超临界水的物理化学性质研究

超临界水的物理化学性质研究
超临界水的物理化学性质研究

超临界水的物理化学性质研究

超临界水的物理化学性质研究

摘要:只要超过了临界,就是在常温常压下水的物理化学性质都有极大变化,并且这些性质还会随着温度与压力的变化而变化,不再像临界内物理化学性质规律变化。同时超过临界后,在平常和非极性物质不互溶也会变成互溶,能够和空气、氧气等进行完全互溶。本文就是研究超临界情形下,水所具备的化学物理性质。

关键词:水超临界物理化学

如今超临界水因具备奇特性质,而被许多领域作为反应介质和溶剂来使用。同时在超临界的状态下,控制温度、压力以及操纵化学反应环境就能够加强反应物与产物溶解度,提升化学反应的转化率及反应速率,也不会产生二次污染。因此在这种情形下,探究超临界水所具备的物理化学性质具有现实意义

一、超临界水的特征

当所处环境的温度与压力到了一定值(374.30C、22.05MPa),高温造成水的密度膨胀与高压造成水蒸气被压缩的密度刚好相同时的水。对于超临界水而言,水的气体与液体没什么确保,两者完全交融到一起,形成一种新的处于高压高温状体流体。对于这种流体主要有如下几个方面的特征

1.具备较强氧化能力,有一些物质还能够进行自然并在水中产生火焰。

2.这种流体能够和油等各种物质混合,具备广泛溶解能力。

3.超临界水能够和氮气、氧气等各种气体按照任意比例进行混合,并产生单一相。

二、超临界水物理化学性质

流体在气体――液体相图上共存曲线终点即为临界点,其标志位固定不变的压力与温度点,在这个点上液相和气相间差别恰好消失,形成了一均相体系。水的临界压力为22.05MPa,临界温度为374.30C。一旦温度与压力超过了临界点,就视为了超临界水,形成了介于液体

与气体之间特殊状态。

1.密度

当处于超临界环境下,对多控制温度、压力进行改变,让其在液态和气态之间的临界点变化,自然水的密度也就随之在液态水与低压水蒸气密度间进场变化,研究发现临界点密度是0.326g/cm3,当水的密度比较接近0.1g/cm3时就会发生超临界水氧化。

2.粘度

在液体中数以千计的分子不断的碰撞而传递着能量,主要形式有:(1)自由平动之时产生碰撞传递能量;(2)每一个分子和周围分子进行频繁碰撞时传递动量。就是这两种效应大小存在差异,致使不同区域中粘度大小与变化存在差异。在正常情况下,液体粘度一般是随着温度升高随之而降低,而气体粘度且是随着温度升高随之而增大。超临界水就成为了高流动性的性质,随着温度压力变化水粘度变化.

3.热导率

一般情况下,液体的热导率会随着温度升高而随之降低,常温常压情况下水热导率是0.598W/(m.k),当处于临界之时水的热导率大约为0.418W/(m.K),变化不太大。热导率和动力粘度两者具备相似函数形式,温度变化影响比较显著,但是热导率发散特征要强一些,但是缺少局部的最小值。

4.扩散系数

超临界水扩散系数比热蒸汽小,比常态水大。常态水(250C,0.1MPa)扩散系数为7.74×10-6cm2.s-1,过热蒸汽(4500C,1.35MPa)扩散系数为1.79×10-6cm2.s-1,,超临界水(250C,27.0MPa)扩散系数是7.67×10-6cm2.s-1,。事实上在高温高压下采用试验方法极难测定出水的扩散系数,就可以应用Einstern法不断的统计获取。

当水的密度(β>0.9g/压下,水的扩散系数不但和粘度有关系,还和密度有关。对于高密度水,其扩散系数随着温度增加而降低,随着压力增加而升高;但是对于低密度水,其扩散系数随着温度增加而升高,随着压力增加而降低。而且处于超临界区中,扩撒系数还有最小值。

5.介电常数

介电常数会随着密度增发而升高,随着压力升高而升高,随着温度增发而降低。ε(P)T与ε(T)P变化呈现单调性,但处于临界区时偏微分呈现指数增加,但是到了临界点却趋向无穷。

6.氢键

事实上水中有许多性质都源自于分子间氢键键合性质确定的。但是了解超临界水的特性与结构不够,必然不能认识超临界水的氢键。应用计算机模拟水结构能够得到氢键变化信息,变化的温度能够快速降低氢键总数,还会破坏室温下水的氧四方有序机构;但是在室温环境下,压力对氢键数量影响不大,稍微增加数量、降低氢键线性度。但是温度处于临界温度,和亚临界与超临界相比显著降低水中的氢键。饱和水蒸气中所增加氢键和液相中减低氢键相等,液相中氢键大约占据总量17%。一些专家应用IR光谱法研究高温环境下,水的氢键数量与温度关系,并且得出温度t与氢键度X关系式

这个式子就阐述了温度范围在7~5260C与密度范围为0.7~

1.9g/cm3时X的行为。当温度为250C之时,其X值大约为0.55,说明水为液体时水中氢键大约只有冰的一半,当温度为4000C时,X值大约为0.3,当时温度达到5000C,X值依然大于0.2。说明较高温度下,水中依然存在氢键。

三、结束语

对于超临界水而言,从其物理化学性质可以看出来,处于超临界区中仍然存在氢键;而临界点的密度为常温下的1/3,随着压力升高密度也随之增加爱,温度升高密度随之降低。并且超临界水中,温度变化对动力粘度影响大。

参考文献

[1]孟令辉,白永平,冯立群.超临界方法在塑料分解回收中的应用中国塑料[J].2009.13(9):76-82.

[2]李武.高世扬超临界术氧化技术[J].盐湖研究,2006,7(1)35-38.

[3]吴梳蛾,盂晓红.超临界水氧化法在环境保护中的应用研究[J].云南环科,2010.19(8):222-225.

[4]王春云.超临界水分解二恶英类物质的技术状况及课题[J].

化工科技动杰,2008,14(8):38-39.

作者简介:朱刘欢,21岁,男,汉籍贯:河南商丘学历,本科,研究方向:化学。

------------最新【精品】范文

气溶胶物理与化学

课程名称:气溶胶物理与化学 Title: Aerosol physics and chemistry 课程编号:070602C02 Course Number: 070602C02 课程类型:专业必修课 Course Type:Required major course 学时:60 Units: 60 hours 学分:3 Credit:3 实用专业:大气物理和大气环境研究生 Designed for: Atmospheric physics and Atmospheric Environment 教学目的:本课程的目的是使学生了解有关气溶胶的物理和化学特性以及一些基本测量方法。 Objectives: The course is designed to make student understanding the physical and chemical principles of aerosol and instruments used to measure them. 对选课学生的要求:要求学生具有普通物理学和大气化学的基础知识。 Prerequisites: The student should have a good background in chemistry and physics and understands the concept of calculus.

主要内容: Major Contents: 气溶胶对大气能见度、气候变化以及人类健康等有重要影响。本课程论述了大气气溶胶的基本特征和测量方法。主要内容包括气溶胶的排放和分布、布朗运动和扩散、碰并凝结和蒸发过程、电学和光学特性、气溶胶测量、干湿沉降、气溶胶化学以及气溶胶气候效应。 Aerosol particles affect visibility, climate, and our health and quality of life. This course covers the properties, behavior, and measurement of aerosol. The major contents include the emission and distribution of aerosol, Brownian motion and diffusion, coagulation, condensation and evaporation, electrical properties, optical properties, measurement of concentration, dry and wet deposition, aerosol chemistry, and climate effect of aerosol. 第一章绪论 Chapter 1 : Introduction 第二章大气气溶胶的排放与分布 Chapter 2: The Emission and Distribution of Atmospheric Aerosol 2.1 Properties of Size Distributions 2.2 Moment Averages 2.3 Weighted Distributions 2.4 The Lognormal Distribution 2.5 Log-Probablity Graphs 2.6 The Hatch-Choate Conversion Equation 2.7 Statistical Accuracy 第三章气溶胶运动 Chapter 3:Uniform Particle Motion 3.1 Newton’s Resistance Law 3.2 Stokes’s Law 3.3 Settling Velosity and Mechanical Mobility 3.4 Slip Correction Factor 3.5 Nonspherical particles 3.6 Aerodynamic Diameter 3.7 Settling at High Reynolds Number 3.8 Relaxation Time 3.9 Stopping Distance 第四章布朗运动与扩散 Chapter 4: Brownian Motion and Diffusion

水的基本物理化学性质(冰水汽)解答

水的基本物理化学性质 一. 水的物理性质(形态、冰点、沸点): 常温下(0~100℃),水可以出现固、液、气三相变化,利用水的相热转换能量是很方便的。 纯净的水是无色、无味、无臭的透明液体。水在1个大气压时(105Pa),温度 1)在0℃以下为固体,0℃为水的冰点。 2)从0℃-100℃之间为液体(通常情况下水呈液态)。 3)100℃以上为气体(气态水),100℃为水的沸点。 4)水是无色、无臭、无味液体,在浅薄时是清澈透明,深厚时呈蓝绿色。 5)在1atm时,水的凝固点(f.p.)为0℃,沸点(b.p.)为100℃。 6)水在0℃的凝固热为5.99 kJ/mole(或80 cal/g)。 7)水在100℃的汽化热为40.6 kJ/mole(或540 cal/g)。 8)由於水分子间具有氢键,故沸点高、莫耳汽化热大,蒸气压小。 9)沸点: (1)沸点:液体的饱和蒸气压等於液面上大气压之温度,此时液体各点均呈剧烈汽 化现象,且液气相可共存若液面上为1 atm(76 mmHg)时,则该沸点称为「正常沸点」,水的正常沸点为100℃。 (2)若液面的气压加大,则液体需更高的蒸气压才可沸腾;而更高的温度使得更高 的蒸气压,故液体的沸点会上升。液面上蒸气压愈大,液体的沸点会愈高。 (3)反之,若液面上气压变小,则液面的沸点将会下降。 10)水在4℃(精确值为3.98℃)时的体积最小、密度最大,D = 1g/mL。 11)三相点:指在热力学里,可使一种物质三相(气相,液相,固相)共存的一个温度 和压力的数值。举例来说,水的三相点在0.01℃(273.16K)及611.73Pa 出现。 12)临界点(critical point):物理学中因为能量的不同而会有相的改变(例如:冰 →水→水蒸气),相的改变代表界的不同,故当一事物到达相变前一刻时我们称它临 界了,而临界时的值则称为临界点。之温度为临界温度,压力为临界压力。 13)临界温度:加压力使气体液化之最高温度称为临界温度。如水之临界温度为374℃, 若温度高於374℃,则不可能加压使水蒸气液化。 14)临界压力:在临界温度时,加压力使气体液化的最小压力称之。临界压力等於该液 体在临界温度之饱和蒸气压。 二. 水的比热: 把单位质量的水升高1℃所吸收的热量,叫做水的比热容,简称比热,水的比热为4.18xKJ/Kg.K。 在所有的液体中,水的比热容最大。因此水可作为优质的热交换介质,用于冷却、储热、传热等方面。 三. 水的汽化热: 在一定温度下单位质量的水完全变成同温度的气态水(水蒸气)所需的热量,叫做水的汽化热。 水从液态转变为气态的过程叫做汽化,水表面的汽化现象叫做蒸发,蒸发在任何温度下都能进行。 水的汽化热为2257KJ/Kg。一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从1℃加热到100℃所需要的热量。

双氧水的理化性质及危险特性表

双氧水的理化性质及危险特性表 中文名 标 识 分子式 双氧水 H 2O 2 英文名 分子量 Hydrogen peroxide UN 编号 2015 危险货物编号 CAS 编号 51001 7722-84-1 理 化 危险类别 性 状 熔 点(℃) 沸 点(℃) 第类 氧化剂 无色透明液体,有微弱的特殊气味 -2(无水) 158(无水) 临界压力(Mpa ) 相对密度(水=1) (无水) 性 饱和蒸汽压(kpa ) (℃) 相对密度(空气=1) 质 临界温度(℃) 溶 解 性 燃烧热(KJ·mol -1) 溶于水、醇、醚,不溶于苯、石油醚 无意义 燃 烧 性 爆炸极限(%) 引燃温度(℃) 不燃 无意义 无意义 闪点(℃) 最小点火能(MJ ) 最大爆炸压力(Mpa ) 无意义 无意义 无意义 爆炸性强氧化剂。双氧水本身不燃,但能于可燃物反应放出大量热量和氧气而引起着火 爆炸。双氧水 PH 值在~时最稳定,在碱性溶液中极易分解,在遇强光,特别是波射线照 燃 射时也能发生分解。当加热到 100℃以上时,开始急剧分解。它与许多有机物,如糖、 烧 淀粉、醇类、石油产品等形成爆炸性混合物,在撞击、受热或电火花作用下能发生爆炸。 爆 危 险 特 性 双氧水与许多无机化合物或杂质接触后会迅速分解而导致爆炸,放出大量的热量、氧和 炸 水蒸气。大多数重金属(如铁、铜、银、铅、汞、锌、钴、镍、铬、锰等)及其氧化物 危 和盐类都是活性催化剂,尘土、香烟灰、炭粉、铁锈等也能加速分解。浓度超过 74%的 险 双氧水,在具有适当的点火源或温度的密闭容器中,会产生气相爆炸。 性 消防人员必须穿全身防火防毒服;尽可能将容器从火场移至空旷处。喷水冷却火场容器, 灭 火 方 法 直至灭火结束。处在火场中的容器若已变色或安全泄压装置中产生声音,必须马上撤离。 灭火剂:水、雾状水、干粉、砂土。 禁 忌 物 燃 烧 产 物 易燃或可燃物、强还原剂、铜、铁、铁盐、锌、活性金属粉末 稳定性 聚合危害 稳定 不聚合 毒 急 性 毒 性 LD 50(mg/kg ,大鼠经口) LD 50(mg/kg ) 性 及 健 车间卫生标准 侵入途径:吸如、食入; 吸入本品蒸气或雾对呼吸道有强烈刺激性。眼直接接触液体可导致不可逆损失甚至失明。 健 康 危 害 康 危 害 口服中毒出现腹痛、胸口痛、呼吸困难、呕吐、一时性运动和感觉障碍、体温升高等。 个别病例出现视力障碍、癫痫样痉挛、轻瘫等。 长期接触本品可导致接触性皮炎。

液氯的物理性质 密度和饱和蒸汽压

温度 ℃ 饱和液密度kg/m3 -20 1528 20 1406 40 1342 50 1307 图1 液氯密度随温度变化图

1atm=1.0133*10^5Pa

表1-1 全国各地区重力加速度表 序号地区重力加速 度 序 号 地区重力加 速度 序 号 地区重力加速度 1 包头9.7986 1 2 海口9.786 3 23 沈阳9.8035 2 北京9.8015 1 3 合肥9.7947 2 4 石家 庄 9.7997 3 长春9.8048 1 4 吉林9.8048 2 5 太原9.7970 4 长沙9.791 5 15 济南9.7988 2 6 天津9.8011 5 成都9.7913 1 6 昆明9.7830 2 7 乌鲁 木齐 9.8015 6 重庆9.7914 1 7 拉萨9.7799 2 8 西安9.7944 7 大连9.8011 18 南昌9.7920 29 西宁9.7911 8 广州9.7833 19 南京9.7949 30 张家 口 9.8000 9 贵阳9.7968 20 南宁9.7877 31 郑州9.7966 10 哈尔 滨 9.8066 21 青岛9.7985 11 杭州9.7936 22 上海9.7964 地球各点重力加速度近似计算公式: g=g (1-0.00265cos&)/1+(2h/R) g :地球标准重力加速度9.80665(m/平方秒) &:测量点的地球纬度 h:测量点的海拔高度 R:地球的平均半径(R=6370km)

30m3的液氯储罐的设计 2011133152 目录 1 引言 (5) 2设计任务书 (6) 3设计参数及材料的选择 (6) 3.1 设备的选型与轮廓尺寸 (6) 3.2 设计压力 (6) 3.2 筒体及封头材料的选择 (9) 3.3 许用应力 (9) 4结构设计 (9) 4.1筒体壁厚计算 (9) 4.2 封头设计 (10) 4.2.1 半球形封头 (10) 4.2.2 标准椭圆形封头 (11) 4.2.3 标准蝶形封头 (11) 4.2.4 圆形平板封头 (12) 4.2.5 不同形状封头比较 (13) 4.3 压力试验 (13) 4.4鞍座 (14) 4.4.1鞍座的选择 (14) 4.4.2 鞍座的位置 (15) 5 结果 (17) 参考文献 (19)

物理化学性质

甲醇 MSDS 基本信息 中文名:甲醇;木酒精木精;木醇英文名: Methyl alcohol;Methanol 分子式:CH4O 分子量: 32.04 CAS号: 67-56-1 外观与性状:无色澄清液体,有刺激性气味。 主要用途:主要用于制甲醛、香精、染料、医药、火药、防冻剂等。 物理化学性质 熔点: -97.8 沸点: 64.8 相对密度(水=1):0.79 相对密度(空气=1): 1.11 饱和蒸汽压(kPa):13.33/21.2℃ 溶解性:溶于水,可混溶于醇、醚等多数有机溶剂临界温度(℃):240 临界压力(MPa):7.95 燃烧热(kj/mol):727.0 甲醇由甲基和羟基组成的,具有醇所具有的化学性质。[3] 甲醇可以在纯氧中剧烈燃烧,生成水蒸气(I)和二氧化碳(IV)。另外,甲醇也和氟气会产生猛烈的反应。[4] 与水、乙醇、乙醚、苯、酮、卤代烃和许多其他有机溶剂相混溶,遇热、明火或氧化剂易 燃烧。燃烧反应式为: CH3OH + O2 → CO2 + H2O 具有饱和一元醇的通性,由于只有一个碳原子,因此有其特有的反应。例如:① 与氯化钙形成结晶状物质CaCl2·4CH3OH,与氧化钡形成B aO·2CH3OH的分子化合物并溶解于甲醇中;类似的化合物有MgCl2·6CH3OH、CuSO4·2CH3OH、CH3OK·CH3OH、AlCl3·4CH3OH、AlCl3·6CH3OH、AlCl3·10CH3OH等;② 与其他醇不同,由于-CH2OH基与氢结合,氧化时生成的甲酸进一步氧化为CO2;③ 甲醇与氯、溴不易发生反应,但易与其水溶液作用,最初生成二氯甲醚(CH2Cl)2O,因水的作用转变成HCHO与HCl;④ 与碱、石灰一起加热,产生氢气并生成甲酸钠;CH3OH+NaOH→HCOONa+2H2;⑤与锌粉一起蒸馏,发生分解,生成 CO和H2O。[2] 产品用途 1.基本有机原料之一。主要用于制造甲醛、醋酸、氯甲烷、甲胺和硫酸二甲酯等多种 有机产品。也是农药(杀虫剂、杀螨剂)、医药(磺胺类、合霉素等)的原料,合成对苯二甲酸二甲酯、甲基丙烯酸甲酯和丙烯酸甲酯的原料之一。还是重要的溶剂,亦

表面物理化学

第十三章 表面物理化学 教学目的: 通过本章学习,使学生了解物质高度分散后的性质及不同物质的界面现象,了解表面活性物质的一些基本性质。 基本要求: 1.明确表面吉布斯自由能、表面张力的概念,了解表面张力与温度的关系。 2.明确弯曲表面的附加压力产生的原因及与曲率半径的关系,了解弯曲表面上的蒸汽压与平面相比有何不同。学会使用拉普拉斯公式和开尔文公式。 3.理解吉布斯吸附公式的表示形式,各项的物理意义并能用来作简单计算。 4.了解什么叫表面活性物质,了解表面活性剂的分类及几种重要作用。 5.了解液-液、液-固界面的铺展与润湿情况,理解气-固表面的吸附本质及吸附等温线的主要类型。 重点和难点: 拉普拉斯公式和开尔文公式,以及兰缪尔吸附等温式是本章的重点难点。 教学内容: 表面现象(通常将气一液、气一固界面现象称为表面现象)所讨认的都是在相的界面上发生的一些行为。物质表面层的分子与内部分子周围的环境不同。内部分子所受四周邻近相同分子作用力是对称的,各个方向的力彼此抵销;但是表面层的分子,一方面受到本相内物质分子的作用;另一方面又受到性质不同的另一相中物质分子的作用,因此表面层的性质与内部不同。最简单的情况是液体及其蒸气所成的体系(见图12-1),在气液界面上的分子受到指向液体内部的拉力,所以液体表面都有自动缩成最小的趋势。在任何两相界面上的表面层都具有某些特殊性质。对于单组分体系,这种特性主要来自于同一物质在不同相中的密度不同;而对于多组分体系,这种特性则来自于表面层的组成和任一相的组成均不相同。 物质表面的特性对于物质其他方面的性质也会有所影响。随着体系分散程度的增加,其影响更为显著。因此当研究在表面层上发生的行为或者研究多相的高分散体系的性质时,就必须考虑到表面的特性。通常用表面(A 0)表示多相分散体系的分散程度,其定义为:A 0=A/V 式中A 代表体积为V 的物质具有的表面积。所以比表面A 0就是单位体积(也有用单位质量者)的物质所具有的表面积,其数值随着分散粒子的变小而迅速增加。分散粒子分割得愈细比表面积就愈大。在胶体体系中粒子的大小约在1nm —100nm 之间,它具有很大的表面积,突出地表现出表面效应。此外某此多孔性物质或粗粒分散体系也常具有相当大的表面积,其表面效应也往往不能忽略。在本章中将讨论有关表面现象的一些基本概念及其应用。 §13.1 表面张力及表面Gibbs 自由能 一、表面功 由于表面层分子的受力情况与本体中不同,因此如果要把分子从内部移到界面,或可逆的增加表面积,就必须克服体系内部分子之间的作用力,对体系做功。 温度、压力和组成恒定时,可逆使表面积增加dA 所需要对体系作的功,称为表面功。用公式表示为: 'd W A δγ=

水的物理、化学及物理化学处理方法

水的物理、化学及物理化学处理方法简介 (一)物理处理方法 利用固体颗粒和悬浮物的物理性质将其从水中分离去除的方法称为物理处理方法。物理处理法的最大优点是简单易行,效果良好,费用较低。 物理处理法的主要处理对象是水中的漂浮物、悬浮物以及颗粒物质。 常用的物理处理法有格栅与筛网、沉淀、气浮等。 (1)格栅与筛网 格栅是用于去除水中较大的漂浮物和悬浮物,以保证后续处理设备正常工作的一种装置。格栅通常有一组或多组平行金属栅条制成的框架组成,倾斜或直立地设立在进水渠道中,以拦截粗大的悬浮物。 筛网用以截阻、去除水中的更细小的悬浮物。筛网一般用薄铁皮钻孔制成,或用金属丝编制而成,孔眼直径为0.5~1.0mm。 在河水的取水工程中,格栅和筛网常设于取水口,用以拦截河水中的大块漂浮物和杂草。在污水处理厂,格栅和筛网常设于最前部的污水泵之前,以拦截大块漂浮物以及较小物体,以保护水泵及管道不受阻塞。 (2)沉淀 沉淀是使水中悬浮物质(主要是可沉固体)在重力作用下下沉,从而与水分离,使水质得到澄清。这种方法简单易行,分离效果良好,是水处理的重要工艺,在每一种水处理过程中几乎都不可缺少。按照水中悬浮颗粒的浓度、性质及其絮凝性能的不同,沉淀现象可分为:自由沉淀、絮凝沉淀、拥挤沉淀、压缩沉淀。 水中颗粒杂质的沉淀,是在专门的沉淀池中进行的。按照沉淀池内水流方向的不同,沉淀池可分为平流式、竖流式、辐流式和斜流式四种。 (3)气浮 气浮法亦称浮选,它是从液体中除去低密度固体物质或液体颗粒的一种方法。通过空气鼓入水中产生的微小气泡与水中的悬浮物黏附在一起,靠气泡的浮力一起上浮到水面而实现固液或液液分离的操作。其处理对象是:靠自然沉降或上浮难以去除的乳化油或相对密度接近于1的微小悬浮颗粒。 浮选过程包括微小气泡的产生、微小气泡与固体或液体颗粒的粘附以及上浮分离等步骤。实现浮选分离必须满足两个条件:一是必须向水中提供足够数量的

初中化学常见物质的物理化学性质-

初中化学常见物质的物理化学性质 一、初中化学常见物质的颜色 (一)、固体的颜色 1、红色固体:铜,氧化铁 2、绿色固体:碱式碳酸铜 3、蓝色固体:氢氧化铜,硫酸铜晶体 4、紫黑色固体:高锰酸钾 5、淡黄色固体:硫磺 6、银白色固体:银,铁,镁,铝,汞等金属 7、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭) 8、红褐色固体:氢氧化铁 9、白色固体:氯化钠,碳酸钠,氢氧化钠,氢氧化钙,碳酸钙,氧化钙,硫酸铜,五氧化二磷,氧 化镁 (二)、液体的颜色 10、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液 11、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液 12、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液 13、紫红色溶液:高锰酸钾溶液 (三)、气体的颜色 14、红棕色气体:二氧化氮15、黄绿色气体:氯气 16、无色气体:氧气,氮气,氢气,二氧化碳,一氧化碳,二氧化硫,氯化氢气体等大多数气体。 二、初中化学溶液的酸碱性 1、显酸性的溶液:酸溶液和某些盐溶液(硫酸氢钠、硫酸氢钾等) 2、显碱性的溶液:碱溶液和某些盐溶液(碳酸钠、碳酸氢钠等) 3、显中性的溶液:水和大多数的盐溶液 三、化学敞口置于空气中质量改变的 (一)质量增加的 1、由于吸水而增加的:氢氧化钠固体,氯化钙,氯化镁,浓硫酸; 2、由于跟水反应而增加的:氧化钙、氧化钡、氧化钾、氧化钠,硫酸铜; 3、由于跟二氧化碳反应而增加的:氢氧化钠,氢氧化钾,氢氧化钡,氢氧化钙; (二)质量减少的1、由于挥发而减少的:浓盐酸,浓硝酸,酒精,汽油,浓氨水 4、由于风化而减少的:碳酸钠晶体。.1.

四、初中化学物质的检验(一)、气体的检验 1、氢气:在玻璃尖嘴点燃气体,罩一干冷小烧杯,观察杯壁是否有水滴,往烧杯中倒入澄清的石灰水,若不变浑浊,则是氢气. 2、氨气:湿润的紫红色石蕊试纸,若试纸变蓝,则是氨气. 3、水蒸气:通过无水硫酸铜,若白色固体变蓝,则含水蒸气. (二)、离子的检验. 1、氢离子:滴加紫色石蕊试液/加入锌粒 2、氢氧根离子:酚酞试液/硫酸铜溶液 3、碳酸根离子:稀盐酸和澄清的石灰水 4、氯离子:硝酸银溶液和稀硝酸,若产生白色沉淀,则是氯离子 5、硫酸根离子:硝酸钡溶液和稀硝酸/先滴加稀盐酸再滴入氯化钡 6、铵根离子:氢氧化钠溶液并加热,把湿润的红色石蕊试纸放在试管口 7、铜离子:滴加氢氧化钠溶液,若产生蓝色沉淀则是铜离子 8、铁离子:滴加氢氧化钠溶液,若产生红褐色沉淀则是铁离子 (三)、相关例题 1、如何检验NaOH是否变质:滴加稀盐酸,若产生气泡则变质 2、检验NaOH中是否含有NaCl:先滴加足量稀硝酸,再滴加AgNO3溶液,若产生白色沉淀,则含有NaCl。 3、检验三瓶试液分别是稀HNO3,稀HCl,稀H2SO4? 向三只试管中分别滴加Ba(NO3)2 溶液,若产生白色沉淀,则是稀H2SO4;再分别滴加AgNO3溶液,若产生白色沉淀则是稀HCl,剩下的是稀HNO3 4、淀粉:加入碘溶液,若变蓝则含淀粉。 5、葡萄糖:加入新制的氢氧化铜,若生成砖红色的氧化亚铜沉淀,就含葡萄糖。。 6、铁的三种氧化物:氧化亚铁,三氧化二铁,四氧化三铁。。 new:实验室制取CO2不能用的三种物质:硝酸,浓硫酸,碳酸钠。 34、三种遇水放热的物质:浓硫酸,氢氧化钠,生石灰。。。 六、初中化学常见混合物的重要成分 1、水煤气:一氧化碳(CO)和氢气(H2) 七、初中化学常见物质俗称 1、硫酸铜晶体(CuSO4 .5H2O):蓝矾,胆矾 2、乙醇(C2H5OH):酒精 3、乙酸(CH3COOH):.2.

常用化学试剂物理化学性质

氨三乙酸 化学式CH6N9O6,分子量191.14,结构式N(CH2COOH)3,白色棱形结晶粉末,熔点246~249℃(分解),能溶于氨水、氢氧化钠,微溶于水,饱和水溶液pH为2.3,不溶于多数有机溶剂,溶于热乙醇中可生成水溶性一、二、三碱性盐。属于金属络合剂,用于金属的分离及稀土元素的洗涤,电镀中可以代替氰化钠,但稳定性不如EDTA。 丙酮 最简单的酮。化学式CH3COCH3。分子式C3H6O。分子量58.08。无色有微香液体。易着火。比重0.788(25/25℃)。沸点56.5℃。与水、乙醇、乙醚、氯仿、DMF、油类互溶。与空气形成爆炸性混和物,爆炸极限2.89~12.8%(体积)。化学性质活泼,能发生卤化、加成、缩合等反应。广泛用作油脂、树脂、化学纤维、赛璐珞等的溶剂。为合成药物(碘化)、树脂(环氧树脂、有机玻璃)及合成橡胶等的重要原料。 冰乙酸 化学式CH3COOH。分子量60.05。醋的重要成份。一种典型的脂肪酸,无色液体。有刺激性酸味。比重1.049。沸点118℃,可溶于水,其水溶液呈酸性。纯品在冻结时呈冰状晶体(熔点16.7℃),故称“冰醋酸”,能参与较多化学反应。可用作溶剂及制造醋酸盐、醋酸酯(醋酸乙酯、醋酸乙烯)、维尼纶纤维的原料。 苯酚 简称“酚”,俗称“石炭酸”,化学式C6H5OH,分子量94.11,最简单的酚。无色晶体,有特殊气味,露在空气中因被氧化变为粉红,有毒!并有腐蚀性,密度1.071(25℃),熔点42~43℃,沸点182℃,在室温稍溶于水,在65℃以上能与任何比与水混溶,易溶于酒精、乙醚、氯仿、丙三醇、二硫化碳中,有弱酸性,与碱成盐。水溶液与氯化铁溶液显紫色。可用以制备水杨酸、苦味酸、二四滴等,也是合成染料、农药、合成树脂(酚醛树脂)等的原料,医学上用作消毒防腐剂,低浓度能止痒,可用于皮肤瘙痒和中耳炎等。高浓度则产生腐蚀作用。 1,2-丙二醇 化学式CH3CHOHCH2OH,分子量76.10,分子中有一个手征性碳原子。外消旋体为吸湿性粘稠液体;略有辣味。比重1.036(25/4℃),熔点-59℃,沸点188.2℃、83.2℃(1,333Pa),与水、丙酮、氯仿互溶,溶于乙醚、挥发油,与不挥发油不互溶,左旋体沸点187~189℃,比旋光度-15.8。丙二醇在高温时能被氧化成丙醛、乳酸、丙酮酸与醋酸。为无毒性抗冻剂。可用于酿酒、制珞中,是合成树脂的原料。医学上用作注射剂、内服药的溶剂与防腐剂,防腐能力比甘油大4倍,此外还可用于室内空气的消毒。 丙三醇 学名1,2,3-三羟基丙烷,分子式C3H8O3,分子量92.09,有甜味的粘稠液体,甜味为蔗糖的0.6倍,易吸湿,对石蕊试纸呈中性。比重1.26362(20/20℃)。熔点7.8℃,沸点290℃(分解)167.2℃(1,3332Pa)。折光率1.4758(15℃),能吸收硫化氢、氰化氢、二氧化硫等气体。其水溶液(W/W水)的冰点:10%,-1.6℃;30%,-9.5℃;50%,-23℃;80%,-20.3℃。与水、乙醇互溶,溶于乙酸乙酯,微溶于乙醚,不溶于苯、氯仿、四氯化碳、二硫化碳、石油醚、油类。可以制备炸药(硝化甘油)、树脂(醇酸树脂)、润滑剂、香精、液体肥皂、增塑剂、甜味剂等。在印刷、化妆品、烟草等工业中作润滑剂。医学上可用滋润皮肤,防止龟裂;作为栓剂(甘油栓)可用作通便药。切勿与强化剂如三氧化铬、氯酸钾、高锰酸钾放在一起,以免引起爆炸。 蓖麻油 化学式C57H104O9,分子量933.37。无色或淡黄色透明液体,具有特殊臭味,凝固点-10℃,比重

高考化学过氧化氢的性质及其应用 专题辅导

高考化学过氧化氢的性质及其应用 吕清文 一、基础知识归纳 过氧化氢(22O H )是一种无色黏稠液体,它的水溶液俗称双氧水,呈弱碱性。市售双氧水中22O H 的质量分数一般为30%。医疗上广泛使用稀双氧水作为消毒杀菌剂。过氧化氢的电子式为H O O H ? ???? ?????????,结构式为H O O H ---。22O H 中氧元素为1-价,介于0 价与2-价之间,所以22O H 既具有氧化性,又具有还原性。 (1)弱酸性:其酸性比碳酸弱,电离方程式为:22O H +- +H HO 2、- 2HO -++2O H 。在碱性溶液中极不稳定,易分解生成22O O H 和。 如O H O Na 222与反应可分为两个阶段:22222O H 2NaOH 4O H 4O Na 2+=+、↑+=2222O O H 2O H 2。叠加得总反应式:↑+=+2222O NaOH 4O H 2O Na 2 (2)不稳定性:过氧化氢在常温下会缓慢分解为氧气和水。对其水溶液加热、光照或加催化剂(如2MnO )都会促进其分解。因此过氧化氢应保存在棕色瓶中并放置于阴凉处。 ↑+22222O O H 2MnO O H 2 (3)强氧化性:用22O H 作氧化剂时,还原产物为O H 2,不会引入新的杂质。故过氧化氢是某些物质制备和除杂时较为理想的氧化剂。 ①O H 4PbSO PbS O H 42422+=+ 白色油画颜料里的碱式碳酸铅长期与空气中微量的S H 2作用,会生成黑色的硫化铅(PbS ),用双氧水涂沫可使PbS 变成白色硫酸铅(4PbSO ),该反应用于油画整新。 ②作脱氯剂:2222O HCl 2Cl O H +=+;作火箭燃料:O H 4N H N O H 2224222+↑=+ ③漂白性:工业上用10%的双氧水漂白毛、丝以及羽毛等。 ④O H 2I KCl 2HCl 2KI 2O H 2222++=++ 22O H 能使湿润的KI 淀粉试纸变蓝;用硫代硫酸钠溶液滴定22O H 与酸性KI 溶液反应析出的碘,可用于22O H 的定量分析。 (4)弱还原性:遇到强氧化剂时22O H 作还原剂,还原产物为2O 。例如,O H 8O 5SO K MnSO 2SO H 3KMnO 2O H 52242442422+↑++=++ 二、典型例题分析 例1. 下列关于“过氧化氢”的说法正确的是( )。 A. 过氧化氢具有杀菌消毒作用,是强酸 B. 过氧化氢是离子化合物 C. 过氧化氢可以发生分解反应 D. 过氧化氢是水的同分异构体 解析:过氧化氢有氧化性,具有杀菌消毒作用,但它是弱酸,过氧化氢是共价化合物;过氧化氢与水的分子式不同。 答案:C 例2. 在碘化钾和硫酸的混合液中加入22O H 水溶液,迅速反应放出大量气体,反应过程可表示为:①22424222I O H SO K SO H KI O H ++→++,②HIO I O H 222→+,③O H O I HIO O H 22222+↑+→+(以上反应式均未配平) (1)22O H 在反应③中的作用是________________。 A. 氧化剂 B. 还原剂

双氧水的性质

双氧水的性质 双氧水的性质不稳定,在放置过程中会逐渐分解,放出氧: H2O2→ H2O + 1/2O2 受热和日光照射分解更快,H2O2是一种弱二元酸,可在水溶液中可按下式电离: H2O2? H+ + HOO- K1=1.55?10-12 HOO-? H+ + O22- K2=1.0?10-25 但HOO-是不稳定的,按下式分解: HOO-? OH- + (O) HOO-又是一种亲核试剂,具有引发双氧水形成游离基的作用: HOO-+H2O2? HOO?+HO?+OH- 双氧水也能发生下列分解: HOOH →2HO?+ O2 在双氧水溶液中加入碱,能中和其中的H+,这样便会增加HOO-的浓度,当pH>11.5时,过氧化氢分子大部分以H2O-存在,所以溶液的稳定性很差。H2O2的分解能因催化作用而加速,除了某些金属如Cu、Fe、Mn和Ni离子等金属有催化作用外,其他如酶和极细小的有棱角的固体物质、容器器壁、乃至纤维和胶体等固体表面(特别是表面比较粗糙的物体)都具有加速H2O2分解的作用。 在有亚铁、高铁离子或其他金属离子存在时,可以使H2O2迅速而复杂的分解,形成HO?、HOO?、HOO-、O2等。亚铁离子对双氧水的催化分解反应可表示如下:

Fe2+ + H2O2→ Fe3+ + HO? +OH- Fe2+ + HO?→ Fe3+ + HO? +OH- H2O2+ HO?→ HOO?+H2O Fe2+ + HOO?→ Fe3+ + HOO- Fe3+ + HOO?→ Fe2+ + H+ + O2 有高铁离子存在时,则可被还原成亚铁离子: Fe3+ + HOO-→ Fe2+ + HOO? 铜和其他的重金属离子也能发生类似的反应。 2、双氧水的氧化漂白机理 关于双氧水漂白过程中起作用的物质究竟是什么,有如下几种说法。 (1)最早的说法认为是双氧水分解产生的初生态氧: H2O2→ H2O +(O) 现在确认(O)特别在强碱、高温下能氧化纤维素造成织物损伤,但对漂白有多大作用并无确凿证据。 (2)目前国内外广为引用的是德国彼特奈(Peter Nay)的论点:认为导致纤维漂白的物质是过氧化氢离子HOO-,而导致纤维素氧化的主要的物质是过氧化氢自由基HOO·,因此在漂白过程中要抑制HOO·,并使HOO-稳定以防止纤维素氧化,以获得良好的漂白效果。这是由双氧水离解而产生HOO- H2O2→ H+ + HOO-

物理化学练习题(胶体化学)

物理化学练习题--胶体化学(胶体分散系统及其基本性质、憎液溶胶的稳定与聚沉乳状液泡沫悬浮液和气溶胶高分子化合物溶液) 10-138 当入射光的波长()胶体粒子的线度时,则可出现丁达尔效应。A.大于 B.等于 C.小于 D.无关于 10-139 胶体系统的电泳现象表明()。 A.分散介质是带电的 B.胶体粒子带有大量的电荷 C.胶团是带电的 D.胶体粒子处等电状态。 10-140 电渗现象表明()。 A.胶体粒子是电中性的 B.分散介质是电中性的 C.分散介质是带电的 D.胶体系统处于等电状态 10-141 在胶体系统中,ξ电势()的状态,则称为等电状态。 A.大于零 B.等于零 C.小于零 D.等于热力学电势 10-142 若分散相微小粒子的表面上选择性地吸附了大量相同元素的负离子,则该溶胶的ξ电势必然是()。 A.大于零 B.小于零 C.等于零 D.无法确定 10-143 在过量的AgNO 3 水溶液中,AgI溶胶的胶体粒子则为()。 A.[AgI(s) m ]·nAg+ B.{[AgI(s)] m ·nAg+·(n-x)NO- 3 }x+ C.{[AgI(s)] m ·nAg+·(n-x)NO- 3 }x+·xNO- 3 D.[AgI(s)] m 10-144 天然的或人工合成的高分子化合物溶液与憎水溶胶在性质上最根本的区别是()。 A.前者是均相系统,后者为多相系统 B.前者是热力学稳定系统,后者为热力学不稳定系统 C.前者黏度大,后者黏度小 D.前者对电解质的稳定性较大,而后者加入少量的电解质就能引起聚沉

10-145 在20ml、浓度为0.005mol·dm-3的AgNO 3 溶液中,滴入20 mL浓度为0.01mol·dm-3的KBr溶液,可制备AgBr溶胶,则该溶胶的ξ电势()。A.大于零 B.等于零 C.小于零 D.无法确定 10-146 为使以KI为稳定剂的AgI溶胶发生聚沉,下列电解质溶液中聚沉能力最强者为()。 A.KNO 3 B.Ba(NO 3) 2 C.Cu(NO 3) 2 D.La(NO 3) 3 10-147 在一定温度下,在四个装有相同体积的As 2S 3 溶胶的试管中,分别加入体 积V和浓度c皆相等的下列电解质溶液,能使As 2S 3 溶胶最快发生聚沉的是()。 A.KCl B.NH 4 Cl C.ZnCl 2 D.AlCl 3 10-148 在油-水混合物中,加入的乳化剂分子亲水一端的横向大于亲油一端的横截面,则形成()型乳状液。 A.W/O B.O/W C.无法确定 D.无特定类

Cr 物理化学性质

Cr 物理化学性质 莫氏硬度5.3 有毒 熔点1857℃ 强度脆 一种化学元素。化学符号Cr,原子序数24,原子量51.9961,属周期系ⅥB族。1797年法国N.-L. 沃克兰从西伯利亚红铅矿(即铬铅矿)中发现一种新元素,次年用碳还原法制得这种金属。因为铬能形成多种颜色的化合物,便用希腊文chromos(含义是颜色)命名为chromium。铬在地壳中的含量为1.0×10-2%。最重要的矿物为铬铁矿。 铬是钢灰色有光泽的金属,熔点1857℃,沸点2672℃,20℃时的密度,单晶为7.22克/厘米3,多晶为7.14克/厘米3。有延展性,但含氧、氢、碳和氮等杂质时变得硬而脆。铬的化学性质不活泼,常温下对氧和水汽都是稳定的,铬在高于600℃时开始和氧发生反应,但当表面生成氧化膜以后,反应便缓慢,当加热到1200℃时,氧化膜被破坏,反应重新变快。高温下,铬与氮、碳、硫发生反应。铬在常温下就能和氟作用。铬能溶于盐酸、硫酸和高氯酸,遇硝酸后钝化,不再与酸反应。铬能与镁、钛、钨、锆、钒、镍、钽、钇形成合金。铬及其合金具有强抗腐蚀能力。铬的氧化态为-1、-2、+1、+2、+3、+4、+5、+6。铬的氧化物有氧化亚铬(CrO)、三氧化二铬(Cr2O3)、三氧化铬(CrO3)。三氧化铬是红色针状晶体,高温下分解为三氧化二铬和氧气,是强氧化剂,酒精和它接触后能着火,在染料和皮革工业中有广泛的用途。铬酸盐的通式为MCrO4或MIICrO4(IM为一价金属,IIM为二价金属)。铬酸盐在酸性溶液中存在以下平衡: CrO是铬酸根离子,在溶液中显黄色。Cr2O是重铬酸根离子,在溶液中显橙红色。此反应的平衡常数K=1×1014,表明在酸性溶液中Cr2O 占优势,在碱性溶液中CrO占优势。碱金属的铬酸盐都易溶于水,是强氧化剂,银和铅的铬酸盐不溶于水。铬和铁、铝一样,是一种成矾元素,可形成钾铬矾〔KCr(SO4) 2·12H2O〕,是制高级皮革必需的。铬还容易形成配位化合物,如〔Cr(NH3)〕6Cl3、〔Cr(NH3) 5Cl〕Cl2、〔Cr(NH3)4Cl2〕Cl等。铬及其化合物有毒,可引起鼻膜炎、支气管哮喘和肾病等。 金属铬的制法有:①在电炉中用金属铝还原三氧化二铬。②电解铵铬矾溶液。③最纯的铬采用真空下使二碘化铬或羰基铬热分解方法。钢中加铬、镍或铬、锰组成的不锈钢广泛用于制造化工设备。铬钴合金硬度高用于切削工具。铬的镀层可使外表美观,耐磨和抗腐蚀性能好。铬橙、铬红、铬黄、铬绿都是重要的无机颜料。

饱和水蒸气的性质

饱和水蒸气的性质

常用气体密度的计算 常用气体密度的计算 1.干空气密度 密度是指单位体积空气所具有的质量, 国际单位为千克/米3(kg/m3),一般用符号ρ表示。其定义式为:ρ = M/V (1--1) 式中 M——空气的质量,kg; V——空气的体积,m3。 空气密度随空气压力、温度及湿度而变化。上式只是定义式,通风工程中通常由气态方程求得干、湿空气密度的计算式。由气态方程有: ρ=ρ0*T0*P/P0*T (1--2) 式中:ρ——其它状态下干空气的密度,kg/m3; ρ0——标准状态下干空气的密度,kg/m3; P、P0——分别为其它状态及标准状态下空气的压力,千帕(kpa); T、T0——分别为其它状态及标准状态下空气的热力学温度,K。 标准状态下,T0=273K,P0=101.3kPa时,组成成分正常的干空气的密度ρ 0=1.293kg/m3。将这些数值代入式(1-2),即可得干空气密度计算式为: ρ= 3.48*P/T (1--3) 使用上式计算干空气密度时,要注意压力、温度的取值。式中P为空气的绝对压力,单位为kPa;T为空气的热力学温度(K),T=273+t, t为空气的摄氏温度(℃)。 2.湿空气密度 对于湿空气,相当于压力为P的干空气被一部分压力为Ps的水蒸汽所占据,被占据后的湿空气就由压力为Pd的干空气和压力为Ps的水蒸汽组成。根据道尔顿分压定律,湿空气压力等于干空气分压Pd与水蒸汽分压Ps之和,即:P=Pd+Ps。 根据相对湿度计算式,水蒸汽分压Ps=ψPb,根据气态方程及道尔顿的分压定律,即可推导出湿空气密度计算式为: ρw=3.48*P(1-0.378*ψ*Pb/P)/T (2--1) 式中ρw ——湿空气密度,kg/m3; ψ——空气相对湿度,%; Pb——饱和水蒸汽压力,kPa(由表2-1-1确定)。 其它符号意义同上。

(完整版)银的物理化学性质

银的物理化学性质.txt16生活,就是面对现实微笑,就是越过障碍注视未来;生活,就是用心灵之剪,在人生之路上裁出叶绿的枝头;生活,就是面对困惑或黑暗时,灵魂深处燃起豆大却明亮且微笑的灯展。17过去与未来,都离自己很遥远,关键是抓住现在,抓住当前。银的物理化学性质 银是一种化学元素,它的化学符号是Ag,它的原子序数是47,是一种过渡金属。银(Silver),元素符号为Ag.是从自然银和其它银矿物中提取的一种银白色的贵金属。硬度2.7,密度10.53克/立方厘米,具有很好的导电性、延展性和导热性。多用于电子工业、医疗和照相行业更主要的用途是用来制造首饰、器皿和宗教信物。银和黄金一样,是一种应用历史悠久的贵金属,至今已有4000多年的历史。由于银独有的优良特性,人们曾赋予它货币和装饰双重价值,英镑和我国解放前用的银元,就是以银为主的银、铜合金。银具有白色光泽,不易氧化,反射率可达到91%,广泛应用于首饰和装饰品。银对可见光的反射率为91%,而铂为69%,钯为57%,高反射率显示高亮度,故银的白色光泽十分引人注目。纯银有一个有趣的特点,银饰的抗氧化性和光泽的持久性也跟个人的体质有关的,体质好的人会越戴越亮,而如果体质较弱体内毒素较多的话可能银饰很快就会发黑,就像古代人用银针测试酒里是否有毒一样,有毒的话银针会变黑的。所以不时戴戴纯银饰品,可以排出体内毒素,一举两得!表面镀了别的金属的银饰可没有这种排毒的功能。另外,白银历来就有防毒功能的说法。据专家介绍,现代医学研究证实,银在水中可形成带正电荷的银离子,这些银离子能将细菌吸附其上,令细菌赖以呼吸的酶失去作用,使细菌无法生存,据科学研究,伤寒杆菌在银片上也只能存活1小时,白喉杆菌在银片上也只能存活3个小时!由于白银杀菌能力很强,故被誉为“永久性的杀菌剂”。 银Ag在地壳中的含量很少,仅占1×10-5%,在自然界中有单质的自然银存在,但主要以化合物状态产出。纯银为银白色,熔点960.8℃,沸点2210℃,密度10.49克/厘米3。银是面心立方晶格,塑性良好,延展性仅次于金,但当其中含有少量砷As、锑Sb、铋Bi时,就变得很脆。银的化学稳定性较好,在常温下不氧化。但在所有贵金属中,银的化学性质最活泼,它能溶于硝酸生成硝酸银;易溶于热的浓硫酸,微溶于热的稀硫酸;在盐酸和“王水”中表面生成氯化银薄膜;与硫化物接触时,会生成黑色硫化银。此外,银能与任何比例的金或铜形成合金,与铜、锌共熔时极易形成合金,与汞接触可生成银汞齐。

过氧化氢(双氧水)的使用方法和用途

过氧化氢(双氧水)的使用方法和用途 2010-07-07 来源: 印染在线点击次数:5374 关键字:过氧化氢使用方法用途 1、过氧化氢(双氧水) 双氧水对纤维素的氧化,主要是使葡萄糖分子的羟基氧化成酮,即所谓的酮纤维素;次氯酸钠则主要使葡萄糖分子的羟基氧化成醛,而醛基的存在又可使纤维素的降解继续进行,造成纤维大面积的损伤,有关资料表明:使纤维素分子断裂所需的耗氧量比较,双氧水大于次氯酸钠和亚氯酸钠,这是双氧水对纤维素损伤程度较轻的一个原因。 另外,醛基的存在是导致漂白物泛黄的原因,这说明了氯漂易于泛黄,而氧漂的白度稳定,不易泛黄。又由于双氧水去杂能力强,在几种漂白剂中只有双氧水可以实行煮漂一浴工艺,加上双氧水的分解产物无污染、无毒、不腐蚀设备,这些都使双氧水成为短流程处理工艺中漂白剂的最佳选择。双氧水的化学名称是过氧化氢,市场上出售的双氧水大多数是30%-35%浓度的产品,无色透明溶液,对皮肤具有腐蚀性.由于其性质活泼且容易分解,保存时应该尽量使用密闭容器,防止日光照射(双氧水出厂的包装都是黑色塑料 或套上黑色塑料袋的瓶子),而且不宜长时间储存. 双氧水的工作性质是新生态氧[O],它具有很强的氧化作用,工作情况和彩漂非常相似,也是适于去除天然色素类的污渍和提高水洗的洗净度.可以在水 洗时加入到洗涤液中,也可以单独处理.使用条件:10-15倍的70度-80度的热水,30-60毫升的双氧水/每件衣物,浸泡10分钟左右,浸泡过程中注意翻动和 拎洗.在纤维条件许可的情况下,适当加入一些碱性洗衣粉用以调整PH值, 可以提高双氧水的氧化能力.

比较小的斑点型天然色素渍迹,还可以将双氧水以1:1清水稀释后点浸去除. 2、双氧水的作用是什么? 双氧水是一种每个水分子里含有两个氧原子的液体,具有较强的渗透性和氧化作用,医学上常用双氧水来清洗创口和局部抗菌。据最新研究发现,双氧水不仅是一种医药用品,还是一种极好的美容佳品。 面部皮肤直接接触外界环境,常被细菌、灰尘等污染,再加上皮肤本身的汗腺、皮脂腺分泌物形成的污垢,极易诱发粉刺、皮炎、疖肿等疾病,从而影响皮肤的美丽。用双氧水敷面不仅能去除皮肤的污垢,还能直接为皮肤增强表面细胞的活性,抑制和氧化黑色素的沉着,使皮肤变得细腻有弹性。操作方法:将脸用洗面奶洗干净后,用毛巾蘸上3%的双氧水敷于面部,每次5分钟,每日1次,10天为一疗程,在操作时应注意避免双氧水进入眼睛。 另外,双氧水还有淡化毛发颜色的功能,对于那些因汗毛过长而影响美观的女性,可在脱毛后,用双氧水直接涂于皮肤上,每日2次,这样日后长出的汗毛就不会变黑变粗,而会变得柔软且颜色为淡黄双氧水的危害性过氧化氢溶液,俗称双氧水,为无色无味的液体,添加入食品中可分解放出氧,起漂白、防腐和除臭等作用。因此,部分商家在一些需要增白的食品如:水发食品的牛百叶和海蛰、鱼翅、虾仁、带鱼、鱿鱼、水果罐头、和面制品等的生产过程中违禁浸泡双氧水,以提高产品的外观。少数食品加工单位将发霉水产干品经浸泡双氧水处理漂白重新出售或为消除病死鸡、鸭或猪肉表面的发黑、淤血和霉斑,将这些原料浸泡高浓度双氧水漂白,再添加人工色素或亚硝酸盐发色出售。过氧化氢可通过与食品中的

相关文档
最新文档