贯通地线应按本规范第21章相关条款要求设置于电缆槽下。接地设备接入分支缆线宜通过预埋管路接入贯通地线。

6.11.5 电缆槽及排水沟盖板应采用工厂化生产,并优先采用活性粉末混凝土(RPC)等强度较高的材料。

高速数据采集系统设计

高速数据采集系统 设计

基于FPGA和SoC单片机的 高速数据采集系统设计 一.选题背景及意义 随着信息技术的飞速发展,各种数据的实时采集和处理在现代工业控制和科学研究中已成为必不可少的部分。高速数据采集系统在自动测试、生产控制、通信、信号处理等领域占有极其重要的地位。随着SoC单片机的快速发展,现在已经能够将采集多路模拟信号的A/D转换子系统和CPU核集成在一片芯片上,使整个数据采集系统几乎能够单芯片实现,从而使数据采集系统体积小,性价比高。FPGA为实现高速数据采集提供了一种理想的实现途径。利用FPGA高速性能和本身集成的几万个逻辑门和嵌入式存储器块,把数据采集系统中的数据缓存和控制电路全部集成在一片FPGA芯片中,大大减小了系统体积,提高了灵活性。FPGA 还具有系统编程功能以及功能强大的EDA软件支持,使得系统具有升级容易、开发周期短等优点。 二.设计要求 设计一高速数据采集系统,系统框图如图1-1所示。输入模拟信号为频率200KHz、Vpp=0.5V的正弦信号。采样频率设定为25MHz。经过按键启动一次数据采集,每次连续采集128点数据,单片机读取128点数据后在LCD模块上回放显示信号波形。

图1-1 高速数据采集原理框图 三.整体方案设计 高速数据采集系统采用如图3-1的设计方案。高速数据采集系统由单片机最小系统、FPGA最小系统和模拟量输入通道三部分组成。输入正弦信号经过调理电路后送高速A/D转换器,高速A/D 转换器以25MHz的频率采样模拟信号,输出的数字量依次存入FPGA内部的FIFO存储器中,并将128字节数据在LCD模块回放显示。 图3-1 高速数据采集系统设计方案 四.硬件电路设计 1.模拟量输入通道的设计 模拟量输入通道由高速A/D转换器和信号调理电路组成。信号调理电路将模拟信号放大、滤波、直流电平位移,以满足A/D转换器对模拟输入信号的要求。

USB接口的高速数据采集卡的设计与实现

摘要:讨论了基于USB接口的高速数据采集卡的实现。该系统采用TI公司的TUSB3210芯片作为USB通信及主控芯片,完全符合USB1.1协议,是一种新型的数据采集卡。 关键词:USB A/D FIFO 固件 现代工业生产和科学研究对数据采集的要求日益提高,在瞬态信号测量、图像处理等一些高速、高精度的测量中,需要进行高速数据采集。现在通用的高速数据采集卡一般多是PCI 卡或ISA卡,存在以下缺点:安装麻烦;价格昂贵;受计算机插槽数量、地址、中断资源限制,可扩展性差;在一些电磁干扰性强的测试现场,无法专门对其做电磁屏蔽,导致采集的数据失真。 通用串行总线USB是1995年康柏、微软、IBM、DEC等公司为解决传统总线不足而推广的一种新型的通信标准。该总线接口具有安装方便、高带宽、易于扩展等优点,已逐渐成为现代数据传输的发展趋势。基于USB的高速数据采集卡充分利用USB总线的上述优点,有效解决了传统高速数据采集卡的缺陷。 1 USB数据采集卡原理 1.1 USB简介 通用串行总线适用于净USB外围设备连接到主机上,通过PCI总线与PC内部的系统总线连接,实现数据传送。同时USB又是一种通信协议,支持主系统与其外设之间的数据传送。USB器件支持热插拔,可以即插即用。USB1.1支持两种传输速度,既低速1.5Mbps和高速 12Mbps,在USB2.0中其速度提高到480Mbps。USB具有四种传输方式,既控制方式(Control mode)、中断传输方式(Interrupt mode)、批量传输方式(Bulk mode)和等时传输方式(Iochronous mode)。 考虑到USB传输速度较高,如果用只实现USB接口的芯片外加普通控制器(如8051),其处理速度就会很慢而达不到USB传输的要求;如果采用高速微处理器(如DSP),虽然满足了USB传输速率,但成本较高。所以选择了TI公司内置USB接口的微控制器芯片 TUSB3210,开发了具有USB接口的高速数据采集卡。 1.2 系统原理图

高速以太网通讯数据采集卡使用说明

16 位 64 通道 500KSPS 光隔 AD 16 通道光隔数字入/16 通道光隔数字出 T9255 使用说明书 一、性能特点: 本板采用有线 10M/100M 以太网口的数据采集器。 本采集卡提供基于 DLL 的编程技术,用户不需要网络知识就可以实现网络采集与控制功能。 本板通过采用高速高精度 AD 芯片、高精度的放大器、高密度 FPGA 逻辑芯片、精细地布线以及优良的制版工艺,实现了高速、高精度实时数据采集,具有以下性能特点: 1、2、 3、 4、5、6、64 通道模拟量高速采集。可以设置 1-64 通道采集,起始通道号可以自由设定。 AD 幅值采集高精度:16 位采集精度,长时间采集时,误差跳码为±2LSB,相对精度优于 0.001%,直流电压波动小于 0.1 毫伏。 软件校准:将校准信息存储在板卡上,用户不用打开仪器设备就可以进行校 准,使用方便,一般情况下不需要用户进行任何校准。 丰富的备用扩展资源:板上 CPLD 资源非常丰富,可以为用户的特殊需求进行定制,如旋转编码器接口、脉冲周期测量接口、PWM 输出接口、外同步接口、触发记录接口、开关量控制接口等(定制)。 提供外部时钟模式:在该模式下,外部时钟信号启动所有通道采集一次,从而 实现多通道与外时钟同步采集模式(定制)。 提供外部触发启动模式:在该模式下,只有当外部给出上升延触发信号后才开 始采集,从而实现用户外触发采集模式的需要(定制)。

二、功能与指标 AD 的性能指标: AD 采样精度:16 位 AD 通道数:单端方式 64 通道。 AD 采集的综合跳码误差为±2LSB。 模拟采集的定时精度:缺省情况下为 50PPM,特殊要求可以定制 AD 输入电压范围:-5V 到+5V、0-10V 可选,或根据用户需要定制量程。 AD 输入阻抗:100 千欧 模拟输入安全电压:±15 伏。当超过 AD 输入量程时,只要不超过安全电压就不 会损坏硬件。建议用户尽可能使输入信号在量程范围内。 抗静电电压:2000 伏 采集方式:连续采集 模拟量安全电压:当输入电压超过±20V 时,有可能造成硬件损坏,由此造成的损 失不在保修范围内。 接口: 总线方式:10M/100M 以太网 开关量指标: 16 路数字量输入,独立光电隔离模式,TTL 电平方式,高电平输入为 高于 2.4V,低电平低于 0.8V,限流电阻 1k 欧姆。 开关量输入的电流,小于 1uA 16 路数字量输出,上电复位清零功能,高电平输出大于 2.4V,低电平 输出低于 0.2V 开关量输出的电流大于 5mA,小于 10mA。 电源: 外部电源输入 10-30V DC,电源电流 200mA。 尺寸: 电路板尺寸:150mm*100mm 电路板定位孔:140*90——Φ3.5mm 工作环境 工作温度:0-70℃ 环境湿度:90%以内

基于DSP和PCI总线的同步数据采集卡设计

基于!"#和#$%总线的同步数据采集卡设计 王宏,许飞云,贾民平 (东南大学设备监控与故障诊断研究所,江苏南京&’(()*) 摘要:介绍了一种在大型设备状态监测和故障诊断系统中作为核心的同步数据采集卡的设 计方法。该采集卡使用+%公司的+,"-&(.$/0’(1!"#做数字信号处理器,对数据采集过 程进行控制,并进行数字信号处理。应用#$%&(0(实现+,"-&(.$/0’(1!"#到#$%总线间 可靠连接,从而保证了采集数据快速、高效地传输到#$机。采集卡集同步数据采集、信号处 理及高速数据传输于一体。在状态监测和故障诊断系统中应用时,能很好的满足数据采集、处 理和传输的需要。 关键词:!"#;#$%总线;#$%&(0(;同步数据采集 中图分类号:+#-)’233文献标识码:1文章编号:’*3’4/&3*(&((3)(’4(()/4(0 !"#$%&’()*&+,-’&’.#!/0/1+2.$#$0$’&3/-45/#"4’&!)6/&46375.# 516789:;,<=>?@4A B:,C%1,@:4D@:; (E?F?G H I J$?:K?H9L$9:M@K@9:,9:@K9H@:;G:M>G B N K!@G;:9F@F, "9B K J?G F K=:@O?H F@K A,6G:P@:;&’(()*,$J@:G) 18#0-/+0:1M?F@;:9L F A:I J H9:9B F M G K G G I Q B@F@K@9:I G H M@F B F?M G F I9H?@:N G H;?4F I G N??Q B@D R?:K’F I9:M@K@9:R9:@K9H@:;G:M L G B N K M@G;:9F@F2+,"-&(.$/0’(1!"#9L+%I9R D G:A@F B F?M G F M@;@K G N F@;:G N D H9I?F F9H9:K J?I G H M K9I9:K H9N K J?D H9I?F F9L M G K G G I4 Q B@F@K@9:G:M K9D H9I?F F K J?G I Q B@H?M M G K G2#$%&(0(@F G D D N@?M K9D H9O@M?G K H@?M I9::?I K@9:S?K T??:+,"-&(.$/0’(1!"#G:M #$%S B F K9;B G H G:K??K J?G I Q B@H?M M G K G K H G:F L?H H?M K9#$@:J@;J F D??M G:M J@;J?L L@I@?:I A2+J?I G H M I9R S@:?F F A:I J H9:9B F M G K G G I Q B@F@K@9:,F@;:G N D H9I?F F G:M J@;J U F D??M M G K G K H G:F@K@9:@:9:?25J?:B F?M@:I9:M@K@9:R9:@K9H@:;G:M L G B N K M@G;:9F@F F A F4 K?R F,K J?I G H M I G:T?N N R??K K J?:??M F9L G I Q B@F@K@9:,D H9I?F F G:M K H G:F R@F F@9:9L M G K G2 9"*:’-4#:!"#;#$%S B F;#$%&(0(;F A:I J H9:9B F M G K G G I Q B@F@K@9: ;引言 随着现代化工业生产日益系统化、高速化和自动化的发展,现代工业生产已逐渐形成一个具有整体性的生产链,一旦某一设备发生故障,将会引起整个生产过程不能正常运行,从而造成巨大的经济损失,严重时将造成灾难性的设备损坏及人员伤亡。近年来,国内外的设备事故时有发生。因此,人们对设备的可靠性和安全性提出了越来越高的要求,设备的故障监测与诊断技术受到了人们的高度重视,并已发展成为一门综合性的交叉学科,亦取得了显著的经济效益和社会效益[’]。 设备的故障监测与诊断技术多是基于#$机的测试系统,首先要进行数据采集,然后才能对获得的数据进行测试分析。所以数据采集卡是设备的故障监测与诊断的基础。 文中主要阐述了基于!"#的#$%总线同步数据采集卡的硬件设计,使用美国+%公司的+,"-&(.$/0’(1 !"#作为采集卡的处理器,使用高速的#$%总线与#$机连接,实现数据的采集和快速传送。该卡主要用于大型设备监测和故障诊断系统中完成数据采集和预处理功能,实现对被监测系统的实时监测。 <硬件设计 <2<采集卡总体结构 在大型设备的状态监测和故障诊断中,振动信号能最迅速最直接地反映机械设备的运行状态,3(V以上的运行故障都以振动形式表现出来。由于振动信号在工频及其各倍频处的能量分布直接反映了设备运行状态,因此需要在数倍于工频的范围内分析振动频谱,作为振动信号的状态监测系统要求也就比较高[-],表现为:采样频率高、信号处理量大、数据传输量也很大。而使用!"#和#$%总线相结合设计的同步采集卡却能满足这一需求。#$%总线数据采集卡系统的原理框图如图’所示。 由图’可以看出,’*通道模拟信号同步采集模块对由抗混滤波板输入的模拟信号进行缓冲处理输入后续的0片0通道同步采集芯片1!3W*/,该0片1!3W*/芯片由同一个采样脉冲控制采样及1/!转换,实现’*通道信号的同步采集。所有1!3W*/芯片的转换结果均通过板内部的!"#总线供+,"-&(.$/0’(1!"#芯片读取,该同步采集模块可根据测量的转速实现’*通道模拟信号同步整周期采集,采集频率每通道可高达3/X8Y。 此外,该信号同步采集模块具有内触发与外触发采样功能,其外触发采样功能可以保证多块’*通道信号同步采集模块同时使用,实现更多通道(如-&、0W通道等)的同步采样。 +,"-&(.$/0’(1!"#芯片为’*通道信号同步采集板的核心,它一方面控制各种信号的采集及保存,另一方面负责信号的分析与处理,并提取设备故障的特征信号通过其8#%接口供计算机获取用于故障诊断。各相关单元如1/!转换芯片、0Z-&[字数据E1,、’&W[字程序/数 !"#$%&’()%*+%&,-.)/01"/%0&,2’34556,78(9)::;!:

高速铁路路基设计规范标准

6 路基 6.1一般规定 6.1.1路基工程应加强地质调绘和勘探、试验工作,查明基底、路堑边坡、支挡结构基础等的岩土结构及其物理力学性质,查明不良地质情况,查明填料性质和分布等,在取得可靠地质资料的基础上开展设计。 6.1.2路基主体工程应按土工结构物进行设计,设计使用年限应为100 年。 6.1.3基床表层的强度应能承受列车荷载的长期作用,刚度应满足列车运行时产生的弹性变形控制在一定范围内的要求,厚度应使扩散到其底层面上的动应力不超出基床底层土的承载能力。基床表层填料应具有较高的强度及良好的水稳性和压实性能,能够防止道砟压入基床及基床土进入道床,防止地表水侵入导致基床软化及产生翻浆冒泥、冻胀等基床病害。 6.1.4路基填料的材质、级配、水稳性等应满足高速铁路的要求,填筑压实应符合相关标准。 6.1.5路堤填筑前应进行现场填筑试验。 6.1.6路基与桥台、横向结构物、隧道及路堤与路堑、有砟轨道与无砟轨道等连接处均应设置过渡段,保证刚度及变形在线路纵向的均匀变化。 6.1.7路基工后沉降值应控制在允许范围内,地基处理措施应根据地形和地质条件、路堤高度、填料及工期等进行计算分析确定。对路基与桥台及路基与横向结构物过渡段、地层变化较大处和不同地基处理措施连接处,应采取逐渐过渡的地基处理方法,减少不均匀沉降。路基施工应进行系统的沉降观测,铺轨前应根据沉降观测资料进行分析评估,确定路基工后沉降满足要求后方可进行轨道铺设。 6.1.8路基支挡加固防护工程应满足高速铁路路基安全稳定的要求,路基边坡宜采用绿色植物防护,并兼顾景观与环境保护、水土保持、节约土地等要求。 6.1.9路基排水工程应系统规划,满足防、排水要求,并及时实施

高速数据采集卡250MSPS

高速数据采集卡250MSPS 14bit 250MSPS 14bit 8通道高速数据采集卡主要应用于雷达、通信、电子对抗、高能物理、质谱分析、超声等高科技领域。西安慕雷电子在高速数据采集卡研发及系统应用领域拥有十多年经验,2013年底发布了250MSPS 14bit 8通道高速数据采集卡MR-HA-250M,采集记录存储带宽高达3000MB/S。高速数据采集卡MR-HA-250M及记录存储系统的成功发布使得西安慕雷电子在高速数据采集卡及相关记录存储回放领域为国防及科研领域又提供了一套高性能解决方案。 图一高速数据采集卡MR-HA-250M 高速数据采集卡MR-HA-250M模块参数: ●输入接口: 连接器:SSMC; 输入方式:AC或DC耦合; 通道数量:8通道,可同步32通道 ●AFE模块: 高速数据采集卡中的信号调理模块一般采用衰减、滤波及程控增益放大器等对信号进行处理,高速数据采集卡MR-HA-250M采用信号直通AD模式,减少前端调理对高速数据采集卡动态性能影响。 图二高速数据采集卡MR-HA-250M

●ADC模块: 高速数据采集卡的ADC芯片采用Linear Tech LTC2157-14 (250 MSPS) 图三高速数据采集卡MR-HA-250M动态性能 ●时钟管理模块: 高速数据采集卡MR-HA-250M可选择外时钟、内时钟或参考时钟 ●FPGA模块: XILINX或ALTERA的FPGA芯片广泛用于高速数据采集卡中。FPGA模块开放编程是高速数据采集卡的必备能力。高速数据采集卡MR-HA-250M采用XILINX V6系列高性能FPGA。 ●DDR模块: 高速数据采集卡一般都会配有DDR缓存,存储采集过程中的数据。高速数据采集卡MR-HA-250M配置有4GB DDR2。 ●FIFO模式 高速数据采集卡将板载内存虚拟为FIFO,允许采集数据由缓冲后连续不断地通过总线传输到主机内存或硬盘中。该模式特点就是高速、大容量,使得高速数据采集卡记录时间达数小时。记录时间取决于存储介质的容量。 图四高速数据采集卡MR-HA-250M

等间距采样的高速数据采集系统设计

等间距采样的高速数据采集系统设计 郝亮,孟立凡,刘灿,高建中 (中北大学仪器科学与动态测试教育部重点实验室,太原030051) 摘要:简单介绍通过对窄脉冲等间距采样来测试电缆故障的基本原理,分析其脉冲的特点和处理要求;采用F PGA和MSP430F149作为主控芯片,设计了单路多次低速数据采集系统;利用Quartus II软件编写主控程序,并在Modelsim下进行仿真验证。实验结果表明,该系统方案切实可行,可有效解决电缆故障测距过程中的高精度数据采集问题。 关键词:等间距采样;数据采集;MSP430F149;F PGA 中图分类号:TN98文献标识码:B H igh2spe ed Data Acquisition System Based on Equidistance Sampling Hao Liang,Meng Lifan,Liu Can,Gao Jianzhong (Inst ruments Science and Dynamic Measurement Ministry of Education Key Laboratory, North University of China,T aiyuan030051,China) A bstract:T he basic principle of testing cable faults wit h narrow2pulse equidistance sampling is described.Pulse characteristics and pro2 cessing requirements are analyzed.The single2line repeated low2speed dat a acquisition system is designed with FPGA and MSP430F149 as main control chips.Main control procedures are programmed in Quartus II and simulated in Modelsim.Experimental result shows that t he system is practical,and the problem of high2precision data acquisition in the process of cable fault location is resolved effectively. K ey words:equidist ance sampling;data acquisit ion;MSP430F149;FPGA 引言 电缆故障是通信行业中的常见故障,而电缆测距是排除故障的前提条件。准确的电缆测距可以缩短发现故障点的时间,利于快速排除故障,减少损失。窄脉冲时域反射仪利用时域反射技术来测定电缆断点位置,可以同时检测出同轴传输系统中多个不连续点的位置、性质和大小。窄脉冲信号持续的时间非常短暂,为了能够有效地捕捉到窄脉冲信号,对A/D采样率和处理器速率提出了较高的要求,传统的数据采集已经不能满足系统设计需求。本文介绍的单路多次低速数据采集方案硬件结构简单,成本低,能够满足系统设计要求。 1系统设计理论依据 根据电磁波理论,电缆即传输线。假若在电缆的一端发送一探测脉冲,它就会沿着电缆进行传输,当电缆线路发生障碍时会造成阻抗不匹配,电磁波会在障碍点产生反射。在发射端,由测量仪器将发送脉冲和反射脉冲波形记录下来。实际测试中,具体障碍的波形有所差异:断线(开路)障碍时,反射脉冲与发射脉冲极性相同;而短路、混线障碍时,反射脉冲与发射脉冲极性相反。波形如图1所示。 图1发射脉冲与反射脉冲波形 设从发射窄脉冲开始到接收到反射脉冲波的时间为$t,则: l=v#$t 2 其中,v为脉冲波在电缆中的传输速度;l为电缆故障点与脉冲波送入端的距离。 由以上分析可知,在同一个固定障碍的线路上多次送入同一脉冲电压,其反射脉冲将同样地在同一位置多次出现。 要实现对反射窄脉冲的捕获和1m的测距分辨率(在波速为200m/L s的情况下),则$t= 2l v =2@1 200 =0.01L s =10ns。即要求抽样的时间分辨率为10ns,对应的数据采集系统频率高达100MHz。同时,最大测量范围是2km 时,要求发射脉冲的重复周期T= 2l v =2@2000 200 =20L s。

1仪器的工作原理及系统构成-高速数据采集卡

1 仪器的工作原理及系统构成 虚拟示波器是由信号调理器,PCI总线的数据采集卡组成的外部采集系统加上软件构成的分析处理系统组成。被测信号送到信号调理电路,进行隔离、放大、滤波整流后送数据采集卡进行A/D转换,最后由控制软件对测试信号进行数据处理,完成波形显示,参数测量、频谱分析等功能。系统结构如图1显示 图1 系统结构图 2 系统的设计及功能实现 2.1硬件部分 硬件部分主要包括传感器、信号调理电路及数据采集卡。 理电路针对不同的测试对象有不同的选择和设计。数据采集是硬件部分的核心, 它的性能直接影响数据采集的速度和精度。另外,LabVIEW可对NI公司的数据 采集卡进行驱动和配置,可充分利用采集卡的性能。基于此,我选择的数据采集 卡是NI公司生产的。下面主要介绍数据采集卡的性能和安装配置。 2.1.1 PCI—6010数据采集卡的简介 PCI—6010采集卡是基于32位PCI总线的多通道的数据采集设备,具有数 字输入/输出、模拟输入/输出和计数器等功能。它通过SH37F—37M电缆与CB —37F—LF 输入输出接口面板连接,该接口面板具有37个螺旋状的接口终端。 同时此数据采集卡具有3个完全独立的DMA控制(模拟输入、定时/计数器0、 定时/计数器1)。本卡还具有刻度校准电路系统。由于运行时,时间和温度漂移 会引起一定的模拟输入、输出误差,为了使此误差最小,可以调整设备的校准刻 度。而它的出厂校准信息存储在EEPROM中,不能修改。而修改此信息必须通 过软件来实现。

该数据采集卡具有8个差动模拟输入通道(即16个对地单信号模拟输入通道),电压范围为±5V, ±1V,±0.2V;2个模拟输出通道,电压范围为±5V。同时它还具有6个数字输入通道,4个数字输出通道。数字输入的VIH(Input high voltag e)的最小值是2.0 V, 最大值是5.25 V,VIL(Input low voltage)的最大值是0. 8 V, 最小值是–0.3 V;数字输出的IOH(Output high current)的最大值是–6 mA ,IOL (Output low current) 的最大值是2 mA。信号通道的最大采样速率是200 kS/s (single channel) ,扫描时最大采样速率是33.3 kS/s (scanning)。 2.1.2 PCI—6010数据采集卡的安装 将NI PCI—6010数据采集卡插到计算机主板的一个插槽中,接好附件。附件包括一个型号为CB—37F—LF的转接板,和一条SH37F—37M电缆。转接板直接与外部信号连接。在完成了NI PCI—6010数据采集卡的硬件连接后,就需要 安装该卡的驱动程序。安装步骤如下: (1)运行程序→National Instrument DAQ→NI-DAQ Setup。在出现对话框中 单击NEXT按钮。 (2)在出现的Seletct DAQ Devices对话框中选中NI PCI—6010,单击NEXT 按钮。 (3)在后续出现的全部对话框中单击NEXT按钮,即可完成NI PCI—6010数 据采集卡的安装。 (4)重新启动计算机。完成数据采集卡的安装。 2.1.3 PCI—6010数据采集卡的配置 在安装好数据采集卡后就要对其进行系统配置。点击图标Measurement & Automation Explorer,在弹出的Devices and Interface 中进行I/O配置。 (1) 这支采集卡在系统的设备的编号:将参数Device值设为1; (2) 设置模拟输入AI的属性:将Polarity 值设为-5V~+5V,将Mode属性设 置为Differentioal(差动); (3) 设置模拟输出AO的属性:在AO窗口中,将属性设为Bipolar(双极性)。 在完成上述设定之后,单击“确定”按钮。在Systerm窗口中有“Test Resources”按钮,可检验设备是否正确配置。通过后再进行简单的通道配置,即可完成数据采集卡的全部设置。

第10章基于研华数据采集卡的LabVIEW程序设计

第10章基于研华数据采集卡的 L a b V I E W程序设计 本章利用研华公司的PCI-1710HG数据采集卡编写LabVIEW程序,包括:模拟量输入、模拟量输出、开关量输入以及开关量输出等。 10.1 模拟量输入(AI) 10.1.1 基于研华数据采集卡的LabVIEW程序硬件线路 在图10-1中,通过电位器产生一个模拟变化电压(范围是0V~5V),送入板卡模拟量输入0通道(管脚68),同时在电位器电压输出端接一信号指示灯,用来显示电压变化情况。 图10-1 计算机模拟电压输入线路 本设计用到的硬件为:PCI-1710HG数据采集卡、PCL-10168数据线缆、ADAM-3968接线端子(使用模拟量输入AI0通道)、电位器(10K)、指示灯(DC5V)、直流电源(输出:DC5V)等。 10.1.2 基于研华数据采集卡的LabVIEW程序设计任务 利用LabVIEW编写应用程序实现PCI-1710HG数据采集卡模拟量输入。 任务要求: (1)以连续方式读取电压测量值,并以数值或曲线形式显示电压测量变化值;

(2)当测量电压小于或大于设定下限或上限值时,程序画面中相应指示灯变换颜色。

10.1.3 基于研华数据采集卡的LabVIEW程序任务实现 1.建立新VI程序 启动NI LabVIEW程序,选择新建(New)选项中的VI项,建立一个新VI程序。 在进行LabVIEW编程之前,必须首先安装研华设备管理程序Device Manager、32bit DLL驱动 程序以及研华板卡LabVIEW驱动程序。 2.设计程序前面板 在前面板设计区空白处单击鼠标右键,显示控件选板(Controls)。 (1)添加一个实时图形显示控件:控件(Controls)→新式(Modern)→图形(Graph)→波形图形(Waveform Chart),标签改为“实时电压曲线”,将Y轴标尺范围改为0.0-5.0。 (2)添加一个数字显示控件:控件(Controls)→新式(Modern)→数值(Numeric)→数值显示控件(Numeric Indicator),标签改为“当前电压值:”。 (3)添加两个指示灯控件:控件(Controls)→新式(Modern)→布尔(Boolean)→圆形指示灯(Round LED),将标签分别改为“上限指示灯:”、“下限指示灯:”。 (4)添加一个停止按钮控件:控件(Controls)→新式(Modern)→布尔(Boolean)→停止按钮(Stop Button)。 设计的程序前面板如图10-2所示。 图10-2 程序前面板 3.框图程序设计——添加函数 进入框图程序设计界面,在设计区空白 处单击鼠标右键,显示函数选板(Functions)。 在函数选板(Functions)下添加需要的函数。 (1)添加选择设备函数:用户库→ Advantech DA&C(研华公司的LabVIEW函数库)→ EASYIO → SelectPOP →,如图10-3所示。 图10-3 SelectPop函数库

高速铁路路基设计规范标准

6 路基 6、1 一般规定 6、1、1 路基工程应加强地质调绘与勘探、试验工作,查明基底、路堑边坡、支挡结构基础等得岩土结构及其物理力学性质,查明不良地质情况,查明填料性质与分布等,在取得可靠地质资料得基础上开展设计。 6、1、2 路基主体工程应按土工结构物进行设计,设计使用年限应为100年。 6、1、3 基床表层得强度应能承受列车荷载得长期作用,刚度应满足列车运行时产生得弹性变形控制在一定范围内得要求,厚度应使扩散到其底层面上得动应力不超出基床底层土得承载能力。基床表层填料应具有较高得强度及良好得水稳性与压实性能,能够防止道砟压入基床及基床土进入道床,防止地表水侵入导致基床软化及产生翻浆冒泥、冻胀等基床病害。 6、1、4 路基填料得材质、级配、水稳性等应满足高速铁路得要求,填筑压实应符合相关标准。 6、1、5 路堤填筑前应进行现场填筑试验。 6、1、6 路基与桥台、横向结构物、隧道及路堤与路堑、有砟轨道与无砟轨道等连接处均应设置过渡段,保证刚度及变形在线路纵向得均匀变化。 6、1、7 路基工后沉降值应控制在允许范围内,地基处理措施应根据地形与地质条件、路堤高度、填料及工期等进行计算分析确定。对路基与桥台及路基与横向结构物过渡段、地层变化较大处与不同地基处理措施连接处,应采取逐渐过渡得地基处理方法,减少不均匀沉降。路基施工应进行系统得沉降观测,铺轨前应根据沉降观测资料进行分析评估,确定路基工后沉降满足要求后方可进行轨道铺设。 6、1、8 路基支挡加固防护工程应满足高速铁路路基安全稳定得要求,路基边坡宜采用绿色植物防护,并兼顾景观与环境保护、水土保持、节约土地等要求。

教你设计pci总线的高速数据采集卡(基于pci9054)

教你设计PCI总线的高速数据采集卡(基于PCI9054) 2007-03-13 21:02 眼下有不少场合需要用到PCI总线的数据采集卡,下面我就来谈一下设计PCI数采卡的原理及要点。 首先我要以我的实际经验,纠正存在于很多人心里的几个误区: 1.设计PCI采集卡要通读PCI协议。 相信有很多初学者都在这个地方被吓住了,几百页的英文要通读并理解谈何容易!其实PCI协议处理的这部分功能已经被PCI接口芯片完成了,如PLX公司的9054、9056和9052等等,它封装了PCI协议的细节,我们只需要控制这颗接口芯片local端的几个控制线就可以完成PCI总线的数据传输。PCI协议也有它的用处,我们只需要在某些需要注意的地方查阅一下相关章节即可,比如PRSNT1#和PRSNT2#引脚至少要有一个下拉,才能识别到卡,这就是PCI协议中的规定。 2. PCI卡布线很复杂,一不小心就可能不成功。 其实对于32位33MHz的PCI总线来说,布线相对比较简单,只要稍加注意就不会出问题。比如:PCI总线的时钟线要做成2500(+/-100)mil,这个是要注意的一点,一般PCI卡上的蛇行弯曲走线就是这条线,因为走直线距离一般都达不到此长度。其他要求,比如地址和数据线要在1500mil以内,其实你超过一些也没什么问题,不要超太多就好了。 3. PCI卡的驱动程序编写很难。 其实无论是软件还是硬件设计,都有一些相对成熟的资料可以参考。对驱动程序来说也是这样,对实际项目的开发没有几个是从头到尾自己在编代码,都可以在网上找到一些成熟的代码,然后自己修改一下即可,况且PCI卡的驱动程序又相对比较成熟,可参考的资料也较多。所以你要从网上找代码,向PCI接口芯片的供应商要代码,等收集到足够多的代码,再配以适当的教材(比如对于windows2000/XP系统下的WDM驱动程序,可以参考武安河老师的教材就足够),就可以进行你自己的驱动设计了。 下面我再针对具体应用谈谈PCI采集卡的设计: 一般数采卡的情况是将A/D转换后的数据通过PCI总线上传到PCI机,然后利用

5 Gsps高速数据采集系统的设计与实现

5 Gsps 高速数据采集系统的设计与实现 摘要:以某高速实时频谱仪为应用背景,论述了5 Gsps 采样率的高速数据采集系统的构成和设计要点,着重分析了采集系统的关键部分高速ADC(analog to digital,模数转换器)的设计、系统采样时钟设计、模数混合信号完整性设计、电磁兼容性设计和基于总线和接口标准(PCI Express)的数据传输和处理软件设计。在实现了系统硬件的基础上,采用Xilinx 公司ISE 软件的在线逻辑分析仪(ChipScope Pro)测试了ADC 和采样时钟的性能,实测表明整体指标达到设计要求。给出上位机对采集数据进行处理的结果,表明系统实现了数据的实时采集 存储功能。关键词:高速数据采集;高速ADC;FPGA;PCI Express 高速实时频谱仪是对实时采集的数据进行频谱分析,要达到这样的目的,对数据采集系 统的采样精度、采样率和存储量等指标提出了更高的要求。而在高速数据采集 系统中,ADC 在很大程度上决定了系统的整体性能,而它们的性能又受到时钟质量的影响。为满足系统对高速ADC 采样精度、采样率的要求,本设计中提 出一种新的解决方案,采用型号为EV8AQ160 的高速ADC 对数据进行采样;考虑到ADC 对高质量、低抖动、低相位噪声的采样时钟的要求,采用AD9520 为5 Gsps 数据采集系统提供采样时钟。为保证系统的稳定性,对模数混合信号完整性和电磁兼容性进行了分析。对ADC 和时钟性能进行测试,并给出上位 机数据显示结果,实测表明该系统实现了数据的高速采集、存储和实时后处理。 1 系统的构成高速数据采集系统主要包括模拟信号调理电路、高速ADC、高速时钟电路、大容量数据缓存、系统时序及控制逻辑电路和计算机接口电路等。图1 所示为5 Gsps 高速数据采集系统的原理框图。所用ADC 型号为EV8AQ160,8 bit 采样精度,内部集成4 路ADC,最高采样率达5 Gsps,可以工作在多种模式下。通过对ADC 工作模式进行配置,ADC 既可以工作在采样

高速数据采集卡在超声领域的最新解决方案

高速数据采集卡在超声检测领域的最新解决方案 高速数据采集卡作为进行相关超声测量的理想工具,在开发、测试、操作超声产品中可以发挥关键作用。高速数据采集卡和任意波形发生器提供宽范围的带宽、采样率和动态范围,能够完美匹配超声测量的的相关需求。 图1,M4i.4451-x8 14bit 500MS/s PCIe 接口高速数据采集卡采集超声信号 超声应用: 超声波是一种频率超过人耳听觉范围的一种声波。超声波设备操作频率一般从20 kHz到几GHz不等。表1总结了一些超声应用的典型频率范围。 每个应用领域的的频率使用范围都反映出工程上的权衡。增加了操作频率来提高分辨率可实现对较小的工件精确检测,但另一方面,较高频率信号的渗透能力是有限的,超声波应用的常见问题是信号衰减、其与信号频率成反比。因此,非常高频率往往应用与物体表面研究应用中,相对的低频率往往应用在需要更大的渗透和能量的应用中。北京坤驰科技有限公司所提供的高速数据采集卡具有较宽动态范围,可以在检测大信号的同时,检测到的小信号,可适应较多的应用场景。 应用举例:

表1:常用超声应用的推荐产品 采样率: 通常高速数据采集卡产品的选择是基于应用使用的频率的,高速数据采集卡的采集速率通常要5到10倍于工程应用频率,也就是需要采集和检测的信号频率。但在多普勒频移应用中,因其经常需要测量信号的某些特定的小的片段,需要很高时间分辨率,高速数据采集卡的采样率有时需要多达测量频率的10倍以上。 带宽: 高速数据采集卡的带宽应该超过工程应用的最高频率。工作带宽较低将导致高频频率信号衰减,并可能限制测量的分辨率和准确性。 动态范围: 增加数字转换器的动态范围(位数)可实现小信号的检测。高分辨率ADC通常提供更好的信噪比,可实现采集卡同时检测大信号和小信号。这就是为什么应用系统前端通常使用更高分辨率的ADC或信号处理(如平均和过滤)来提高他们的整体测量灵敏度。 其他方面: 高速数据采集卡的输入电路必须与超声传感器的输出阻抗和耦合元件相

基于研华数据采集卡的LabVIEW程序设计

第10章基于研华数据采集卡的L a b V I E W 程序设计 本章利用研华公司的PCI-1710HG数据采集卡编写LabVIEW程序,包括:模拟量输入、模拟量输出、开关量输入以及开关量输出等。 10.1 模拟量输入(AI) 10.1.1 基于研华数据采集卡的LabVIEW程序硬件线路 在图10-1中,通过电位器产生一个模拟变化电压(X围是0V~5V),送入板卡模拟量输入0通道(管脚68),同时在电位器电压输出端接一信号指示灯,用来显示电压变化情况。 图10-1 计算机模拟电压输入线路 本设计用到的硬件为:PCI-1710HG数据采集卡、PCL-10168数据线缆、ADAM-3968接线端子(使用模拟量输入AI0通道)、电位器(10K)、指示灯(DC5V)、直流电源(输出:DC5V)等。 10.1.2 基于研华数据采集卡的LabVIEW程序设计任务 利用LabVIEW编写应用程序实现PCI-1710HG数据采集卡模拟量输入。 任务要求: (1)以连续方式读取电压测量值,并以数值或曲线形式显示电压测量变化值;

(2)当测量电压小于或大于设定下限或上限值时,程序画面中相应指示灯变换颜色。 209 / 21

10.1.3 基于研华数据采集卡的LabVIEW程序任务实现 1.建立新VI程序 启动NI LabVIEW程序,选择新建(New)选项中的VI项,建立一个新VI程序。 在进行LabVIEW编程之前,必须首先安装研华设备管理程序Device Manager、32bitDLL驱动 程序以及研华板卡LabVIEW驱动程序。 2.设计程序前面板 在前面板设计区空白处单击鼠标右键,显示控件选板(Controls)。 (1)添加一个实时图形显示控件:控件(Controls)→新式(Modern)→图形(Graph)→波形图形(Waveform Chart),标签改为“实时电压曲线”,将Y轴标尺X围改为0.0-5.0。 (2)添加一个数字显示控件:控件(Controls)→新式(Modern)→数值(Numeric)→数值显示控件(Numeric Indicator),标签改为“当前电压值:”。 (3)添加两个指示灯控件:控件(Controls)→新式(Modern)→布尔(Boolean)→圆形指示灯(Round LED),将标签分别改为“上限指示灯:”、“下限指示灯:”。 (4)添加一个停止按钮控件:控件(Controls)→新式(Modern)→布尔(Boolean)→停止按钮(Stop Button)。 设计的程序前面板如图10-2所示。 图10-2 程序前面板 3.框图程序设计——添加函数 进入框图程序设计界面,在设计区空白 处单击鼠标右键,显示函数选板(Functions)。 在函数选板(Functions)下添加需要的函数。 (1)添加选择设备函数:用户库→ Advantech DA&C(研华公司的LabVIEW函数库) →EASYIO→SelectPOP→Sel ectDevicePop.vi,如 图10-3 SelectPop函数库

铁路路基施工方案

哈家咀段路基施工方案 一编制依据 1)依据本工程队的设计文件、招、投标文件的技术要求。 2)兰州至中川机场线路施工设计图。 3)《铁路路基设计规范》TB10001 —2005、《铁路路基工程施工安全技术规程》TB10302 —2009、《铁路路基填筑工程连续压实控制技术规程》TB10108 —2011、《铁路路基工程施工质量验收标准》TB10751 —2010 。。 4)现场踏勘、调查工地周边环境条件所了解的情况和收集的信息。 5)国家法律、法规及甘肃省有关规定和当地民众的民俗风情。 二编制原则 1)遵守国家和甘肃省有关的法律、法规以及相关文件要求。 2)按照国家有关的法律法规要求,做好环保、水保等保护工 作。 3)认真做好施工调查研究,充分考虑当地自然环境和施工条件,进行施工方案比选,因地制宜的制定施工方案。 4)努力改进施工工艺,提高机械化施工水平,以求先进的施 5)先重点后一般,全面规划重点突破,强调施工组织设计的

科学性、实施性、可操作性、严密性和可靠性。 三编制范围 新建兰州至中川机场铁路项目哈家咀段路基DK40+500 / DK41+801.23 、DK42+471.60 ?DK42+753.30 段范围内的路基 工程。 四工程概况 本段路基工点位于兰州市永登县树坪镇,线路与机场高速及 201省道并行。DK40+500?DK41+801.23 段位于碱沟河谷阶地 地区,地形起伏较大,河谷切割较深,工程与河床平行,行走于 碱沟一级阶地上。DK42+471.60 ?DK42+753.30 段位于李麻沙 沟阶地区,该段谷地地形起伏较大,沟谷切割较深,河谷宽约100? 400m,高程1681?1796m。工程与沟床近平行,行走于李麻沙沟一阶级地上。 工点处涉及地层:第四系全新统冲积砂质黄土,黏质黄土、 细沙、中砂、砾砂、细圆砾土,第四系上更新统风积砂质黄土,

高速数据采集卡

高速数据采集卡5GSPS 10bit 5GSPS 10bit高速数据采集卡主要应用于雷达、通信、电子对抗、高能物理、质谱分析、超声等高科技领域。西安慕雷电子在高速数据采集卡研发及系统应用领域拥有十多年经验,2013年底发布了5GSPS 10bit高速数据采集卡MR-HA-5G,采集记录存储带宽高达6000MB/S。高速数据采集卡MR-HA-5G及记录存储系统的成功发布代表西安慕雷电子在高速数据采集记录存储回放领域再一次登上技术巅峰。 图一高速数据采集卡MR-HA-5G 高速数据采集卡MR-HA-5G模块参数: ●输入接口: 连接器:SMA; 输入方式:AC耦合; 通道数量:单通道、2通道、4通道。 ●AFE模块: 高速数据采集卡中的信号调理模块一般采用衰减、滤波及程控增益放大器等对信号进行处理,高速数据采集卡MR-HA-5G采用信号直通AD模式,减少前端调理对高速数据采集卡动态性能影响。 图二高速数据采集卡MR-HA-5G

高速数据采集卡的ADC芯片采用E2V公司的EV10AQ190A,最高达5GSPS 采样,模拟带宽3GHZ。 图三高速数据采集卡MR-HA-5G频率响应 ●时钟管理模块: 高速数据采集卡MR-HA-5G可选择外时钟、内时钟或参考时钟 ●FPGA模块: XILINX或ALTERA的FPGA芯片广泛用于高速数据采集卡中。FPGA模块开放编程是高速数据采集卡的必备能力。高速数据采集卡MR-HA-5G采用ALTERA STRATIX5系列高性能FPGA。 图四高速数据采集卡MR-HA-5G ●DDR模块: 高速数据采集卡一般都会配有DDR缓存,存储采集过程中的数据。根据采集数据量和速度,容量有:512M、1G、2G、4G等。高速数据采集卡MR-HA-5G 配置有16GB DDR3。

相关文档
最新文档