传热学 数值计算

传热学  数值计算
传热学  数值计算

计算传热学

1、已知:一块厚度为0.1mm 的无限大平板,具有均匀内热源,q =50×103W/m 3,,导热系数K =10W/m.℃,一侧边界给定温度为75℃,另一侧对流换热,T f =25℃,,h=50W/m 2.℃,求解稳态分布。(边界条件用差分代替微分和能量平衡法),画图。(内,外节点) 2、试以下述一维非稳态导热问题为模型,编写求解一维非稳态扩散型问题的通用程序: 00 00000()()()() L L f x x x x L fL L x x x x T T k s c x x T k h T T W x T k h T T W x T T x τρτ =====???+=????=-+??-=-+?= 其中,x 是空间坐标变量,τ是时间坐标变量,T 是温度(分布),k 是材料的导热系数,s 是内热源强度,ρ是材料的密度,c 是材料的比热,h 0和h L 分别是x 0和x L 处流体与固体壁面间的换热系数,而T f0和T fL 分别是固体壁两侧流体的温度,W 0和W L 是x 0和x L 处(非对流换热)热流密度,T 0(x )是固体壁内初始温度分布。注意k 、ρ、c 、s 、h 0 、h L 、W 0和W L 均可以是温度T 和/或空间坐标x 的函数。 具体要求: 1) 将数学模型无量纲化; 2) 考虑各种可能的边界条件和初始条件组合 3) 提供完整的程序设计说明,包括数学推导过程和程序使用说明 3、对于有源项的一维稳态方程, s dx d T dx d u dx d +=)()(φφρ 已知 x=0,φ=0,x=1, φ=1.源项S=0.5-X 利用迎风格式、混合格式、乘方格式求解φ的分布.

哈工程传热学数值计算大作业

传热学 二维稳态导热问题的数值解法 杨达文2011151419 赵树明2011151427 杨文晓2011151421 吴鸿毅2011151416

第一题: a=linspace(0,0.6,121); t1=[60+20*sin(pi*a/0.6)]; t2=repmat(60,[80 121]); s=[t1;t2]; %构造矩阵 for k=1:10000000 %理论最大迭代次数,想多大就设置多大S=s; for j=2:120 for i=2:80 S(i,j)=0.25*(S(i-1,j)+S(i+1,j)+S(i,j-1)+S(i,j+1)); end end if norm(S-s)<0.0001 break; %如果符合精度要求,提前结束迭代else s=S; end end S %输出数值解 数值解数据量太大,这里就不打印出来,只画出温度分布。 画出温度分布: figure(1) xx=linspace(0,0.6,121); yy=linspace(0.4,0,81); [x,y]=meshgrid(xx,yy); surf(x,y,S) axis([0 0.6 0 0.4 60 80]) grid on xlabel('L1') ylabel('L2') zlabel('t(温度)')

.60.66666777778L 1 L 2t (温度)

A0=[S(:,61)]; for k=1:81 B1(k)=A0(81-k+1); end B1 %x=L1/2时y方向的温度 A1=[S(41,:)] %y=L2/2时x方向的温度 x=0:0.005:0.6; y=0:0.005:0.4; A2=60+20*sin(pi*x/0.6)*((exp(pi*0.2/0.6)-exp(-pi*0.2/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6) )/2) %计算y=L2/2时x方向的解析温度 B2=60+20*sin(pi*0.3/0.6)*((exp(pi*y/0.6)-exp(-pi*y/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6))/ 2) %计算x=L1/2时y方向的解析温度 figure(2) subplot(2,2,1); plot(x,A1,'g-.',x,A2,'k:x'); %画出x=L1/2时y方向的温度场、画出x=L1/2时y方向的解析温度场曲线 xlabel('L1');ylabel('t温度'); title('y=L2/2'); legend('数值解','解析解'); subplot(2,2,2); plot(x,A1-A2); %画出具体温度场与解析温度场的差值曲线 xlabel('L1');ylabel('差值'); title('y=L2/2时,比较=数值解-解析解'); subplot(2,2,3); plot(y,B1,'g-.',y,B2,'k:x'); %画出y=L2/2时x方向的温度场、画出y=L2/2时x方向的解析温度场曲线 xlabel('L2');ylabel('t温度'); title('x=L1/2'); legend('数值解','解析解'); subplot(2,2,4); plot(y,B1-B2); %画出具体温度场与解析温度场的差值曲线 xlabel('L2');ylabel('差值'); title('x=L1/2时,比较=数值解-解析解'); y=L2/2时x方向的温度: 60 60.1635347276130 60.3269574318083 60.4901561107239 60.6530189159961 60.8154342294146 60.9772907394204 61.1384775173935 61.2988840936779 61.4584005332920 61.6169175112734 61.7743263876045 61.9305192816696 62.0853891461909 62.2388298405943 62.3907362037523 62.5410041260577 62.6895306207746 62.8362138946214 62.9809534175351 63.1236499915702 63.2642058188844 63.4025245687647 63.5385114436490 63.6720732440951 63.8031184326565 63.9315571966177 64.0573015095482 64.1802651916318 64.3003639687311 64.4175155301449 64.5316395850212 64.6426579173846 64.7504944397430 64.8550752452343 64.9563286582797 65.0541852837075

传热系数计算方法

第四章循环流化床锅炉炉内传热计算 循环流化床锅炉炉膛中的传热是一个复杂的过程,传热系数的计算精度直接影响了受热面设计时的布置数量,从而影响锅炉的实际出力、蒸汽参数和燃烧温度。正确计算燃烧室受热面传热系数是循环流化床锅炉设计的关键之一,也是区别于煤粉炉的重要方面。 随着循环流化床燃烧技术的日益成熟,有关循环流化床锅炉的炉膛传热计算思想和方法的研究也在迅速发展。许多著名的循环流化床制造公司和研究部门在此方面也做了大量的工作,有的已经形成商业化产品使用的设计导则。 但由于技术保密的原因,目前国内外还没有公开的可以用于工程使用的循环流化床锅炉炉膛传热计算方法,因此对它的研究具有重要的学术价值和实践意义。 清华大学对CFB锅炉炉膛传热作了深入的研究,长江动力公司、华中理工大学、浙江大学等单位也对CFB锅炉炉膛中的传热过程进行了有益的探索。根据已公开发表的文献报导,考虑工程上的方便和可行,本章根椐清华大学提出的方法,进一步分析整理,作为我们研究的基础。为了了解CFB锅炉传热计算发展过程,也参看了巴苏的传热理论和计算方法,浙江大学和华中理工大学的传热计算与巴苏的相近似。 4.1 清华的传热理论及计算方法 4.1.1 循环流化床传热分析 CFB锅炉与煤粉锅炉的显著不同是CFB锅炉中的物料(包括煤灰、脱硫添加剂等)浓度C p 大大高于煤粉炉,而且炉内各处的浓度也不一样,它对炉内传热起着重要作用。为此首先需要计算出炉膛出口处的物料浓度C p,此处浓度可由外循环倍率求出。而炉膛不同高度的物料浓度则由内循环流率决定,它沿炉膛高度是逐渐变化的,底部高、上部低。近壁区贴壁下降流的温度比中心区温度低的趋势,使边壁下降流减少了辐射换热系数;水平截面方向上的横向搅混形成良好的近壁区物料与中心区物料的质交换,同时近壁区与中心区的对流和辐射的热交换使截面方向的温度趋于一致,综合作用的结果近壁区物料向壁面的辐射加强,总辐射换热系数明显提高。在计算水冷壁、双面水冷壁、屏式过热器和屏式再热器时需采用不同的计算式。物料浓度C p对辐射传热和对流传热都有显著影响。燃烧室的平均温度是床对受热面换热系数的另一个重要影响因素。床温的升高增加了烟气辐射换热并提高烟气的导热系数。虽然粒径的减小会提高颗粒对受热面的对流换热系数,在循环流化床锅炉条件下,燃烧室内部的物料颗粒粒径变化较小,在较小范围内的粒径变化时换热系数的变化不大,在进行满负荷传热计算时可以忽略,但在低负荷传热计算时,应该考虑小的颗粒有提高传热系数的能力。 炉内受热面的结构尺寸,如鳍片的净宽度、厚度等,对平均换热系数的影响也是非常明显的。鳍片宽度对物料颗粒的团聚产生影响;另一方面,宽度与扩展受热面的利用系数有关。根

热物理过程的数值模拟-计算传热学3汇总

四、非线笥问题迭代式解法的收敛性 每一层次上满足迭代法求解的收敛条件+相邻次间代数方程的系数变化不太大(亦即未知量 的变化不太大J多数情形下非线性问题迭代式解法是可以收敛的)。 使相邻两层次间未知量变化不太大的措施: 1欠松弛迭代常用逐次欠弛线迭法(SLUR):一组临时系数下逐线迭代求解+对所得的解 施以欠松弛,再用欠松弛后的解去计算新的系数,常数,以进入下一层次的迭代。 实施:常把欠松弛处理纳入迭代过程,而不是在一个层次迭代完成后再行欠松弛。 .(n 1)川).'a n bt n b t p =t p (t p ) a p (先)t p n1) = 7a n b t n b b (1一?)屯t p n) co o a'p t p n 9 、a n bt n b b' a'p -a^ ■, b' = b (^ )(a p )t p n),用交替方向线迭代法求解这一方程,就实现了SLUR 的迭代求解。为一般化起见,上式中t n b上没有标以迭代层次的符号(J, GS时不相同)。 2、采用拟非稳态法 前面已指出,稳态问题的迭代解法与非稳态问题的步进法十分相似。对于非线性稳态问题, 从代数方程的一组临时系数进入到另一组临时系数亦好象非稳态问题前进了一个时间层,非稳态问题的物理特性:系数热惯性越大(a; = PM v/也I ),温度变化越慢,仿此,对稳态非线性 问题,可在离散方程中加入拟非稳态项,以减小未知量托两个层次间的变化,即 由 (=a n b -S p:V)t p n。= Ua n bt n b b=(3a n b - S p:V a;)t p n。=二a n bt n b b a p tf Za n bt n b - b - a;t p n) (n 1) t p o Ea n b -S p心V +a p 一直进行到t p,t n b收敛,虚拟时间步的大小通过计算实践确定。 3、采用Jacobi点迭代法 中止迭代的判据(该层次迭代)除前述变化率判据外,还可以规定迭代的轮数,例如规定进 行4-6次ADI线迭代就结束该层次上的计算。此时,用收敛速度低的丁迭代也就起到了欠松弛的作用。 五、迭代法的收敛速度 1收敛速度 对给定的代数方程组(包括是临时系数的情形),采用不同的迭代方法求解时,使一定的初始误差缩小成:?倍所需要的迭代轮数K是不相的

传热学数值计算大作业2014011673

数值计算大作业 一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。物体的导热系数λ为1.0w/m·K。边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K; 要求: 1、写出问题的数学描述; 2、写出内部节点和边界节点的差分方程; 3、给出求解方法; 4、编写计算程序(自选程序语言); 5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图; 6、就一个工况下(自选)对不同网格数下的计算结果进行讨论; 7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论; 8、对4个不同表面传热系数的计算结果进行分析和讨论。 9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。(自选项) 1、写出问题的数学描述 设H=0.1m 微分方程 22220t t x y ??+=?? x=0,0

y=H ,0

计算传热学中国石油大学(华东)第四章大作业

取步长δx=0.02。已知x=0,Φ=0;x=1,Φ=1.令k=ρu/Γ计算结果图表: 程序及数据结果: 追赶法: #include #include #include #define N 49 void tdma(float a[],float b[],float c[],float f[],float x[]); void main(void) { int i; float x[49]; float k; printf("请输入k值:\n",k); scanf("%f",&k); static float a[N],b[N],c[N],f[N]; a[0]=0; a[48]=2+0.02*k; b[0]=4; b[48]=4; c[0]=2-0.02*k; c[48]=0; f[0]=0; f[48]=2-0.02*k; for(i=1;i

a[i]=2+0.02*k; b[i]=4; c[i]=2-0.02*k; f[i]=0; } tdma(a,b,c,f,x); for(i=0;i=0;i--) x[i]=P[i]*x[i+1]+Q[i]; return; } 结果: (1)k=-5 请输入k值: -5 x[0]=0.095880 x[1]=0.182628 x[2]=0.261114 x[3]=0.332126 x[4]=0.396375 x[5]=0.454504 x[6]=0.507098 x[7]=0.554683 x[8]=0.597736 x[9]=0.636688 x[10]=0.671931 x[11]=0.703818 x[12]=0.732667 x[13]=0.758770

传热学上机C程序源答案之一维稳态导热的数值计算

一维稳态导热的数值计算 1.1物理问题 一个等截面直肋,处于温度t ∞=80 的流体中。肋表面与流体之间的对流换热系数为 h =45W/(m 2?℃),肋基处温度t w =300℃,肋端绝热。肋片由铝合金制成,其导热系数为λ=110W/(m ?℃),肋片厚度为δ=0.01m ,高度为H=0.1m 。试计算肋内的温度分布及肋的总换热量。 1.2数学描述及其解析解 引入无量纲过余温度θ = t?t ∞t w ?t ∞ ,则无量纲温度描述的肋片导热微分方程及其边界条件: 22 20d m dx θθ-= x=0,θ=θw =1 x=H, 0x θ?=? 其中m = 上述数学模型的解析解为:[()] ()() w ch m x H t t t t ch mH ∞∞--=-? ()()w hp t t th mH m ∞?= - 1.3数值离散 1.3.1区域离散 计算区域总节点数取N 。 1.3.2微分方程的离散 对任一借点i 有:22 2 0i d m dx θ θ??-= ??? 用θ在节点i 的二阶差分代替θ在节点i 的二阶导数,得:211 2 20i i i i m x θθθθ+--+-= 整理成迭代形式:()1122 1 2i i i m x θθθ+-=++ (i=2,3……,N-1) 1.3.3边界条件离散 补充方程为:11w θθ==

右边界为第二类边界条件,边界节点N 的向后差分得:1 0N N x θθ--= ,将此式整理为 迭代形式,得:N 1N θθ-= 1.3.4最终离散格式 11w θθ== ()1122 1 2i i i m x θθθ+-= ++ (i=2,3……,N-1) N 1N θθ-= 1.3.5代数方程组的求解及其程序 假定一个温度场的初始发布,给出各节点的温度初值:01θ,02θ,….,0 N θ。将这些初值代 入离散格式方程组进行迭代计算,直至收敛。假设第K 步迭代完成,则K+1次迭代计算式为: K 11w θθ+= () 11 11 2212i i K K K i m x θθθ+-++= ++ (i=2,3……,N-1) 1 11N K K N θθ-++= #include #include #define N 11 main() { inti; float cha;/*cha 含义下面用到时会提到*/ float t[N],a[N],b[N]; float h,t1,t0,r,D,H,x,m,A,p; /*r 代表λ,x 代表Δx ,D 代表δ*/ printf("\t\t\t 一维稳态导热问题\t\t"); printf("\n\t\t\t\t\t\t----何鹏举\n"); printf("\n 题目:补充材料练习题一\n"); printf("已知:h=45,t1=80, t0=200, r=110, D=0.01, H=0.1 (ISO)\n"); /*下面根据题目赋值*/ h=45.0; t1=80.0; t0=300.0; r=110.0; D=0.01; H=0.1; x=H/N; A=3.1415926*D*D/4; p=3.1415926*D; m=sqrt((h*p)/(r*A)); /*x 代表步长,p 代表周长,A 代表面积*/ printf("\n 请首先假定一个温度场的初始分布,即给出各节点的温度初值:\n");

传热学第四版课后题答案第四章

第四章 复习题 1、 试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。 2、 试说明用热平衡法建立节点温度离散方程的基本思想。 3、 推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似, 为什么前者得到的是精确描述,而后者解出的确实近似解。 4、 第三类边界条件边界节点的离散那方程,也可用将第三类边界条件表达式中的一阶导数 用差分公式表示来建立。试比较这样建立起来的离散方程与用热平衡建立起来的离散方程的异同与优劣。 5.对绝热边界条件的数值处理本章采用了哪些方法?试分析比较之. 6.什么是非稳态导热问题的显示格式?什么是显示格式计算中的稳定性问题? 7.用高斯-塞德尔迭代法求解代数方程时是否一定可以得到收敛德解?不能得出收敛的解时是否因为初场的假设不合适而造成? 8.有人对一阶导数()()()2 21,253x t t t x t i n i n i n i n ?-+-≈ ??++ 你能否判断这一表达式是否正确,为什么? 一般性数值计算 4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验公式及用无穷级数表示的分析解,也常用计算机来获得数值结果。试用数值方法对Bi=0.1,1,10的三种情况计算下列特征方程的根:)6,2,1( =n n μ 3,2,1,tan == n Bi n n μμ 并用计算机查明,当2 .02≥=δτ a Fo 时用式(3-19)表示的级数的第一项代替整个级数(计 算中用前六项之和来替代)可能引起的误差。 解:Bi n n =μμtan ,不同Bi 下前六个根如下表所示: Bi μ 1 μ2 μ3 μ 4 μ 5 μ 6 0.1 0.3111 3.1731 6.2991 9.4354 12.5743 15.7143 1.0 0.8603 3.4256 6.4373 9.5293 12.6453 15.7713 10 1.4289 4.3058 7.2281 10.2003 13.2142 16.2594 Fo=0.2及0.24时计算结果的对比列于下表: Fo=0.2 δ=x Bi=0.1 Bi=1 Bi=10 第一项的值 0.94879 0.62945 0.11866 前六和的值 0.95142 0.64339 0.12248 比值 0.99724 0.97833 0.96881 Fo=0.2 0=x Bi=0.1 Bi=1 Bi=10 第一项的值 0.99662 0.96514 0.83889 前六项和的值 0.994 0.95064 0.82925 比值 1.002 1.01525 1.01163 Fo=0.24 δ=x

传热学大作业报告 二维稳态导热

传热学大作业报告二维稳态计算 院系:能源与环境学院 专业:核工程与核技术 姓名:杨予琪 学号:03311507

一、原始题目及要求 计算要求: 1. 写出各未知温度节点的代数方程 2. 分别给出G-S 迭代和Jacobi 迭代程序 3. 程序中给出两种自动判定收敛的方法 4. 考察三种不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m ℃)) 6. 绘出最终结果的等值线 报告要求: 1. 原始题目及要求 2. 各节点的离散化的代数方程 3. 源程序 4. 不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m ℃)) 6. 计算结果的等温线图 7. 计算小结 二、各节点的离散化的代数方程 左上角节点 )(21 1,22,11,1t t t +=

右上角节点 )(2 15,24,15,1t t t += 左下角节点 C t ?=1001,5 右下角节点 )2(211,24,55,5λ λ x h t t x h t ?++?+= 左边界节点 C t i ?=1001,,42≤≤i 上边界节点 C t j ?=200,1,42≤≤j 右边界节点 )2(415,15,14,5,+-++= i i i i t t t t ,42≤≤i 下边界节点 )42()2(211,51,5,4,5∞+-?+++?+=t x h t t t x h t j j j j λλ ,42≤≤j 内部节点 )(2 1,1,11,1,,j i j i j i j i j i t t t t t +-+-+++= ,4,2≤≤j i 三、源程序 1、G-S 迭代法 t=zeros(5,5); t0=zeros(5,5); dteps=0.0001; for i=2:5 %左边界节点 t(i,1)=100; end for j=2:4 %上边界节点 t(1,j)=200; end t(1,1)=(t(1,2)+t(2,1))/2; t for k=1:100 for i=2:4 %内部节点 for j=2:4 t(i,j)=(t(i-1,j)+t(i+1,j)+t(i,j-1)+t(i,j+1))/4; end end t(1,5)=(t(1,4)+t(2,5))/2;%右上角节点 for i=2:4;%右边界节点 t(i,5)=(2*t(i,4)+t(i-1,5)+t(i+1,5))/4; end for j=2:4; %下边界节点

计算传热学程序设计

中国石油大学(华东) 储建学院热能与动力工程系 《计算传热学程序设计》 设计报告 1引言 有关墙体传热量计算的方法是随着人们对房间负荷计算精度要求的不断提高而不断发展的.考虑辐射强度和周围空气温度综合作用,当外界温度发生周期性的变化时,屋顶内部的温度和热流密度也会发生周期性的变化。 计算题目 有一个用砖墙砌成的长方形截面的冷空气通道,其截面尺寸如图1所示。假设在垂直于纸面方向上冷空气及砖墙的温度变化相对较小,可近似地予以忽略。试计算稳态时砖墙截面的温度分布及垂直于纸面方向1米长度的冷量损失。设砖墙的导热系数为(m·℃)。内、外壁面均为第三类边界条件,外壁面:t f1=30℃,h1=10W(m2·℃);内壁面:t f2=10℃, h2=4W(m2·℃)。

图1 砖墙截面 已知参数 砖墙的基本尺寸,砖墙的导热系数,外壁面的表面传热系数,对应的流体温度,内壁面的表面传热系数,对应的流体温度。 2 物理与数学模型 物理模型 由题知垂直于纸面方向上冷空气及砖墙的温度变化相对较小,可近似予以忽略,墙面为常物性,可以假设: 1)砖墙在垂直于纸面方向上没有导热。 2)由于系统是几何形状与边界条件是对称的,它的中心对称面就是一个绝热边界,这时只需求解1/4个对称区域就可以得到整个区域的解。 数学模型 考虑到对称性,取右下的1/4为研究对象,建立如图2的坐标系。 a 图2 砖墙的稳态导热计算区域 由上述的物理模型与上面的坐标系,该问题的数学模型可直接由导热微分方程简化而来,即 22220T T x y ??+=?? (1) 相应的边界条件是:

1.1 0y T y =?=? 1.5 0x T x =?=? (2) 110 ()f x x T h T T x λ ==?-=-? (3) 111.1 1.1 ()f y y T h T T y λ ==?-=-? (4) 22(0.5,00.6)(0.5,00.6) ()f x y x y T h T T x λ =<<=<

西安交通大学传热学大作业二维温度场热电比拟实验1

二维导热物体温度场的数值模拟

一、物理问题 有一个用砖砌成的长方形截面的冷空气通道, 于纸面方向上用冷空气及砖墙的温度变化很小, 可以近似地予以忽略。 在下列两种情况下试计算: 砖墙横截面上的温度分布;垂直于纸面方向的每 米长度上通过砖墙的导热量。 第一种情况:内外壁分别均匀维持在 0℃及 30℃; 第二种情况:内外壁均为第三类边界条 件, 且已知: t 1 30 C,h 1 10.35W / m 2 K 2 t 2 10 C, h 2 3.93W / m 2 K 砖墙导热系数 0.35/ m K 二、数学描写 由对称的界面必是绝热面, 态、无内热源的导热问题。 控制方程: 22 tt 22 xy 边界条件: 第一种情况: 由对称性知边界 1 绝热: 边界 2 为等温边界,满足第一类边界条件: t w 0 C ; 边界 3 为等温边界,满足第一类边界条件: t w 30 C 。 第一种情况: 由对称性知边界 1 绝热: q w 0; 边界 2 为对流边界,满足第三类边界条件: q w ( t )w h 2(t w 可取左上方的四分之一墙角为研究对象, 该问题为二维、 稳 图1-

t f ); n t 边界3 为对流边界,满足第三类边界条件:q w ( ) w h 2 (t w t f )。 w n w 2 w f

0,m 6,n 1~ 7;m 7 ~ 16,n 7 30,m 1,n 1~12;m 2 ~ 16,n 12 三、方程离散 用一系列与坐标轴平行的间隔 0.1m 的二维网格线 将温度区域划分为若干子区域,如图 1-3 所示。 采用热平衡法, 利用傅里叶导热定律和能量守恒定 律,按照以导入元体( m,n )方向的热流量为正,列写 每个节点代表的元体的代数方程, 第一种情况: 边界点: 1 边界 绝热边界) : 边界 图1-3 t m ,1 t 16,n 等温内边界) : 14 (2t m,2 1 4 (2t 15,n t m 1,1 t m 1,1),m 2 ~ 5 t 16,n 1 t 16,n 1), n 8 ~ 11 边界 等温外边界) : 内节 点: 1 (t t t t ) 4 m 1,n m 1,n m ,n 1 m,n 1 m 2 ~ 5,n 2 ~11;m 6 ~ 15,n 8 ~ 11 t m,n 第二种情况 边界点: 边界 1(绝热边界) : t m ,1 1 4 (2t m,2 t m 1,1 t m 1,1),m 2 ~ 5 t 16,n 1 4 (2t 15,n t 16,n 1 t 16,n 1), n 8 ~11 4 边界 2(内对流边界) : t6,n 2t 5,n t 6,n 1 t 6,n 1 2Bi 1t 1 ,n 1~ 6 6,n 2(Bi 2) t m,n t m,n

传热学计算例题

、室内一根水平放置的无限长的蒸汽管道,其保温层外径d=583 mm,外表面 实测平均温度及空气温度分别为,此时空气与管道外 表面间的自然对流换热的表面传热系数h=3.42 W /(m2 K),墙壁的温度近似取为 室内空气的温度,保温层外表面的发射率 问:(1)此管道外壁的换热必须考虑哪些热量传递方式; (2)计算每米长度管道外壁的总散热量。(12分) 解: (1)此管道外壁的换热有辐射换热和自然对流换热两种方式。 (2)把管道每米长度上的散热量记为qi 当仅考虑自然对流时,单位长度上的自然对流散热 q i,c =二d h t =二dh (j - t f ) = 3.14 0.583 3.42 (48 - 23 ) 二156 .5(W / m) 近似地取墙壁的温度为室内空气温度,于是每米长度管道外表面与室内物体及墙壁 之间的辐射为: q i厂d (T; -T;) = 3.14 0.583 5.67 10》0.9 [(48 273)4-(23 273)4] = 274.7(W /m) 总的散热量为q i = q i,c +q i,r = 156.5 +274.7 = 431.2(W/m) 2、如图所示的墙壁,其导热系数为50W/(m- K),厚度为50mm在稳态情况下的 墙壁内的一维温度分布为:t=200-2000x 2,式中t的单位为°C, x单位为m 试 求: t (1) 墙壁两侧表面的热流密度; (2) 墙壁内单位体积的内热源生成的热量 2 t =200 —2000x

解:(1)由傅立叶定律: ① dt W q ' (―4000x) = 4000二x A dx 所以墙壁两侧的热流密度: q x _. =4000 50 0.05 =10000 (1)由导热微分方程 茫?生=0得: dx 扎 3、一根直径为1mm 勺铜导线,每米的电阻为2.22 10 。导线外包有厚度为 0.5mm 导热系数为0.15W/(m ? K)的绝缘层。限定绝缘层的最高温度为 65°C,绝 缘层的外表面温度受环境影响,假设为40°C 。试确定该导线的最大允许电流为多 少? 解:(1)以长度为L 的导线为例,导线通电后生成的热量为I 2RL ,其中的一部分 热量用于导线的升温,其热量为心务中:一部分热量通过绝热层的 导热传到大气中,其热量为:门二 1 , d In 2 L d 1 根据能量守恒定律知:l 2RL -门 述二厶E = I 2RL -门 即 E = — L dT m = I 2RL - t w1 _tw2 4 di 1 , d 2 In 2 L d 1 q v 、d 2t ——' 2 dx =-(7000)= 4000 50 二 200000 W/m 3 t w1 - t w2 。 2 q x 卫=4000.: 0 = 0

计算传热学数值模拟

1、Jacobi 迭代 在Jacobi 迭代法中任一点上未知值的更新是用上一轮迭代中所获得的各邻 点之值来计算的,即 kk k k l l n l k n k a b T a T /)(1)1()(+=∑≠=- k=1,2,...,L 1×M 1 这里带括号的上角标表示迭代轮数。所谓一轮是指把求解区域中每一节点之值都更新一次的运算环节。显然,采用Jacobi 迭代式,迭代前进的方向(又称扫描方向)并不影响迭代收敛速度。这种迭代法收敛速度很慢,一般较少采用。但对强烈的非线性问题,如果两个层次的迭代之间未知量的变化过大,容易引起非线性问题迭代的发散。在规定每一层次计算的迭代轮次数的情况下,有利于Jacobi 迭代有利于非线性问题迭代的收敛。 2、Gauss-Seidel 迭代 在这种迭代法中,每一种计算总是取邻点的最新值来进行。如果每一轮迭代按T 的下角标由小到大的方式进行,则可表示为: kk k M L k l n l kl k l l n l kl n k a b T a T a T /)(1 11 ) 1(1 1) ()(++ =∑∑?+=--≠= 此时迭代计算进行的方向(即扫描方向)会影响到收敛速度,这是与边界条件的影响传入到区域内部的快慢有关的。 3、例题: 一矩形薄板几何尺寸如图所示,薄板左侧的边界温度T L =100K ,右侧温度T R =300K ,上侧温度T T =200K ,下侧温度T B =200K ,其余各面绝热,求板上个节点的温度。要求节点数目可以变化,写出程序。 解析: ⑴列出描述问题的微分方程和定解条件。 22 220t t x y ??+=??;对于离散化的问题,其微分方程根据热平衡原理得到:

传热学经典计算题

传热学经典计算题 热传导 1. 用热电偶测量气罐中气体的温度。热电偶的初始温度为20℃,与气体的表面传热系数为()210/W m K ?。热电偶近似为球形,直径为0.2mm 。试计算插入10s 后,热电偶的过余温度为初始过余温度的百分之几?要使温度计过余温度不大于初始过余温度的1%,至少需要多长时间?已知热电偶焊锡丝的()67/W m K λ=?,7310ρ= 3/kg m ,()228/c J kg K =?。 解: 先判断本题能否利用集总参数法。 3 5100.110 1.491067hR Bi λ--??===?<0.1 可用集总参数法。 时间常数 3 73102280.110 5.563103c cV c R hA h ρρτ-??===?= s 则10 s 的相对过余温度 0θθ=exp c ττ??-= ???exp 1016.65.56??-= ???% 热电偶过余温度不大于初始过余温度1%所需的时间,由题意 0θθ=exp c ττ??- ??? ≤0.01 exp 5.56τ?? - ???≤0.01 解得 τ≥25.6 s

1、空气以10m/s 速度外掠0.8m 长的平板,C t f 080=,C t w 030=,计算 该平板在临界雷诺数c e R 下的c h 、全板平均表面传热系数以及换热量。 (层流时平板表面局部努塞尔数 3/12/1332.0r e x P R Nu =,紊流时平板表面局部努塞尔数3/15/40296.0r e x P R Nu =,板宽为1m ,已知5105?=c e R ,定性 温度C t m 055=时的物性参数为: )/(1087.22K m W ??=-λ,s m /1046.1826-?=ν,697.0=r P ) 解:(1)根据临界雷诺数求解由层流转变到紊流时的临界长度 C t t t w f m 055)(21=+=,此时空气得物性参数为: )/(1087.22K m W ??=-λ,s m /1046.1826-?=ν,697.0=r P )(92.0101046.1810565m u R X ul R c c e c e =???==?=-ν ν 由于板长是0.8m ,所以,整个平板表面的边界层的流态皆为层流 ? ==3/12/1332.0r e x P R hl Nu λ)/(41.7697.0)105(8.01087.2332.0332.023/12/1523/12 /1C m W P R l h r e c c ?=????==-λ (2)板长为0.8m 时,整个平板表面的边界层的雷诺数为: 561033.41046.188.010?=??==-νul R e 全板平均表面传热系数: )/(9.13697.0)1033.4(8.01087.2664.0664.023/12/1523/12 /1C m W P R l h r e c ?=????==-λ 全板平均表面换热量W t t hA w f 9.557)3080(18.09.13)(=-???=-=Φ

计算传热作业1

储运与建筑工程学院能源与动力工程系 计算传热学课程大作业报告 作业题目:代数方程组的求解 学生姓名:田 学号: 专业班级:能动1 2017年9月23日

目录 一、计算题目 (3) 二、离散方程 (3) 三、程序设计 (4) 3.1 高斯赛德尔迭代法 (4) 3.2 TDMA法 (5) 四、程序及计算结果验证 (6) 五、网格独立性考核.................... 错误!未定义书签。 3.1 高斯赛德尔迭代法 (7) 3.2 TDMA法 (8) 六、结果分析与结论 (8) 3.1 高斯赛德尔迭代法 (9) 3.2 TDMA法 (10)

一、计算题目 分别用高斯赛德尔迭代和TDMA 方法求解方程 2 2dx d dx d u φφρΓ= (1) 在Γ u ρ=-5,-1,0,1,5情况下的解,并表示在图中。 其中,x =0,φ=0;x =1,φ=1. 二、离散方程 采用控制容积法: 即??Γ=e 22w e w dx d dx d u φφ ρ(2) ) )()(()2 2 ( w W P e P E p w p e x x u δφφδφφφφφφρ---Γ=+- +(3) 假设均分网格,则有x x x w e ?==)()(δδ 上式则变为: )2(2)(W P E W E u x φφφφφρ+-Γ=-?(4) 即11)2()2(4-+?+Γ+?-Γ=Γi i i u x u x φρφρφ(5) 11)421()421(-+Γ ?-+Γ?-=i i i u x u x φρφρφ(6)

三、程序设计 3.1 高斯赛德尔迭代法 由已知公式 11)421()421(-+Γ ?-+Γ?-=i i i u x u x φρφρφ可设计高斯赛德尔迭代C 语言程序如下: #include #include #include int main() { double e=0,x; int i,j,b,k,d; double a[100]; scanf("%lf%d",&x,&d); for (j=0;j<1/x;j++) { a[j]=0; } b=1/x; a[b]=1; while (1){ for (i=0;i<1/x-1;i++) { a[i+1]=((2-x*d)*a[i+2]+(2+x*d)*a[i])/4; printf("i = %d\n",i); if (i==1/x-3) e=a[i+2]; } if (fabs((a[i]-e))/a[i]<0.00001) break ; } for (k=0;k<=1/x;k++) { printf("%lf ",a[k]); } system("pause"); return 0;

西安交通大学传热学大作业

《传热学》上机大作业 二维导热物体温度场的数值模拟 学校:西安交通大学 姓名:张晓璐 学号:10031133 班级:能动A06

一.问题(4-23) 有一个用砖砌成的长方形截面的冷空气通道,形状和截面尺寸如下图所示,假设在垂直纸面方向冷空气和砖墙的温度变化很小,差别可以近似的予以忽略。在下列两种情况下计算:砖墙横截面上的温度分布;垂直于纸面方向上的每米长度上通过墙砖上的导热量。 第一种情况:内外壁分别维持在10C ?和30C ? 第二种情况:内外壁与流体发生对流传热,且有C t f ?=101, )/(2021k m W h ?=,C t f ?=302,)/(422k m W h ?=,K m W ?=/53.0λ

二.问题分析 1.控制方程 02222=??+??y t x t 2.边界条件 所研究物体关于横轴和纵轴对称,所以只研究四分之一即可,如下图: 对上图所示各边界: 边界1:由对称性可知:此边界绝热,0=w q 。 边界2:情况一:第一类边界条件 C t w ?=10 情况二:第三类边界条件

)()( 11f w w w t t h n t q -=??-=λ 边界3:情况一:第一类边界条件 C t w ?=30 情况二:第三类边界条件 )()( 22f w w w t t h n t q -=??-=λ 三:区域离散化及公式推导 如下图所示,用一系列和坐标抽平行的相互间隔cm 10的网格线将所示区域离散化,每个交点可以看做节点,该节点的温度近似看做节点所在区域的平均温度。利用热平衡法列出各个节点温度的代数方程。 第一种情况: 内部角点:

相关文档
最新文档