高中数学高考总复习数学归纳法习题及详解

高中数学高考总复习数学归纳法习题及详解
高中数学高考总复习数学归纳法习题及详解

高中数学高考总复习数学归纳法习题及详解

一、选择题 1.已知a n =

1

n +1+n

,数列{a n }的前n 项和为S n ,已计算得S 1=2-1,S 2=3-1,

S 3=1,由此可猜想S n =( )

A.n -1

B.n +1-1

C.n +1-2

D.n +2-2 [答案] B

2.已知S k =1k +1+1k +2+1k +3+…+1

2k (k =1,2,3,…),则S k +1等于( )

A .S k +1

2(k +1)

B .S k +12k +1-1

k +1

C .S k +12k +1-1

2k +2

D .S k +12k +1+1

2k +2

[答案] C [解析] S k +1=

1(k +1)+1+1(k +1)+2+…+12(k +1)=1k +2+1k +3+…+12k +2=1

k +1

1k +2+…+12k +12k +1+12k +2-1k +1=S k +12k +1-1

2k +2

.

3.对于不等式n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 1°当n =1时,12+1≤1+1,不等式成立.

2°假设n =k (k ∈N *)时不等式成立,即k 2+k

D .从n =k 到n =k +1的推理不正确 [答案] D

[解析]没用归纳假设.

4.将正整数排成下表:

1

2 3 4

5 6 7 8 9

10 11 12 13 14 15 16

……

则在表中数字2010出现在()

A.第44行第75列

B.第45行第75列

C.第44行第74列

D.第45行第74列

[答案] D

[解析]第n行有2n-1个数字,前n行的数字个数为1+3+5+…+(2n-1)=n2.∵442=1936,452=2025,且1936<2010,2025>2010,∴2010在第45行.

又2025-2010=15,且第45行有2×45-1=89个数字,∴2010在第89-15=74列,选D.

5.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k +1)≥(k+1)2成立”.那么,下列命题总成立的是()

A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立

B.若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立

C.若f(7)<49成立,则当k≥8时,均有f(k)>k2成立

D.若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立

[答案] D

[解析]对于A,f(3)≥9,加上题设可推出当k≥3时,均有f(k)≥k2成立,故A错误.对于B,要求逆推到比5小的正整数,与题设不符,故B错误.

对于C,没有奠基部分,即没有f(8)≥82,故C错误.

对于D,f(4)=25≥42,由题设的递推关系,可知结论成立,故选D.

6.一个正方形被分成九个相等的小正方形,将中间的一个正方形挖去,如图(1);再将剩余的每个正方形都分成九个相等的小正方形,并将中间的一个挖去,得图(2);如此继续下去……则第n个图共挖去小正方形()

A .(8n -1)个

B .(8n +1)个 C.1

7

(8n -1)个 D.1

7(8n +1)个 [答案] C

[解析] 第1个图挖去1个,第2个图挖去1+8个,第3个图挖去1+8+82个……第n 个图挖去1+8+82

+…+8

n -1

=8n -1

7

个.

7.观察下式:

1+3=22 1+3+5=32 1+3+5+7=42 1+3+5+7+9=52

……

据此你可归纳猜想出的一般结论为( ) A .1+3+5+…+(2n -1)=n 2(n ∈N *) B .1+3+5+…+(2n +1)=n 2(n ∈N *) C .1+3+5+…+(2n -1)=(n +1)2(n ∈N *) D .1+3+5+…+(2n +1)=(n +1)2(n ∈N *) [答案] D

[解析] 观察可见第n 行左边有n +1个奇数,右边是(n +1)2,故选D.

8.(2010·天津滨海新区五校)若f (x )=f 1(x )=x

1+x ,f n (x )=f n -1[f (x )](n ≥2,n ∈N *),则f (1)

+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=( )

A .n B.9n +1 C.n n +1 D .1 [答案] A

[解析] 易知f (1)=12,f (2)=23,f (3)=34,…,f (n )=n n +1;由f n (x )=f n -1(f (x ))得,f 2(x )=x

1+2x ,

f 3(x )=

x 1+3x ,…,f n (x )=x 1+nx ,从而f 1(1)=12,f 2(1)=13,f 3(1)=14,…,f n (1)=1

n +1

,,

所以f (n )+f n (1)=1,故f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=n .

9.(2010·曲阜一中)设f (x )是定义在R 上恒不为零的函数,且对任意的实数x ,y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是

( )

A .[1

2,2)

B .[1

2,2]

C .[1

2,1]

D .[1

2,1)

[答案] D

[解析] 由已知可得a 1=f (1)=12,a 2=f (2)=f 2(1)=????122,a 3=f (3)=f (2)·f (1)=f 3(1)=????123,…,a n =f (n )=f n (1)=????12n ,∴S n

=12+????122+????123+…+????12n =12[1-(1

2)2]

1-12

=1-(12

)n , ∵n ∈N *,∴1

2

≤S n <1.

10.如图,一条螺旋线是用以下方法画成的:△ABC 是边长为1的正三角形,曲线CA 1、A 1A 2,A 2A 3是分别以A 、B 、C 为圆心,AC 、BA 1、CA 2为半径画的圆弧,曲线CA 1A 2A 3称为螺旋线旋转一圈.然后又以A 为圆心,AA 3为半径画圆弧……这样画到第n 圈,则所得螺旋线的长度l n 为( )

A .(3n 2+n )π

B .(3n 2-n +1)π C.(3n 2+n )π2

D.(3n 2-n +1)π2

[答案] A

[解析] 由条件知CA 1,A 1A 2,A 2A 3,…,A n -1A n 对应的中心角都是

3

,且半径依次为1,2,3,4,…,故弧长依次为2π3,2π3×2,2π3×3…,据题意,第一圈长度为2π

3(1+2+3),

第二圈长度为2π3(4+5+6),第n 圈长度为2π3[(3n -2)+(3n -1)+3n ],故L n =2π

3(1+2+3+…

+3n )=2π3·3n (1+3n )

2

=(3n 2+n )π.

二、填空题

11.(2010·浙江金华十校模考)已知2+2

3=22

3,3+

3

8=3

3

8,4+

4

15=

44

15,…,若6+

a

t=6

a

t,(a,t均为正实数),类比以上等式,可推测a,t的值,则

a+t=________.

[答案]41

[解析]注意分数的分子、分母与整数的变化规律,2→分子2,分母3=22-1,3→分子

3,分母8=32-1,4→分子4,分母15=42-1,故猜想a=6,t=62-1=35,再验证6+6

35

=6

6

35成立,∴a+t=41.

[点评]一般地,n+

n

n2-1

n3

n2-1

=n

n

n2-1

,(n∈N*)成立.

例如,若15+

a

t=15

a

t成立,则t+a=239.

12.考察下列一组不等式:

23+53>22·5+2·52

24+54>23·5+2·53

2

5

2+5

5

2>2

2·51

2+2

1

2·5

2

将上述不等式在左右两端仍为两

项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为________________________.

[答案]a m+n+b m+n>a m b n+a n b m(a,b>0,a≠b,m,n>0)

13.(2010·浙江杭州质检)观察下列等式:

(x2+x+1)0=1;

(x2+x+1)1=x2+x+1;

(x2+x+1)2=x4+2x3+3x2+2x+1;

(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1;

可以推测(x2+x+1)4的展开式中,系数最大的项是________.

[答案]19x4

[解析]观察其系数变化规律:

(x2+x+1)1为1,1,1

(x2+x+1)2为1,2,3,2,1

(x2+x+1)3为1,3,6,7,6,3,1

故由此可推测(x2+x+1)4系数中最大的为6+7+6=19,故系数最大项是19x4.

14.(2010·南京调研)五位同学围成一圈依次循环报数,规定:第一位同学首次报出的数

为2,第二位同学首次报出的数为3,之后每位同学所报出的数都是前两位同学所报出数的乘积的个位数字,则第2010个被报出的数为________.

[答案] 4

[解析] 根据规则,五位同学第一轮报出的数依次为2,3,6,8,8,第二轮报出的数依次为4,2,8,6,8,第三轮报出的数依次为8,4,2,8,6,故除第一、第二位同学第一轮报出的数为2,3外,从第三位同学开始报出的数依次按6,8,8,4,2,8循环,则第2010个被报出的数为4.

[点评] 数字2010比较大,不可能一个一个列出数到第2010个数,故隐含了探寻其规律性(周期)的要求,因此可通过列出部分数,观察是否存在某种规律来求解.明确了这一特点解决这类问题就有了明确的解题方向和思路.

三、解答题

15.已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…A n 是线段A n -2A n -1的中点,…,

(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);

(2)设a n =x n +1-x n ,计算a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明. [解析] (1)当n ≥3时,x n =x n -1+x n -2

2

. (2)a 1=x 2-x 1=a ,

a 2=x 3-x 2=x 2+x 12-x 2=-12(x 2-x 1)=-1

2a ,

a 3=x 4-x 3=x 3+x 22-x 3=-12(x 3-x 2)=1

4a ,

由此推测a n =(-12)n -

1a (n ∈N *).

证法1:因为a 1=a >0,且

a n =x n +1-x n =x n +x n -12-x n =x n -1-x n 2=-12(x n -x n -1)=-1

2a n -1(n ≥2),

所以a n =(-12

)n -

1a .

证法2:用数学归纳法证明:

(1)当n =1时,a 1=x 2-x 1=a =(-1

2

)0a ,公式成立.

(2)假设当n =k 时,公式成立,即a k =(-12

)k -

1a 成立.那么当n =k +1时,

a k +1=x k +2-x k +1=x k +1+x k 2-x k +1=-12(x k +1-x k )=-12a k =-12(-12)k -1a =(-12)(k +1)-

1a ,公

式仍成立,根据(1)和(2)可知,对任意n ∈N *,公式a n =(-12

)n -

1a 成立.

16.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点????n ,S n n 都在函数f (x )=x +a

n 2x 的图象上.

(1)求a 1,a 2,a 3的值,猜想a n 的表达式,并用数学归纳法证明;

(2)将数列{a n }依次按1项、2项、3项、4项循环地分为(a 1),(a 2,a 3),(a 4,a 5,a 6),(a 7,a 8,a 9,a 10);(a 11),(a 12,a 13),(a 14,a 15,a 16),(a 17,a 18,a 19,a 20);(a 21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n },求b 5+b 100的值.

[分析] (1)将点????n ,S n n 的坐标代入函数f (x )=x +a

n 2x 中,通过整理得到S n 与a n 的关系,则a 1,a 2,a 3可求;

(2)通过观察发现b 100是第25组中第4个括号内各数之和,各组第4个括号中各数之和构成首项为68、公差为80的等差数列,利用等差数列求和公式可求b 100.

[解析] (1)∵点????n ,S n n 在函数f (x )=x +a

n 2x 的图象上, ∴S n n =n +a n 2n ,∴S n =n 2+1

2a n . 令n =1得,a 1=1+1

2a 1,∴a 1=2;

令n =2得,a 1+a 2=4+1

2a 2,∴a 2=4;

令n =3得,a 1+a 2+a 3=9+1

2a 3,∴a 3=6.

由此猜想:a n =2n . 用数学归纳法证明如下:

①当n =1时,由上面的求解知,猜想成立. ②假设n =k (k ≥1)时猜想成立,即a k =2k 成立, 则当n =k +1时,注意到S n =n 2+1

2a n (n ∈N *),

故S k +1=(k +1)2+12a k +1,S k =k 2+1

2

a k .

两式相减得,a k +1=2k +1+12a k +1-1

2a k ,所以a k +1=4k +2-a k .

由归纳假设得,a k =2k ,

故a k +1=4k +2-a k =4k +2-2k =2(k +1). 这说明n =k +1时,猜想也成立. 由①②知,对一切n ∈N *,a n =2n 成立.

(2)因为a n =2n (n ∈N *),所以数列{a n }依次按1项、2项、3项、4项循环地分为(2),(4,6),

(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故b 100是第25组中第4个括号内各数之和.由分组规律知,各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.注意到第一组中第4个括号内各数之和是68,

所以b 100=68+24×80=1988, 又b 5=22,所以b 5+b 100=2010.

[点评] 由已知求出数列的前几项,做出猜想,然后利用数学归纳法证明,是不完全归纳法与数学归纳法相结合的一种重要的解决数列通项公式问题的方法.证明的关键是根据已知条件和假设寻找a k 与a k +1或S k 与S k +1间的关系,使命题得证.

17.(2010·南京调研)已知:(x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).

(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n =a 2

2n -3

,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)

3

.

[解析] (1)当n =5时,

原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -

2

b n =a 2

2n -3=2C n 2=n (n -1)(n ≥2)

①当n =2时.左边=T 2=b 2=2,

右边=2(2+1)(2-1)3=2,左边=右边,等式成立.

②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)

3成立

那么,当n =k +1时,

左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)

3+k (k +1)

=k (k +1)????k -13+1=

k (k +1)(k +2)

3

(k +1)[(k +1)+1][(k +1)-1]

3

=右边.

故当n=k+1时,等式成立.

综上①②,当n≥2时,T n=n(n+1)(n-1)

3.

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

(完整版)高中数学高考总复习数学归纳法习题及详解

高中数学高考总复习数学归纳法习题及详解 一、选择题 1.已知a n = 1 n +1+n ,数列{a n }的前n 项和为S n ,已计算得S 1=2-1,S 2=3-1, S 3=1,由此可猜想S n =( ) A.n -1 B.n +1-1 C.n +1-2 D.n +2-2 [答案] B 2.已知S k =1k +1+1k +2+1k +3+…+1 2k (k =1,2,3,…),则S k +1等于( ) A .S k +1 2(k +1) B .S k +12k +1-1 k +1 C .S k +12k +1-1 2k +2 D .S k +12k +1+1 2k +2 [答案] C [解析] S k +1= 1(k +1)+1+1(k +1)+2+…+12(k +1)=1k +2+1k +3+…+12k +2=1 k +1 + 1k +2+…+12k +12k +1+12k +2-1k +1=S k +12k +1-1 2k +2 . 3.对于不等式n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 1°当n =1时,12+1≤1+1,不等式成立. 2°假设n =k (k ∈N *)时不等式成立,即k 2+k

[解析]没用归纳假设. 4.将正整数排成下表: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …… 则在表中数字2010出现在() A.第44行第75列 B.第45行第75列 C.第44行第74列 D.第45行第74列 [答案] D [解析]第n行有2n-1个数字,前n行的数字个数为1+3+5+…+(2n-1)=n2.∵442=1936,452=2025,且1936<2010,2025>2010,∴2010在第45行. 又2025-2010=15,且第45行有2×45-1=89个数字,∴2010在第89-15=74列,选D. 5.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k +1)≥(k+1)2成立”.那么,下列命题总成立的是() A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立 B.若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立 C.若f(7)<49成立,则当k≥8时,均有f(k)>k2成立 D.若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立 [答案] D [解析]对于A,f(3)≥9,加上题设可推出当k≥3时,均有f(k)≥k2成立,故A错误.对于B,要求逆推到比5小的正整数,与题设不符,故B错误. 对于C,没有奠基部分,即没有f(8)≥82,故C错误. 对于D,f(4)=25≥42,由题设的递推关系,可知结论成立,故选D. 6.一个正方形被分成九个相等的小正方形,将中间的一个正方形挖去,如图(1);再将剩余的每个正方形都分成九个相等的小正方形,并将中间的一个挖去,得图(2);如此继续下去……则第n个图共挖去小正方形()

高考数学知识点集锦高中数学

目录 一、集合与常用逻辑 二、函数概念与性质 三、基本初等函数 四、函数图像与方程 五、导数及其应用 六、三角函数 七、数 列 八、不等式 九、复数与推理证明 十、算法初步 十一、平面向量 十二、立体几何 十三、直线与圆 十四、圆锥曲线 十五、计数原理 十六、概率与统计 十七、随机变量的概率分布 一、集合与常用逻辑 1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图、数轴 4.四种命题 原命题:若p 则q 逆命题:若q 则p 否命题:若p ?则q ? 逆否命题:若q ?则p ? 原命题?逆否命题 否命题?逆命题 5.充分必要条件 p 是q 的充分条件:q P ?

p 是q 的必要条件:q P ? p 是q 的充要条件:p ?q 6.复合命题的真值 ①q 真(假)?“q ?”假(真) ②p 、q 同真?“p ∧q ”真 ③p 、q 都假?“p ∨q ”假 7.全称命题、存在性命题的否定 M, p(x )否定为: M, )(X p ? M, p(x )否定为: M, )(X p ? 二、函数概念与性质 1.奇偶性 f(x)偶函数?()()f x f x -=?f(x)图象关于y 轴对称 f(x)奇函数?()()f x f x -=-?f(x)图象关于原点对称 注:①f(x)有奇偶性?定义域关于原点对称 ②f(x)奇函数,在x=0有定义?f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性 f(x)增函数:x 1<x 2?f(x 1)<f(x 2) 或x 1>x 2?f(x 1) >f(x 2) 或 0) ()(2 121>--x x x f x f f(x)减函数:? 注:①判断单调性必须考虑定义域 ②f(x)单调性判断 定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性 T 是()f x 周期?()()f x T f x +=恒成立(常数0≠T ) 4.二次函数 解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2 +k f(x)=a(x-x 1)(x-x 2) 对称轴:a b x 2-= 顶点:)44,2(2a b ac a b --

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高考真题突破:数学归纳法

专题十三 推理与证明 第三十九讲 数学归纳法 解答题 1.(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈* N . 证明:当n ∈* N 时 (Ⅰ)10n n x x +<<; (Ⅱ)1 122 n n n n x x x x ++-≤ ; (Ⅲ)1211 22 n n n x --≤≤. 2.(2015湖北) 已知数列{}n a 的各项均为正数,1 (1)()n n n b n a n n +=+∈N ,e 为自然对数的 底数. (Ⅰ)求函数()1e x f x x =+-的单调区间,并比较1 (1)n n +与e 的大小; (Ⅱ)计算 11b a ,1212 b b a a ,123123 b b b a a a ,由此推测计算12 12n n b b b a a a 的公式,并给出证明; (Ⅲ)令112()n n n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T , 证明:e n n T S <. 3.(2014江苏)已知函数0sin ()(0) x f x x x =>,设()n f x 为1()n f x -的导数,n *∈N . (Ⅰ)求()() 122222 f f πππ+的值; (2)证明:对任意的n *∈N ,等式()( ) 1444n n nf f -πππ+=成立. 4.(2014安徽)设实数0>c ,整数1>p ,*N n ∈. (Ⅰ)证明:当1->x 且0≠x 时,px x p +>+1)1(; (Ⅱ)数列{}n a 满足p c a 11>,p n n n a p c a p p a -++-= 111, 证明:p n n c a a 1 1>>+. 5.(2014 重庆)设1 11,(*)n a a b n N +==+∈

高考数学复习题库 高考数学归纳法

高考数学复习题库高考数学归纳法 一.选择题 1.用数学归纳法证明命题“当n是正奇数时,xn+yn能被x +y整除”,在第二步时,正确的证法是( ). A.假设n=k(k∈N +),证明n=k+1命题成立 B.假设n=k(k是正奇数),证明n=k+1命题成立 C.假设n=2k+1(k∈N+),证明n=k+1命题成立 D.假设n=k(k是正奇数),证明n=k+2命题成立解析 A.B.C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数. 答案 D 2.用数学归纳法证明“2n>n2+1 对于n≥n0 的正整数 n 都成立”时,第一步证明中的起始值 n0 应取( ) A.2 B.3 C.5 D.6 解析分别令 n0=2,3,5, 依次验证即可. 答案 C 3.对于不等式

4.利用数学归纳法证明“1+a+a2+…+an+1=(a≠1, n∈N*)”时,在验证n=1成立时,左边应该是( ) A1 B1+a C1+a+a2 D1+a+a2+a3 解析当n=1时,左边 =1+a+a2,故选C. 答案 C 5.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上( ). A.k2+1 B.(k+1)2 C. D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2 解析∵当n=k时,左侧=1+2+3+…+k2,当n=k+1时,左侧=1+2+3+…+k2+ (k2+1)+…+(k+1)2,∴当n=k+1时,左端应在n=k的基 础上加上 (k2+1)+(k2+2)+(k2+3)+…+(k+1) 2. 答案 D 6.下列代数式(其中k∈N*)能被9整除的是( ) A.6+6·7k B.2+7k-1 C.2(2+7k+1) D.3(2+7k) 解析 (1)当k=1时,显然只有3(2+7k)能被9整除. (2)假设当k=n(n∈N*)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36. 这就是说,k=n+1时命题也成立. 由 (1) (2)可知,命题对任何k∈N*都成立. 答案 D

高中数学高考总复习充分必要条件习题及详解

高中数学高考总复习充分必要条件习题及详解 一、选择题 1.(文)已知a、b都是实数,那么“a2>b2”是“a>b”的() A.充分而不必要条件B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件 [答案] D [解析]a2>b2不能推出a>b,例:(-2)2>12,但-2<1;a>b不能推出a2>b2,例:1>-2,但12<(-2)2,故a2>b2是a>b的既不充分也不必要条件. (理)“|x-1|<2成立”是“x(x-3)<0成立”的() A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件 [答案] B [解析]由|x-1|<2得-2

[全国通用]高中数学高考知识点总结

高一数学必修1知识网络 集合 123412n x A x B A B A B A n A ∈??? ????? ∈?∈?()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ?????????? ????????????≠∈?????=???=∈∈?=??=??=???真子集有个。、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。 真子集:若且(即至少存在但),则是的真子集。集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ????????=????=∈∈???=??=?=????????=???=+?=∈?=?=??==?=?,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ????? ?? ?? ?? ?? ?????????? ???????? ??????????????????????? ?????????????????????=???????

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++??????=?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

[全国通用]高中数学高考知识点总结

[全国通用]高中数学高考知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。? 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ? (答:,,)-?????? 1013 3. 注意下列性质: {} ()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ??==I Y (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B Y I I Y ==, 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x a M M M a --<∈?50352 的取值范围。

()(∵,∴ ·∵,∴ ·,,)335305555015392522∈--

高三数学课题:数学归纳法(公开课讲解)

课题:数学归纳法 【三维目标】: 一、知识与技能 1.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。 2.抽象思维和概括能力进一步得到提高. 二、过程与方法 通过数学归纳法的学习,体会用不完全归纳法发现规律,用数学归纳法证明是解决问题的一种重要途径,用数学归纳法进行证明时,“归纳奠基”与“归纳递推”两个步骤缺一不可,而关键的第二步,其本质是证明一个递推关系。 三、情感,态度与价值观 体会数学归纳法是用有限步骤解决无限问题的重要方法,提高归纳、猜想、证明能力。 【教学重点与难点】: 重点:是了解数学归纳法的原理及其应用。 难点:是对数学归纳法的原理的了解,关键是弄清数学归纳法的两个步骤及其作用。 【课时安排】:2课时 第一课时 【教学思路】: (一)、创设情景,揭示课题

问题1:P 71中的例1.在数列{a n }中,a 1=1,a n+1= n n a a +1(n ∈N+),先计算a 2,a 3,a 4的值,再推测通项an 的公式. 生:a 2=21,a 3=31,a 4=41.由此得到:a n =n 1(n ∈N +). 问题2:通过计算下面式子,你能猜出()()121531--++-+-n n 的结果吗?证明你的结论? ________97531________ 7531_______531_______ 31=-+-+-=+-+-=-+-=+- 生:上面四个式子的结果分别是:2,-3,4,-5,因此猜想: ()()()n n n n 1121531-=--++-+- (*) 怎样证明它呢? 问题3:我们先从多米诺骨牌游戏说起,这是一种码放骨牌的游戏,码放时保证任意相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌也倒下。只要推倒第一块骨牌,由于第一块骨牌倒下,就可导致第二块骨牌倒下;而第二块骨牌倒下,就可以导至第三块骨牌倒下……最后,不论有多少块,都能全部倒下。 (二)、研探新知 原理分析:问题3:可以看出,使所有骨牌都倒下的条件有两个: (1) 第一块骨牌倒下; (2) 任意相邻的两块骨牌,前一块倒下.一定导致后一块倒下。 可以看出,条件(2)事实上给出了一个递推关系:当第k 块倒下时,相邻的第k+1块也倒下。这样只要第1块骨牌倒下,其他所有的骨牌就能够相继倒下。事实上,无论有多少块骨牌,只要保证(1)

天津市2013届高三数学总复习之综合专题:数学归纳法在数列综合题中的应用举例(教师版)

数学归纳法在数列综合题中的应用举例 1、在数列{}n a 和{}n b 中,3,121==a a , 且1,,+n n n a b a 成等差数列,11,,++n n n b a b 成等比数列,*N n ∈。 (1)求出43,a a 和4321,,,b b b b 的值; (2)归纳出数列{}n a 和{}n b 的通项公式,并用数学归纳法证明。 全解103P 2、设正项数列{}n a 的前n 项和为n S ,且???? ??+= n n n a a S 121,*N n ∈,猜想出数列{}n a 的通项公式,并用数学归纳法证明。 全解104P 3、设0a 为常数,且1123---=n n n a a ,*N n ∈。 (1)证明对任意的()[] ()012121351,1a a n n n n n n n ?-+?-+=≥-; (2)假设对任意的1≥n ,有1->n n a a ,求0a 的取值范围。 全解108P 4、设数列{}n a 满足12 1+-=+n n n na a a ,*N n ∈。 (1)当21=a 时,求432,,a a a ,并由此猜想出n a 的一个通项公式;

(2)当31≥a 时,证明对所有的1≥n ,有 ①2+≥n a n ; ②2 1111≤+∑=n i i a 。 全解110P 5、已知{}n a 是由非负整数组成的数列,满足()()22,3,021121++===--+n n n n a a a a a a , 其中*N n ∈且3≥n 。 (1)求3a ; (2)证明22+=-n n a a ,3≥n ; (3)求{}n a 的通项公式及其前n 项和n S 。 全解111P

人教版最新高中数学高考总复习充分必要条件习题及详解及参考答案

——教学资料参考参考范本——人教版最新高中数学高考总复习充分必要条件习题及详解及 参考答案 ______年______月______日 ____________________部门

(附参考答案) 一、选择题 1.(文)已知a、b都是实数,那么“a2>b2”是“a>b”的( ) A.充分而不必要条件B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件 [答案] D [解析] a2>b2不能推出a>b,例:(-2)2>12,但-2<1;a>b不能推出a2>b2,例:1>-2,但12<(-2)2,故a2>b2是a>b的既不充分也不必要条件. (理)“|x-1|<2成立”是“x(x-3)<0成立”的( ) A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件 [答案] B [解析] 由|x-1|<2得-2

A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件 [答案] A [解析] 当x=4时,|a|==5 当|a|==5时,解得x=±4. 所以“x=4”是“|a|=5”的充分而不必要条件. 3.(文)已知数列{an},“对任意的n∈N*,点Pn(n,an)都在直线y=3x+2上”是“{an}为等差数列”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 [答案] A [解析] 点Pn(n,an)在直线y=3x+2上,即有an=3n+2,则能推出{an}是等差数列;但反过来,{an}是等差数列,an=3n+2未必成立,所以是充分不必要条件,故选A. (理)(20xx·××市)等比数列{an}中,“a1

高中数学高考知识点总结

高中数学高考知识点总结 一.集合与函数 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为 B A a ? (答:,,)-??? ??? 1013 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为 B A a ? (答:,,)-??? ??? 1013 2. 求函数的定义域有哪些常见类型? ()() 例:函数的定义域是y x x x = --432 lg ()()() (答:,,,)022334 反函数的性质有哪些? ①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性; ③设的定义域为,值域为,,,则y f(x)A C a A b C f(a)=b f 1 =∈∈?=-()b a [][] ∴====---f f a f b a f f b f a b 111()()()(),) 3. 如何用定义证明函数的单调性? () 如:求的单调区间y x x =-+log 12 22 (设,由则u x x u x =-+><<2 2002 ()且,,如图:log 12 2 11u u x ↓=--+

当,时,,又,∴x u u y ∈↑↓↓(]log 0112 当,时,,又,∴x u u y ∈↓↓↑[)log 1212 ∴……) [)如:已知,函数在,上是单调增函数,则的最大a f x x ax a >=-+∞013() 值是( ) A. 0 B. 1 C. 2 D. 3 (令f x x a x a x a '()=-=+?? ???-?? ? ? ?≥333302 则或x a x a ≤- ≥33 由已知在,上为增函数,则,即f x a a ()[)13 13+∞≤≤ ∴a 的最大值为3) 若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-?? 若总成立为偶函数函数图象关于轴对称f x f x f x y ()()()-=?? 4. 函数f (x )具有奇偶性的必要(非充分)条件是什么? 如:若·为奇函数,则实数f x a a a x x ()=+-+= 22 21 (∵为奇函数,,又,∴f x x R R f ()()∈∈=000 即·,∴)a a a 22 21 0100 +-+==

高考数学专题训练 数学归纳法

数学归纳法 注意事项:1.考察内容:数学归纳法 2.题目难度:中等难度 3.题型方面:10道选择,4道填空,4道解答。 4.参考答案:有详细答案 5.资源类型:试题/课后练习/单元测试 一、选择题 1.用数学归纳法证明“)1 2...(312))...(2)(1(-???=+++n n n n n n ”从k 到1+k 左端需增乘 的代数式为 ( ) A .12+k B .)12(2+k C . 112++k k D .1 3 2++k k 2.凸n 边形有()f n 条对角线,则凸1n +边形的对角线的条数(1)f n +为( ) A .()1f n n ++ B .()f n n + C .()1f n n +- D .()2f n n +- 3.已知 11 1 ()()12 31 f n n n n n *= +++ ∈++-N ,则(1)f k +=( ) A .1 ()3(1)1 f k k + ++ B .1 ()32f k k + + C .1111 ()3233341f k k k k k +++- ++++ D .11 ()341 f k k k +- ++ 4.如果命题()p n 对n k =成立,那么它对2n k =+也成立,又若()p n 对2n =成立,则下列 结论正确的是( ) A .()p n 对所有自然数n 成立 B .()p n 对所有正偶数n 成立 C .()p n 对所有正奇数n 成立 D .()p n 对所有大于1的自然数n 成立 5.用数学归纳法证明,“当n 为正奇数时,n n x y +能被x y + 整除”时,第二步归纳假设应写 成( ) A .假设21()n k k * =+∈N 时正确,再推证23n k =+正确

2019-2020学年高三数学 数学归纳法复习学案.doc

2019-2020学年高三数学 数学归纳法复习学案 数学归纳法的原理:A 数学归纳法的简单应用:B 二、知识梳理 (一)数学归纳法 一般地,对于某些与正整数有关的数学命题,我们有数学归纳法公理: 如果(1)当n 取第一个值0n (例如2,10=n 等)时结论正确; (2)假设当)(0*n k N k k n ≥∈=且时结论正确,证明当1+=k n 时结论也正确. 那么,命题对于从0n 开始的所有正整数n 都成立. (二)练一练 1.在应用数学归纳法证明凸n 边形的对角线为12 n (n -3)条时,第一步检验第一个值n 0 等于 . 2.用数学归纳法证明:“1+a +a 2+…+a n +1=1-a n +21-a (a ≠1,n ∈N *)”在验证n =1时,左端计算所得的项为 . 3.用数学归纳法证明:n n +≤++++212 131211 (*N n ∈)的过程,由n =k 到n =k +1时,左边增加了 ,共 项. 4.用数学归纳法证明n n 431314 141412?-=+++ 时,有同学给出这样的证明: 证:(1)1=n ,左边= 41,右边=4143131=?-,等式成立. (2)假设k n =时结论成立,即k k 431314 141412?-=+++ , 那么1+=k n 时,1112431314 11])41(1[41414141+++?-=--=+++k k k . 所以当1+=k n 时,命题也成立. 根据(1)(2),可知对任何* ∈N n 等式都成立. 请问,上述证明方法正确吗?请说明理由. 三、例题讲评 【例1】 用数学归纳法证明:对一切大于1的自然数,不等式

高考精华总结---高中数学知识点总结

高中数学知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。? 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ? (答:,,)-??? ??? 1013 3. 注意下列性质: {} ()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ??==I Y (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B Y I I Y ==, 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 ()(∵,∴ ·∵,∴ ·,,)335 30555 50 1539252 2∈--

若为真,当且仅当为假?p p 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? ()() 例:函数的定义域是 y x x x = --432 lg ()()() (答:,,,)022334Y Y 10. 如何求复合函数的定义域? [] 如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0 义域是_____________。 [] (答:,)a a - 11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? ( ) 如:,求f x e x f x x +=+1(). 令,则t x t = +≥10 ∴x t =-2 1 ∴f t e t t ()=+--21 21 ()∴f x e x x x ()=+-≥-2 1 210 12. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗? (①反解x ;②互换x 、y ;③注明定义域) () () 如:求函数的反函数f x x x x x ()=+≥---

相关文档
最新文档