第五章 目的基因与载体连接 2

第五章

目的基因与载体的连接

内容提要

?基因重组克隆与亚克隆

?基因重组对载体的要求与载体类型?连接前的处理

?黏性末端连接

?平端连接

?人工接头连接

?同聚寡核苷酸末端连接

第一节基因重组克隆与亚克隆

外源基因的获取

载体的选择与构建

外源基因与载体的切割与修饰

外源基因与载体的连接(DNA体外重组)

目的基因的表达重组DNA导入受体细胞重组体的筛选

体外重组就是指目的基因与载体DNA的连接。

基因重组是靠DNA连接酶将适当切割的DNA即目的基因与载体共价连接。

DNA连接酶能催化相邻或两侧的DNA上裂口核苷酸裸露的3’-羟基和5’-磷酸之间形成共价结合的磷酸二酯键,使断开的DNA裂口连接起来。在分子克隆中中,最有用的连接酶是来自于T4噬菌体的DNA连接酶——T4连接酶,该酶需要ATP作为辅助因子。

注意:在连接之前,应结合研究目的基因的特性,来设计最终构建的重组体分子。

基因表达载体构建教学设计

“基因表达载体的构建”教学设计

专题1 1.2基因工程的基本操作程序之基因表达载体的构建 一、目的基因和运载体的连接 二、利用标记基因筛选含目的基因的受体细胞 三、目的基因和启动子的相对位置关系 附件1: 附件2:

【教学反思】 基因表达载体的构建是基因工程的关键步骤,空间想象难度大,科学理论和技术实践密切联系,思维跨度也大。福州屏东中学学生程度一般,正因如此,处理不好会提高学习难度,令学生视高科技为畏途,导致教学流于形式。本节课用微课和模型成功地化解了难点。 一方面基于学生课前微课的“先学”,学生对表达载体的构建有个整体的认识,然后以此为支架在课堂上填充和拓展内容,当学生在课堂上遇到相关问题时,能尽快到达“最近发展区”,获得进一步的发展,使学生逐渐对细节有更丰富更具体的理解,这种先整体后局部的处理符合学生的认知规律。基于微课的先学后教模式实质上是利用微课为学生创设一个情境,使学生带着思考和疑惑走进课堂,节省课堂的热身时间,从而使高效率大容量的课堂教学目标得以实现。 另一方面高二学生具有抽象思维,但是仍然需要感性知识,形象知识作为支持,所以教师精心设计纸质模型,基于教材原有的学习完“DNA重组的基本工具”后的纸圈模拟活动,再设计了双酶切的活动,化微观为直观,一系列问题的发生都源自学生自己亲手构建的模型,从模型中发现问题,进而逐步由浅入深。学生像科学家一样思考问题、解决问题,获得成功的体验。由于是带着问题的探究模拟活动,使学生的课堂参与是形式之上思维的积极参与。学生获得的体验是:基因工程这么高深的原理原来我也能想得到。学生的纸质模型立体、科学、易操作,但不好展示,而教师利用不同颜色的磁贴,随着课程的逐步推进,简洁明了地逐步在黑板上呈现,让整个环节衔接自然,师生互动流畅。直观的教学手段——模型构建,减轻了学生掌握这些知识的阻力,激发了学习积极性,使学生在轻松愉快的氛围中突破了重难点,强化了学生交流合作意识。 总之,作为教师,应该想学生之所难,积极探索有效途径,一堂成功的课不是展示教师的才智、形象、语言,更要通过学生的成功来反映。

维真生物-如何阅读基因载体图谱

如何阅读基因载体图谱 基因载体是基因工程的核心,也是基因治疗中强有力的生物工具,我们先来认识和阅读载体图谱吧。 一、载体分类及载体组成元件 载体分类 1、按属性分类:病毒载体和非病毒载体 病毒载体是一种常见的分子生物学工具,可将遗传物质带入细胞,原理是利用病毒具有传送其基因组进入目的细胞,进行感染的分子机制。可发生于完整活体或是细胞培养中。可应用于基础研究、基因疗法或疫苗。用于基因治疗和疫苗的病毒载体应具备以下基本条件: (1)携带外源基因并能包装成病毒颗粒; (2)介导外源基因的转移和表达; (3)对人体不致病; (4)在环境中不会引起增殖和传播。 非病毒载体一般是指质粒DNA。 2、按进入受体细胞的类型分类:原核载体、真核载体、穿梭载体(含原核和真核2个复制子,能在原核和真核细胞中复制,并可以在真核细胞中有效表达)。 3、按功能分类:克隆载体、表达载体 克隆载体:具有克隆载体的基本元件(Ori,Ampr,MCS等),可以携带DNA片段或外源基因进入受体细胞并克隆和大量扩增DNA片段(外源基因)的载体。 表达载体:克隆载体中加入一些与表达调控(具有转录/翻译所必需的DNA顺序)有关的元件即成为表达载体。 载体组成元件 1、复制起始位点Ori:即控制复制起始的位点。Ori的箭头指复制方向,其他元件标注的箭头多指转录方向(正向)。 2、抗生素抗性基因:可以便于加以检测,如Amp+ ,Kan+ (1)Ampr:水解β-内酰胺环,解除氨苄的毒性。

(2)tetr :可以阻止四环素进入细胞。 (3)camr:生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr):氨基糖苷磷酸转移酶,使G418(卡那霉素衍生物)失活。 (5)hygr:使潮霉素β失活。 3、多克隆位点:MCS克隆携带外源基因片段,它具有多个限制酶的单一切点,便于外源基因的插入。如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,便于筛选。决定能不能放目的基因以及如何放置目的基因。还要再看外源DNA插入片段大小。质粒一般只能容纳小于10kb的外源DNA片段。一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。 4、P/E:启动子/增强子 5、Terms:终止信号 6、加poly(A)信号:可以起到稳定mRNA作用 示例阅读载体: pENTER载体 1)human ORF + pENTER载体 2) CMV启动子,T7启动子 3) ORF的C端融合了Flag和His tag 4) 多克隆位点,常用AsisI 和 MluI(人源基因上不常见的)

T载体与目的基因连接

一. 重组质粒的构建 T质粒载体 重组的DNA分子是在DNA连接酶的作用下,有Mg2 、ATP存在的连接缓冲系统中,将分别经酶切的载体分子与外源DNA分子进行连接。 DNA连接酶有两种:T4噬菌体DNA连接酶和大肠杆菌DNA连接酶。两种DNA连接酶都有将两个带有相同粘性末端的DNA分子连在一起的功能,而且T4噬菌体DNA连接酶还有一种大肠杆菌DNA连接酶没有的特性,即能使两个平末端的双链DNA分子连接起来。但这种连接的效率比粘性末端的连接率低,一般可通过提高T4噬菌体DNA 连接酶浓度或增加DNA浓度来提高平末端的连接效率。 T4噬菌体DNA 连接酶催化DNA 连接反应分为3 步:首先,T4 DNA 连接酶与辅因子ATP形成酶-ATP复合物;然后,酶-ATP复合物再结合到具有5’磷酸基和3’羟基切口的DNA上,使DNA腺苷化;最后产生一个新的磷酸二酯键,把切口封起来。连接反应通常将两个不同大小的片断相连。 很多DNA聚合酶在进行PCR扩增时会在PCR产物双链DNA每条链的3’端加上一个突出的碱基A。pUCm-T载体是一种已经线性化的载体,载体每条链的3’端带有一个突出的T。这样,pUCm-T载体的两端就可以和PCR产物的两端进行正确的AT配对,在连接酶的催化下,就可以把PCR产物连接到pUCm-T载体中,形成含有目的片断的重组载体。 连接反应的温度在37℃时有利于连接酶的活性。但是在这个温度下粘末端的氢键结合是不稳定的。因此采取折中的温度,即12-16℃,连接12-16h(过夜),这样既可最大限度地发挥连接酶的活性,又兼顾到短暂配对结构的稳定。 二. 感受态制备原理 细菌在0°C CaCl 低渗溶液中胀成球形,丢失部分膜蛋白,成为容易 2 吸收外源DNA的感受态。 三. β-半乳糖甘酶显色反应选择法 LacZ基因是大肠杆菌乳糖操纵子中的一个基因,可以编码β—半乳糖核苷酶。β—半乳糖核苷酶是由4个亚基组成的四聚体,可催化乳糖的水解.用X-Gal为底物进行染色时,呈蓝色。 现在一些特定的质粒(比如pUC/pBS等),常带有β—半乳糖核苷酶的调控序列和β—半乳糖核苷酶N端146个氨基酸(α肽段)的编码序列,在这个编码序列里还插入一个多克隆位点(MCS),它并不影响lacZ的表达。另外,常用的大肠杆菌带有β—半乳糖核苷酶C端部分序列(β肽段),的编码序列。在各自独立的情况下,这些质粒与大肠杆菌各自编码的β—半乳糖核苷酶片段都没有酶的活性。只有当携带α

载体与目的基因的连接与转化以及重组DNA的提取与酶切鉴定

实验一载体与目的基因的连接与转化以及 重组DNA的提取与酶切鉴定 一、实验目的 1.CaCl2法制备感受态细胞 2.目的基因与载体连接(c-myc+pSV2;粘端连接) 3.重组质粒转化大肠杆菌并筛选转化体(HB101;Amp r) 4.质粒DNA的小量快速制备 5.质粒DNA的限制性内切酶酶切 6.DNA的琼脂糖凝胶电泳 二、实验原理 通过粘端连接法将具有相同粘性末端的DNA分子连接在一起,通过碱基配对氢键形成一个相对稳定的结构,利用连接酶发挥间断修复的功能,从而获得重组的DNA分子。 受体细胞经处理后(电击或CaCl2等处理),细胞膜通透性发生变化,从而使外源的载体分子通过感受态细胞,并使受体细胞获得新的稳定遗传的性状,该过程称为转化。由于本实验种pSV带有抗氨苄青霉素的基因,因而转化后的细胞在含氨苄青霉素的平板上培养可以筛选出转化成功的受体细胞。 分离质粒DNA的步骤包括:培养细菌使质粒扩增、收集和裂解细菌以及分离和纯化质粒DNA。SDS可以使细胞壁裂解,碱变性抽提质粒DNA的原理是利用染色体DNA与质粒DNA的变性复性的差异达到分离目的,当pH>12.6时,染色体DNA氢键断裂,双螺旋结构解开而变性,质粒DNA由于超螺旋共价闭合环状结构,两条互补链不会完全分离。当采用pH 4.8的NaAc高盐缓冲液调节pH至中性时,质粒DNA恢复原有的构型,而染色体DNA则不能复性而缠绕形成网状结构。通过离心可将染色体DNA及大分子RNA、蛋白质等去除。 三、实验器材和试剂 1.器材 恒温摇床、电热恒温培养箱、电热恒温水浴、台式离心机、低温离心机、涡旋振荡器、移液枪及枪头、1.5 ml离心管、制冰机、三角推棒、酒精灯、细菌培

目的基因的获得

从事一项基因工程,通常总是要先获得目的基因,倘若基因的序列是已知的,可以用化学方法合成,或者利用聚合酶链式反应(PCR)由模板扩增。此外,最常用并且无需已知序列的方法是建立一个基因文库或cDNA文库,从中选择出目的基因进行克隆。 (一)基因文库的构建 基因文库是指整套由基因组DNA片段插入克隆载体获得的分子克隆之总和。在理想条件下基因文库应包含该基因组的全部遗传信息。通常包含以下五个步骤: 1.染色体DNA的片段化:利用能识别较短序列的限制性内切酶对染色体基因组进行随机性切割产生众多的DNA片段。 2.载体DNA的制备:选择适当的λ噬菌体载体,用限制性内切酶切开,得到左右两臂,以便分别与染色体DNA片段的两端连接。 3.体外连接与包装:将染色体DNA片段与载体DNA片段用T4DNA连接酶连接,然后重组体DNA与λ噬菌体外壳蛋白在体外包装 4.重组噬菌体感染大肠杆菌:重组噬菌体感染细胞将重组DNA导入细胞,重组DNA在细胞内增殖并裂解宿主细胞,产生的溶菌产物组成重组噬菌体克隆库,即基因文库。 5.基因文库的鉴定、扩增与保存:构建的基因文库应鉴定其库容量,需要时可进行扩增。构建好的基因文库可多次使用。 (二)cDNA文库的建立 真核生物基因的结构和表达控制元件与原核生物有很大的不同。真核生物由于外显子与内含子镶嵌排列,转录产生的RNA须切除内含子拼接外显子才能最后表达,因此真核生物的基因是断裂的。真核生物的基因不能直接在原核生物表达,只有将加工成熟的mRNA经逆转录合成互补的DNA(cDNA),再接上原核生物的表达控制元件,才能在原核生物中表达。还有,mRNA 很不稳定,容易被RNA酶分解,因此真核生物须建立cDNA文库来进行克隆和表达研究。所谓cDNA文库是指细胞全部mRNA逆转录成cDNA并被克隆的总和。 建立cDNA文库与基因文库的最大区别是DNA的来源不同。基因文库是取现成的基因组DNA,cDNA文库是取细胞中全部的mRNA经逆转录酶生成DNA(cDNA)(图8-1-10),其余步骤二者相类似。构建cDNA文库的基本步骤有5步:①制备mRNA;②合成cDNA;③制备载体DNA (质粒或λ噬菌体);④双链cDNA的克隆(cDNA与载体的重组);⑤cDNA文库的鉴定、扩增与保存。 (三)基因库中克隆基因的挑选分离 基因文库和cDNA文库建立起来后,下一步的工作是从一个庞大的基因库中分离出所需要的重组体克隆,这是一件难度很大,费时费力的工作。一种方法是根据重组体某种特征从库中直接挑选出重组体(参见图8-1-3),这种方法叫做“选择”;另一种方法是把库中所有的重组体进行一遍筛查,这种方法叫做“筛选”。 1.原位杂交法:这一种利用特异探针的直接选择法,是一种十分灵敏而且快速的方法 用于杂交的探针可以是双链DNA,也可以是单链DNA,或是RNA。杂交的检测常用放射性同位素标记探针,通过自显影来进行。 显然,有效进行杂交筛选的关键是获得特异的探针。探针的获得有如下方法: ①如果目的基因序列是已知的,或部分序列是已知的,探针可以从已有的克隆中制备,或用PCR方法扩增。 ②如果目的基因是未知的,而有其他物种的同源序列,那么可以用同源序列做探针。 ③如果目的基因未知,但知道它对应的蛋白质序列,可根据蛋白质序列设计相应的核酸探针。2.扣除杂交法:这是一种筛选方法,难度很大,是面对目的基因未知,同源基因未知,蛋白质序列未知的情况的。基本原理是找到该基因的高表达细胞,提取相应的mRNA,并与一般细

基因的克隆、表达载体构建与功能验证

基因的克隆、表达载体构建及功能验证(一般性方法) 一、基因克隆 ★事前三问 a.克隆这个基因干什么?它有什么功能? b.这个基因在哪种材料中扩增? c.材料需要怎么处理? ◎实验前准备工作 a.设计引物,准备材料, b.购置试剂:Taq酶、反转录试剂盒、凝胶回收试剂盒、质粒提取试剂盒、连接试 剂盒 c.实验试剂及用具:枪头、离心管、培养皿、滤纸灭菌;Amp+ 、Kan+等抗生素准 备 ※基本流程 提取和纯化RNA—cDNA第一条链合成—PCR—凝胶电泳—胶回收—连接—转化—涂平板—挑单菌落—摇菌—提质粒—测序 1.总RNA的提取、纯化及cDNA第一链合成 1.1叶片、根总RNA的提取 Trizol是一种高效的总RNA抽提试剂,内含异硫氰酸胍等物质,能迅速裂解植物细胞,抑制细胞释放出的核酸酶,所提取的RNA完整性好且纯度高,以利于下一步的实验。 1)实验前准备 预先配制0.1%的DEPC水(ddH2O中含0.1%DEPC,V/V,37 ℃过夜处理12 h),高温灭菌后,用DEPC水配制75%乙醇,研钵、量筒、试剂瓶等需200℃灭菌至少4 h,所用枪头和枪盒均去RNA酶处理(直接购买)。 2)Trizol 法(小麦)叶片或根的总RNA实验步骤如下: (1)提前在1.5 ml离心管中加入1 mlTrizol,然后将200 mg样品液氮中研磨成白色粉末,

移入管内,用力摇15 s,在15-30℃温育5 min,使核酸蛋白复合物完全分离。 (2)4℃,12000g离心10min,取上清,离心得到的沉淀中包括细胞外膜、多糖、高分子量DNA,上清中含有RNA。 (3)吸取上清液加0.2 ml氯仿,盖好盖,用力摇15 s,15~30 ℃温育2~3 min。(4)在≤12000g,4℃离心10 min,样品分为三层:底层为黄色有机相,上层为无色水相和一个中间层,RNA主要在水相中,水相体积约为所用TRIzol试剂的60%。 (5)将上层水相转移到新的1.5 ml离心管中,加2倍体积的无水乙醇沉淀RNA,室温静止30 min。 (6)在≤12000g,4℃离心10 min,离心前看不出RNA沉淀,离心后在管侧和管底出现胶状沉淀。 (7)用≥1 ml的75%乙醇洗RNA,涡旋振荡样品,在≤7500g,4℃离心5 min,弃上清。(8)室温放置干燥或真空抽干RNA沉淀,大约晾5-10分钟,加无RNase的水100μl用枪头吸几次,55~60℃温育10 min使RNA溶解。 (9)配制以下体系: 10×DNase buffer 5 μl DNase I (RNase-free)(40 μg/μl) 1 μl RNasin Inhibitor(40 μg/μl) 1 μl Total RNA 70 μg 加去RNase水至总体积为50 μl (10)37 ℃水浴1h,加DEPC处理的水至总体积为100 μl,加入等体积氯仿抽提一次。(11)取上清,加入10 μl的3 mol/L NaAC溶液,200 μl的无水乙醇,-80 ℃沉淀30 min。 (12)2~8 ℃,12000g离心10 min,弃清液,干燥后取50μl无RNase的水溶解RNA。3)RNA的质量及纯度检测 (1)电泳检测取2ul RNA 与1 ul 10×Loading buffer上样缓冲液混合均匀在1% 的琼脂糖凝胶上电泳,在紫外灯下观察RNA 条带并记录实验结果。 (2)分光光度计RNA纯度检测 取1ul RNA液,以DEPC水为空白对照,测定A260/ A280 比值,估测RNA质 量。 4)cDNA第一条链的合成 按照以下体系将提取的总RNA反转录成第一链cDNA: 1)在Eppendorf管中配制下列混合液:

目的基因的获取

目的基因的获取 实验报告 题目:单元一:目的基因的获取 指导老师:谭红铭张添元 日期:2013/10/17 一.实验目的: (1)掌握总RNA的提取方法和技术 (2)了解总RNA的提取要注意的问题 (3)了解用RT-PCR法获取功能基因的原理 (4)学习和掌握RT-PCR的技术方法 二.实验原理: (1)RNA提取:RNA在细胞中是与蛋白质结合在一起的。提取RNA时需先用强变性剂使蛋白质和DNA变性,同时抑制核糖核酸酶(RNase)的活性,然后通过有机溶剂如氯仿分层抽提去掉蛋白质和多糖等,最后通过RNA沉淀剂如异丙醇的帮助下沉淀分离RNA。 (2)RT-PCR:总RNA中的mRNA体外在反转录酶的作用下可合成与mRNA互补的单链DNA,称为互补DNA(cDNA),再在DNA聚合酶的作用下,以cDNA第一链为模板,以四种脱氧核苷酸(dNTP)为材料,在引物的引导下,合成大量双链DNA。 三.实验材料: 斑马鱼、Trizol Reagent(Invitrogen)、DEPC处理的超纯水、氯仿、异丙醇、无水乙醇、高速离心机、各种规格的RNase Free的枪头、EP管、RNase Free 的烧杯及量筒玻璃棒等、新开的大滤纸、碎冰及泡沫冰盒 四.实验准备: 由于实验过程中实验者手、臂上的细菌和真菌,人体自身分泌的RNase如手汗和唾液会带入试管或污染用具,使RNA降解,因而实验一开始就必须自始至终佩带口罩及乳胶手套,并经常更换。 五.实验步骤、现象、结果及分析: Ⅰ总RNA提取: ⑴取斑马鱼一条,用滤纸吸干水,至于电子秤平内称重,为,后置于研钵,用大勺子往其中加入液氮,待其冷冻后,开始研磨,使其始终保持粉末状,由于液氮挥发,需补充液氮,直至彻底研磨至面粉状细末为止。

真核细胞常见表达载体

真核细胞常见表达载体 真核细胞, 表达载体 1、pCMVp-NEO-BAN载体 特点:该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。更重要的是,由于该真核细胞表达载体中抗neo基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。 插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。注意在此载体中有二个EcoR1位点存在。 2、pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein V ector) 特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40origin使该载体在任何表达SV40 T抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。 用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。借此可确定外源基因在细胞内的表达和/或组织中的定位。 亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1)。 3、pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体 特点:pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40origin使该载体在任何表达SV40 T抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin 抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。 用途: pEGFP-Actin载体在真核细胞表达EGFP-Actin融合蛋白,该蛋白能整合到胞内正在生的肌动蛋白,因而在活细胞和固定细胞中观察到细胞内含肌动蛋白的亚细胞结构。 4、pSV2表达载体 特点:该表达质粒是以病责SV40启动子驱动在真核细胞目的基因进行表达的,克隆位点为Hind111。SV40启动子具有组织/细胞的选择特异性。此载体不含neo基因,故不能用来筛选、建立稳定的表达细胞株。 5、CMV4 表达载体 特点:该真核细胞表达载体由CMV启动子驱动,多克隆区域酶切位点选择性较多。含有氨苄青霉素抗性基因和生长基因片段以及SV40复制原点和fl单链复制原点。但值得注意的是,该表达载体不含有neo基因,转染細胞后不能用G418筛选稳定的表达细胞株。 其他常用克隆Vector: pBluscript II KS DNA 15 ug pUC18 DNA 25 ug pUC19 DNA 25 ug 说明: pBluescript II kS、pUC18 &Puc19载体适合于DNA片段的克隆、DNA测序和对外源基因进行表达等。这些载体由于在lacZ基因中含有多克隆位点,当外源DNA片段扦入,转化lacZ基因缺乏细胞,并在含有IPTG和X-gal的培养基上培养时,含有外源DNA载体的细胞

目的基因T载体克隆实验步骤

PCR产物的T载体克隆 实验原理 一.重组质粒的构建: 重组的DNA分子是在DNA连接酶的作用下,有Mg2 、ATP存在的连接缓冲系统中,将分别经酶切的载体分子与外源DNA分子进行连接。 DNA连接酶有两种:T4噬菌体DNA连接酶和大肠杆菌DNA连接酶。两种DNA连接酶都有将两个带有相同粘性末端的DNA分子连在一起的功能,而且T4噬菌体DNA连接酶还有一种大肠杆菌DNA 连接酶没有的特性,即能使两个平末端的双链DNA分子连接起来。但这种连接的效率比粘性末端的连接率低,一般可通过提高T4噬菌体DNA连接酶浓度或增加DNA浓度来提高平末端的连接效率。T4噬菌体DNA 连接酶催化DNA 连接反应分为3 步:首先,T4 DNA 连接酶与辅因子ATP形成酶-ATP 复合物;然后,酶-ATP复合物再结合到具有5’磷酸基和3’羟基切口的DNA上,使DNA腺苷化;最后产生一个新的磷酸二酯键,把切口封起来。连接反应通常将两个不同大小的片断相连。 很多DNA聚合酶在进行PCR扩增时会在PCR产物双链DNA每条链的3’端加上一个突出的碱基A。pUCm-T载体是一种已经线性化的载体,载体每条链的3’端带有一个突出的T。这样,pUCm-T载体的两端就可以和PCR产物的两端进行正确的AT配对,在连接酶的催化下,就可以把PCR产物连接到pUCm-T载体中,形成含有目的片断的重组载体。 连接反应的温度在37℃时有利于连接酶的活性。但是在这个温度下粘末端的氢键结合是不稳定的。因此采取折中的温度,即12-16℃,连接12-16h(过夜),这样既可最大限度地发挥连接酶的活性,又兼顾到短暂配对结构的稳定。 二.感受态制备原理 细菌在0 C CaCl2低渗溶液中胀成球形,丢失部分膜蛋白,成为容易吸收外源DNA的状态。 三.β-半乳糖甘酶显色反应选择法(蓝白筛选)原理 LacZ基因是大肠杆菌乳糖操纵子中的一个基因,可以编码β—半乳糖核苷酶。β—半乳糖核苷酶是由4个亚基组成的四聚体,可催化乳糖的水解.用X-Gal为底物进行染色时,呈蓝色。 现在一些特定的质粒(比如pUC/pBS等),常带有β—半乳糖核苷酶的调控序列和β—半乳糖核苷酶N端146个氨基酸(α肽段)的编码序列,在这个编码序列里还插入一个多克隆位点(MCS),它并不影响lacZ的表达。另外,常用的大肠杆菌带有β—半乳糖核苷酶C端部分序列(β肽段),的编码序列。在各自独立的情况下,这些质粒与大肠杆菌各自编码的β—半乳糖核苷酶片段都没有酶的活性。只有当携带α肽编码信息的克隆载体成功进入宿主细胞,在培养基诱导物IPTG的诱导下,载体质粒能够合成β—半乳糖核苷酶N端(α肽段),这样就与宿主细胞合成的β—半乳糖核苷酶C端部分序列(β肽段)互补,形成完整的β—半乳糖核苷酶活性蛋白。 而当外源基因插入到此种载体质粒lacZ的多克隆位点后,会造成lacZ基因不能表达,从而不能合成β—半乳糖核苷酶;而对于空载体,lacZ基因正常表达,通过α互补合成β—半乳糖核苷酶,分解培养基里的色素底物X-gal,最终形成蓝色的化合物,出现蓝色菌斑。

运载体与基因表达载体的区别

运载体与基因表达载体的区别 1、不同点: ⑴“运载体”泛指基因工程操作中能将目的基因送达受体细胞的工具。如细菌质粒等。 相对“基因表达载体”而言,“运载体”主要是强调它能运输目的基因这一功能,只要能运输目的基因就算是运载体,并不计较是不是真正运输了目的基因。 ⑵“基因表达载体”,是实施了运输目的基因、并且要保证目的基因到达受体细胞后能够表达的运载体。 这样看来,运载体、基因表达载体二者之间就不能完全等同。 2、联系: “基因表达载体”是在”运载体”的基础上构建成的。 基因表达载体的构成:目的基因+ 启动子+ 终止子+ 标记基因。 3、表达载体上的启动子和终止子是本身具有还是后加上去的呢? 这个问题,教科书中并没有明确说明,但我个人的观点是:这要看获取目的基因的方法,而问题的根源在于基因的结构。关于基因的结构,在新课程标准中也不再做为教学的要求了。 (人类)结构基因的基本结构:上游非编码区+ 启动子+ 编码区+ 终止子+ 下游非编码区 人类结构基因4个区域: ①前导区,位于编码区上游,相当于RNA5’末端非编码区(非翻译区); ②编码区,包括外显子与内含子; ③尾部区,位于RNA3’编码区下游,相当于末端非编码区(非翻译区); ④调控区,包括启动子和增强子等。基因编码区的两侧也称为侧翼顺序(图1-1)。 ⑴启动子:启动子(promoter)能促进转录过程。也有人将启动子称为“RNA聚合酶识别位点”。 包括下列几种不同顺序: ①TATA框(TATA box):其一致顺序为TATAATAAT。它约在基因转录起始点上游约-30-50bp 处,基本上由A-T碱基对组成,是决定基因转录始的选择,为RNA聚合酶的结合处之一,RNA聚合酶与TATA框牢固结合之后才能开始转录。 ②CAAT框(CAAT box):其一致顺序为GGGTCAATCT,是真核生物基因常有的调节区,位于转录起始点上游约-80-100bp处,可能也是RNA聚合酶的一个结合处,控制着转录起始的频率。 ③GC框(GC box):有两个拷贝,位于CAAT框的两侧,由GGCGGG组成,是一个转录调节区,有激活转录的功能。 此外,RNA聚合酶Ⅲ负责转录tRNA的DNA和5SrDNA,其启动子位于转录的DNA 顺序中,称为下游启动子。

表达载体的构建方法及步骤

表达载体的构建方法及步骤 一、载体的选择及如何阅读质粒图谱 目前,载体主要有病毒和非病毒两大类,其中质粒DNA 是一种新的非病毒转基因载体。一个合格质粒的组成要素: (1)复制起始位点Ori 即控制复制起始的位点。原核生物DNA 分子中只有一个复制起始点。而 真核生物DNA 分子有多个复制起始位点。 (2)抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ (3)多克隆位点MCS 克隆携带外源基因片段 (4)P/E 启动子/增强子 (5)Terms 终止信号 (6)加poly(A)信号可以起到稳定mRNA 作用 选择载体主要依据构建的目的,同时要考虑载体中应有合适的限制酶切位点。如果构建的目 的是要表达一个特定的基因,则要选择合适的表达载体。 载体选择主要考虑下述3点: 【1】构建DNA 重组体的目的,克隆扩增/基因表达,选择合适的克隆载体/表达载体。【2】.载体的类型: (1)克隆载体的克隆能力-据克隆片段大小(大选大,小选小)。如<10kb 选质粒。(2)表达载体据受体细胞类型-原核/真核/穿梭,E.coli/哺乳类细胞表达载体。

(3)对原核表达载体应该注意:选择合适的启动子及相应的受体菌,用于表达真核蛋白质时注意克服4个困难和阅读框错位;表达天然蛋白质或融合蛋白作为相应载体的参考。【3】载体MCS 中的酶切位点数与组成方向因载体不同而异,适应目的基因与载体易于链接,不能产生阅读框架错位。 综上所述,选用质粒(最常用)做载体的5点要求: (1)选分子量小的质粒,即小载体(1-1.5kb)→不易损坏,在细菌里面拷贝数也多(也有大载 体); (2)一般使用松弛型质粒在细菌里扩增不受约束,一般10个以上的拷贝,而严谨型质粒<10个。 (3)必需具备一个以上的酶切位点,有选择的余地; (4)必需有易检测的标记,多是抗生素的抗性基因,不特指多位Ampr(试一试)。(5)满足自己的实验需求,是否需要包装病毒,是否需要加入荧光标记,是否需要加入标签蛋白,是否需要真核抗性(如Puro、G418)等等。 无论选用哪种载体,首先都要获得载体分子,然后采用适当的限制酶将载体DNA 进行切割,获得线性载体分子,以便于与目的基因片段进行连接。 如何阅读质粒图谱 第一步:首先看Ori 的位置,了解质粒的类型(原核/真核/穿梭质粒) 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 (1)Ampr 水解β-内酰胺环,解除氨苄的毒性。 (2)tetr 可以阻止四环素进入细胞。 (3)camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr)氨基糖苷磷酸转移酶使G418(长那霉素衍生物)失活

分生实验报告 目的基因与载体连接、 感受态制备及转化

目的基因与载体连接、感受态制备及转化 【实验原理】 1;酶促生物化学反应过程 在一定的条件下,由DNA连接酶催化目的基因与载体相邻的5’端磷酸与3’端羟基之间形成磷酸二酯键的过程。相同或不同的限制性内切酶产生相同的粘性末端,在降至退火温度时,能重新互补结合,在DNA连接酶的催化下,目的基因与载体相连接。 2;DNA连接酶的分类: T4 DNA连接酶:催化dsDNA粘末端连接及平端连接 大肠杆菌DNA连接酶:不能催化平末端连接,其底物只能是带缺口的双链DNA分子和具同源互补粘末端的不同DNA分子 3;T4 DNA连接酶:来源T4噬菌体感染的大肠杆菌 最佳pH值7.2~7.8,常用的反应液为pH7.6 的Tris-HCl缓冲液 需ATP,Mg2+参加反应 二硫苏糖醇等巯基化合物可促进连接酶的连接 作用;高浓度的Na+、K+等抑制酶的活性。 4;受体分类:受体细胞也称为宿主,是重组子扩增及表达的场所,分为原核细胞和真核细胞两类。 5;应用:原核细胞:重组子复制扩增,外源基因表达系统 真核细胞:主要用于外源基因的表达 6;转化:特指以质粒DNA活以它作为载体构建的重组子导入细菌的过程。 转染:指噬菌体、病毒或以它们作为载体构建的重组子导入细胞的过程。 7;感受态细胞:受体细胞经过一些特殊方法处理后,细胞膜的通透性发生变化,成为最适摄取和容纳外源DNA的生理状态。 常用方法:0.1mol/L CaCl2 特点:a.重组酶缺陷,限制修饰系统缺陷 b.不存在载体的筛选标记 c.接受DNA的位点暴露 d.细胞膜通透性增加 8;不同层次,不同水平上进行筛选,以区别转化子与非转化子、重组子与非重组子,以及鉴定所需的特异性重组子。 直接筛选:针对载体携带的标记和插入DNA片段 1.抗性筛选(抗生素平板,ampR , tetR , neoR) 2.标志补救(α-互补,蓝白斑筛选) 3.PCR 4.限制性内切酶消化 4.DNA测序 间接筛选:针对插入片段的蛋白产物,免疫学筛选 9;蓝白斑筛选是根据载体的遗传特征筛选重组子,如α-互补、抗生素基因等。现在使用的许多载体都带有一个大肠杆菌DNA的短区段,其中有β-半乳糖苷酶基因(lacZ)的调控序列和前146个氨基酸的编码信息。在这个编码区中插入了一个多克隆位点(MCS),它并不破坏读框,但可使少数几个氨基酸插入到β-半乳糖苷酶的氨基端而不影响功能,这种载体适用于可编码β-半乳糖苷酶C端部分序列的宿主细胞。因此,宿主和质粒编码的片段虽都

叶绿体表达载体--如何构建载体

如何构建载体 1 启动子的选用和改造 外源基因表达量不足往往是得不到理想的转基因植物的重要原因。由于启动子在决定基因表达方面起关键作用,因此,选择合适的植物启动子和改进其活性是增强外源基因表达首先要考虑的问题。 目前在植物表达载体中广泛应用的启动子是组成型启动子,例如,绝大多数双子叶转基因植物均使用CaMV35S启动子,单子叶转基因植物主要使用来自玉米的Ubiquitin启动子和来自水稻的Actinl启动子。在这些组成型表达启动子的控制下,外源基因在转基因植物的所有部位和所有的发育阶段都会表达。然而,外源基因在受体植物内持续、高效的表达不但造成浪费,往往还会引起植物的形态发生改变,影响植物的生长发育。为了使外源基因在植物体内有效发挥作用,同时又可减少对植物的不利影响,目前人们对特异表达启动子的研究和应用越来越重视。已发现的特异性启动子主要包括器官特异性启动子和诱导特异性启动子。例如,种子特异性启动子、果实特异性启动子、叶肉细胞特异性启动子、根特异性启动子、损伤诱导特异性启动子、化学诱导特异性启动子、光诱导特异性启动子、热激诱导特异性启动子等。这些特异性启动子的克隆和应用为在植物中特异性地表达外源基因奠定了基础。例如,瑞士CIBA-GEIGY公司使用PR-IA启动子控制转基因烟草中Bt毒蛋白基因的表达,由于该启动子可受水杨酸及其衍生物诱导,通过喷酒廉价、无公害的化学物质,诱导抗虫基因在虫害重发生季节表达,显然是一个十分有效的途径。 在植物转基因研究中,使用天然的启动子往往不能取得令人满意的结果,尤其是在进行特异表达和诱导表达时,表达水平大多不够理想。对现有启动子进行改造,构建复合式启动子将是十分重要的途径。例如,Ni等人将章鱼碱合成酶基因启动子的转录激活区与甘露碱合成酶基因启动子构成了复合启动子,GUS表达结果表示:改造后的启动子活性比35S启动子明显提高。吴瑞等人将操作诱导型的PI-II基因启动子与水稻Actinl基因内含子1进行组合,新型启动子的表达活性提高了近10倍(专利)。在植物基因工程研究中,这些人工组建的启动子发挥了重要作用。 2 增强翻译效率 为了增强外源基因的翻译效率,构建载体时一般要对基因进行修饰,主要考虑三方面内容: 2.1添加5`-3`-非翻译序列 许多实验已经发现,真核基因的5`-3`-非翻译序列(UTR)对基因的正常表达是非常必要的,该区段的缺失常会导致mRNA的稳定性和翻译水平显著下降。例如,在烟草花叶病毒(TMV)的126kDa 蛋白基因翻译起始位点上游,有一个由68bp核苷酸组成的Ω元件,这一元件为核糖体提供了新的结合位点,能使Gus基因的翻译活性提高数十倍。目前已有许多载体中外源基因的5`-端添加了Ω翻译增强序列。Ingelbrecht等曾对多种基因的 3`-端序列进行过研究,发现章鱼碱合成酶基因的3`-端序列能使NPTII基因的瞬间表达提高20倍以上。另外,不同基因的3`-端序列增进基因表达的效率有所不同,例如,rbcS3`-端序列对基因表达的促进作用比查尔酮合酶基因的3`-端序列高60倍。 2.2 优化起始密码周边序列 虽然起始密码子在生物界是通用的,然而,从不同生物来源的基因各有其特殊的起始密码周边序列。例如,植物起始密码子周边序列的典型特征是AACCAUGC,动物起始密码子周边序列为CACCAUG,原核生物的则与二者差别较大。Kozak详细研究过起始密码子ATG周边碱基定点突变后对转录和翻译所造成的影响,并总结出在真核生物中,起始密码子周边序列为ACCATGG时转录和翻译效率最高,特别是-3位的A对翻译效率非常重要。该序列被后人称为Kozak序列,并被应用于表达载体的构建中。例如,有一个细菌的几丁质酶基因,原来的起始密码周边序列为UUUAUGG,当被修饰为ACCAUGG,其在烟草中的表达水平提高了8倍。因此,利用非植物来源的基因构建表达载体时,应根据植物起始密码子周边序列的特征加以修饰改造。 2.3对基因编码区加以改造

不同基因表达载体的优缺点 孟凡顺

不同基因表达达载体的优缺点 理化系生物技术班孟凡顺 进入21世纪以来,基因工程的发展越来越快,也越来越完整,作为新世纪生物科学前沿,基因工程的快速发展也大大的刺激了人们对科学知识的向往,走进基因工程,我们发现在基因工程的四大步骤,目的基因的获取,基因表达载体的构建,将基因表达载体打入受体细胞以及目的基因的监测与鉴定,这其中最重要的是也是最繁琐的莫过于第二步基因表达载体的构建,而在基因表达载体的构建这一过程中,最重要的无疑就是目的基因导入受体细胞,将目的基因导入受体细胞的关键就是运载体的选择,在这里,我们要对运载体的种类进行介绍。 首先我们要知道什么东西可以作为运载体,作为运载体又有哪些特征? 首先,作为运载体的物质它必须可以进行自我复制,这样才可以在它与外源基因融合后,独立在宿主细胞中复制繁殖,其次有至少一个在融合外源基因后仍未被破坏的遗传表型,这便于将载体导入受体细胞后的识别与筛选,通常表现在为抗性与显色表型反应等,再次,载体上至少有一个限制性核酸内切酶的单一识别位点,这样方便了外源基因的插入,最后,要有适当的拷贝数,理论上在一定范围内,拷贝数量越多,越利于载体的制备,所有的基因工程中的表达载体都必须具有以上四个条件。 在这里,我介绍三种载体。 1质粒载体 质粒载体是基因工程中最常用的载体之一,它源于细菌,是一种源于染色体外却可以自由复制的小型环状DNA,大小在1~200Kb之间,质粒通常含有一些编码对细菌有利生存的基因也含有抗生素的抗性基因,经科学家多年的努力,人们终于对一些质粒的生物学特征有了一些了解,进行了比较详尽的研究,比如F质粒那F基因或性质粒,R质粒即抗性因子和col质粒即大肠杆菌因子。 其实,一个质粒就是一个复制子,复制子往往有宿主专一性,但奇怪的是,人们也发现了可以在两种不同宿主内复制的复制子,即可构建的穿梭载体,这种新型载体的发现,大大的推进了克隆

运载体与基因表达载体的区别

运载体与基因表达载体地区别 、不同点: ⑴ “运载体”泛指基因工程操作中能将目地基因送达受体细胞地工具.如细菌质粒等. 相对“基因表达载体”而言,“运载体”主要是强调它能运输目地基因这一功能,只要能运输目地基因就算是运载体,并不计较是不是真正运输了目地基因.文档收集自网络,仅用于个人学习 ⑵“基因表达载体”,是实施了运输目地基因、并且要保证目地基因到达受体细胞后能够表达地运载体. 这样看来,运载体、基因表达载体二者之间就不能完全等同. 、联系: “基因表达载体”是在”运载体”地基础上构建成地. 基因表达载体地构成:目地基因启动子终止子标记基因. 、表达载体上地启动子和终止子是本身具有还是后加上去地呢? 这个问题,教科书中并没有明确说明,但我个人地观点是:这要看获取目地基因地方法,而问题地根源在于基因地结构.关于基因地结构,在新课程标准中也不再做为教学地要求了.文档收集自网络,仅用于个人学习 (人类)结构基因地基本结构:上游非编码区启动子编码区终止子下游非编码区 人类结构基因个区域: ①前导区,位于编码区上游,相当于’末端非编码区(非翻译区); ②编码区,包括外显子与内含子; ③尾部区,位于’编码区下游,相当于末端非编码区(非翻译区); ④调控区,包括启动子和增强子等.基因编码区地两侧也称为侧翼顺序(图-1). ⑴启动子:启动子()能促进转录过程.也有人将启动子称为“聚合酶识别位点”. 包括下列几种不同顺序: ① 框():其一致顺序为.它约在基因转录起始点上游约处,基本上由碱基对组成,是决定基因转录始地选择,为聚合酶地结合处之一,聚合酶与框牢固结合之后才能开始转录.文档收集自网络,仅用于个人学习 ② 框():其一致顺序为,是真核生物基因常有地调节区,位于转录起始点上游约处,可能也是聚合酶地一个结合处,控制着转录起始地频率.文档收集自网络,仅用于个人学习 ③ 框():有两个拷贝,位于框地两侧,由组成,是一个转录调节区,有激活转录地功能.文档收集自网络,仅用于个人学习 此外,聚合酶Ⅲ负责转录地和,其启动子位于转录地顺序中,称为下游启动子.文档收集自网络,仅用于个人学习 ⑵终止子:在一个基因地末端往往有一段特定顺序,它具有转录终止地功能,这段终止信号地顺序称为终止子().文档收集自网络,仅用于个人学习 终止子地共同顺序特征是在转录终止点之前有一段回文顺序,约核苷酸对.回文顺序地两个重复部分由几个不重复碱基对地不重复节段隔开,回文顺序地对称轴一般距转录终止点.文档收集自网络,仅用于个人学习

真核细胞常见的表达载体及真核细胞表达外源基因的调控

真核细胞常见表达载体 1. pCMVp-NEO-BAN载体 特点: 该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。更重要的是,由于该真核细胞表达载体中抗neo基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。 插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。注意在此载体中有二个EcoR1位点存在。 2. pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector) 特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。 用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。借此可确定外源基因在细胞内的表达和/或组织中的定位。 亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1)。 Excitation maximum = 488 nm; Emission maximum = 507 图示为启动子分泌信号肽和多克隆位点区域: Ase1.pCMV…ccg cta gcg cta ccg gtc gcc acc atg- .EGFP…BamH1…SV40 poly A+ Nhe1 Age1 3. pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体 特点: pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV 启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。

相关文档
最新文档