常用物体的转动惯量-与扭矩的计算

常用物体的转动惯量-与扭矩的计算
常用物体的转动惯量-与扭矩的计算

附录 1. 常用物体转动惯量的计算惯量的计算:

矩形体的计算

图1 矩形结构定义

以a-a为轴运动的惯量:

公式中:以b-b为轴运动的惯量:

圆柱体的惯量

角加速度的公式α=(2π/60)/t 转矩T=J*α=J*n*2π/60)/t

α-弧度/秒t-秒T –Nm n-r/min

图2 圆柱体定义

空心柱体惯量

图3 空心柱体定义

摆臂的惯量

图4-1 摆臂1结构定义

图4-2 摆臂2结构定义

曲柄连杆的惯量

图5 曲柄连杆结构定义带减速机结构的惯量

图6 带减速机结构定义齿形带传动的惯量

图7 齿形带传动结构齿轮组减速结构的惯量

图8 齿轮组传动结构滚珠丝杠的惯量

图9 丝杠传动结构

折算到电机的力矩

传送带的惯量

图10 传送带结构总惯量

折算到电机的惯量

折算到电机的扭矩

齿轮,齿条传动惯量的计算

图11 齿轮齿条结构定义

1,确认您的负载额定扭矩要小于减速机额定输出扭矩,2,伺服电机额定扭矩*减速比要大于负载额定扭矩。3,负载通过减速机转化到伺服电机的转动惯量,要在伺服电机允许的范围内。4,确认减速机精度能够满足您的控制要求。5,减速机结构形式,外型尺寸既能满足设备要求,同时能与所选用的伺服电机很好,转动惯量一定要算的,不算是因为你已经确认了不会有问题,否则负载拖电机是一定的。如果对启动的时间有要求,如初速度为0需要几秒后达到速度为何,就需要计算转动惯量,角的加速度和转动惯量求转矩。

实验4 用三线摆测定物体的转动惯量

实验4 用三线摆测定物体的转动惯量 [摘要] 转动惯量是表征刚体转动特性的物理量,是刚体转动惯性大小的量度,它与刚体质量的大小、转轴的位置和质量对于转轴的分布等有关。对于形状简单的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量。但对于形状复杂的刚体,用数学方法计算它的转动惯量就非常困难,有时甚至不可能,所以常用实验方法测定。因此,学会测定刚体转动惯量的方法,具有实用意义。测定刚体转动惯量的方法有多种,本实验采用三线扭摆法。 [实验目的、要求] 学会用三线扭摆法测定物体的转动惯量。 [实验原理] 1、定悬盘绕中心轮的转动惯量I。三线摆如 图一所示,有一均匀圆盘,在小于其周界的同心圆 周上作一内接等边三角形,然后从三角形的三个顶 点引出三条金属线,三条金属线同样对称地连接在 置于上部的一个水平小圆盘的下面,小圆盘可以绕 自身的垂直轴转动。当均匀圆盘(以下简称悬盘) 水平,三线等长时,轻轻转动上部小圆盘,由于悬 线的张力作用,悬盘即绕上下圆盘的中心连线轴 00‘周期地反复扭转运动。当悬盘离开平衡位置向 某一方向转动到最大角位移时,整个悬盘的位置也 随着升高h。若取平衡位置的位能为零,则悬盘升 高h时的动能等于零,而位能为: 式中m是悬盘的质量,g是重力加速度。转动的悬盘在达到最大角位移后将向相反的方向转动,当它通过平衡位置时,其位能和平衡动能为零,而转动动能为: 式中I。为悬盘的转动惯量,ω 为悬盘通过平衡位置时的角速度。如果略去摩擦力的影 响,根据机械能守衡定律,E 1=E 2 ,即 mgh(1)若悬盘转动角度很小,可以证明悬盘的角位移与时间的关系可写成: 式中θ是悬盘在时刻t的位移,θ 是悬盘的最大角位移即角振幅,T是周期。

新版-转动惯量计算公式

转动惯量计算公式 1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2 MD J = 对于钢材:341032-??= g L rD J π ) (1078.0264s cm kgf L D ???- M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22? ?? ???=n v J π g w 2s 2 ? ? ? ??=π (kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 122 221??? ??? ??????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 2 g w R J = (kgf·cm·s 2) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)

6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 ???? ??++=2221g w 1R J i J J t J 1,J 2-分别为Ⅰ轴, Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2); R-齿轮z 分度圆半径(cm); w-工件及工作台重量(kgf)。 马达力矩计算 (1) 快速空载时所需力矩: 0f amax M M M M ++= (2) 最大切削负载时所需力矩: t 0f t a M M M M M +++= (3) 快速进给时所需力矩: 0f M M M += 式中M amax —空载启动时折算到马达轴上的加速力矩(kgf·m); M f —折算到马达轴上的摩擦力矩(kgf·m); M 0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf·m); M at —切削时折算到马达轴上的加速力矩(kgf·m); M t —折算到马达轴上的切削负载力矩(kgf·m)。 在采用滚动丝杠螺母传动时,M a 、M f 、M 0、M t 的计算公式如下: (4) 加速力矩: 2a 106.9M -?= T n J r (kgf·m) s T 17 1= J r —折算到马达轴上的总惯量; T —系统时间常数(s); n —马达转速( r/min ); 当 n = n max 时,计算M amax

扭摆法测定物体转动惯量.(优选)

《扭摆法测定物体转动惯量》实验报告 一、实验目的 1. 熟悉扭摆的构造、使用方法和转动惯量测试仪的使用; 2. 利用塑料圆柱体和扭摆测定不同形状物体的转动惯量I 和扭摆弹簧的扭摆常数K ; 3. 验证转动惯量平行轴定理。 二、实验原理 1. 不规则物体的转动惯量 测量载物盘的摆动周期T 0,得到它的转动惯量: 2002 4T K J π= 塑料圆柱体放在载物盘上测出摆动周期T 1,得到总的转动惯量: 21012 4T K J J π += 塑料圆柱体的转动惯量为 ()221 0'21 2 1 48 T T K J mD π-= = 即可得到K ,再将K 代回第一式和第三式可以得到载物盘的转动惯量为 '2 1002 2 10J T J T T =- 只需测得其它的摆动周期,即可算出该物体绕转动轴的转动惯量: 22 4T K J π= 2. 转动惯量的平行轴定理 若质量为m 的物体绕质心轴的转动惯量为J c 时,当转轴平行移动距离x 时,则此物体对新轴线的转动惯量: '2c J J mx =+ 3. 实验中用到的规则物体的转动惯量理论计算公式 圆柱体的转动惯量: 2222 1 28 D m J r h rdr mD h r ππ=?=?

金属圆筒的转动惯量: ()22 18 J J J m D D =+=+外外内内 木球的转动惯量: ()()22 223 211sin cos 42103 m J R R Rd mD R π π π???π-==? 金属细杆的转动惯量: 2220 1 2212 L m J r dr mL L ==? 三、实验步骤 1. 用游标卡尺、钢尺和高度尺分别测定各物体外形尺寸,用电子天平测出相应质量; 2. 根据扭摆上水泡调整扭摆的底座螺钉使顶面水平; 3. 将金属载物盘卡紧在扭摆垂直轴上,调整挡光杆位置和测试仪光电接收探头中间小 孔,测出其摆动周期T ; 4. 将塑料圆柱体放在载物盘上测出摆动周期T 1。已知塑料圆柱体的转动惯量理论值为 J 1’,根据T 0、T 1可求出K 及金属载物盘的转动惯量J 0。 5. 取下塑料圆柱体,在载物盘上放上金属筒测出摆动周期T 2。 6. 取下载物盘,测定木球及支架的摆动周期T 3。 7. 取下木球,将金属细杆和支架中心固定,测定其摆动周期T 4,外加两滑块卡在细杆 上的凹槽内,在对称时测出各自摆动周期,验证平行轴定理。由于此时周期较长,可将摆动次数减少。 四、注意事项 1. 由于弹簧的扭摆常数K 不是固定常数,与摆角有关,所以实验中测周期时使摆角在 90度左右。 2. 光电门和挡光杆不要接触,以免加大摩擦力。 3. 安装支架要全部套入扭摆主轴,并将止动螺丝锁紧,否则记时会出现错误。 4. 取下支架测量物体质量。处理时支架近似为圆柱体。

最新转动惯量计算公式

1 2 1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 3 4 5 8 2 MD J = 6 对于钢材:341032-??= g L rD J π 7 ) (1078.0264s cm kgf L D ???-8 9 M-圆柱体质量(kg); D-圆柱体直径(cm); 11 L-圆柱体长度或厚度(cm); 12 r-材料比重(gf /cm 3)。 13 14 2. 丝杠折算到马达轴上的转动惯量: 15 2i Js J = (kgf·c 16 17 J s –丝杠转动惯量18 (kgf·c m·s 2); 19 i-降速比,1 2 z z i = 21 22 g w 22 ? ?? ???=n v J π 23 g w 2s 2 ? ?? ??=π (kgf·c m·s 2) 24 25 v -工作台移动速度(cm/min); 26 n-丝杠转速(r/min); 27 w-工作台重量(kgf); 28

g-重力加速度,g = 980cm/s 2; 29 s-丝杠螺距(cm) 30 31 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: 32 ()) s cm (kgf 2g w 1 2222 1????????????? ??+++=πs J J i J J S t 33 34 35 36 37 38 39 40 J 1-齿轮z 1及其轴的转动惯量; 41 J 2-齿轮z 2的转动惯量42 (kgf ·cm · s 2); 43 J s -丝杠转动惯量(kgf ·cm ·s 2); 44 s-丝杠螺距,(cm); 45 w-工件及工作台重量(kfg). 46 47 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 48 2 g w R J = (kgf ·c 49 50 R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf) 53 54 55 56 57 58 6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 59 ??? ? ??++ =2221g w 1R J i J J t 60 61 62

转矩惯量计算

伺服负载 负载扭矩计算(椐MANNESMANN REXR0TH) 1、摩檫扭矩T(F)=[T(FT)+T(FS)]*1/i T(FT)为工作台摩檫扭矩T(FS)为丝杠摩檫扭矩 i为传动比 T(FT)=m*g*u*h/2π*η m为质量u为摩檫系数h为螺距η为传动效率 2、负荷扭矩 T(w)=m*g*sinα*h/2π*1/i*(100%-cb%)(Nm) α为螺旋角cb为反向平衡系数 3、切削扭矩 T(C)=F(c)*g*h/2π*1/i (Nm) F(c)为切削力 T(T)=T(F)+T(C)+T(W)[Nm]<T(电机) 4、加速扭矩计算 T(Acc)=J(tol)*π*rpm/30*t(Acc)*(kg*m2*rev/sec*sec)Nm 其中t(Acc)为加速时间rev=m/min/mm/rev=v(快速速度)/h(螺距)*I(rpm) 可以看出:加速转矩与转动惯量、到达速度、承重的平方成正比;与加速时间、丝杠螺距成反比。 反过来加速时间与转动惯量、到达速度、承重的平方成正比与加速转矩、丝杠螺距成反比。 5、负载惯量计算 J(T)=m*(h/2π)2kg m2(工作台) J(S)=dia4(SCREW)*1(S)*π*d/32(m4*m*Kg/m3)kgm2(丝杠) J(PM)= dia4(P)*1(P)*π*d/32 (电机轮惯量) J(PS)= dia4(PS)*1(PS)*π*d/32 (丝杠轮惯量) J(tol)=J(sys)+J(M) J(M)为电机惯量 J(sys)=〔J(T)+J(s)+J(ps)〕*1/i+J(pm) J(T)为工作台惯量J(s)为丝杠惯量

恒力矩转动法测刚体转动惯量

恒力矩转动法测刚体转动惯量 转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分布、形状大小和转轴位置。对于形状简单,质量均匀分布的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量,但对于形状比较复杂,或质量分布不均匀的刚体,用数学方法计算其转动惯量是非常困难的,因而大多采用实验方法来测定。 转动惯量的测定,在涉及刚体转动的机电制造、航空、航天、航海、军工等工程技术和科学研究中具有十分重要的意义。测定转动惯量常采用扭摆法或恒力矩转动法,本实验采用恒力矩转动法测定转动惯量。 一、实验目的 1、学习用恒力矩转动法测定刚体转动惯量的原理和方法。 2、观测刚体的转动惯量随其质量,质量分布及转轴不同而改变的情况,验证平行轴定理。 3、学会使用智能计时计数器测量时间。 二、实验原理 1、恒力矩转动法测定转动惯量的原理 根据刚体的定轴转动定律: βJ M =(1) 只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量J 。 设以某初始角速度转动的空实验台转动惯量为J 1,未加砝码时,在摩擦阻力矩M μ的作用下,实验台将以角加速度β1作匀减速运动,即: 1 1βμJ M =-(2) 将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。若砝码的加速度为a ,则细线所受张力为T= m (g - a)。若此时实验台的角加速度为β2,则有a= Rβ2。细线施加给实验台的力矩为T R= m (g -Rβ2) R ,此时有: 2 12)(ββμJ M R R g m =--(3) 将(2)、(3)两式联立消去M μ后,可得: 1221)(βββ--= R g mR J (4) 同理,若在实验台上加上被测物体后系统的转动惯量为J 2,加砝码前后的角加速度分别为β3与β4,则有: 3442)(βββ--= R g mR J (5) 由转动惯量的迭加原理可知,被测试件的转动惯量J 3为: 123J J J -=(6) 测得R 、m 及β1、β2、β3、β4,由(4),(5),(6)式即可计算被测试件的转动惯量。 2、β的测量 实验中采用智能计时计数器计录遮挡次数和相应的时间。固定在载物台圆周边缘相差π角的两遮光细棒,每转动半圈遮挡一次固定在底座上的光电门,即产

转动惯量(指导书)

转动惯量指导书 力学实验室 2016年3月

转动惯量的测量 【预习思考】 1.转动惯量的定义式是什么? 2.转动惯量的单位是什么? 3.转动惯量与质量分布的关系? 4.了解单摆中摆长与周期的关系? 5.摆角对周期的影响。 【仪器照片】 【原理简述】 1、转动惯量的定义 构件中各质点或质量单元的质量与其到给定轴线的距离平方乘积的总和,即

∑=2J mr (1) 转动惯量是刚体转动时惯性的量度,其量值取决于物体的形状、质量分布及转轴的位置。刚体的转动惯量有着重要的物理意义,在科学实验、工程技术、航天、电力、机械、仪表等工业领域也是一个重要参量。 图1 电磁系仪表的指示系统,因线圈的转动惯量不同,可分别用于测量微小电流(检流计)或电量(冲击电流计)。在发动机叶片、飞轮、陀螺以及人造卫星的外形 设计上,精确地测定转动惯量,都是十分必要的。 2、转动惯量的公式推导 测定刚体转动惯量的方法很多,常用的有三线摆、扭摆、复摆等。本实验采用的是三线摆,是通过扭转运动测定物体的转动惯量,其特点是无力图像清楚、操作简便易行、适合各种形状的物体,如机械零件、电机转子、枪炮弹丸、电风扇的风叶等的转动惯量都可用三线摆测定。这种实验方法在理论和技术上有一定的实际意义本实验的目的就是要求学生掌握用三线摆测定物体转动惯量的方法,并验证转动惯量的平行轴定理。 两半径分别为r '和R '(R '>r ')的刚性均匀圆盘,用均匀分布的三条等长l 的无弹性、无质量的细线相连,半径为r '的圆盘在上,作为启动盘,其悬点到盘心的距离为r ;半径为 R '的圆盘在下,作为悬盘,其悬点到盘心的距离为R 。将启动盘固定,则构成一振动系统, 称为三线摆(图2)。当施加力矩使悬盘转过角0θ后,悬盘将绕中心轴O O ''做角简谐振动。 A 振动法测转动惯量——三线摆

额定功率、额定转速和额定转矩 惯量和力矩

额定功率、额定转速和额定转矩惯量和力矩 额定功率P、额定转速N和额定转矩T: 转矩T可以从功率P和转速N算得: 公式说明,同一功率下,转矩和转速成反比,即使用减速箱放大输出转矩时,同时会减少转速。 从力的做功角度,得推导过程如下: 其中: F为电机输出合力,单位为N(牛); r为力臂,单位为m(米); N为电机转速,单位为RPM(转/分)。 我们知道,转矩T的定义是力(F)乘以力臂(r),即: 故,把上式代入可得: 其中: P为电机额定功率,单位为W; T为电机额定转矩,单位为N·m; N为电机额定转速,单位为RPM。 惯量和力矩的关系: 电机有小惯量、中惯量和大惯量之分,同一功率下,电机转动惯量J越大, 则电机的输出转矩越大,但速度越低。故,小惯量电机有响应速度快的优点, 当然,这前提是其所拖负载的惯量不能太大。 惯量的单位为Kgm2,其定义如下,从能量角度: 由于式中质量和半径对于特定对象,是不变的,所以把它们提取出来,便成 为了惯量J:

从做功的角度分析,电机输出转矩做功W为: 理想下,电机转矩做功全部转化为功能,得: 故得: 即: 其中: T为转矩,单位为N·m; J为总惯量,单位为Kgm2; β为角加速度,单位为rad/s2; 从式中可得到,惯量和加速度有直接关系,在特定应用场合,如果负载惯量恒定且已知,则可从要求的加速要求算出电机的输出转矩,作为电机选型的参数之一。 总结 关于电机的额定功率、额定转矩、额定转速、转动惯量,如果为一电机安装减速箱,则电机的安额定功率不变,额定转矩增大、额定转速减少、转动惯量增大。所以,为一系统选择电机,需要知道系统的负载惯量、要求的最大转速、要求的最大加/减速时间、系统电压等要求、从而算出一系列的电机参数,再进行电机选型,从而既能满足系统要求又不构成浪费。

关于惯量转矩计算的方法

伺服电机惯量Jm和负载惯量Jl之间的关系如下: Jl<5×Jm 负载惯量的计算。 由电机驱动的所有运动部件,无论旋转运动的部件,还是直线运动的部件,都成为电机的负载惯量。电机轴上的负载总惯量可以通过计算各个被驱动的部件的惯量,并按一定的规律将其相加得到。 1)圆柱体惯量如滚珠丝杠,齿轮等围绕其中心轴旋转时的惯量可按下面公式计算:J=(πγ/32)*D4L(kg cm2) 如机构为钢材,则可按下面公式计算:J=(0.78*10-6)*D4L(kg cm2) 式中: γ材料的密度(kg/cm2)D圆柱体的直经(cm)L圆柱体的长度(cm) 材料的比重: 钢------7.8×10 –3 [ kg / cm3 ] 铝------ 2.7×10 –3 [ kg / cm3 ] 2)轴向移动物体的惯量工件,工作台等轴向移动物体的惯量,可由下面公式得出:J=W*(L/2π)2 (kg cm2) 式中: W直线移动物体的重量(kg) L电机每转在直线方向移动的距离(cm) 3) 圆柱体围绕中心运动时的惯量 如大直经的齿轮,为了减少惯量,往往在圆盘上挖出分布均匀的孔这时的惯量可以这样计算: J=Jo+W*R2(kg cm2) 式中:Jo为圆柱体围绕其中心线旋转时的惯量(kgcm2) W圆柱体的重量(kg) R旋转半径(cm) 4)相对电机轴机械变速的惯量计算将上图所示的负载惯量Jo折算到电机轴上的计算方法如下: J=(N1/N2)2Jo 式中:N1 N2为齿轮的齿数 负载转矩的计算 负载转矩的计算方法加到伺服电机轴上的负载转矩计算公式,因机械而异。但不论何种机械,都应计算出折算到电机轴上的负载转矩。 通常,折算到伺服电机轴上的负载转矩可由下列公式计算: Tl=(F*L/2πμ)+T0 式中:Tl折算到电机轴上的负载转矩(N.M); F:轴向移动工作台时所需要的力; L:电机轴每转的机械位移量(M); To:滚珠丝杠螺母,轴承部分摩擦转矩折算到伺服电机轴上的值(N.M); Μ:驱动系统的效率 F:取决于工作台的重量,摩擦系数,水平或垂直方向的切削力,是否使用了平衡块(用在垂直轴)。 无切削时: F=μ*(W+fg),切削时: F=Fc+μ*(W+fg+Fcf)。 W:滑块的重量(工作台与工件)Kg;

实验七 用三线摆法测定物体的转动惯量

实验七 用三线摆法测定物体的转动惯量 转动惯量是刚体转动惯性大小的量度,是表征刚体特性的一个物理量。转动惯量的大小除与物体质量有关外,还与转轴的位置和质量分布(即形状、大小和密度)有关。如果刚体形状简单,且质量分布均匀,可直接计算出它绕特定轴的转动惯量。但在工程实践中,我们常碰到大量形状复杂、且质量分布不均匀刚体,理论计算将极为复杂,通常采用实验方法来测定。 转动惯量的测量,一般都是使刚体以一定的形式运动。通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。测量刚体转动惯量的方法有多种,三线摆法是具有较好物理思想的实验方法,它具有设备简单、直观、测试方便等优点。 一 实 验 目 的 (1)学会用三线摆测定物体的转动惯量。 (2)学会用秒表测量周期运动的周期。 (3)验证转动惯量的平行轴定理。 二 实 验 原 理 图1是三线摆实验装置的示意图。上、下圆盘均处于水平,悬挂在横梁上。三个对称分布的等长悬线将两圆盘相连。上圆盘固定,下圆盘可绕中心轴O O '作扭摆运动。当下盘转动角度很小,且略去空气阻力时,扭摆的运动可近似看作简谐运动。根据能量守恒定律和刚体转动定律均可以导出物体绕中心轴O O '的转动惯量(推导过程见本实验附录)。 2 2 004T H gRr m I π= (1) 式中各物理量的意义如下:0m 为下盘的质量;r 、R 分别为上下悬点离各自圆盘中心的距离;0 H 为平衡时上下盘间的垂直距离;T 0为下盘作简谐运动的周期,g 为重力加速度(在杭州地区g =9.793m/s 2 )。 将质量为m 的待测物体放在下盘上,并使待测刚体的转轴与O O '轴重合。测出此时下盘运动周期1T 和上下圆盘间的垂直距离H 。同理可求得待测刚体和下圆盘对中心转轴O O '轴的总转动惯量为: 2 1 2 014)(T H gRr m m I π+= (2) 如不计因重量变化而引起的悬线伸长, 则有0 H H ≈。那么,待测物体绕中心轴O O '的转动惯量为: ])[(42 002 102 01T m T m m H gRr I I I -+π= -= (3) 因此,通过长度、质量和时间的测量,便可求出刚体绕某轴的转动惯量。 用三线摆法还可以验证平行轴定理。若质量为m 的物体绕过其质心轴的转动惯量为c I ,当转轴平行移动距离x 时(如图2所示),则此物体对新轴O O '的转动惯量为2 ' mx I I c oo +=。这一结论称为转动惯量的平行轴定理。 实验时将质量均为m',形状和质量分布完全相同的两个圆柱体对称地放置在下圆盘上(下盘有对称的两排小孔)。按同样的方法,测出两小圆柱体和下盘绕中心轴O O '的转动周期x T ,则可求出每个柱体对中心转轴O O '的转动惯量: ?? ? ???-π+= 022 04)'2(21I T H gRr m m I x x (4) 如果测出小圆柱中心与下圆盘中心之间的距离x 以及小圆柱体的半径x R ,则由平行轴定理可求得 2 2 2 1x x m'R m'x I'+ = (5) 比较x I 与x I'的大小,可验证平行轴定理。 三 实 验 仪 器 三线摆(包含米尺、游标卡尺、物理天平以及待测物体)和秒表。 四 实 验 内 容 1.测定圆环对通过其质心且垂直于环面轴的转动惯量 (1)调整底座水平:调整底座上的三个螺钉旋钮,直至底板上水准仪中的水泡位于正中间。 (2)调整下盘水平:调整上圆盘上的三个旋钮(调整悬线的长度),改变三悬线的长度,直至下盘水 图1 三线摆实验装置图

常用物体转动惯量-与扭矩计算

附录1.常用物体转动惯量的计算 角加速度的公式a = (2n /60) /t 转矩 T=J* a =J*n*2 n /60) /t a -弧度/秒 t-秒 T -Nm n-r/min 图i 矩形结构定义 以a-a 为轴运动的惯量: m = VxS V =Lxhxw 公式中: 以b-b 为轴运动的惯量: 圆柱体的惯量 惯量的计算: / W I ■ b m 3 为 为为 位 位位 单单单 量积度 质体密12 (4L 2 + w 2 ) 矩形体的计算 Ja - a

图2圆柱体定义 m = Vx§ TTD12 V = ------ XL 4 Di r =— 2 mx[> (Dt2 空心柱体惯量

摆臂的惯量 m = Vx3 4 m / (P O 2 +D 2 ')+ L 2> ~4 \ 4 +_ 1 > 图3空心柱体定义 Jx = m x (Do 2 + DF) 8

曲柄连杆的惯量 图4-1摆臂1结构定义 图4-2摆臂2结构定义 J = m.R 2

J = m R? + rm n2 图5曲柄连杆结构定义 带减速机结构的惯量

齿形带传动的惯量 J M :电机惯量 J L :负載惯量 J L

用三线摆法测定物体的转动惯量

用三线摆法测定物体的转动惯量 --实验报告 实验目的 1、了解三线摆原理,并会用它测定圆盘、圆环绕对称轴的转动惯量; 2、学会秒表、游标卡尺等测量工具的正确使用方法,掌握测周期的方法; 3、加深对转动惯量概念的理解。 4、验证转动惯量的平行轴定理 5、研究物体的转动惯量与其质量、形状(密度均匀时)及转轴位置的关系 实验器材 三线摆、米尺、游标卡尺、天平、数字毫秒计、待测物、三线摆仪 实验原理 1、测悬盘绕中心轴转动时的转动惯量 当三线摆下盘扭转振动,其转角θ 很小时,其扭动是一个简谐振 动,其运动方程为: t T 0 0π2sin θθ= (1) 当摆离开平衡位置最远时,其重心升高h ,根据机械能守恒定律有: mgh I =2 02 1ω (2) 即 2 2ωmgh I = (3) 而 t T T dt d π 2cos π20θθ ω= = (4) 0 0π2T θω= (5) 将(4-5)式代入(4-2)式得 图1 原理图

2 22π2θmghT I = (6) 从图1中的几何关系中可得 222022)(cos 2)(r R H l Rr R h H -+==θ-+- 简化得 )cos 1(2 02 θ-=-Rr h Hh 略去2 2 h ,且取2/cos 1200θθ≈-,则有: H Rr h 220θ= 代入(6)式得 224T H gRr m I π= (7) 即得公式 2 00 2 004T H gRr m I π= (8) (7)式的适用条件为: 1、摆角很小,一般要求o 5<θ; 2、摆线l 很长,三条线要求等长,张力相同; 3、大小圆盘水平; 4、转动轴线是两圆盘中心线。 实验时,测出0m 、H r R 、、及0T ,由(8)式求出圆盘的转动惯量0I 。 2、测圆环绕中心轴转动的转动惯量 (1)若在下圆盘上放一质量为m ,转动惯量为I (对O 1O 2轴)的物体时,测出周期T 整个扭转系统的转动惯量为 I ’=()02020 4m m gRr I I T d π++= (9) 那么,被测物体的转动惯量为I=I ’-I 0 实验时,测出0m 、m 、H r R 、、及T ,由(8)式求出物体的转动惯量I 。

转动惯量计算过程

转矩给定百分之十的卷取电机转速曲线,电机参考转速2000rpm,电机参考转矩3008Nm ,根据公式M-Mf=J*△ω/△T 。 △ω=0.09484*2000*2*π÷60=19.863 rad/s △T=2s M=0.1*3008=300.8Nm 300.8-M f=J*〔19.863÷2 〕①

转矩给定百分之十五的卷取电机转速曲线,电机参考转速2000rpm,电机参考转矩3008Nm ,根据公式M-Mf=J*△ω/△T 。 △ω=0.14735*2000*2*π÷60=30.861rad/s △T=2s M=0.15*3008=451.2Nm 451.2-M f=J*〔30.861÷2 〕② 根据式①②得到J=27.351 kg·m2M f=29.161 Nm

根据圆柱刚体绕圆心轴旋转的转动惯量公式:J=mr2÷2 ,假设钢卷外径D1米,内径D2米,带钢宽度b米,密度ρkg/m3, 传动比i 。钢卷的实时转动惯量 J1=π*b*ρ(D14 -D24)÷32 钢卷的实时转动惯量转换到电机侧 J2=J1÷i2=π*b*ρ(D14 -D24)÷32 ÷i2③ 例如钢卷外径D1=1米,钢卷内径D2=0.508米,带钢宽度b=1米,密度ρ=7800kg/m3,传动比i=8,线加速度10米每分钟每秒,那么J2=π*b*ρ(D14 -D24)÷32 ÷i2 =3.14*1*7800*(1-0.0666) ÷32÷64=11.17 kg·m2 此时的转动惯量总和:J=27.351+11.17=38.521kg·m2 角加速度:△ω/△T=10÷(π* D1)*i *2π÷60=2.667 rad/s2 转动惯量力矩:M= J*△ω/△T=38.521*2.667=102.7355Nm

常用物体的转动惯量与扭矩的计算

附录1.常用物体转动惯量的计算 角加速度的公式a = (2n /60) /t 转 矩T=J* a =J*n*2 n /60) /t a -弧度/秒t-秒T -Nm n-r/min 图i矩形结构定义 以a-a为轴运动的惯量: 惯量的计算: / W 为 为 为 位 位 位 单 单 单 量 积 度 质 体 密 m v / m 1 2 公式中: 以b-b为轴运动的惯量: 圆柱体的惯量 图2圆柱体定义 m = Vx3 V=Lxhxw 矩形体的计算

m = Vx3 Di r =— 2 J旳严尽匹 2 8 m = Vx3 4 _ m x (Do2+ Di2) Jx— ----------------- m '(Po2+D2) _L2> 1t 4+_3 > 摆臂的惯量 TTD I2 "T~ xt (Di2r、 3 丿 空心柱体惯量 图3空心柱体定义

图4-1摆臂1结构定义 图4-2摆臂2结构定义J = m.R2 曲柄连杆的惯量

图5曲柄连杆结构定义带减速机结构的惯量 图6带减速机结构定义齿形带传动的惯量J = m R? + rm n2 J M:电机惯量 J L :负載惯量 J L^M :负载惯量折算到电机侧的惯量M L :负载较矩 J R:减速机折算到输入的愤量 R :减速比 r]R :减速机效率 R= — = - = Ry.&L 3w= R X3L 9L Q}L ■总-惯量: ■折算到电机侧的力矩: M, Mz"%彷R片 R J M卡J R +J I J W ■根据能量守恒定律;

图7齿形带传动结构 齿轮 组减速结构的惯量 J M :电机惯量 J L :负载惯量 Mi :负载力矩 J PM :电机侧带轮惯量 □PM :电机侧带轮直径 N TM :电机侧带轮齿数 JPL :负载侧带轮惯量 □PL :负载带轮直径 N TL :负载带轮齿数 q :减速机效率 me :皮带质量 M L J M :电机惯量 J L :负載惯量 M L :负载扭矩 J GM :电机側齿轮惯量 N IM :电机侧齿轮齿数 J GL :负载齿轮惯量 N R :负载齿轮齿数 n :减 速机效率 图8齿轮组传动结构 滚珠丝杠的惯量 J 叫叭皿6ljwljml JpL> D R L + 6M = /?x Q L CO JW = R^UJ L D PL 时7> ■折算到电机扭矩: /Wi. T M 二 R=— eM=RxQL N TM ■折算到电机力矩:

转动惯量计算公式转动惯量公式

转动惯量计算公式转动惯 量公式 The Standardization Office was revised on the afternoon of December 13, 2020

1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2 MD J = 对于钢材:341032-??= g L rD J π ) (1078.0264s cm kgf L D ???- M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22 ? ?? ???=n v J π g w 2s 2 ? ?? ??=π (kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 1 22 22 1????? ???????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 2 g w R J = (kgf·cm·s 2) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)

转动惯量计算方法

实验三刚体转动惯量的测定 转动惯量是刚体转动中惯性大小的量度。它与刚体的质量、形状大小和转轴的位置有关。形状简单的刚体,可以通过数学计算求得其绕定轴的转动惯量;而形状复杂的刚体的转动惯量,则大都采用实验方法测定。下面介绍一种用刚体转动实验仪测定刚体的转动惯量的方法。实验目的: 1、理解并掌握根据转动定律测转动惯量的方法; 2、熟悉电子毫秒计的使用。 实验仪器: 刚体转动惯量实验仪、通用电脑式毫秒计。 仪器描述: 刚体转动惯量实验仪如图一,转动体系由十字型承物台、绕线塔轮、遮光细棒等(含小滑轮)组成。遮光棒随体系转动,依次通过光电门,每π弧度(半圈)遮光电门一次的光以计数、计时。塔轮上有五个不同半径(r)的绕线轮。砝码钩上可以放置不同数量的砝码,以获得不同的外力矩。 实验原理: 空实验台(仅有承物台)对于中垂轴OO’的转动惯量用J o表示,加上试样(被测物

体)后的总转动惯量用J 表示,则试样的转动惯量J 1 : J 1 = J –J o (1) 由刚体的转动定律可知: T r – M r = J α (2) 其中M r 为摩擦力矩。 而 T = m(g -r α) (3) 其中 m —— 砝码质量 g —— 重力加速度 α —— 角加速度 T —— 张力 1. 测量承物台的转动惯量J o 未加试件,未加外力(m=0 , T=0) 令其转动后,在M r 的作用下,体系将作匀减速转动,α=α1,有 -M r1 = J o α1 (4) 加外力后,令α =α2 m(g –r α2)r –M r1 = J o α2 (5) (4)(5)式联立得 J o = 21 2212mr mgr ααααα--- (6) 测出α1 , α2,由(6)式即可得J o 。 2. 测量承物台放上试样后的总转动惯量J ,原理与1.相似。加试样后,有 -M r2=J α3 (7) m(g –r α4)r –Mr 2= J α4 (8) ∴ J = 23 4434mr mgr ααααα--- (9) 注意:α1 , α3值实为负,因此(6)、(9)式中的分母实为相加。 3. 测量的原理 设转动体系的初角速度为ωo ,t = 0 时θ= 0 ∵ θ=ωo t + 2 2 1t α (10) 测得与θ1 , θ2相应的时间t 1 , t 2 由 θ1=ωo t 1 + 2121t α (11) θ2=ωo t 2 + 2 22 1t α (12) 得 2 2 11222112) (2t t t t t t --= θθα (13) ∵ t = 0时,计时次数k=1(θ=л时,k = 2)

转动惯量计算折算公式

1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2 MD J = 对于钢材:341032-??= g L rD J π ) (1078.0264s cm kgf L D ???- M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22 ? ? ? ???=n v J π g w 2s 2 ??? ??=π (kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 1 22 22 1??? ?? ???????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 2 g w R J = (kgf·cm·s 2) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)

6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 ??? ? ??++=2221g w 1R J i J J t J 1,J 2-分别为Ⅰ轴, Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2); R-齿轮z 分度圆半径(cm); w-工件及工作台重量(kgf)。 马达力矩计算 (1) 快速空载时所需力矩: 0f am ax M M M M ++= (2) 最大切削负载时所需力矩: t 0f t a M M M M M +++= (3) 快速进给时所需力矩: 0f M M M += 式中M amax —空载启动时折算到马达轴上的加速力矩(kgf·m); M f —折算到马达轴上的摩擦力矩(kgf·m); M 0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf·m); M at —切削时折算到马达轴上的加速力矩(kgf·m); M t —折算到马达轴上的切削负载力矩(kgf·m)。 在采用滚动丝杠螺母传动时,M a 、M f 、M 0、M t 的计算公式如下: (4) 加速力矩: 2a 106.9M -?= T n J r (kgf· m) s T 17 1= J r —折算到马达轴上的总惯量; T —系统时间常数(s); n —马达转速( r/min ); 当 n = n max 时,计算M amax n = n t 时,计算M at n t —切削时的转速( r / min )

转动惯量

转动惯量引自百度百科本词条由“科普中国”科学百科词条编写与应用工作项目审核。 转动惯量(MomentofInertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。[1]在经典力学中,转动惯量(又称质量惯性矩,简称惯距)通常以I或J表示,SI单位为kg·m2。对于一个质点,I=mr2,其中m是其质量,r是质点和转轴的垂直距离。转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形式地理解为一个物体对于旋转运动的惯性,用于建立角动量、角速度、力矩和角加速度等数个量之间的关系。 中文名 转动惯量 外文名 MomentofInertia 表达式 I=mr2 应用学科 物理学 适用领域范围 刚体动力学 适用领域范围 土木工程

基本含义 质量转动惯量 其量值取决于物体的形状、质量分布及转轴的位置。刚体的转动惯量有着重要的物理意义,在科学实验、工程技术、航天、电力、机械、仪表等工业领域也是一个重要参量。电磁系仪表的指示系统,因线圈的转动惯量不同,可分别用于测量微小电流(检流计)或电量(冲击电流计)。在发动机叶片、飞轮、陀螺以及人造卫星的外形设计上,精确地测定转动惯量,都是十分必要的。 转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。形状规则的匀质刚体,其转动惯量可直接用公式计算得到。而对于不规则刚体或非均质刚体的转动惯量,一般通过实验的方法来进行测定,因而实验方法就显得十分重要。转动惯量应用于刚体各种运动的动力学计算中。 转动惯量的表达式为 若刚体的质量是连续分布的,则转动惯量的计算公式可写成 (式中表示刚体的某个质元的质量,r表示该质元到转轴的垂直距离,ρ表示该处的密度,求和号(或积分号)遍及整个刚体。)[2] 转动惯量的量纲为,在SI单位制中,它的单位是。 此外,计算刚体的转动惯量时常会用到平行轴定理、垂直轴定理(亦称正交轴定理)及伸展定则。 面积转动惯量 有实际应用价值的只是平面积的转动惯量,平面积A对平面内互相垂直的x和y轴的转动惯量分别为和,式中x,y为面元d A的位置坐标。平面积A对于通过x,y轴交点并同它们互相垂直的z轴的转动惯量(又称极转动惯量)为: 式中为面元d A至z轴的垂直距离(见截面的几何性质)。面积转动惯量常用的单位有厘米和等。 描述面积绕同它垂直的互相平行诸转轴的转动惯量之间的关系有如下的平行轴定理:面积对于一轴的转动惯量,等于该面积对于同此轴平行并通过形心之轴的转动惯量加上该面积同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此面积绕过形心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。[3]

大学物理实验-用三线摆法测定物体的转动惯量

用三线摆法测定物体的转动惯量 转动惯量是刚体在转动中惯性大小的量度,它与刚体的总质量、形状大小、密度分布和转轴的位置有关。对于形状较简单的刚体,可以通过数学方法算出它绕特定轴的转动惯量。但是,对于形状较复杂的刚体,用数学方法计算它的转动惯量非常困难,大都用实验方法测定。例如:机械零部件、电机转子及枪炮弹丸等。因此学会刚体转动惯量的测定方法,具有重要的实际意义。 测量转动惯量,一般是使刚体以一定形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。常用的测量方法有三线扭摆法、单线扭摆法、塔轮法等。本实验采用三线扭摆法,由摆动周期及其他参数的测定计算出物体的转动惯量。为了便于和理论值进行比较,实验中的被测物体一般采用形状规则的物体。 【实验目的】 1、掌握三线扭摆法测量物体转动惯量的原理和方法; 2、研究物体的转动惯量与其质量、形状(密度均匀时)及转轴位置的关系; 3、学会正确测量长度、质量和时间的方法。 【实验仪器】 FB210型三线摆转动惯量测定仪、游标卡尺、钢卷尺、数字毫秒计、物理天平、待测物体等。 【实验原理】 图1是三线摆实验装置的示意图。上、下圆盘均处于水平,悬挂在横梁上。三个对称分布的等长悬线将两圆盘相连。上圆盘固定,下圆盘可绕中心轴O O '作扭摆运动。当下盘转动角度很小,且略去空气阻力时,扭摆的运动可近似看作简谐运动。根据能量守恒定律和刚体转动定律均可以导出物体绕中心轴O O '的转动惯量(推导过程见本实验附录)。 200 2004T H gRr m I π= (1) 式中各物理量的意义如下:0m 为下盘的质量;r 、R 分别 为上下悬点离各自圆盘中心的距离;0H 为平衡时上下盘间的垂 直距离;T 0为下盘作简谐运动的周期,g 为重力加速度(在杭州 地区g =9.793m/s 2 )。 将质量为m 的待测物体放在下盘上,并使待测刚体的转轴与O O '轴重合。测出此时下盘运动周期1T 和上下圆盘间的垂直距离H 。同理可求得待测刚体和下圆盘对中心转轴O O '轴的总转动惯量为: 212014)(T H gRr m m I π+= (2) 如不计因重量变化而引起的悬线伸长, 则有0H H ≈。那么,待测物体绕中心轴O O '的转动惯量为: ])[(42002102 01T m T m m H gRr I I I -+π= -= (3) 因此,通过长度、质量和时间的测量,便可求出刚体绕某轴的转动惯量。 用三线摆法还可以验证平行轴定理。若质量为m 的物体绕过其质心轴的转动惯量为c I , 图1 三线摆实验装置图

相关文档
最新文档