光催化综述

光催化综述
光催化综述

1.5可见光响应光催化剂的研究进展

1.5.1TiO2光催化剂可见光化的研究

针对TiO2光催化剂的量子效率很低,且只能利用太阳光中的紫外辐射(约占太阳光能量的4%)而无法利用可见光(约占太阳光能量的43%)的缺点,研究者们通过掺杂、光敏化、复合半导体等方法使Ti02的吸收波长红移到可见光区,以便充分利用太阳光,并对提高光催化过程的量子效率进行了系统深入的研究,尤其是近年来在Ti02掺杂改性方面取得了重要进展。

1.5.1.1金属离子掺杂

金属离子掺杂就是将一定量的金属离子引入到半导体晶格中,影响光生载流子的产生、迁移/复合及其转化过程,从而影响半导体的光催化活性。由于金属离子的能级位于半导体的禁带中,从而将半导体吸收光波长的范围扩展到可见光区。用于掺杂的离子主要包括过渡金属离子和稀土金属离子。国内外许多研究者作了大量金属离子掺杂TIO:的研究,结果显示金属离子的掺杂不同程度地影响了Tio:的光催化活性[22一26]。有些金属离子的掺入提高了TIO:的光催化活性,有些金属离子的掺入影响很小,有些反而降低了TIO:的光催化活性。还有在不同的实验条件下,相同的金属离子掺杂却得到了相反的结论。总的来说,影响金属离子掺杂TIO:光催化活性的因素比较复杂,主要有掺杂离子的种类、能级、化合价、半径、浓度以及掺杂光催化剂的制备方法等。在这方面,WChoi的研究工作很有代表性。wchof采用sol一gel法将和Ti4+离子半径接近的21种金属离子掺入到TiO2中[27],系统研究掺杂对Tio:光催化活性的影响。结果如图1一3所示,当掺杂离子的电位与Tio:的价带、导带相匹配且离子半径与Ti4十相近时,具有全充满或半充满电子构型的过渡金属离子,如Fe3+、Co十和Cr3+等,掺杂后的光催化活性要好于具有闭壳层电子构型金属离子的掺杂,如Zn2+、Ga3+、Zr+、Nb5+、Sn4+、Sb5+和Ta5+等。另外高价离子,如w6+的掺杂,要好于低价离子。虽然其研究未涉及可见光方面的内容,但讨论了掺杂离子的种类、浓度、分散度、d轨道电子构型以及光照强度等多种因素对TIO:光催化活性的影响。多年的研究己经证明金属离子掺杂的TIOZ,虽然能够显著降低其禁带宽度,实现可见光的激发,但这些掺杂离子不论是作为填隙离子,还是代位离子,实际上都是在TIO:的晶格中增设了电子一空穴复合位点,大多数情况下载流子在分离和迁移到表面过程中,几乎都被这些位点所捕获。虽然Tio:有了可见光催化活性,但同时也显著降低了TIOZ在紫外辐射下的光催化活性。当然,并非所有金属离子的掺杂都被证明导致Tio:活性降低。

5.1.2非金属离子掺杂

早在1986年S.sato等就发现氮的掺杂可使Tio:具有可见光催化活性[28],但是十几年来一直没有引起人们的重视。2001年R.Asahi报道了一种在可见光(λ<500nm)下具有很高光催化活性和超亲水性的TIO2一x N x(x=0.75%)粉末和薄膜光催化剂[29],氮取代少量的晶格氧可以使TIO:的禁带宽度变窄,并在不降低紫外活性的同时实现可见光催化响应,拉开了氮掺杂乃至非金属掺杂TIO:研究的序幕。R.Asahi认为对于非金属元素的掺杂,只有形成的掺杂态符合以下三个条件,才有可能产生真正的可见光催化活性:(l)掺杂能够在Tio:禁带间产生一个能吸收可见光的能级,(2)掺杂后最低导带能级应该和Tio:相同或者比H2/H20的还原电位更负以保证光生电子的还原能力;(3)掺杂的能级应该和Tio:充分重叠,保证光生载流子在它们的寿命期内能迁移到TIO:的表面活性位点进行反应。根据以上考虑,他们利用能态密度理论计算了C4-、N3-、P3-和S2-阴离子置换Tio:中部分氧的位置后的电子态,认为N的2P能级能够与O的2p能级相杂化,掺杂后价带顶会上升,使得TIO:的禁带宽度减小,从而可以将光吸收波长范围红移至可见光区域。另一方面,就S、C等而言,因为在禁带内形成的能级较深,所以不满足上述(3)的条件,故被认为不适合用于置换TIO:晶格中的氧。作者通过在N2(40%)/Ar的气氛中溅射Tio:靶,制得了黄色透明的金红石型和锐钦矿型混晶的TIO2-x Nx(x=0.0075)薄膜,发现Ti02-x Nx薄膜在紫外辐射下光解乙醛时,与TIOZ具有几乎一样的活性,但在400≤λ≤520nm的可见光区内, Ti02-x Nx 薄膜的光催化活性显著增强,如图1一4所示。

此后,T. Morikawa[30], C. Burda[31], H. Irie[32], O. Diwald[33]等相继采用不同的合成方法制备了Ti02_XNX光催化剂,都取得了相似的结果。尽管R. Asahi认为半径较大的S, C等不适合置换Ti0:晶格中的氧,但研究者却报道了经S,C等掺杂的Ti0:同样具有可见光催化活性[34-39] 。

非金属掺杂的Ti02尽管可以实现在可见光下有显著的光催化活性,但这样人为制造的晶格缺陷是否影响Ti0:光催化剂的稳定性目前还不清楚,而对这一点的关注甚至超过了对其可见光下降解有机污染物时低矿化率的关注,因为Ti02比其它半导体更受重视的地方就是它的稳定性。

1.5.1.3光敏化

光敏化是指选取特殊的能够吸收可见光的活性化合物,如有机染料、腐殖酸、多不

饱和脂肪酸等,以物理或化学方法吸附于半导体光催化剂的表面,与宽禁带半导体形成复合物。只要该活性化合物激发态的电势比半导体导带电势更负,在可见光照射下,就能使该活性化合物激发态上的电子迁移到半导体的导带,从而使半导体的吸收波长扩展至可见光范围。其中,根据光敏剂本身被激发而形成的正碳离子是否被分解又可以分为染料敏化光催化和染料自敏化光催化,它们在反应过程中具有相似的电荷分离机制,但随后产生活性氧物种并进一步发生氧化还原反应的过程不同。常用的光敏剂包括钉毗咙类络合物、钦蔷染料、花菩染料、荧光素衍生物、叶氯酸等【40-45],其中钉毗睫类络合物等金属基光敏剂的敏化效率高[46-48]、稳定性好,研究得相对较多,敏化机理也研究得比较详细。J.C. Zhao等对染料敏化做了许多相关的研究工作[49-54]。研究发现,具有特殊结构的染料分子的可见光敏化效果十分理想,但染料分子在光敏化氧化反应中并不稳定,如以酞警、口卜琳、联毗睫类等有机分子为光敏剂对TiOz敏化修饰后,在光催化降解有机物的过程中,这些光敏剂本身在反应体

系中一起被氧化降解。

虽然研究者在Ti0:光敏化方面作了大量的工作,但仍然面临着效率低的问题,主要原因是由染料激发态注入Ti0:导带的电子容易发生反向复合。此外,染料光敏化还存在以下的缺点:1)大部分光敏化催化剂体系中,敏化剂是吸光物质,反应活性位点却仍由Ti0:来提供,而敏化剂本身占据了Ti0:表面大量的吸附位点,必然影响Ti0:光催化的效率,特别是应用于有机污染物处理时,还需要考虑有机污染物分子与敏化剂的竞争吸附问题;2)由于光敏剂在Ti0:表面存在吸附一脱附平衡,脱附后不仅造成光敏化能力下降,还会造成二次污染。因此利用光敏剂来敏化Ti0:降解有机污染物的实际应用受到限制。

1.5.1.4半导体复合

将两种或两种以上半导体以某种方式复合后,其光化学、光物理方面的性质都会发生很大的改变,其意义首先在于复合不同能带结构的半导体,为利用窄禁带的半导体敏化宽禁带的半导体提供了可能,这对以宽禁带半导体作为主催化剂的光催化反应具有重要的意义。其次,对二元复合半导体,两种半导体之间的能级差产生的内建电场能使光生载流子由一种半导体注入到另一种半导体,使光生电子一空穴彻底分离,从而提高光催化剂的活性。复合两种不同的半导体主要考虑半导体的禁带宽度、价带和导带能级位置以及晶型的匹配等因素。

近年来,对复合半导体光催化剂进行了许多研究,其中以TiOz-CdS的研究最为普遍和深入[55-58] a CdS(Eg=2.5 eV)可被波长短于500 nm的可见光激发,但TiOz(Eg=3.2 eV)只能被短于390nm的紫外辐射激发。当激发光子能量足够时,TiOz和CdS同时发生带间跃迁。由于两者之间导带和价带能级的差异,光生电子聚集于Ti0:的导带,而空穴则聚集于CdS的价带,这样光生载流子得到了分离,从而提高了量子效率。当激发光子的能量较小时,只有CdS发生带间跃迁,所产生的光生电子迁移到Ti0:的导带,而光生空穴则留在CdS的价带中,从而也使光生载流子得到分离,如图1-5所示。这种电子从CdS向Ti0:的迁移,有效地减少了光生载流子的复合几率,提高了光催化剂的量子效率。另外,复合半导体各组分的比例、制备方法和制备步骤的不同也对其光催化活性有一定的影响。目前所报道的复合体系还有Sn02-Ti02, Fe203-Ti02, CdSe-Ti02, W03-TiOz,CdS-ZnO, Zn0-ZnS等〔59-67J,这些复合半导体几乎都表现出高于单一半导体的光催化活性。

然而,常使用的窄禁带半导体,如CdS或CdSe,在化学上不稳定[68],随着光照时间的增加会发生光腐蚀,导致催化剂的失效,因此必须采取适当的措施降低催化剂的损失。

1.5.2新型可见光响应光催化剂的研究进展[69}

光催化剂的物理与化学性质对催化反应有决定性的影响,现在常用的Ti02光催化剂由于光谱响应范围较窄影响了光催化的实际应用。上述介绍的几种改性途径尽管能使Ti0:的吸收谱带红移至可见光区,并具有一定的光催化活性,但量子效率普遍较低,且改性本身存在较多不足。因此为了充分利用太阳能,开发出在可见光下结构和性能都稳定的新型光催化剂

成为光催化研究的一个新热点,并取得了一些重要进展。下文将按照结构分类对几种典型的光催化剂进行介绍。

然而,常使用的窄禁带半导体,如CdS或CdSe,在化学上不稳定[68],随着光照时间的增加会发生光腐蚀,导致催化剂的失效,因此必须采取适当的措施

降低催化剂的损失。

1.5.2新型可见光响应光催化剂的研究进展[55]

光催化剂的物理与化学性质对催化反应有决定性的影响,现在常用的Ti02 光催化剂由于光谱响应范围较窄影响了光催化的实际应用。上述介绍的几种改性

途径尽管能使Ti0:的吸收谱带红移至可见光区,并具有一定的光催化活性,但

量子效率普遍较低,且改性本身存在较多不足。因此为了充分利用太阳能,开发

出在可见光下结构和性能都稳定的新型光催化剂成为光催化研究的一个新热点,

并取得了一些重要进展。下文将按照结构分类对几种典型的光催化剂进行介绍。

1.5.

2.1 AB03型氧化物光催化剂

钙钦矿型氧化物是一类结构与天然钙钦矿(CaTi03)类似的化合物,用AB03 表示,A多为碱金属或碱土金属,B多为过渡金属。理想钙钦矿结构为立方晶系,如图1-6所示,B处于BO6八面体的中心,A处于BO6八面体的填隙,稳定性来

自BO6八面体的马德隆能。

在ABO3化合物中,为满足电中性要求,A n+、 B m+的组合是:n 十m=6,但通 常没有A 价态比B 价态高的化合物。这是由于在十二面体和八面体环境中,A

和B 的稳定性需要限制了A 和B 价态的可能性,并且在氧化物骨架中,A 和B

的半径分别要求:R A >0.090 nm ,R B >0.051 nm 。对于某个B 离子,A 离子的半径由

下式限制:

00.1)

r (r 2r r 75.0B ?++?O O A 式中,rA, rB, ro 分别为A 离子、B 离子和氧离子的半径。这个条件是从A-O 和

B-O 键长的最佳比值推得的。实际上很少有理想的钙钦矿结构,由于晶格发生畸

变而使对称性降低,如沿三重轴发生形变成为三方晶系,或沿二重轴发生形变成

为正交晶系。

SrTi03是一种较早引起人们注意的钙钦矿结构光催化剂。S. Ahuja 利用

SrTi03对苯酚进行降解以检验其光催化活性[70],结果表明SrTi03与H20:共同

作用下对苯酚降解效果显著。A. Kudo 发现,SrTi03的光催化活性强烈地取决于

退火温度[71] 。

傅希贤对钙钦矿型氧化物LaB03(M=Cr, Mn, Fe, Co)的光催化性能做了比

较深入的研究[72-74],认为在AB03钙钦矿型氧化物中,禁带宽度与A 位、B 位

元素的电负性差值有关,光催化活性主要与B 离子的电负性及d 电子结构有关。

由于在AB03型化合物中,A, B 位离子均可被其他离子部分取代,而仍然

保持原有的结构不变。人们借助这种同晶取代的特点,对AB03型化合物进行掺杂,从而可以改变AB03型化合物的组成和对称性,也可以形成氧空位和阳离子缺陷,以提高其光催化活性。Z.G. Zou, J.H. Ye等研究发现在钙钦矿型化合物中[75-78],若B位同时被两种元素占有,如MIn0.5Nbo.503或MC Ol/3Nb2/3O3(M=Ca, Sr, Ba)等,同样具有光催化活性,并且随着M离子半径的增大其禁带宽度降低。根据紫外一可见吸收光谱推出的禁带宽度及XPS谱图分析可得到如下结论:当

MIn0.5Nb0.5O3受可见光时,电子由O的2p轨道跃迁到In的5s0轨道,当受紫外辐射激发时,电子由O的2p轨道跃迁到Nb的4d0轨道;而MC Ol/3Nb2/3O3中Co

的3d7轨道由于能级分裂,当受到可见光时,电子由Co的3d Xy2轨道跃迁到Nb 的4d0轨道。

1.5.

2.2 AB04型氧化物光催化剂

ABO4型氧化物结构多种多样,其结构中的A, B原子主要由具有不同d轨

道的过渡金属组成,有A、B都是四配位的类硅石结构,也有存在着BO6八面体的含氧酸盐[79] 。

ABO4型氧化物作为光催化剂的研究是近几年才开始的。这类光催化剂即使具有相同的晶体结构,但由于B06八面体结构单元的不同,B金属的d轨道所形成的导带位置也不同,使得这些光催化剂具有不同的禁带宽度。为了寻找具有可见光催化活性的新型光催化剂,提高太阳能的利用率,人们相继合成了一系列具有B06八面体结构的ABO4型氧化物,如Z.G Zou等合成的InB04(B=V, Nb,

Ta)[80-83]。这些化合物均能够吸收λ>420 nm的可见光,禁带宽度分别为1.9 eV, 2.5 eV, 2.6 eV。在可见光照射下,都能分解水制氢,其中InVO4因为禁带宽度

较小,对波长短于600 nm的可见光都能显示出一定的光催化活性。在InBO4

(B=V, Nb, Ta)化合物中,都含有In06和B06两种八面体结构,价带由In的5s

轨道与O的2p轨道共同提供,使价带顶上升,从而具有较低的禁带宽度。具有类似机理的可见光催化剂还有BiB04(B=V, Nb, Ta)[84-88], Bi2W06[89]等,它

们都是Bi的6s轨道与O的2p轨道共同提供价带。

为了进一步提高ABO4型氧化物光催化剂的光催化活性,人们还对其进行了掺杂。InTaO4作为一种可见光催化剂,禁带宽度为2.6 eV,分解水制氢的活性很低。Z. G Zou等在InTaO4中通过过渡金属离子掺杂[90-91 ],即用Fe, Co, Ni替

代InTaO4结构中的In,合成了一系列In1-X M X TaO4(M=Fe, Cu, Ni),发现掺杂

Ni后InTaO4在460 nm处的吸收显著增强,光催化制氢的效率较掺杂前有明显提高,但Ni的掺杂量会影响InTaO4的催化活性,即x存在最佳值,比值约为x=0.1 而Fe, Cu的掺杂反而会降低光催化活性。图1-7是NiO X/In0.9Ni0.1TaO4和

RuO2/In0.9Ni0.1TaO4光催化剂在可见光下光解水的性能,实现了在可见光下按照

化学计量比光解纯水[90] 。

1.5.

2.3金属氮化物/氮氧化物及金属硫化物/硫氧化物光催化剂

禁带宽度较窄的半导体,如W03和CdS光催化剂,能够吸收可见光,但由于其能带位置与水的还原电位不匹配和在光照下发生光腐蚀而难以得到实际应用。含有d0电子构型的过渡金属阳离子(如Ti4+, Nb5+, Ta5+, Zr4+等)形成的半导

体氧化物是潜在的分解水光催化剂,但它们的禁带宽度一般较宽(>3.0 eV)。当用其他非金属原子(如N)取代或部分取代O原子时,由于它们的2p轨道能级比O 的2p轨道能级高,因此可以降低禁带宽度,从而吸收可见光。

K. Domen等通过氮化Ta205获得了一系列禁带宽度较窄的氮氧化物光催化

剂[90-94J。如图1-8所示,TaON及Ta3N5的吸收边红移到了可见光区,并有很强的吸收。这是因为当Ta2O5中的O原子被N原子取代后,构成Ta205的价带中N的2p轨道贡献越多,吸收边红移程度就越大。密度泛函理论计算表明构成

Ta205, TaON和Ta3N5的导带主要是Ta的5d轨道,而其价带主要由O的2p, O

的2p与N的2p和N的2p轨道分别构成,其禁带宽度分别为3.9 eV, 2.4 eV和

2.1 eV,在可见光照射下,TaON和Ta3N5展现了一定的光解水制氢活性。

硫化物/硫氧化物可以看作是晶格中的氧原子被硫原子取代或部分取代的结果。S的3p轨道能级比O的2p轨道能级高,因此硫化物/硫氧化物比相应的氧

化物具有相对较窄的禁带宽度,而很多硫化物又是重要的半导体材料,因此半导

体硫化物/硫氧化物很有可能成为重要的可见光响应光催化剂。CdS及ZnS·CdS

是人们研究比较多的光催化剂,它们在可见光照射下显示出良好的产氢活性,但

由于CdS在光照过程中发生光腐蚀而不具有长期稳定性。因此合成和设计出在

可见光区有强吸收的稳定硫化物/硫氧化物成为人们研究新型光催化剂的一个重

要方向。

半导体ZnS的禁带宽度为3.5 eV,只能在紫外辐射下光解水制氢。A. Kudo 等通过共沉淀法制备了Zn0.999Ni0.001S[95] ,Ni的掺杂可以使ZnS的吸收边红移至可见光区,禁带宽度缩小为2.3 eV。禁带宽度的缩小主要是因为掺杂的Ni在ZnS 的价带附近形成了新的能级,可见光的激发过程实际是电子从Ni的3d能级向

ZnS的导带跃迁的过程。在λ>420 nm的可见光照射下,ZnS能够光催化分解含

Na2S/Na2S03牺牲剂的水溶液,并以280 μmol/h的速率生成H2。

K. Domen等报道了一类新的硫氧化物光催化剂Ln2Ti2S205,该催化剂一般是通过传统的高温固相法合成[96]。当Sm2Ti2O7晶格中的两个O原子被S原子

取代后就得到硫氧化物Sm2Ti2S205[97]。由于S的3p轨道比O的2p轨道能级高,所以其禁带宽度由Sm2Ti207的3.6 eV减小为Sm2Ti2S205的1.9 eV。在可见光照

射下,该催化剂也展现了一定的光解水制氢活性。

1.5.

2.4固溶体结构可见光响应光催化剂

许多同形的晶体能生成均匀的、组分可变的固溶体((Solid Solution)。一般形成固溶体的条件可归结为离子半径和极化性能比较接近,其次是晶格的形状和大

小相差不多。通过形成固溶体来调控能带结构是开发新型可见光响应光催化剂的

一种有效手段。

具有黄铜矿结构的三元半导体I-III-VI(I= Cu, Ag} III= Al, Ga, In,VI= S, Se, Te),如AgInS2, CuInS2, CuInSe2和Cu(In, Ga)Se2等,它们的禁带宽度都较

窄,在太阳能电池研究中备受关注。ZnS与这类半导体晶体结构类似,可以形成

窄禁带固溶体形式的新型光催化剂。AgInS2具有类纤维锌矿的结构,与纤维锌矿

结构的ZnS构成固溶体(AgIn)xZn2(1-X)S2[98]后,禁带宽度随x的不同在3.55-1.88

eV之间连续变化。当x=0.22时,3 wt%的Pt担载的(AgIn)0.22Zn1.56S2 (Eg=2.3 eV)表现出最高的产氢活性,在0.25 mol/L K2S03-0.35 mol/L Na2S水溶液中,光波长420 nm处的表观量子产率达到20 % 。CuInS2也可以与ZnS可以形成闪锌矿结构的固溶体

光催化剂(CuIn)xZn2(1-X)S2[100],当x从0.01到0.5时,Eg在1.752.67 eV之间变化。当x=0.09时,0.5 wt%的Pt担载的(CuIn)0.09Zn1.82S2 (Eg=2.3 eV)表现出最高的产氢活性,在0.25 mol/L K2S03-0.35 mol/L Na2S水溶液中,光波长420 nm处的表观量子产率达到12.5 % 。

虽然硫属化合物的固溶体研究获得了较好的效果,但需要关注的是硫化物的光腐蚀作用降低了光催化剂的稳定性,而且光解水溶液中需要提供电子给体S2-

和SO32-,产氢速率随着电子给体的消耗而下降。因此有必要开发稳定的氧化物

或氮化物的固溶体。K. Domen等研制出了一系列独特的固溶体光催化剂

[101-107],在可见光下都能够分解水制氢。他们开展了对(Gal1-X Zn X)(N1-X O X)等固

溶体的一系列的研究。GaN和Zn0均为纤锌矿结构,具有相似的晶格参数,所以

创门可以形成固溶体。GaN, ZnO的禁带宽度都超过3 eV,但是由于p-d轨道间的

相互排斥(如,N 2p-Zn 3 d)会使价带顶上升而对导带的位置没有影响,从而造成

(Ga1-X Zn X)(N1-X O X)的禁带宽度降低。2006年,他们在Nature上报道了Rh和Cr氧化物共担载的(Ga1-X Zn X)(N1-X O X)在可见光下光催化分解水制氢的工作[102],在

420~440 nm波段的量子产率达到2.5 %,如图1-9所示[102],引起了人们的广泛关注。

光催化系统综述

光催化系统综述 光催化系统就是光触媒在外界光的作用下发生催化作用,光触媒在光照条件下(可以是不同波长的光照)所起到的催化作用的化学反应[1] 。从1972年,Fujishima在半导体TiO2电极上发现了水的光催化分解作用,从而开辟了半导体光催化这一新的领域[2] 。1977年,Yokota发现光照条件下,二氧化钛对丙烯环氧化具有光催化活性,拓宽了光催化应用范围,为有机物氧化反应提供了一条新思路[3] 。此后光催化技术在能源制氢、二氧化碳还原、污染物降解等方面迅速发展起来,光催化制氢在解决环境和能源问题上具有广阔的应用前景。 光催化原理简介 当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生电子(e-)和空穴(h+)。此时吸附在纳米颗粒表面的溶解氧俘获电子形成超氧负离子,而空穴将吸附在催化剂表面的氢氧根离子和水氧化成氢氧自由基[4] 。 光催化系统简介 随着全球化石能源日益枯竭、环境问题日益严峻,严重制约了人类的可持续发展。寻找清洁、安全、高效的新型能源成为了人们关注的重点。1972年,日本Fujishima A和Honda K首次报道了TiO2光催化分解水产生H2这一现象后,揭示了利用太阳光分解水制氢的可能性,开辟了将太阳能转换为氢能的研究道路。随后,科学家们不断研究具有高催化性的催化剂及研究体系,并取得了重大进展。光催化系统作为研究的必备仪器,起到了举足轻重的作用。RTK 光催化系统国内首家突破传统体系,模拟工业化生产环境,实现常温常压条件下研究环境,采用独特的RTK GMC专利技术,无需GC,直接对光催化过程中的产气量(氢气或氧气)或产气速率进行计量。同时,突破了传统装置由于自身设计所导致的低量程瓶颈,可以实现较高量程产气量(产气速率)的实时、在线监测,适用于各种不同产率的催化剂体系评价。光催化系统可以应用于常温常压光催化制氢、常温常压光催化制氧、常温常压二氧化碳还原以及光催化降解等领域。 光催化系统特点

光催化材料的项目报告书

项目报告书

光催化材料的研究概况 摘要: 光催化降解污染物是近年来发展起来的一种节能、高效的绿色环保新技术.它在去除空气中有害物质,废水中有机污染物的光催化降解,废水中重金属污染物的降解,饮用水的深度的处理,除臭,杀菌防霉等方面都有重要作用,但是作为新功能材料,它也面临着很多局限性:催化效率不高,催化剂产量不高,有些催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到他巨大的发展潜力和市场利用价值,作为处理环境污染的一种方式,它以零二次污染,能源消耗为零,自发进行无需监控等优势必将居于污染控制的鳌头。本文主要综述了光催化反应基本原理、新型光催化材料开发策略及研究进展。分析了提高光催化材料量子效率的关键所在及开展新型光催化材料研究工作的重要性,展望了该领域的未来发展方向。 关键词:光催化原理、光催化材料、研究与开发 正文:光催化的由来 早在1839年,Becquerel 就发现了光电现象,然而未能对其进行理论解释。直到1955年,Brattain和Gareet 才对光电现象进行了合理的解释,标志着光电化学的诞生。1972年,日本东京大学Fujishima和Honda研究发现,利用TiO2单晶进行光催化反应可使水分解成氢和氧。这一开创性的工作标志着光电现象应用于光催化分解水制氢研究的全面启动。在过去40年里,人们在光催化材料开发与应用方面的研究取得了丰硕的成果 光催化材料 光催化材料是指在光作用下可以诱发光氧化一还原反应的一类半导体材料。世界上能作为光催化材料的有很多,包括二氧化钛、氧化锌、氧化锡、二氧化锆、硫化镉等多种氧化物硫化物半导体,其中二氧化钛(Titanium Dioxide)因其氧化能力强,化学性质稳定无毒,成为世界上最当红的纳米光触媒材料。 例如光催化净化空气: 图表1 光催化涂料 光催化材料对净化空气具有以下功效: 具有光催化降解甲醛、苯、氨等有害气体的功效。 具有抗污、屏蔽紫外线功效。

光催化材料研究进展概要

光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅适合特定的污染物而不适合大规模推广应用等方面的缺陷[1]。光催化氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO2、ZnO、CdS、WO 3、Fe 2 O 3等半导体光催化技术因其可以直接利用光能而被许多研究者看好[2]。 1.1 TiO 2光催化概述 1.1.1 TiO 2的结构性质 二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO2在自然界主要有三种结晶形态分布:锐钛矿型、

金红石型和板钛矿型。三种晶体结构的TIO2中,锐钛矿和金红石的工业用途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在光催化处理环境污染物方面有着极为广阔的应用前景[3]。 1.1.2TiO2光催化反应机理 半导休表面多相光催化的基本原理:用能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价带产生相应的空穴,这样就半导体内部生成电子(e-)—空穴(h+)随后,.电子-空穴对迁移到粒子表面不同位置、与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO2催化剂的局限及改性途径 作为光催化剂,虽然二氧化钛具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸收的光的波长主要集中在紫外区,

光催化在有机合成中的应用 文献综述

光催化在有机合成中的应用 沈晓峰150110113 化学师范10 摘要21世纪, 化学研究的一个主要目标是发展一种高效能技术, 用于取代那些对环境 有害的耗能过程。在光催化的有机合成中,通过优化反应环境可以实现对某种目标产物的高选择性, 从而为有机合成提供了一种绿色、节能的途径, 成为21世纪最具潜力的绿色有机化学技术。 1.引言1972 年, Fujishima和Honda[1]发现TiO2单晶电极能够在光照条件下将水分解为 氢气和氧气, 光催化技术的序幕由此揭开. 光催化领域的开拓瞬时点燃了科研工作者们对这一崭新领域的研究热情. 随着研究工作的深入开展, 人们的目光不再局限于光解水制氢这一体系, 而是投向了更广阔的天地. 在过去的近四十年里, 有关光催化的研究报道如雨后春笋般涌现出来。目前, 大多数的研究工作主要集中于降解水和空气中污染物等环境治理和改善方面, 太阳能的转化以及界面电子转移等电化学过程上。尽管如此, 将光催化用于特定的有机化合物的合成等方面已经得到了越来越多的关注。众所周知, 传统的有机合成不仅步骤繁琐, 而且所使用的氧化剂通常是一些具有毒性或者腐蚀性的强氧化剂。光催化反应将太阳光引入有机合成体系,无论从节能的角度还是环保的角度, 都无疑是一个重大的突破, 主要原因有以下三点: (1)太阳能是一种完全可再生的资源; (2)光化学激发所需要的条件比热催化所要求的条件要温和得多; (3)光化学激发为人们设计出更短的反应历程提供条件, 从而将副反应的发生减小到最小程度。 2.光催化原理光催化是光化学和催化科学的交叉点,一般是指在催化剂参与下的光化学反应。半导体材料之所以具有光催化特性,是由它的能带结构所决定。半导体的晶粒内含有能带结构,其能带结构通常由一个充满电子的低能价带(HD<8351KD3=,RS)和一个空的高能导带(E93=7E5693KD3=,>S)构成,价带和导带之间由禁带分开,该区域的大小称为禁带宽度,其能差为带隙能,半导体的带隙能一般为"+!!(+"8R。当用能量等于或大于带隙能的光照射催化剂时,价带上的电子被激发,越过禁带进入导带,同时在价带上产生相应的空穴,即生成电子/空穴对。由于半导体能带的不连续性,电子和空穴的寿命较长,在电场作用下或通过扩散的方式运动,与吸附在催化剂粒子表面上的物质发生氧化还原反应,或者被表面晶格缺陷俘获。空穴和电子在催化剂内部或表面也可能直接复合[0]。因此半导体光催化关键步骤是:催化剂的光激发,光生电子和空穴的迁移和俘获,光生电子和空穴与吸附之间表面电荷迁移以及电子和空穴的体内或表面复合[%]。光催化反应的量子效率低是其难以实用化最为关键的因素。光催化反应的量子效率取决于电子和空穴的复合几率,而电子和空穴的复合过程则主要取决于两个因素:电子和空穴在催化剂表面的俘获过程;表面电荷的迁移过程。 非半导体光催化的过程更为复杂,以金属有机物催化剂为例,主要包括激发活化、配位络合、能量传递和电子传递。激发活化是指吸收光子能量后克服催化剂和反应物形成的活化能垒的过程,根据激发状态可将光催化分成多种类型,如反应物被光激发后在催化剂作用下引起的催化反应、由激发的催化剂所引起的催化反应等。配位络合对光催化是极有利的,反应底物络合于催化剂分子的空配位上形成络合物,能量传递与电子传递从分子间方式变为 分子内传递,减少了激发能的损失,提高了传递效率。光催化反应中,由于分子间的碰撞而

光催化材料080804210

光催化材料的研究概况 目前,人类使用的主要能源有石油、天然气和煤炭三种。根据国际能源机构的统计,地球上这三种能源能供人类开采的年限,分别只有40年、50年和240年。值得注意的是,中国剩余可开采储蓄仅为1390亿吨标准煤,按照中国2003年的开采速度16.67亿吨/年,仅能维持83年。中国石油资源不足,天然气资源也不够丰富,中国已成为世界第二大石油进口国。因此,开发新能源,特别是用清洁能源替代传统能源,迅速地逐年降低它们的消耗量,保护环境改善城市空气质量早已经成为关乎社会可持续发展的重大课题。中国能源发展方向可以锁定在前景看好的五种清洁能源: 水电、风能、太阳能、氢能和生物质。 太阳能不仅清洁干净,而且供应充足,每天照射到地球上的太阳能是全球每天所需能源的一万倍以上。直接利用太阳能来解决能源的枯竭和地球环境污染等问题是其中一个最好、直接、有效的方法。 光催化就是利用太阳能的一种新技术。它不仅可以直接分解水、环境中的有毒有害物质,还可以直接将太阳能转化为电能与化学能(如氢能)等清洁能源。对于从根本上解决环境污染和能源短缺等问题具有重要意义。下面,从光催化材料的几个方面来简述其研究概况。 一、光催化材料的基本原理 半导体光催化材料大多是n型半导体材料,都具有区别于金属或绝缘物质的特别的能带结构,即在价带和导带之间存在一个禁带。当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生电子和空穴。此时吸附在纳米颗粒表面的溶解氧俘获电子形成超氧负离子,而空穴将吸附在催化剂表面的氢氧根离子和水氧化成氢氧自由基。而超氧负离子和氢氧自由基具有很强的氧化性,能将绝大多数的有机物氧化至最终产物CO2和H2O,甚至对一些无机物也能彻底分解。 为例,揭示了其晶体结构、表面羟基自由基以及氧缺陷对量子效率的以TiO 2 影响机制;采用元素掺杂、复合半导体以及光敏化等手段拓展其光催化活性至可

光催化在有机合成中的应用__文献综述

光催化在有机合成中的应用 应用化学111班张琳 2011034128 摘要21世纪, 化学研究的一个主要目标是发展一种高效能技术, 用于取代那 些对环境有害的耗能过程。在光催化的有机合成中,通过优化反应环境可以实现对某种目标产物的高选择性, 从而为有机合成提供了一种绿色、节能的途径, 成为21世纪最具潜力的绿色有机化学技术。 关键字光催化有机合成催化氧化 1 引言197 2 年, Fujishima和Honda[1]发现TiO2单晶电极能够在光照条件下 将水分解为氢气和氧气, 光催化技术的序幕由此揭开。光催化领域的开拓瞬时点燃了科研工作者们对这一崭新领域的研究热情. 随着研究工作的深入开展, 人们的目光不再局限于光解水制氢这一体系, 而是投向了更广阔的天地。在过去的近四十年里, 有关光催化的研究报道如雨后春笋般涌现出来。目前, 大多数的研究工作主要集中于降解水和空气中污染物等环境治理和改善方面, 太阳能的转化以及界面电子转移等电化学过程上。尽管如此, 将光催化用于特定的有机化合物的合成等方面已经得到了越来越多的关注。众所周知, 传统的有机合成不仅步骤繁琐, 而且所使用的氧化剂通常是一些具有毒性或者腐蚀性的强氧化剂。光催化反应将太阳光引入有机合成体系,无论从节能的角度还是环保的角度, 都无疑是一个重大的突破, 主要原因有以下三点: (1)太阳能是一种完全可再生的资源; (2)光化学激发所需要的条件比热催化所要求的条件要温和得多; (3)光化学激发为人们设计出更短的反应历程提供条件, 从而将副反应的发生减小到最小程度。 2 光催化原理光催化是光化学和催化科学的交叉点,一般是指在催化剂参 与下的光化学反应。半导体材料之所以具有光催化特性,是由它的能带结构所决定。半导体的晶粒内含有能带结构,其能带结构通常由一个充满电子的低能价带和一个空的高能导带构成,价带和导带之间由禁带分开,该区域的大小称为禁带宽度,其能差为带隙能,当用能量等于或大于带隙能的光照射催化剂时,价带上的电子被激发,越过禁带进入导带,同时在价带上产生相应的空穴,即生成电子/空穴对。由于半导体能带的不连续性,电子和空穴的寿命较长,在电场作用下或通过扩散的方式运动,与吸附在催化剂粒子表面上的物质发生氧化还原反应,或者被表面晶格缺陷俘获。空穴和电子在催化剂内部或表面也可能直接复合[0]。因此半导体光催化关键步骤是:催化剂的光激发,光生电子和空穴的迁移和俘获,光生电子和空穴与吸附之间表面电荷迁移以及电子和空穴的体内或表面复合[%]。光催化反应的量子效率低是其难以实用化最为关键的因素。光催化反应的量子效率取决于电子和空穴的复合几率,而电子和空穴的复合过程则主要取决于两个因素:电子和空穴在催化剂表面的俘获过程;表面电荷的迁移过程。 3.光催化在有机合成中的应用

光催化研究发展综述性报告

光催化研究发展综述性报告 本人申请攻读动力工程与工程热物理专业博士学位,由于对后续能源与新能源技术专业太阳能分解水制氢方向有浓厚的兴趣,通过对相关文献的阅读和参加相关报告,对太阳能光催化分解水制氢有了详细的了解,对其发展简述如下: 1.前言 当今人类社会面临能源和环境两大问题[1-2]。能源的短缺和环境的污染严重制约着人类社会的发展。一方面,社会的高速发展使得人类对于能源的需求越来越大,而我们目前所用的能源还是以传统的化石燃料为主,但是因为化石燃料的不可再生性,或者说是形成的时间周期太长,使得其必有枯竭的一天。据估计,按照目前的开采水平和消耗量,石油还能够维持四十年左右,煤炭最多也就是两百年,而天然气还可以维持大概六十多年。另一方面,化石燃料的燃烧,引起严重的环境污染和对环境的危害,如温室效应、酸雨、光化学烟雾等等,对人类的生存产生了严重的威胁。 研究自然的、社会的、生态的、经济的以及利用自然资源过程中的基本关系,以确保全球的可持续发展已经成为各国都十分关注的一个话题。就像美国,在2009年提出的7870亿美元的巨额经济刺激计划中,把发展新能源定位于抢占未来发展制高点的重要战略产业,并提出在未来的三年的时间里,国内可再生能源产量要增加一倍。而我国人口众多,常规能源储备远低于世界平均水平,而且近几十年来,环境污染也是日益严峻。这使得寻找一种清洁可持续的替代能源变得更加迫切。而我国幅员辽阔,拥有极为丰富的太阳能资源,开发潜力巨大,从长远发展来看完全可以满足国家可持续发展的需求。但太阳能能量密度低、分散性强、不稳定、不连续的缺点使得我们至今仍缺乏对其高效低成本大规模利用的有效手段。但是考虑到占地表约3/4的水域和植物的光合作用,我们是不是可以利用太阳能分解水,制取氢气,而氢气又是是一种无色无臭无味无毒的清洁燃料,

半导体光催化综述

硫及金属硫化物-类石墨相氮化碳纳米复合材料的制备,表征及其光催化性能的研究

第一章绪论 自18世纪60年代的第一次工业革命到现在以来,科学技术迅猛发展、日新月异。工业革命(第一次科技革命)以瓦特的蒸汽机的发明为标志,宣告了人类社会由原来的火器时代,进入到了蒸汽时代。第二次科技革命发生在19世纪70年代,在这个时期,自然科学取得了飞速的进展,由于资本主义制度的逐渐形成和完善,资本主义国家为了生存和发展,开始了大量的对世界资源进行掠夺。两次工业革命对然建立了世界的初步两极格局,但是两次科技革命的功劳还是不容忽视的,它们推动了传统的农业,手工业向现代化工业以及机器化工业的飞速发展,并且带给了人类社会巨大的物质财富,在资本主义国家逐利的对外扩张过程中,不可否认的是它们的争斗促进了人类文明的进步和繁荣。但是,当资本家们在大力发展社会生产力,提高生活水平的同时,对环境也造成了严重的破坏,至今,已严重威胁着我们所处在的的生存环境。 特别是在进入20世纪50年代之后的第三次科技革命;随着工业现代化进程的加快,人类向所生存的环境排放了大量的生产废水、废气,它们其中含有大量的有毒污染物如医用药品、农药、工业染料、表面活性剂和含有重金属离子的溶液等,含有上述物质的这些废水给人类的健康和生存环境带来巨大的威胁。而且在上述这些污染物中,用传统的处理方法很难将其完全消灭和降解。废水中的很多有机化合物能使水中的厌氧微生物发生异变,从而产生明显的毒害作用;所以必须创造出一些其它的非生物的降解技术来除去这些有机化合物[1-3]。因此,开发一种简便、有效、快捷、无害的方法来治理水体污染和大气污染是当前社会一个亟待解决的问题。并且,社会现代化的发展需要消耗大量的能源,据专家分析,传统的化石能源已经不能继续维持人类社会的长期发展,而且传统的化石能源的使用是当前引发严重环境问题的万恶之源。所以,环境问题和能源问题是21世纪可持续发展战略的两大亟待解决的严重问题。

光催化材料的基本原理

二,光催化材料的基本原理 半导体在光激发下,电子从价带跃迁到导带位置,以此,在导带形成光生电子,在价带形成光生空穴。利用光生电子-空穴对的还原氧化性能,可以降解周围环境中的有机污染物以及光解水制备H2和O2。 高效光催化剂必须满足如下几个条件:(1)半导体适当的导带和价带位置,在净化污染物应用中价带电位必须有足够的氧化性能,在光解水应用中,电位必须满足产H2和产O2的要求。(2)高效的电子-空穴分离能力,降低它们的复合几率。(3)可见光响应特性:低于420nm左右的紫外光能量大概只占太阳光能的4%,如何利用可见光乃至红外光能量,是决定光催化材料能否在得以大规模实际应用的先决条件。常规anatase-type TiO2 只能在紫外光响应,虽然通过搀杂改性,其吸收边得以红移,但效果还不够理想。因此,开发可见光响应的高效光催化材料是该领域的研究热点。只是,现在的研究状况还不尽人意。 三,光催化材料体系的研究概况 从目前的资料来看,光催化材料体系主要可以分为氧化物,硫化物,氮化物以及磷化物 氧化物:最典型的主要是TiO2及其改性材料。目前,绝大部分氧化物主要集中在元素周期表中的d区,研究的比较多的是含Ti,Nb,

Ta的氧化物或复合氧化物。其他的含W,Cr,Fe,Co,Ni,Zr等金属氧化物也见报道。个人感觉,d区过渡族金属元素氧化物经过炒菜式的狂轰乱炸后,开发所谓的新体系光催化已经没有多大潜力。目前,以日本学者J. Sato为代表的研究人员,已经把目光锁定在p区元素氧化物上,如含有Ga,Ge,Sb,In,Sn,Bi元素的氧化物。 硫化物:硫化物虽然有较小的禁带宽度,但容易发生光腐蚀现象,较氧化物而言,稳定性较差。主要有ZnS,CdS等 氮化物:也有较低的带系宽度,研究得不多。有Ta/N,Nb/N等体系 磷化物:研究很少,如GaP 按照晶体/颗粒形貌分类: (1)层状结构 **半导体微粒柱撑于石墨及天然/人工合成的层状硅酸盐 **层状单元金属氧化物半导体如:V2O5,MoO3,WO3等 **钛酸,铌酸,钛铌酸及其合成的碱(土)金属离子可交换层状结构和半导体微粒柱撑于层间的结构 **含Bi层状结构材料,(Bi2O2)2+(An-1BnO3n+1)2- (A=Ba,Bi,Pb;B=Ti,Nb,W),钙钛矿层(An-1BnO3n+1)2-夹在(Bi2O2)2+层之间。典型的有:Bi2WO6,Bi2W2O9,Bi3TiNbO9

半导体光催化综述

硫及金属硫化物-类石墨相氮化碳纳米复合材料的制备, 表征及其光催化性能的研究

第一章绪论 自18世纪60年代的第一次工业革命到现在以来,科学技术迅猛发展、日新月异。工业革命(第一次科技革命)以瓦特的蒸汽机的发明为标志,宣告了人类社会由原来的火器时代,进入到了蒸汽时代。第二次科技革命发生在19世纪70年代,在这个时期,自然科学取得了飞速的进展,由于资本主义制度的逐渐形成和完善,资本主义国家为了生存和发展,开始了大量的对世界资源进行掠夺。两次工业革命对然建立了世界的初步两极格局,但是两次科技革命的功劳还是不容忽视的,它们推动了传统的农业,手工业向现代化工业以及机器化工业的飞速发展,并且带给了人类社会巨大的物质财富,在资本主义国家逐利的对外扩张过程中,不可否认的是它们的争斗促进了人类文明的进步和繁荣。但是,当资本家们在大力发展社会生产力,提高生活水平的同时,对环境也造成了严重的破坏,至今,已严重威胁着我们所处在的的生存环境。 特别是在进入20世纪50年代之后的第三次科技革命;随着工业现代化进程的加快,人类向所生存的环境排放了大量的生产废水、废气,它们其中含有大量的有毒污染物如医用药品、农药、工业染料、表面活性剂和含有重金属离子的溶液等,含有上述物质的这些废水给人类的健康和生存环境带来巨大的威胁。而且在上述这些污染物中,用传统的处理方法很难将其完全消灭和降解。废水中的很多有机化合物能使水中的厌氧微生物发生异变,从而产生明显的毒害作用;所以必须创造出一些其它的非生物的降解技术来除去这些有机化合物[1-3]。因此,开发一种简便、有效、快捷、无害的方法来治理水体污染和大气污染是当前社会一个亟待解决的问题。并且,社会现代化的发展需要消耗大量的能源,据专家分析,传统的化石能源已经不能继续维持人类社会的长期发展,而且传统的化石能源的使用是当前引发严重环境问题的万恶之源。所以,环境问题和能源问题是21世纪可持续发展战略的两大亟待解决的严重问题。 1.1研究背景与意义

光催化混凝土综述-田浩

光催化混凝土综述(环境净化)- 田浩 光催化混凝土综述 摘要:文章简要介绍了光催化的发展历史,光催化混凝土的制备方法、 性能研究进展、及其在降解空气中氮氧化物方面的应用,简单总结了 光催化混凝土现在所存在的问题。 关键字:光催化混凝土氮氧化物 1.引言 如今随着社会的快速发展,产生了各种各样的社会问题,环境问题就是其中的主要问题之一。环境问题是指全球环境或区域环境中出现的不利于人类生存和发展的各种现象。工业革命之后,由于工业的密集,燃煤量和燃油量剧增,世界各个国家的城市饱受空气污染之苦。随着社会发展的需求人口的增加,全世界使用矿物燃料的量是有增无减,使得全球氮氧化物和二氧化硫排放量逐年剧增,导致全球大气污染变得越发严重,影响人类正常生活。现代化城市中汽车尾气排放造成的环境污染问题日益加剧,如何更有效地净化汽车排放污染物

(主要为氮氧化物NOx )已成为国内外研究热点。这些大气污染物还是酸雨的主要形成原因,酸雨的产生在土壤、湖泊、植被和建筑等方面都存在巨大的危害。 而近几年的光催化技术可以很好的解决氮氧化物对大气环境的污染,光催 化净化是基于光催化剂在紫外线照射下具有的氧化还原能力而净化污染物。利用光催化净化技术去除空气中的氮氧化物具有反应条件温和(常温常压)、可分解污染物为二氧化碳和水等无机物净化效果彻底且二次污染小、半导体光催化剂化学性质温度,制备成本低、直接利用太阳能可有效缓解能源短缺的问题等特点。常见的光催化剂多为金属氧化物和硫化物,如Ti02, Zn O,CdS,WO3等, 其中Ti0 2的综合性能最好,应用最广。Ti0 2具有良好的抗光腐蚀性和催化活性,而且性能稳定,价廉易得,无毒无害,是目前公认的最佳光催化剂。 在现在的建筑行业中,混凝土材料早就已经不仅仅是作为骨架结构在应用 了,随着社会的发展技术的革新,出现了各种各样的功能混凝土材料。而纳米光催化剂和混凝土的结合也在上世纪九十年代开始被研究及相应的应用,这种自清洁的光催化混凝土的研究对丰富混凝土的功能具有重要的意义,同时可以缓解当前城市的环境和能源问题,提供给人们一个较为安全洁净的生活环境。 2.光催化应用的发展历史 1972年,Fujishima [1 ]和日0门4&在《Nature》上发表了一篇关于n-型半导体TiO2 电极上发现光催化分解水的文章,继而首次提出将TiO 2作为光催化剂的构想, 揭开了多相光催化的序幕。1976年加拿大科学家Carey[2]首次报道了利用TiO 2/UV的光催化分解多氯联苯的研究,这是在光催化降解水中污染物方面的开拓性工作,开辟了光催化技术在环境保护领域的应用前景。20世纪90年代初 期,纳米光催化剂已广泛地应用于建筑外墙材料和内部装饰材料以及卫浴材料中。1996年,日本首先提出将TiO 2作为一种空气净化催化剂,随后几年里市场上就有了大量用于室内或者室外的空气净化产品。2002年在日本东京由 Kawasaki重工有限公司生产的Folium光催化剂产品已成功应用于公路、隧道、高速公路隔音板、收费站等。同年意大利米兰用光催化剂和水泥混合浆料涂覆一条7000m的马路,长期使用后测定路面上光催化剂对氮氧化物的催化氧化效率仍然可达到20%以

光解水制氢半导体光催化材料的研究进展

光解水制氢半导体光催化材料的研究进展 田蒙奎1 ,2 ,上官文峰2 ,欧阳自远1 ,王世杰1 (1. 中国科学院地球化学研究所,贵州贵阳550002 ; 2. 上海交通大学机械与动力学院燃烧与环境技术研究中心,上海200030) 摘要: 自从Fujishima2Honda 效应发现以来,科学研究者一直努力试图利用半导体光催化剂光分解水来获得既可储存而又清洁的学能———氢能。近一二十年来,光催化材料的研究经历了从简单氧化物、复合氧化物、层状化合物到能响应可见光的光催化材料。本文重点描述了这些光催化材料的结构和光催化特性,阐述了该课题的意和今后的研究方向。关键词: 光解水;氢能;半导体光催化剂中图分号: X13 文献标识码:A文章编号:100129731 (2005) 1021489204 1 引言 在能源危机和环境问题的双重压力下,氢能因其燃烧值高、储量丰富、无污染而成为最有希望替代现有化石能源的清洁能源,因而氢能的开发成了能源领域的研究热点。自从Fujishima 和Honda 于1972 年发现了TiO2 光电化学能分解水产生H2 和O2 以来[1 ] ,科学研究者实现太阳能光解水制氢一直在作不懈的努力。普遍接受的光解水制氢原理是:半导体光催化剂在能量等于或大于其禁带宽度的光辐射时,电子从最高电子占据分子轨道( HOMO ,即价带) 受激跃迁至最低电子占据分子轨道(LUMO ,即导带) ,从而在价带留下了光生空穴( h + ) , 导带中引入了光生电子(e - ) 。光生空穴和光生电子分别具有氧化和还

原能力。要实现太阳能光解水制氢和氧,光生电子的还原能力必须能还原H2O 产生H2 ,而光生空穴的氧化能力必须能氧化H2O 产生O2 ,即半导体光催化剂的导带底要在H2O/ H2 电位( E0 = 0V ,p H = 0) 的上面(导带位置越高,电位越负,还原能力越强) ;而价带顶在O2 / H2O 电位( ENHE = + 1. 23V ,p H = 0) 的下面(价带位置越低,电位越正,氧化能力越强) 。近一二十年来, TiO2 以外的光催化剂的相继发现,特别是能响应可见光的光催化材料的出现,使得光解水制氢研究进入了非常活跃时期。本文就近期太阳能光解水制氢研究进展中的半导体光催化材料作一综述。 2 简单半导体氧化物,硫化物系光催化剂目前广泛研究的简单化合物半导体材料的能带结构如图1 所示: 图1 部分半导体材料的能带结构示意图 Fig 1 Schematic diagram of band st ructure for some semiconductor s TiO2 光催化剂由于光照不发生光腐蚀、耐酸碱性好、化学性质稳定、对生物无毒性、来源丰富等优点而被广为利用。具有代表性的

近期关于光催化水解制氢气研究报告综述

以二氧化钛为基质的催化剂的研究综述 温邻君杨晓奕 <北京航空航天大学,北京,100191) 摘要:本文系统地介绍了关于光致水解制氢气的催化剂的近期研究进展。从以下几个提高催化活性的方向:贵金属负载、离子掺混、染色光敏化处理、复合半导体及化学牺牲剂等,结合最新的研究成果,总结各种改善高催化活性思路的科研进展,系统地比较各个方法的特点,提出自己的看法。并展望该领域未来的发展。 关键词:TiO2、光催化水解制氢、催化剂改性技术、电子-空穴、牺牲剂、量子效率 Abstract:This paper reports the recent developments in photocatalytic water-splitting for hydrogen production. Basing on the following methods to improve the catalytic activity: noble metal loading, ion doping, dye sensitization, composite semiconductors andchemical additives. Combines with the recent research results to summarize the developments in those methods.Systematically comparesthe characteristics of the various methods and gives my own opinions. At last, look forward to the future in this area. Key words: TiO2, photocatalytic water-splitting for hydrogen production,photocatalyst modification techniques, electron -role, sacrificial reagents, quantum efficiency

光催化材料080804210教程文件

光催化材料080804210

光催化材料的研究概况 目前,人类使用的主要能源有石油、天然气和煤炭三种。根据国际能源机构的统计,地球上这三种能源能供人类开采的年限,分别只有40年、50年和240年。值得注意的是,中国剩余可开采储蓄仅为1390亿吨标准煤,按照中国2003年的开采速度16.67亿吨/年,仅能维持83年。中国石油资源不足,天然气资源也不够丰富,中国已成为世界第二大石油进口国。因此,开发新能源,特别是用清洁能源替代传统能源,迅速地逐年降低它们的消耗量,保护环境改善城市空气质量早已经成为关乎社会可持续发展的重大课题。中国能源发展方向可以锁定在前景看好的五种清洁能源: 水电、风能、太阳能、氢能和生物质。 太阳能不仅清洁干净,而且供应充足,每天照射到地球上的太阳能是全球每天所需能源的一万倍以上。直接利用太阳能来解决能源的枯竭和地球环境污染等问题是其中一个最好、直接、有效的方法。 光催化就是利用太阳能的一种新技术。它不仅可以直接分解水、环境中的有毒有害物质,还可以直接将太阳能转化为电能与化学能(如氢能)等清洁能源。对于从根本上解决环境污染和能源短缺等问题具有重要意义。下面,从光催化材料的几个方面来简述其研究概况。 一、光催化材料的基本原理 半导体光催化材料大多是n型半导体材料,都具有区别于金属或绝缘物质的特别的能带结构,即在价带和导带之间存在一个禁带。当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价

带跃迁到导带,从而产生光生电子和空穴。此时吸附在纳米颗粒表面的溶解氧俘获电子形成超氧负离子,而空穴将吸附在催化剂表面的氢氧根离子和水氧化成氢氧自由基。而超氧负离子和氢氧自由基具有很强的氧化性,能将绝大多数的有机物氧化至最终产物CO2和H2O,甚至对一些无机物也能彻底分解。 以TiO2为例,揭示了其晶体结构、表面羟基自由基以及氧缺陷对量子效率的影响机制;采用元素掺杂、复合半导体以及光敏化等手段拓展其光催化活性至可见光响应范围;通过在其表面沉积贵金属纳米颗粒可以提高电子一空穴对的分离效率,提高其光催化活性。以TiO2为载体的光催化技术已成功应用于废水处理、空气净化、自清洁表面、染料敏化太阳电池以及抗菌等多个领域。 二、高效光催化材料必须满足的条件 (1)半导体适当的导带和价带位置,在净化污染物应用中价带电位必须有足够的氧化性能,在光解水应用中,电位必须满足产H2和产O2的要求。 (2)高效的电子-空穴分离能力,降低它们的复合几率。 (3)可见光响应特性:低于420nm左右的紫外光能量大概只占太阳光能的4%,如何利用可见光乃至红外光能量,是决定光催化材料能否在得以大规模实际应用的先决条件。常规anatase-type TiO2只能在紫外光响应,虽然通过搀杂改性,其吸收边得以红移,但效果还不够理想。因此,开发可见光响应的高效光催化材料是该领域的研究热点。 三、提高光催化材料性能的途径

光催化材料的基本原理

二,光催化材料的基本原理 令狐采学 半导体在光激发下,电子从价带跃迁到导带位置,以此,在导带形成光生电子,在价带形成光生空穴。利用光生电子-空穴对的还原氧化性能,可以降解周围环境中的有机污染物以及光解水制备H2和O2。 高效光催化剂必须满足如下几个条件:(1)半导体适当的导带和价带位置,在净化污染物应用中价带电位必须有足够的氧化性能,在光解水应用中,电位必须满足产H2和产O2的要求。(2)高效的电子-空穴分离能力,降低它们的复合几率。(3)可见光响应特性:低于420nm左右的紫外光能量大概只占太阳光能的4%,如何利用可见光乃至红外光能量,是决定光催化材料能否在得以大规模实际应用的先决条件。常规anatase-type TiO2 只能在紫外光响应,虽然通过搀杂改性,其吸收边得以红移,但效果还不够理想。因此,开发可见光响应的高效光催化材料是该领域的研究热点。只是,现在的研究状况还不尽人意。 三,光催化材料体系的研究概况 从目前的资料来看,光催化材料体系主要可以分为氧化物,硫化物,氮化物以及磷化物 氧化物:最典型的主要是TiO2及其改性材料。目前,绝大部分氧化物主要集中在元素周期表中的d区,研究的比较多的是含Ti,Nb,Ta的氧化物或复合氧化物。其他的含W,Cr,Fe,Co,

Ni,Zr等金属氧化物也见报道。个人感觉,d区过渡族金属元素氧化物经过炒菜式的狂轰乱炸后,开发所谓的新体系光催化已经没有多大潜力。目前,以日本学者J. Sato为代表的研究人员,已经把目光锁定在p区元素氧化物上,如含有Ga,Ge,Sb,In,Sn,Bi元素的氧化物。 硫化物:硫化物虽然有较小的禁带宽度,但容易发生光腐蚀现象,较氧化物而言,稳定性较差。主要有ZnS,CdS等 氮化物:也有较低的带系宽度,研究得不多。有Ta/N,Nb /N等体系 磷化物:研究很少,如GaP 按照晶体/颗粒形貌分类: (1)层状结构 **半导体微粒柱撑于石墨及天然/人工合成的层状硅酸盐 **层状单元金属氧化物半导体如:V2O5,MoO3,WO3等 **钛酸,铌酸,钛铌酸及其合成的碱(土)金属离子可交换层状结构和半导体微粒柱撑于层间的结构 **含Bi层状结构材料,(Bi2O2)2+(An-1BnO3n+1)2- (A=Ba,Bi,Pb;B=Ti,Nb,W),钙钛矿层(An-1BnO3n+1)2-夹在(Bi2O2)2+层之间。典型的有:Bi2WO6,Bi2W2O9,Bi3TiNbO9 **层状钽酸盐:RbLnTa2O7(Ln=La,Pr,Nd,Sm) (2)通道结构 比较典型的为BaTi4O9,A2Ti6O13(A=K,Na,Li,等)。这类结构往往比层状结构材料具有更为优异的光催化性能。研究认

光催化材料的研究与进展

光催化材料的研究与进展 洛阳理工学院吴华光 B08010319 摘要: 光催化降解污染物是近年来发展起来的一种节能、高效的绿色环保新技术.它在去除空气中有害物质,废水中有机污染物的光催化降解,废水中重金属污染物的降解,饮用水的深度的处理,除臭,杀菌防霉等方面都有重要作用,但是作为新功能材料,它也面临着很多局限性:催化效率不高,催化剂产量不高,有些催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到他巨大的发展潜力和市场利用价值,作为处理环境污染的一种方式,它以零二次污染,能源消耗为零,自发进行无需监控等优势必将居于污染控制的鳌头。本文介绍了一些关于光催化研究的制备与发展方向的思考,光催化正在以TiO 2 ,ZnO为主导多种非重金属离子掺杂,趋于多样化的制备方法方向发展。 关键字:光催化催化效率 正文: 光催化(Photocatalysis)是一种在催化剂存在下的光化学反应,是光化学与催化剂的有机结合,因此光和催化剂是光催化的必要条件。“光催化”定义为:通过催化剂对光的吸收而进行的催化反应(a catalytic reaction involving light absorption by a catalyst or a substrate)。氧化钛(TiO 2 )具有稳定的结构、优良的光催化性能及无毒等特点,是近年研究最多的光催化剂, 但是,TiO 2 具有大的禁带宽度,其值为3.2 eV,只能吸收波长A≤387 11111的紫外光,不能有效地利用太阳能,光催化或能量转换效率偏低,使它的应用受到限制。因此,研制新型光催化剂、提高光催化剂的催化活性仍是重要的研究课题]1[。复合掺杂不同半导体,利用不同半导体导带和价带能级的差异分离光生载流子,降低复合几率,提高量子效率,成为提高光催化材料性能的有效方法5]-[2。 与一元氧化物如TiO 2 和ZnO等光催化剂相比,复合氧化物光催化剂,如 ZnO- SnO 2TiO 2 -SnO 2 和WO3- TiO 2 等体系具有吸收波长更长和光催化效率更 高等特点因而成为研究热点. 一、常用的光催化剂的制备方法 (一)水热合成法。 热合成反应是在特制的密封容器中(能够产生一定的压力),以水溶液作为反应介质,通过对反应体系加热或接近其临界温度而产生高压,从而进行材料的合成与制备的一种有效方法。 (二)溶剂热合成法 溶剂热合成技术是在水热法的基础上,以有机溶剂代替水作为介质,采用类似水热合成的原理制备纳米材料,极大的扩展水热法的应用范围。 (三)溶胶-凝胶法

光催化剂氧化

研究与综述油气田环境保护第16卷·第1期 ·41· 二氧化钛光催化氧化研究进展 党娟华 (胜利油田采油工艺研究院) 摘 要 简要介绍了二氧化钛光催化氧化的基本原理,对影响二氧化钛光催化氧化的因素及解决途径进行了分析,综合论述了光催化在环境保护中的应用效果。研究结果表明,光催化是一项具有广阔应用前景的新型水处理技术,它不仅具有低能耗、易操作、无二次污染等特点,而且对一些特殊污染物的去除具有更佳的效果,有较好的推广价值。 关键词 二氧化钛 光催化氧化技术 环境保护 研究进展 0 引 言 20世纪70年代初,全球性的能源危机促进了将太阳能转变成一种可实际使用的能源的应用。1972年Fujishima等[1]报道了在光电池中受辐射的二氧化钛可发生持续的水的氧化还原反应而产生氢气。此后,光催化氧化技术得到迅速发展,近几十年被应用于水处理领域。1996年S.N.Frank等[2]在催化光解水中污染物方面进行了开拓性的工作,研究了TiO2多晶极/氙灯作用下对二苯酚、I-、Br-、Cl-、Fe2+、Ce3+和CN-的光解过程,用TiO2粉末来催化光解水中污染物也取得了满意的结果。 光催化氧化以N型半导体为催化剂,包括TiO2、ZnO、CdS、WO3、SnO2和Fe2O3等。其中TiO2活性高、对人体无害,具有稳定的化学性质以及独特的颜色效应、紫外屏蔽作用,Bahnemann等[3]对各种催化剂光催化氧化五氯苯酚的研究发现TiO2至少可以经历12次的反复使用而保持光分解效率基本不变,连续580min光照下保持其活性,因而将其投入实际应用有着广泛的发展前景。 1 TiO 2 光催化氧化原理 由于TiO2是一种半导体,基于半导体的能带理论,找到了对TiO2光催化氧化机理的解释。稳态时TiO2的电子充满于价带之中,导带是一系列空能级轨道的集合体,之间为禁带。有研究证明,当pH=1时锐态矿型TiO2的禁带宽度为3.2eV,半导体的光吸收阈值λg与禁带宽度E g的关系[4]为λg=1240/E g。当λ<387nm的光(紫外光)照射在TiO2表面时,价带上的电子即获得光子的能量而跃迁至导带,形成光生电子(e-),而价带中则相应地形成光生空穴(h+)[5]。如把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应产生的光生电子及空穴在电场的作用下分别迁移到TiO2粒子表面的不同位置[6]。在TiO2表面光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴则可氧化吸附于TiO2表面的有机物或先氧化H2O分子形成·OH自由基,而后·OH自由基去氧化水中绝大部分的有机物。亦即发生直接氧化或间接氧化反应,视具体情况有所不同[7]。其反应机理如下[8,9]: TiO2+hv → h++e- h++e- → 热量 H2O → H++OH- h++OH- → HO? h++H2O+O2- → HO?+H++O2- h++H2O → ?HO+H+ e-+O2 → O2- O2-+H+ → HO2? 2HO2?→ O2+H2O2 H2O2+O2- → ?HO+OH-+O2 H202+hv → 2?OH M n+(金属离子)+ne- → M0 由机理反应式可见,TiO2光催化氧化降解有机物实质上是一种自由基反应。同时,TiO2作为催化剂具有以下两个特点:一是无毒,不溶解性,稳定性好;二是具有锐钛矿型和金红石型两种晶型,只有锐钛矿有催化活性。

相关文档
最新文档