定积分的近似计算以及误差估计

定积分的近似计算以及误差估计
定积分的近似计算以及误差估计

定积分的近似计算方法与误差估计

作者: 操乐青 指导老师: 邢抱花

摘要 本文主要讨论了一元函数常见的数值积分方法,例如插值型求积公式,高斯求积公式等近

似计算方法,在用这些方法计算定积分时,会产生一些误差,为了减少误差, 可以利用复化求积公式、复化高斯公式等.本文围绕这些方法,系统介绍它们的计算公式以及截断误差,并用例题分析它们产生误差的大小、计算量等.

关键词 插值型积分 高斯积分 误差分析 近似计算

1引言

在计算定积分的值()b

a I f x dx =?时,常常根据微积分学基本定理求出)(x f 的一个原函数

)(x F ,再用牛顿-莱布尼茨公式求得积分,()()()b

a

I f x dx F b F a ==-?.但这种方法只限于解

决一小部分定积分的求值问题.当函数没有具体表达式,只是一些实验测得数据形成的表格或图形或者是()F x 无法用初等函数表示,例如,2

b

x a

e dx ?

,2

sin b

a x dx ?等等,这就需要我们用一些近似方法来求积分值.

与数值积分一样,把积分区间细分,在每个小区间上,找到简单函数)(x ?来近似代替()f x ,且

()b

a

x dx ??

的值容易求的.这样就把计算复杂的()b a

f x dx ?转化为求简单的积分值()b

a

x dx ??.

因此,定积分的近似计算实质上就是被积函数的近似计算问题.

2 定积分的近似计算——常见数值方法 2.1 矩形公式

根据定积分的定义,每一个积分和都可以看作是定积分的一个近似值,即

1

()d ()n

b

i i a

i f x x f x ?==?∑?

在几何意义上,这是用一系列小矩形面积近似小曲边梯形的结果,所以把这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度. 针对不同i ?的取法,计算结果会有不同,常见的取法有:

(1)左端点法,即1-=i i x ?,

i a

b

n

i i x x f dx x f ?

∑=-?≈11)()(

(2)右端点法,即 i i x =?,i n

i i a

b

x x f dx x f ?≈∑?=1

)()(

(3)中点法,即12i i i x x ?-+=,i n

i i i a

b x x x f dx x f ?+≈∑?=-1

1)2()(

例1 用矩形公式近似计算积分 1

2 0d 1x

x +?(取100=n ).

解 对[]1,0作n 等分

b x i n

a

b a x x a x n i =<<-+

=<<<= 10,由定义知: ∑∑?===?=+n

i i n

i i f n x f x dx 111

1

0)(1)(1??

(1)左点法:在区间],[1i i x x -上取左端点,即取1-=i i x ?,n i 2,1=

1

2 01d ()1n

i i i x

f x x ?==?≈+∑?0.78789399673078, 理论值

1

2 0d 14x x π

=+?,此时计算的相对误差

0.787893996730784

0.0031784

ππ-=

(2)右点法:在区间],[1i i x x -上取右端点,即取i i x =?,n i 2,1=

1

2 01d ()1n

i i i x

f x x ?==?≈+∑?0.78289399673078, 理论值

1

2 0d 14x x π

=+?,此时计算的相对误差

0.782893996730784

0.003188

4

ππ-=

(3)中点法:取 在区间1[,]i i x x -上取中点,即取12

i i

i x x ?-+=

,n i 2,1= 1

2 01

d ()1n

i i i x

f x x ?==?≈+∑?0.78540024673078, 理论值

1

2 0d 14x x π

=+?,此时计算的相对误差

60.785400246730784

2.653104

ππ--=

≈?

如果在分割的每个小区间上采用一次或二次多项式来近似代替被积函数,那么可以期望得到比矩形法效果好得多的近似计算公式.下面介绍的梯形法和抛物线法就是这一指导思想的产物.

2.2梯形公式

等分区间

b x i n a b a x x a x n i =<<-+

=<<<= 10,n

a

b x -=?

相应函数值为

n y y y ,,,10 (n i x f y i i ,,1,0),( ==)

. 曲线)(x f y =上相应的点为

n P P P ,,,10 (n i y x P i i i ,,1

,0),,( ==) 将曲线的每一段弧i i P P 1-用过点1-i P ,i P 的弦i i P P 1-(线性函数)来代替,这使得每个],[1i i x x -上的曲边梯形成为真正的梯形,其面积为

x y y i

i ??+-2

1,n i ,,2,1 =. 于是各个小梯形面积之和就是曲边梯形面积的近似值,

11 11

()d ()22n

n

b

i i i i a i i y y x f x x x y y --==+?≈??=+∑∑?

11 ()d ()2

2

b

n

n a

y y b a f x x y y n --≈

++++

?

称此式为梯形公式.

例2 用梯形公式近似计算定积分 1

2 0d 1x

x +?(取100=n ).

1

112 0d ()122

n n y y

x b a y y x n --≈++

++=+?0.78539399673078,

理论值 12 0d 14

x x π

=

+?,此时计算的相对误差 60.785393996730784

5.305104

ππ--=

≈?

很显然,这个误差要比简单的矩形左点法和右点法的计算误差小得多.

2.3 抛物线公式

由梯形法求近似值,当)(x f y =为凹曲线时,它就偏小;当)(x f y =为凸曲线时,它就偏大.若每段改用与它凸性相接近的抛物线来近似时,就可减少上述缺点,这就是抛物线法.

将积分区间],[b a 作n 2等分,分点依次为

b x i n a b a x x a x n i =<<-+

=<<<=2102 ,n

a

b x 2-=?, 对应函数值为

n y y y 210,,, (n i x f y i i 2,,1,0),( ==)

, 曲线上相应点为

n P P P 210,,, (n i y x P i i i 2,,1

,0),,( ==). 现把区间],[20x x 上的曲线段)(x f y =用通过三点),(000y x P ,),(111y x P ,),(222y x P 的抛物线

)(12x p x x y =++=γβα

来近似代替,然后求函数)(1x p 从0x 到2x 的定积分:

2

1 ()d x x p x x =

?

2

2 ()d x x x x x αβγ++=

?

)()(2

)(3

022

0223

032x x x x x x -+-+

-γβ

α

]4)(2)()()[(62022022

202002γβαγβαγβα++++++++++-=

x x x x x x x x x x 由于2

2

01x x x +=

,代入上式整理后得 2

1 ()d x x p x x ?

)](4)()[(612122

202002γβαγβαγβα++++++++-=

x x x x x x x x )4(621002y y y x x ++-=

)4(6210y y y n

a

b ++-= 同样也有

4

2

2 ()d x x p x x ?

)4(6432y y y n

a

b ++-=

……

222

()d n

n x n x p x x -?

)4(621222n n n y y y n

a

b ++-=

-- 将这n 个积分相加即得原来所要计算的定积分的近似值:

222

22212 1

1

()d ()d (4)6i

i n

n

b

x i i i i a

x i i b a

f x x p x x y y y n

---==-≈=++∑∑

?

?

, 即

021******* ()d [4()2()]6b

n n n a

b a

f x x y y y y y y y y n

---≈

++++++++?

这就是抛物线公式,也称为辛卜生(Simpson )公式. 例3 用抛物线公式近似计算积分 1

2 0d 1x

x +?(取100=n ).

1

0213

2124222 0d [4()2()]16n n n x b a

y y y y y y y y x n ---≈+++++++

++?

=0.78539816339745,

理论值

1

2 0d 14x x π=+?,此时计算的相对误差

160.785398163397454

2.827104

ππ--=

≈?

2.4 几种近似计算定积分方法的比较分析及误差估计

例4 计算积分211

ln 2dx x

=?,精确到0.001.

解 方法(一) 利用矩形公式计算, 因为对于x x f 1)(=,有32

0()2f x x

''<=<(如果1

所以按照公式

0)2(=+-

?dx b

a x a

b

. 0

112n . 如果取n =10,则我们公式的余项的余数得3101

0.84101200

R -<

1

x

的值到四位小数精确到0.00005就够了.我们有

123252729213152172192 1.051.151.251.351.551.651.751.851.95

x x x x x x x x x =========

5128

.05405.05714.06061.06897.07407.08.08696.09524.0219172152132927252321=========y y y y y y y y y Y 的和计算6.9284 故计算结果为 69284.010

9284

.6=。

方法(二) 按照梯形公式作同样的计算,在这种情况下,作公式 210,||6n n R R n

<<

在这儿也试一试取n =10,虽然此时仅可以证3107.1600

1

||-?<

9

.18.17.16.15.14.13.12.11.1987654321=========x x x x x x x x x 5263

.05556.05882.06250.06667.07143.07692.08333.09091.0987654321=========y y y y y y y y y

y 和计算为1877.6 故计算结果为

69377.01877.62

1500101=+)( 方法(三) 用抛物线公式做同样的计算

作公式 .

0))(()

2(180)()

4(4

5<≤≤?--=n n R b a f n a b R ξξ 并且n =5时有5

5104.1||-?

8

.16.14.12

.14321====x x x x 45636

.555556.062500.071429.083333.04321和====y y y y 9

.17.15.13.11.129725231=====x x x x x

83820

.1352632.058824.066667.076923.090909.029********和=====y y y y y

.20.150==x x 50000

.150000.060000

.150和==y y

6931525.083820.345636.550000.130

1=++)(.

由此可见,用抛物线公式计算得到的值误差最小,计算量相对一般;而用矩形公式计算得到的值误差较大,计算量也比较大;用梯形公式计算的值误差比用矩形公式得到的值要误

差小,计算量也是如此.所以我们计算定积分时用抛物线公式往往得到的值误差小,而对没有要求误差大小的,则可以选择抛物线公式或者是梯形公式,因为这两种方法计算量相对较小.

3 复化求积公式与高斯公式 3.1复化梯形求积公式

将区间[,]a b 等分,节点为i x a ih =+ (步长b a

h n

-=

),0,1,2...,i n =)在每个小区间1[,]i i x x -上采用梯形公式得

))]()((2

[

)()(11

11

1

i n

i x x n

i i i i a

b

x f x f x x dx x f dx x f i

i +-≈=∑?

∑?

==--- =

)]()([211

i i n

i x f x f h

++=∑ =n n i i T b f x f a f h

=++∑-=)]()(2)([211

.

称式

=?

dx x f a

b

)()]()([2

11i i n

i x f x f h

++=∑为复化梯形公式.

例5利用复化梯形求积公式计算积分

122

1

1I dx x

=+?

解 设2

11

)(x x f +=

,分点个数为n =1,2,4,5时,求出相应积分n T , 1

1

1[(()())],

21,2(),.

n n i i i i i T f a f b f h b a h n n f x f x a ih ih -=?

=++??

-?==?

?

=??

=+=?∑

3.2复化抛物线求积公式

在每个小区间],[1+i i x x 上,n

a

b h -=

,由抛物线公式得 1

1102

()[()4()()]6n b

i i a

i i h

f x dx f x f x f x -++

==++∑?

)]()(2)(4)([611

1021b f x f x f a f h

n i i n i i +++=∑∑-=-=+

上式中,2

1+

i x

为],[1+i i x x 的中点,即h x x i i 2

12

1+

=+

. 公式

)]()(2)(4)([6)(1

1

101b f x f x f a f h

dx x f n i i n i i a

b

+++=∑∑?

-=

-=+称为复化抛物线公式.

例6 利用复化抛物线求积公式计算 1

20

21

1

I dx x =

+?

.

解 设11)(2+=x x f ,取m =1,2, 3时,公式()???

????

???

???

++=+=====-=+++=+---=-=+∑∑.

)12(,2),(),(),(,,242[3122121222111

1,

1222h i a x ih a x x f f x f f b f f a f f m a b n f f f f h S i i i i i i b a

m i m i i b a m

3.3 高斯求积公式

由定理

()()()b

a

f x F b F a =-?

知,插值型求积公式的代数精度与求积节点的个数有关,具

有1n +个节点的插值型求积公式至少具有n 次代数精度.不仅如此,代数精度与节点的选取有关,在构造牛顿-科茨求积公式时,为了简化处理过程,限定用等分节点作为求积节点,这样做,虽然公式确实得到简化,但同时也限制了公式的代数精度.

设积分上限1-=a 积分下限1=b ,本段讨论如下求积公式

1

1

()()n

i i i f x A f x -==∑?

?

--=1

1,)()()(k

k i x x x x A ωω, .,,2,1n i = 任意积分区间[,]

a b ,通过变22b

a t a

b x ++-=

可以转换到区间]1,1[-上,这时

11()()222

b

a

b a b a a b

f x dx f t dt ---+=

+?

? 此时,求积公式写为

0()()222

n b

i i a

i b a a b b a

f x dx A f t =-+-=+∑?

若一组节点]1,1[.....,10-∈n x x x 使插值型求积公式

()()222n b

i i a

i b a a b b a

f x dx A f t =-+-=+∑?

具有21n +次代数精度,则称此组节点为高斯点,并

称此公式为高斯求积公式.

(2)2

()[]()()()(22)!n n

b

b k k a

a k f R f f x dx A f x x dx n ηω+==-=+∑?? 为高斯求积公式的余项,其中01()()()...(),[,]n x x x x x x x a

b ωη=---∈,且不依赖于x .

例7 利用高斯求积公式计算

?+1

01x dx

. 解 令)1(2

1

t x += 则??-+=+111031t dt x dx ,用高斯求积公式计算, 取n=5,则

69314719.0)()()(3551111

1≈+=≈+∑?-t f A t f A t f A t dt

i n

i .

结 束 语

本文只讨论了一些一维数值积分方法及其它们的应用,误差分析等有关内容.其中最常用的

方法是插值型积分以及复化方法、高斯积分方法,并讨论了相关求积方法的代数精度和误差分

析,并给出了一些例题,分析各种方法的近似值,得出误差分析最小的近似方法.由于篇幅有限,对于高维数值积分方法本文便不再讨论.

参考文献

[1] 华东师范大学数学系,数学分析(第一版)[M],北京:高等教育出版社,2001. [2] 李庆阳,关治,白峰杉,数值计算原理(第二版)[M],北京: 清华大学出版社, 2008.

[3] 肖筱南,现代数值计算方法(第一版)[M],北京: 北京大学出版社, 1999.

[4] 菲赫金格尔茨,微积分学教程(第三版)[M],北京: 高等教育出版社, 2005.

[5] 裴礼文,数学分析中的典型问题与方法(第一版)[M] ,北京: 北京大学出版社,2004.

[6] 刘证,关于定积分的几种近似计算的误差估计[J],鞍山科技大学学报,26:4(2003),314-316.

[7] 候为波,关于定积分的近似计算及误差估计的一种新方法[J]淮北煤师院学报,17:2(1996),73-75.

[8] 林成森,数值计算方法[M],北京:科学出版社,2001.

The Approximate Numerical Method of the Definite Integral and error estimate Author: CAO Leqing Supervisor:XIN Baohua

Abstract:This paper mainly discusses common numerical methods of unary function, such as approximate calculation method of interpolation integral, With these methods in calculating the integral, it will produce some error. In order to reduce the error, we can use after the formula for product and after the Gauss formula. This paper focus on these methods introducing formula of introduction and truncation errors .In addition they can provide examples to analysis size of the error and computation.

Keywords:interpolation integral Gauss integral error analysis approximate computation

.

2016年专项练习题集-定积分的计算

2016年专项练习题集-定积分的计算 一、选择题 1.dx x )5(1 22-?=( ) A.233 B. 31 C.3 4 D .83 【分值】5分 【答案】D 【易错点】求被积函数的原函数是求解关键。 【考查方向】求定积分 【解题思路】求出被积函数的原函数,应用微积分基本定理求解。 【解析】dx x )5(122-?=123153x x -=83 . 2.直线9y x =与曲线3 y x =在第一象限内围成的封闭图形的面积为( ) A 、 B 、 C 、2 D 、4 【分值】5分 【答案】D 【易错点】求曲线围成的图形的面积,可转化为函数在某个区间内的定积分来解决,被积函

数一般表示为曲边梯形上边界的函数减去下边界的函数. 【考查方向】定积分求曲线围成的图形的面积 【解题思路】先求出直线与曲线在第一象限的交点,再利用牛顿-莱布尼茨公式求出封闭图形的面积. 【解析】由? ??==39x y x y ,得交点为()()()27,3,27,3,0,0--, 所以()4 81034129942303 =??? ??-=-=?x x dx x x S ,故选D. 3.2 2-?2412x x -+dx =( ) A.π 4 B.π 2 C.π D.π3 【分值】5分 【答案】A 【易错点】利用定积分的几何意义,一般根据面积求定积分,这样可以避免求原函数,注意理解所涉及的几何曲线类型. 【考查方向】求定积分 【解题思路】利用定积分的几何意义,转化为圆的面积问题。 【解析】设y =2412x x -+,即(x -2)2+y 2=16(y ≥0).∵2 2-?2412x x -+dx 表示以4为半径的圆的四分之一面积.∴2 2-?2412x x -+dx =π4. 4.F4遥控赛车组织年度嘉年华活动,为了测试一款新赛车的性能,将新款赛车A 设定v =3t 2+1(m/s)的速度在一直线赛道上行驶,老款赛车B 设定在A 的正前方5 m 处,同时以v

(新)高中数学高考总复习定积分与微积分基本定理习题及详解

年 级 高二 学科 数学 内容标题 定积分的计算 编稿老师 马利军 一、教学目标: 1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题. 2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题. 二、知识要点分析 1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:? b a dx x f )( 2. 定积分的几何意义: (1)当函数f (x )在区间[a ,b]上恒为正时,定积分? b a dx x f )(的几何意义是:y=f (x ) 与x=a ,x=b 及x 轴围成的曲边梯形面积,在一般情形下. ? b a dx x f )(的几何意义是介于x 轴、 函数f (x )的图象、以及直线x=a ,x=b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号. 在图(1)中:0s dx )x (f b a >=? ,在图(2)中:0s dx )x (f b a <=? ,在图(3)中:dx )x (f b a ? 表示函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和. 注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于? b a dx x f )(,仅 当在区间[a ,b]上f (x )恒正时,其面积才等于 ? b a dx x f )(. 3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)???±=±b a b a b a dx )x (g dx )x (f dx )]x (g )x (f [ (2)?? =b a b a dx x f k dx x kf )()(,(k 为常数) (3) ?? ?+=b c b a c a dx x f dx x f dx x f )()()( (4)若在区间[a ,b ]上,? ≥≥b a dx x f x f 0)(,0)(则

定积分典型例题11198

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π . 例18 计算2 1 ||x dx -?. 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1||x dx -?=0 2 10()x dx xdx --+??=220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算2 20 max{,}x x dx ?. 分析 被积函数在积分区间上实际是分段函数 212()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且10 ()3()f x x f t dt =+?,则()________f x =. 分析 本题只需要注意到定积分()b a f x dx ?是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而10 ()f t dt ?是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且11 (3)()x a dx f t dt a +==??.

高中数学高考总复习定积分与微积分基本定理习题及详解

一、教学目标:1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题. 2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题. 二、知识要点分析 1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:?b a dx x f )( 2. 定积分的几何意义: (1)当函数f (x )在区间[a ,b]上恒为正时,定积分?b a dx x f )(的几何意义是:y=f (x )与x=a ,x= b 及x 轴围成的曲边梯形面积,在一般情形下.?b a dx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a ,x= b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号. 在图(1)中:0s dx )x (f b a >=?,在图(2)中:0s dx )x (f b a <=?,在图(3)中:dx )x (f b a ?表示 函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和. 注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于?b a dx x f )(,仅当在区间[a ,b]上f (x )恒正时,其面积才等于?b a dx x f )(. 3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)???±=±b a b a b a dx )x (g dx )x (f dx )]x (g )x (f [ (2)??=b a b a dx x f k dx x kf )()(,(k 为常数) (3)???+=b c b a c a dx x f dx x f dx x f )()()( (4)若在区间[a , b ]上,?≥≥b a dx x f x f 0)(,0)(则 推论:(1)若在区间[a ,b ]上,??≤≤b a b a dx x g dx x f x g x f )()(),()(则 (2)??≤b a b a dx x f dx x f |)(||)(| (3)若f (x )是偶函数,则??=-a a a dx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=?-a a dx x f 4. 微积分基本定理: 一般地,若)()()(],[)(),()('a F b F dx x f b a x f x f x F b a -==?上可积,则在且 注:(1)若)()('x f x F =则F (x )叫函数f (x )在区间[a ,b ]上的一个原函数,根据

MATLAB实验三-定积分的近似计算

实验三定积分的近似计算 一、问题背景与实验目的 利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分. 本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用. 二、相关函数(命令)及简介 1.sum(a):求数组a的和. 2.format long:长格式,即屏幕显示15位有效数字. (注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值. 4.quad():抛物线法求数值积分. 格式: quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即 .*、./、.^等.例:Q = quad('1./(x.^3-2*x-5)',0,2); 5.trapz():梯形法求数值积分. 格式:trapz(x,y) 其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun) 例:计算 0sin()d x x π ? x=0:pi/100:pi;y=sin(x); trapz(x,y) 6.dblquad():抛物线法求二重数值积分. 格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline定义,也可以通过某个函数文件的句柄传递. 例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi) 顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法. Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi)例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi) 这时必须存在一个函数文件integrnd.m:

实验二 定积分的近似计算

实验二定积分的近似计算 一、问题背景与实验目的 利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分. 本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用. 二、相关函数(命令)及简介 1.sum(a):求数组a的和. 2.format long:长格式,即屏幕显示15位有效数字. (注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值. 4.quad():抛物线法求数值积分. 格式:quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即.*、./、.^等. 例:Q = quad('1./(x.^3-2*x-5)',0,2); 5.trapz():梯形法求数值积分. 格式:trapz(x,y) 其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun) 例:计算 0sin()d x x π ? x=0:pi/100:pi;y=sin(x); trapz(x,y) 6.dblquad():抛物线法求二重数值积分. 格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline定义,也可以通过某个函数文件的句柄传递. 例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi) 顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法. Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi) 例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi) 这时必须存在一个函数文件integrnd.m:

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

高中数学定积分计算习题

定积分的计算 班级 姓名 一、利用几何意义求下列定积分 (1)dx x ? 1 1 -2-1 (2)dx x ? 2 2-4 (3) dx x ? 2 2-2x (4) ()dx x x ? -2 4 二、定积分计算 (1)()dx ?1 7-2x (2)( ) d x ?+2 1 x 2x 32 (3)dx ?3 1 x 3 (4)dx x ?π π - sin (5)dx x ?e 1 ln (6)dx ? +1 x 112 (7)() dx x x ?+-10 2 32 (8)()dx 2 31 1-x ? (9)dx ?+1 1 -2x x 2)( (10)( ) d x x ?+21 2x 1x (11)() dx x x ?-+1 1 -352x (12)() dx e e x x ?+ln2 x -e (13)dx x ?+π π --cosx sin ) ( (14)dx ? e 1 x 2 (15)dx x ?2 1 -x sin -2e )( (16)dx ?++2 1-3x 1 x x 2 (17)dx ? 2 1x 13 (18)()dx 2 2 -1x ?+

三、定积分求面积、体积 1求由抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积。 2.求曲线y =x ,y =2-x ,y =-1 3 x 所围成图形的面积. 3.求由曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积 4.如图求由两条曲线y =-x 2 ,y =-14 x 2 及直线y =-1所围成的图形的面积. 5、求函数f(x)=???? ? x +1 (-1≤x<0)cosx (0≤x ≤π 2)的图象与x 轴所围成的封闭图形的面积。 6.将由曲线y =x 2,y =x 3所 围成平面图形绕x 周旋转一周,求所得旋转体的体积。 7.将由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形绕x 周旋转一周,求所得旋转体的体积。 8.由曲线y =x 与直线x =1,x =4及x 轴所围成的封闭图形绕x 周旋转一周,求所得旋转体的体积

高中数学定积分训练题

定积分训练题 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分). 1.将和式的极限)0(.......321lim 1 >+++++∞→p n n P p p p p n 表示成定积分 ( ) A .dx x ?101 B .dx x p ?10 C .dx x p ?10)1( D .dx n x p ?10)( 2.下列等于1的积分是 ( ) A . dx x ? 1 B .dx x ?+10 )1( C .dx ? 1 01 D .dx ?1 021 3.dx x |4|1 02 ? -= ( ) A . 321 B .322 C .3 23 D .325 4.已知自由落体运动的速率gt v =,则落体运动从0=t 到0t t =所走的路程为 ( ) A .320gt B .2 0gt C .2 2 0gt D .6 2 0gt 5.曲线]2 3 ,0[,cos π∈=x x y 与坐标周围成的面积 ( ) A .4 B .2 C .2 5 D .3 6.dx e e x x ? -+1 )(= ( ) A .e e 1 + B .2e C . e 2 D .e e 1- 7.求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为( ) A .[0,2e ] B .[0,2] C .[1,2] D .[0,1] 8.由直线1,+-==x y x y ,及x轴围成平面图形的面积为 ( ) A .()[]dy y y ?--1 1 B . ()[]dx x x ?-+-210 1 C . ()[]dy y y ?--210 1 D .()[]dx x x ? +--10 1 9.如果1N 力能拉长弹簧1cm ,为将弹簧拉长6cm ,所耗费的功是 ( ) A .0.18 B .0.26 C .0.12 D .0.28 10.将边长为1米的正方形薄片垂直放于比彼一时为ρ的液体中,使其上距液面距离为2米, 则该正方形薄片所受液压力为 ( ) A .? 3 2 dx x ρ B . ()?+2 1 2dx x ρ C .? 1 dx x ρ D . ()?+3 2 1dx x ρ 二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.将和式)21 .........2111( lim n n n n +++++∞ →表示为定积分 . 12.曲线1,0,2===y x x y ,所围成的图形的面积可用定积分表示为 . 13.由x y cos =及x 轴围成的介于0与2π之间的平面图形的面积,利用定积分应表达为 .

定积分的近似计算

数学实验报告 实验序号:4 日期:2012 年12 月13 日 实验名称定积分的近似计算 问题背景描述: 利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分. 实验目的: 本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法。对于定积分的近似数值计算,Matlab有专门函数可用。

实验原理与数学模型: 1.矩形法 根据定积分的定义,每一个积分和都可以看作是定积分的一个近似值,即 在几何意义上,这是用一系列小矩形面积近似小曲边梯形的结果,所以把这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度. 针对不同的取法,计算结果会有不同。 (1)左点法:对等分区间 , 在区间上取左端点,即取。 (2)右点法:同(1)中划分区间,在区间上取右端点,即取。 (3)中点法:同(1)中划分区间,在区间上取中点,即取。2.梯形法 等分区间 , 相应函数值为().

曲线上相应的点为() 将曲线的每一段弧用过点,的弦(线性函数)来代替,这使得每个 上的曲边梯形成为真正的梯形,其面积为 ,. 于是各个小梯形面积之和就是曲边梯形面积的近似值, , 即, 称此式为梯形公式。 3.抛物线法 将积分区间作等分,分点依次为 ,, 对应函数值为 (), 曲线上相应点为 (). 现把区间上的曲线段用通过三点,,的抛物线

高中数学16微积分基本定理(教案)

三、教学过程 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 2 1 ()T T v t dt ? 。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1 ()T T v t dt ? =12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算 ()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ= ()x a f t dt ? 与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ? =0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有 ()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求 定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。

最新定积分的近似计算2

定积分的近似计算2

定积分的近似计算 虽然牛顿——莱布尼兹公式解决了定积分的计算问题,但它的使用是有一定局限性的。对于被积分中的不能用初等函数表达的情形或其原函数虽能用初等函数表达但很复杂的情形,我们就有必要考虑近似计算的方法。 定积分的近似计算的基本思想是根据定积分的几何意义找出求曲边梯形面积的近似方法。下面介绍两种常用的方法梯形法及抛物线法。 一梯形法 将积分区间?Skip Record If...?作?Skip Record If...?等分,分点依次为 ?Skip Record If...? 相应的函数为 ?Skip Record If...? ?Skip Record If...? 曲线?Skip Record If...?上相应的点为 ?Skip Record If...? 将曲线的每一段弧?Skip Record If...?用过点?Skip Record If...?(线性函数)来代替,这使得每个?Skip Record If...?上的曲边梯形形成了真正的梯形(图11——25),其面积为 ?Skip Record If...? 于是各个小梯形面积之和就是曲边梯形面积的近 似值,即 ?Skip Record If...? 亦即 ?Skip Record If...?(2) 称此式为梯形法公式。 在实际应用中,我们还需要知道用这个近似值来代替所求积分时所产生的误差,从而有 ?Skip Record If...?

其中?Skip Record If...? 二抛物线法 由梯形法求近似值,当?Skip Record If...?为凹曲线时,它就偏小;当?Skip Record If...?为凸曲线时,它就偏大。如果每段改用与它凸性相接近的抛物线来近似,就可减少上述缺点。下面介绍抛物线法。 将区间?Skip Record If...?作?Skip Record If...?等分(图)分点依次为 ?Skip Record If...? 对应的函数值为 ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?曲线上相应的点为?Skip Record If...? 现把区间?Skip Record If...?上的曲线段?Skip Record If...?用通过三点?Skip Record If...?的抛物线 ?Skip Record If...? 来近似代替,然后求函数?Skip Record If...?从?Skip Record If...?到?Skip Record If...?的定积分: ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?由于?Skip Record If...?,将它代入上式整理后可得 ?Skip Record If...? ?Skip Record If...? 同样也有 ?Skip Record If...? ……………………………………………….. ?Skip Record If...? 将这?Skip Record If...?个积分相加即得原来所要计算的定积分的近似值: ?Skip Record If...? 即 ?Skip Record If...?

定积分计算例题

第5章 定积分及其应用 (一)、单项选择题 1.函数()x f 在区间[a ,b]上连续是()x f 在[a ,b]上可积的( )。 A .必要条件 B 充分条件 C 充分必要条件 D 既非充分也非必要条件 2.下列等式不正确的是( )。 A . ()()x f dx x f dx d b a =??????? B. ()()()[]()x b x b f dt x f dx d x b a '=???? ??? C. ()()x f dx x f dx d x a =??????? D. ()()x F dt t F dx d x a '=???? ??'? 3.? ?→x x x tdt tdt sin lim 的值等于( ). A.-1 B.0 C.1 D.2 4.设x x x f +=3 )(,则 ? -2 2 )(dx x f 的值等于( )。 A .0 B.8 C. ? 2 )(dx x f D. ?2 )(2dx x f 5.设广义积分 ? +∞ 1 dx x α收敛,则必定有( )。 A.1-<α B. 1->α C. 1<α D. 1>α 6.求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为( )。 A.[0,2e ] B.[0,2] C.[1,2] D.[0,1] 7.由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。 A.dy y ? 2 1 ln B. dy e e x ? 2 C.dy y ? 2 ln 1ln D. ()d x e x ?-2 1 2 8.由直线1,+-==x y x y ,及x轴围成平面图形的面积为( )。 A. ()[]dy y y ?--1 1 B. ()[]dx x x ? -+-21 1 C. ()[]dy y y ? --210 1 D.()[]dx x x ? +--1 1 9.由e x x y x y e ===,log ,ln 1围成曲边梯形,用微法求解时,若选x为积分变量,面积微元为 ( )。 A.dx x x e ???? ? ? +1 log ln B.dy x x e ???? ? ?+1log ln C.dx x x e ???? ? ?-1log ln D.dy x x e ??? ? ? ?-1log ln 10.由0,1,1,2==-==y x x x y 围成平面图形的面积为( )。 A. ? -1 1 2dx x B. ? 1 2dx x C. ? 1 dy y D.? 1 2 dy y

高等数学第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积?(1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. y =f (x ) x =a x =b y =f (x ) a=x 0 x 1 x i-1 x i x n =b

第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i Λ=?=?=∑=→λξλ 抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<=Λ10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i ΛΛ=?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量?

高等数学第五章定积分及自测题

第五章定积分 一、基本要求: 1.理解定积分的概念、几何意义、物理意义及定积分的性质. 2.理解积分上限的函数,并掌握其求导法则. 3.掌握牛顿——莱布尼兹公式. 4.掌握定积分的换元法和分布积分法. 5.理解反常积分(广义积分)的概念,会计算反常积分,了解反常积分的审敛法. 6.了解定积分的近似计算方法. 二、主要内容

Ⅰ. 定积分概念: 1. 定积分定义:设()f x 在区间[,]a b 上有界,在[,]a b 中任意插入若干个分点 0121n n a x x x x x b -=<<<<<=.把[,]a b 分成n 个小区间1[,],(1,2, ,)i i x x i n -=,小 区间的长度记为1,(1,2, ,)i i i x x x i n -?=-=,在1[,]i i x x -上任意取一点i ξ,作1 ()n i i i f x ξ=?∑, 若0 1 lim ()n i i i f x λξ→=??∑ 1(max{})i i n x λ≤≤=?存在. 就称该极限为()f x 在[,]a b 上的定积分. 记为 1 ()lim ()n b i i a i f x dx f x λξ→==??∑? 当上述极限存在时,称()f x 在[,]a b 上可积. 2. 若()f x 在[,]a b 上连续,则()f x 在[,]a b 上可积。 3. 若()f x 在[,]a b 上有界,且只有有限个间断点,则()f x 在[,]a b 上可积. Ⅱ. 定积分的几何意义 定积分 ()b a f x dx ? 在几何上表示:由曲线()y f x =,直线x a =和x b =以及x 轴所围图形面 积的代数和 (x 轴上方的面积取正,x 轴下方的面积取负) Ⅲ. 定积分的性质 1. 补充规定:(1)当a b =时, ()0b a f x dx =? (2)当a b >时, ()()b a a b f x dx f x dx =-?? 2. 性质: (1) [()()]()()b b b a a a f x g x dx f x dx g x dx - -+=+? ?? (2) ()(),()b b a a kf x dx k f x dx k =? ?为常数 (3) ()()()b c b a a c f x dx f x dx f x dx =+? ?? (4) b a dx b a =-? (5) 若在[,]a b 上,()0f x ≥,则 ()0,()b a f x dx a b ≥

实验五 定积分的近似计算

实验五 定积分的近似计算 我们已经学习了定积分的基本概念和定积分的计算方法,那里所谓的计算方法,是基于原函数的牛顿-莱布尼兹公式。但在许多实际问题中遇到的定积分,被积函数往往不用算式给出,而通过图形或表格给出;或虽然可用一个算式给出,但是要计算它的原函数却很困难,甚至于原函数可能是非初等函数。本实验的目的,就是为了解决这些问题,介绍定积分的“数值积分”,即定积分的近似计算。 所谓定积分的近似计算,就是找到一个适当的计算公式,利用被积函数在积分区间上若干个点处的函数值,来计算定积分的近似值,并作出误差估计。我们知道,定积分 ? b a dx x f )(在几何上表示曲线)(x f y =,直线b x a x ==,及x 轴所围成的曲边梯形的面积。定积分近似计算的思想,就是将积分区间分割成许多小区间,然后在小区间上近似计算小曲边梯形的面积,最后将小曲边梯形的面积求和,就得到了定积分的近似值。 1、 观察黎曼和式的收敛性 由定积分的定义知道,定积分就是黎曼和式 i n i i x f ?∑=1 )(ξ的极限,因此可以用黎曼和 式来近似计算定积分。为计算方便,这里特殊的,将积分区间等分为n 段,并以小区间中点 处的函数值作近似,于是黎曼和式为:∑=-+-+-n k n a b k a f n a b 1))5.0)1(((, 因而 ? ∑=-+-+-≈b a n k n a b k a f n a b dx x f 1))5.0)1((()(。 例1 计算 dx x ? 3 2 ln 1 的黎曼和。 解:输入命令如下: 2、 梯形法 大家可以看出,用上述方法进行的近似计算,其实是对小曲边梯形的面积用矩形面积来近似,上面取的特殊的黎曼和又称为中点积分公式。如果不用矩形而改用梯形来近似,就可以得到定积分的一个较好的近似方法——梯形积分法。具体方法如下: 将区间],[b a 用b x x x a n ==,,,10 等分为n 个小区间,小区间的长度为 n a b -。设)()(n a b i a f x f y i i -+==),,1,0( n i =,则每个小梯形的面积为n a b y y i i -?++21,从而得到梯形法的公式为:

高中数学选修2-2精品学案:§1.6 微积分基本定理

学习目标 1.直观了解并掌握微积分基本定理的含义. 2.会利用微积分基本定理求函数的积分.

知识点一 微积分基本定理(牛顿—莱布尼茨公式) 思考1 已知函数f (x )=2x +1,F (x )=x 2+x ,则?10(2x +1)d x 与F (1)-F (0)有什么关系? 思考2 对一个连续函数f (x )来说,是否存在唯一的F (x ),使得F ′(x )=f (x )? 梳理 (1)微积分基本定理 ①条件:f (x )是区间[a ,b ]上的连续函数,并且______; ②结论:?b a f (x )d x =__________; ③符号表示:?b a f (x )d x =________=__________. (2)常见的原函数与被积函数关系 ①?b a c d x =cx |b a (c 为常数). ②?b a x n d x = ??1n +1x n +1b a (n ≠-1). ③?b a sin x d x =-cos x |b a .

④?b a cos x d x =sin x |b a . ⑤?b a 1x d x =ln x |b a (b >a >0). ⑥?b a e x d x =e x |b a . ⑦?b a a x d x = ??a x ln a b a (a >0且a ≠1). ⑧?b a x d x = ???233 2x b a (b >a >0). 知识点二 定积分和曲边梯形面积的关系 思考 定积分与曲边梯形的面积一定相等吗? 梳理 设曲边梯形在x 轴上方的面积为S 上,在x 轴下方的面积为S 下,则 (1)当曲边梯形在x 轴上方时,如图①,则?b a f (x )d x =________. (2)当曲边梯形在x 轴下方时,如图②,则?b a f (x )d x =________. (3)当曲边梯形在x 轴上方、x 轴下方均存在时,如图③,则?b a f (x )d x =________________.特别地,若S 上=S 下,则?b a f (x )d x =____.

定积分练习题

题型 1.定积分与极限的计算 2.计算下列定积分 3.计算下列广义积分 内容 一.定积分的概念与性质 1.定积分的定义 2.定积分的性质 3.变上限函数及其导数 4.牛顿—莱布尼茨公式 5.换元积分公式与分部积分公式 6.广义积分 题型 题型I 利用定积分定义求极限 题型II比较定积分的大小 题型III利用积分估值定理解题 题型IV关于积分上限函数以及牛顿—莱布尼茨公式问题 题型V定积分的计算

题型VI 积分等式证明 题型VII 积分不等式证明 题型VIII 广义积分的计算 自测题五 1.根据极限计算定积分 2.根据定积分求导 3.求极限 4.求下列定积分 5.证明题 4月21日定积分练习题 基础题: 一.选择题、填空题 1.将和式的极限)0(.......321lim 1 >+++++∞→p n n P p p p p n 表示成定积分 ( ) A .dx x ?1 01 B .dx x p ?10 C .dx x p ?10)1( D .dx n x p ?10)( 2.将和式)21 .........2111(lim n n n n +++++∞→表示为定积分 . 3.下列等于1的积分是 ( ) A . dx x ? 1 B .dx x ?+1 )1( C .dx ? 1 1 D . dx ?1 021 4.dx x |4|1 02 ? -= ( ) A . 321 B .322 C .3 23 D . 3 25 5.曲线]2 3 ,0[,cos π∈=x x y 与坐标周围成的面积 ( )

A .4 B .2 C .2 5 D .3 6. dx e e x x ?-+1 )(= ( ) A .e e 1+ B .2e C .e 2 D .e e 1- 7.若10x m e dx =?,11e n dx x =?,则m 与n 的大小关系是( ) A .m n > B .m n < C .m n = D .无法确定 8. 按万有引力定律,两质点间的吸引力2 2 1r m m k F =,k 为常数,21,m m 为两质点的质量,r 为两点间距离,若两质点起始距离为a ,质点1m 沿直线移动至离2m 的距离为b 处,试求所作之功(b >a ) . 9.由曲线2 1y x =-和x 轴围成图形的面积等于S .给出下列结果: ① 1 21 (1)x dx --? ;②121 (1)x dx --?;③120 2(1)x dx -?;④0 21 2(1)x dx --?. 则S 等于( ) A .①③ B .③④ C .②③ D .②④ 10.0 (sin cos sin )x y t t t dt =+? ,则y 的最大值是( ) A .1 B .2 C .7 2 - D .0 11. 若()f x 是一次函数,且1 ()5f x dx =? ,1 017 ()6xf x dx =?,那么21()f x dx x ?的值是 . 12.???????=≠?=0 ,0,)()(2 x c x x dt t tf x F x ,其中)(x f 在0=x 处连续,且0)0(=f 若)(x F 在 0=x 处连续,则=c ( ) 。 (A).0=c ; (B).1=c ; (C).c 不存在; (D).1-=c .

相关文档
最新文档