感性负载下三相三线错误接线快速判断

感性负载下三相三线错误接线快速判断
感性负载下三相三线错误接线快速判断

感性负载下三相三线错误接线快速判断摘要:感性负载下三相三线的错误接线有46种,但每种错误接线的误差利用传统方法进行判断至少需要15~20 min。本文通过对46中错误接线的规律进行总结,能够在5 min内迅速判断并计算出错误接线的误差值,大大提高了电能表错误接线判断的速度。对于感性负载下电能表三相三线错误接线判断的比赛有一定的帮

助作用,但该方法用于现场错误接线却存在着一定的局限性。

关键词:感性三相三线快速判断

中图分类号:tm933 文献标识码:a 文章编号:1672-3791(2013)02(c)-0139-02

近些年电力公司举办了各类职工技能竞赛,其中电能表故障判断为众多竞赛项目之一,比赛中要取得较好的成绩除了判断正确,加快判断速度已然成为首要解决的问题。针对该项目,我们在比赛中总结了相关的经验,对感性负载下46种错误接线的相关规律进行了总结,从而提高在感性负载下三相三线电能表故障判断的速度及正确度。

1 常用计量故障判断原理及方法

三相三线两元件有功电能计量装置能基本保证ia+ib+ic=0,仅用两个元件就能正确计量三相电能,而且为高供高计,电能表安装在用户变压器的高压侧。其故障接线包括电能表电压回路和电流回路的错误接线、电压互感器和电流互感器的极性反接、电压互感器

三相三线电能表正确接线的简易判别法

三相三线有功电能表计量三相三线有功电能,有两种非标准正确接线方式:(1)元件1采用线电压UBC和相电流ib,元件2采用线电压UAC和相电流iA,这种接线方式的瞬间功率表达式为P=UBCib+UACiA;(2)元件1采用线电压UCA和相电流ic,元件2采用线电压UBA和相电流ib,这种接线方式的瞬间功率表达式为P=UCAic+UBAib。在三相三线系统中,如果B相接地,则这两种非标准接线方式就可能漏计电度。比如:高压两线一地输电方式或低压三相三线供电方式,B相在电能表外的电源侧和负荷侧若同时接地运行,则三相三线有功电能表必然漏计电度,因此通常不采用这两种接线方式。而常用的标准正确接线只有一种(如图1),错误接线却有许多种。为了迅速地判别电能表接线是否正确,可采用下述简易方法: (1)首先对任何正转的电能表,如果原电能表接线正确,通过三次对调任意两根电压进线后,三次电能表都应停转,如不停转或有一次不停转,则证明原电能表接线肯定有错误。因为原电能表接线如果正确,对调任意两根电压进线后,其功率计算如下: ①对调A、B两相电压(矢量图如图2a所示)其功率为: -φA)=-U Icos(30°+φ) ②对调B、C两相电压(矢量图如图2b所示),其功率为: -φA)=UIcos(30°-φ) -UIcos(30°-φ) ③对调A、C两相电压(矢量图如图2c所示),其功率为: -UIcos(90°-φ) -φC)=UIcos(90°-φ) 三次对调电压进线后,从电能表的功率计算说明,如果原接线正确,在对调电压进线后都应停转(或有微动)。 (2)通过三次对调电压进线,如果电能表三次都停转,只能说明原电能表接线可能正确。电能表对调电压进线停转,只是电能表原接线正确的必要条件,还不是充分条件。为此还必须进一步进行判断。方法是:首先断开B相电压,此时电能表每分钟转数应为原接线电能表每分钟转数的一半。因为在原接线正确情况下,断开B相电压进线(参看图1虚线处断开),其功率为: -φA)=UIcos(30°-φ) UIcosφ 从功率计算说明,在电能表正确接线时,断开B相电压电能表正转速度应降低一半。然后再把A、C两相电压进线对调,使电能表停转,继续进行断开电压进线的试验。先断开A相电源进线,则电能表的功率为: -UIsinφ 再断开C相电源的电压进线,则电能表的功率为: -φC)=-UIcos(90°-φ)=UIsinφ 功率值P1和P2大小相等,方向相反。说明无论用户的功率因数如何,两次断线后,电能表的转数都应一样,但转向相反。

三相三线电能计量装置错误接线检查作业指导书.doc

三相三线有功电能表错误接线检查作业指导书 一、任务要求: 1、遵守安全工作规程,正确使用仪表; 2、画出向量图,描述故障错误; 3、列出各元件功率表达式及总的功率表达式; 4、求出更正系数 二、适用范围: 电压互感器采用两台单相互感器按V/v 0方式连接,电流互感器采用分开四线制连接方式。所接负载为一块三相三线有功电能表和一块三相三线(60°)无功电能表、电压回路阻抗对称的感性负载(容性负载的分析方法可类推)功率因数COS Φ>0.5(Φ<60°)。 三、配备工具: 一块数字式相位伏安表(仅提供一组电压测试线和一个电流钳)。 四、相关知识: (一)三相三线有功电能表正确接线的相量图 (二)正确功率表达式: )30cos(1u u uv I U P ?+?= )30cos(2w w wv I U P ?-?= ???cos 3)30cos()30cos( 210UI I U I U P P P w w wv u u uv =-?++?=+= )090:900:(οοοο≤≤-≤≤??容性时感性时 (三)电压互感器一次断线、二次断线、二次极性反接情况的电路分析。 1、电压互感器V 型接线一、二次断线时二次侧线电压数值表:

下表列出了当一次断和二次断电压时,二次侧各相与相间电压的数值。 序号故障 断线 情况 故障断线接线图 (实线为有功电能表, 虚线为无功电能表) 电压互感器一、二次断线时二次侧电压(V) 二次侧不接 电能表(空载) 二次侧接一只 有功电能表 二次侧接一只有功 电能表和一只无功电 能表 Uuv Uwv Uwu Uuv Uwv Uwu Uuv Uwv Uwu 1 一次 侧U 相断 相 0 100 100 0 100 100 50 100 50 2 一 次侧V 相断 相 50 50 100 50 50 100 50 50 100 3 一 次侧 W相 断相 100 0 100 100 0 100 100 33 67 4 二次 侧u相 断相 0 100 0 0 100 100 50 100 50 5 二 次侧 v相断 相 0 0 100 50 50 100 67 33 100 6 二 次侧w 相断 相 100 0 0 100 0 100 100 33 67

关于三相三线智能表错接线的判断

关于三相三线智能表错 接线的判断 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

关于三相三线智能表错接线的判断与纠正 一、了解三相三线正确接线的几种情况 图1U ab*I a与U cb*I c两组电能和 图2U ca*I c与U ba*I b两组电能和 图3U bc*I b与U ac*I a两组电能和 说明:图2和图3在实际情况下和图1是完全一样的。仔细看一下就会发现图2是图1中把母排的A相移到了内侧,可以把电压看成是图1的B、C、A排列。图3是图1中把母排的C相移到了外侧,可以看成是图1的C、A、B排列,其他均没有任何改变,并且从左到右都是正相序。由于习惯,我们总是认为母排是A、B、C顺序排列的,所以,图2和图3的电能表达式就和图1有点区别,但对于计量来说,三者没有任何差别。了解这一点,就会发现A、B、C实际是我们人为定义的。 二、三相三线接线中,几个特点需了解 1、正常接线情况下,如果电压电流均以U ab作为参考方向的 话,那么A相(U ab)电压角为0°,C相(U cb)电压角为300°,A相电流角(Ia与U ab)为30°附近,C相电流角(Ic 与U ab)为270°附近。 2、A相电流角与C相电流角的差大约为240°(或120°), 如果两者差为60°,则一定有一相电流是接反的。 3、错接线时,既可以通过电压线调整,也可以通过电流线来 调整,因为所谓的A、B、C只是一个参考的方向。目的是要通过接线调整,满足上述3个条件的情况。 4、三相三线中,作为参考零线的这个相上(如图1中的B 相)是没有电流采样的。通过向量图,调整电压接线,把没有电流的这个相,确定为参考零线,接入电表B相的位置。

关于三相三线智能表错接线的判断

关于三相三线智能表错接 线的判断 This manuscript was revised on November 28, 2020

关于三相三线智能表错接线的判断与纠正一、了解三相三线正确接线的几种情况 图1U ab*I a与U cb*I c两组电能和 图2U ca*I c与U ba*I b两组电能和 图3U bc*I b与U ac*I a两组电能和 说明:图2和图3在实际情况下和图1是完全一样的。仔细看一下就会发现图2是图1中把母排的A相移到了内侧,可以把电压看成是图1的B、C、A排列。图3是图1中把母排的C相移到了外侧,可以看成是图1的C、A、B排列,其他均没有任何改变,并且从左到右都是正相序。由于习惯,我们总是认为母排是A、B、C顺序排列的,所以,图2和图3的电能表达式就和图1有点区别,但对于计量来说,三者没有任何差别。了解这一点,就会发现A、B、C 实际是我们人为定义的。 二、三相三线接线中,几个特点需了解 1、正常接线情况下,如果电压电流均以U ab 作为参考方向的话,那么A相 (U ab )电压角为0°,C相(U cb )电压角为300°,A相电流角(Ia与U ab )为 30°附近,C相电流角(Ic与U ab )为270°附近。 2、A相电流角与C相电流角的差大约为240°(或120°),如果两者差为 60°,则一定有一相电流是接反的。 3、错接线时,既可以通过电压线调整,也可以通过电流线来调整,因为所 谓的A、B、C只是一个参考的方向。目的是要通过接线调整,满足上述3个条件的情况。 4、三相三线中,作为参考零线的这个相上(如图1中的B相)是没有电流 采样的。通过向量图,调整电压接线,把没有电流的这个相,确定为参考零线,接入电表B相的位置。 三、案例分析 案例1:已知三相三线智能表如下信息,表计提示逆相序,请画出向量图并提供正确接线的方法。 通过遥控器显示:A相电压角0;C相电压角300;A相电流角275;C相电流角330

三相三线电度表正确接线的简易别法

三相三线电度表正确接线的简易别法 三相三线有功电能表计量三相三线有功电能,有两种非标准正确接线方式:(1)元件1采用线电压UBC和相电流ib,元件2采用线电压UAC和相电流iA,这种接线方式的瞬间功率表达式为P=UBCib+UACiA; (2)元件1采用线电压UCA和相电流ic,元件2采用线电压UBA和相电流ib,这种接线方式的瞬间功率表达式为P=UCAic+UBAib。在三相三线系统中,如果B 相接地,则这两种非标准接线方式就可能漏计电度。 比如:高压两线一地输电方式或低压三相三线供电方式,B相在电能表外的电源侧和负荷侧若同时接地运行,则三相三线有功电能表必然漏计电度,因此通常不采用这两种接线方式。而常用的标准正确接线只有一种(如图1),错误接线却有许多种。为了迅速地判别电能表接线是否正确,可采用下述简易方法:

(1)首先对任何正转的电能表,如果原电能表接线正确,通过三次对调任意两根电压进线后,三次电能表都应停转,如不停转或有一次不停转,则证明原电能表接线肯定有错误。因为原电能表接线如果正确,对调任意两根电压进线后,其功率计算如下:

①对调A、B两相电压(矢量图如图2a所示)其功率为: P1=UBAIAcos(150-φA)=-UIcos(30+φ) P2=UCAICcos(30+φC)=UIcos(30+φ) P=P1+P2=0 ②对调B、C两相电压(矢量图如图2b所示),其功率为: P1=UACIAcos(30-φA)=UIcos(30-φ) P2=UBCICcos(150+φC)=-UIcos(30-φ) P=P1+P2=0 ③对调A、C两相电压(矢量图如图2c所示),其功率为: P1=UCBIAcos(90+φA)=-UIcos(90-φ) P2=UABICcos(90-φC)=UIcos(90-φ) P=P1+P2=0 (1)首先对任何正转的电能表,如果原电能表接线正确,通过三次对调任意两根电压进线后,三次电能表都应停转,如不停转或有一次不停转,则证明原电能表接线肯定有错误。因为原电能表接线如果正确,对调任意两根电压进线后,其功率计算如下: ①对调A、B两相电压(矢量图如图2a所示)其功率为: P1=UBAIAcos(150-φA)=-UIcos(30+φ)

三相四线及三相三线错误接线向量图分析及更正

三相四线测量常识———————————————第一步:测三相电压测量U1n接线图如下: 测量U2n、U3n方法与上面图类似,移动红线到第二、第三元件电压端,零线不动。(注意选择交流500) 不带电压互感器时220V为正常,且三相电压数值相接近为正常。如果有某相为0,说明该相电压断线。 能够测出U1=_____V U2=_____V U3=_____V 第二步:测量各元件对参考点Ua的电压测量方法如下图: 测量方法与上类似,移动红线到第二、第三元件电压端,接参考点的连线不动。 目的:测出对参考点电压为0的该相确定为A相 能够测出U1a=_____V U2a=_____V U3a=_____V

第三步:测量三个元件的相电流测量I1的方法如下图: 测量其它相与上图类似,移动黑线到第二、第三元件电流进线端。 目的:判断各元件电流是否正常,正常是三相相电流相接近,如果有某相为0,说明该相电流开路或短路。 能测出I1=_____A I2=_____A I3=_____A 第四步:测量第一元件电压与各元件电流的相位角测量

第五步:测量第一元件与第二元件电压间的相位角 按照上图可以测出

三相三线电能表错误接线的判断方法分析

三相三线电能表错误接线的判断方法分析 发表时间:2018-07-02T15:50:34.547Z 来源:《科技新时代》2018年4期作者:洪登宇1 洪卫星2 刘继红2 [导读] 摘要:电能计量的准确性直接关系到供电企业和广大电力用户的经济利益。文章简述了三相三线电能表错误接线的判断原理,然后进一步分析三相三线电能表错误接线的判断方法。以三相三线制两元件有功电能表、电压互感器 V/V 接线B 相接地为例, 摘要:电能计量的准确性直接关系到供电企业和广大电力用户的经济利益。文章简述了三相三线电能表错误接线的判断原理,然后进一步分析三相三线电能表错误接线的判断方法。以三相三线制两元件有功电能表、电压互感器 V/V 接线B 相接地为例,介绍了测量和判断的方法,通过现场测量接入电能表的电压、电流及其相互间的相位、相序,即可判断出电能表的接线方式。 关键词:三相三线电能表;接线错误;判断方法 电能计量装置的正常运作是供电企业抄核收工作开展的前提,能否科学精准地进行电能计量,在一定程度上影响到抄核收工作的质量。对于高压线路的高供高计用户来说计量装置选择的是三相三线电能表,然而在实际计量中经常出现错接线问题,影响电能计量装置的精准计量,且三相三线电能表错误接线问题不易被察觉,对此有必要掌握科学的计量技术和方法。只有掌握科学的技术和方法,根据电能表错误接线的具体情况进行科学地预测、判断,才能确保及时发现问题,纠正计量表的错误接线。 1.三相三线电能表错误接线的判断原理 确保相关电能计量工作开展的目的在于三相三线电能表需处于正常的接线状态,但由于电能表接线较为复杂,若工作人员专业性不强、操作能力较低,则出现错误接线的可能性极大,不利于相关电能计量工作的高效、顺利开展,故需对其错误接线的判断方法进行研究。 三相三线有功电能表存在三种电压,即Ua 、Ub 、Uc ,共有六种对应的接线方法。可见,在日常工作中 相三线电能表出现错误接线的几率大、种类多,对电能计量效果造成严重影响,而对错误接线的判断具体可从以下几点入手:通过电压测试的方式对电压相序、PT极性等是否存在反接现象进行明确;通过电流测试的方式对CT极性是否存在反接现象进行明确;通过相角与功率测试可得出电流与电压之间的夹角,并对二者之间的矢量相别进行明确,以最终明确得出电能表不同构件在实际运行中其电压与电流的相别。 (1)若利用相位表进行角度测量,则电能表电压Ua 、Ub 、Uc ,所对应的电流分别为 I1 、 I3 ,若是逆相序,相位角则呈逆时针旋转;若利用功率表进行功率测量,得出 I1 、 I3 ,再结合电能表电压端的相别,参照Coscp的数值和电流值,可准确确定I1 、 I3 的相别。(2)明确电压端的电压相别。将Ua 、Ub 、Uc作为主要测量依据,在对应的六角图中准确定位 I1 、 I3 ,并添加错误电压,参照Coscp 值和测量得出的电流值,即可得出电流相别。 2.错误接线的判断方法分析 2.1电压回路的判断方法 2.1.1测量电压值(指线电压) 用万能表或相位伏安表的电压档,测量电能表进线盒电压端子 2、4、6(A、B、C)间的线电压并做好记录。三个线电压如接近相等,约为 100V,则说明电压互感器(TV)极性正确或均接反;如各线电压相差较大,且有某线间电压明显小于 100V,则说明电压回路存在断线或接触不良故障;当有某线电压接近(173V),则说明有一只 TV 极性接反。 2.1.2判断B相 检查时将电压表一端接地,另一端依次分别触及电能表电压端子2、4、6,对地无电压者即为B相,并做好记录。如皆有电压,则说明电压互感器(TV)不是 V/V 接线 B 相接地的接线方式,其可能原因是 TV 为 Y/Y0 接线或 V/V 接线而未将 B 相接地。 2.1.3测定三相电压的排列顺序(相序) 用相位伏安表或相序表都行,目前相序表使用普遍又方便。以相序表为例,对应电能表电压端子2、4、6 测出相序,结合上述已测出 B 相的基础上,确定三相电压的排列顺序。如所测相序为正相序,且已测定电能表接线盒 4 号端子为接地 B 相,则可认为三相电压时 A、 B、C 排列。如有姨 U 出现后,测得的相序与实际情况相反。 2.2电流回路的判断方法 (1)用一根临时导线,先将其一端良好接地,而另一端接触电能表电流出线端,观察铝盘的转向及转速,若电流回路接线正确无误,临时导线接触前后铝盘转速应无明显变化。 (2)用电流表或相位伏安表的电流档,测量由电流互感器(TA)引至电能表接线盒三根导线的电流值。如三相电流值接近相等,则说明电流互感器(TA)接线正确完好,或者全部极性反接;如三相差别较大甚至有的接近为零,则说明有断线或短路故障;当有某线电流是其他两相电流的姨3 倍,则说明有一只电流互感器(TA)一次侧或二次侧反接,而具体是哪一相电流互感器(TA)反接则通过下一步检查相位确定。 (3)核对“电流互感器(TA)变比”,如对于 380V供电的低压用户,可用钳形电流表直接测量一次电流值进行比较即可;如对于 10kV 供电的高压用户,高供低计的可用钳形电流表直接测量一次电流值加以比较,高供高计的则用钳形电流表测量变压器出口总电流通过换算后加以比较。 2.3检查电压、电流间的相位关系 (1)测量电能表进线电压、电流间的相位差角。用相位表或相位伏安表测量电表进线 UAB 与电流互感器引至电能表接线盒三根导线中 IA、IB、IC 之间的相位差,或者分别测量 UAB 与 IA 及 UBC 与 IC 的相位差。 (2)作向量图,判断电表外部电流回路接线。根据实测电压、电流值及相位关系,按一定比例作向量图,并参考正确接线时的向量区间图进行分析判断。 (3)画错误接线图,导出功率表达式。根据检查电压、电流做的记录,并结合向量图分析结果,对照正确接线图和已知的外部接线核对电表端子接线,然后作出完整的错误接线图,导出相应的功率表达式,以便得出更正系数,并与所观察到的电表转动情况比较核实。 3.结束语 综上所述,电能计量是现代电力营销系统的一个重要环节,一旦发生计量接线错误则会造成计量故障,且其计量误差值通常较大,而三

感性负载下三相三线错误接线快速判断

感性负载下三相三线错误接线快速判断 摘要:感性负载下三相三线的错误接线有46种,但每种错误接线的误差利用传统方法进行判断至少需要15~20 min。本文通过对46中错误接线的规律进行总结,能够在5 min内迅速判断并计算出错误接线的误差值,大大提高了电能表错误接线判断的速度。对于感性负载下电能表三相三线错误接线判断的比赛有一定的帮助作用,但该方法用于现场错误接线却存在着一定的局限性。 关键词:感性三相三线快速判断 Abstract:The perceptual load of three-phase wrong wiring three line 46,the error of each error wiring using traditional methods to determine needs at least 15~20 minutes.This paper summarizes the wrong wiring of 46 rules,can be in 5 minutes to quickly judge and calculate the error wiring,greatly improving the energy meter wiring error judgment rate.Is helpful for energy meter three-phase three wire wrong wiring judgment under inductive load game,but the method is used for wiring has certain limitation. Key Words:Emotional;Three-phase Three-wire;Quick;Judge 近些年电力公司举办了各类职工技能竞赛,其中电能表故障判断为众多竞赛项目之一,比赛中要取得较好的成绩除了判断正确,加快判断速度已然成为首要解决的问题。针对该项目,我们在比赛中总结了

三相三线有功电能表错误接线的判断方法分析

三相三线有功电能表错误接线的判断方法分析 当今电力工业发展速度迅猛,为了保证电力工业工作能够安全、可靠、准确的运行,我们必须依靠安装在电力生产场所的电能测量电压、电流和功率等参数的仪器仪表来保证。三相三线有功电能表一般有着五根到七根接线,并不复杂的结构,往往在接线时候会误接和漏接,特别是配有电流电压传感器的时候,电能表的接线往往就会出现错乱现象,接错的情况下,有可能指针不动或者倒转,这种接错方式很容易发现,接线人员可以及时的发现,给予重接。但是如果指针正常转动,粗心的接线人员很容易忽视,那个时候测量出来的数据偏差将会非常大,这也是计量不准的主要原因之一。 1 对于三相三线有功电能表的介绍 交流的能表的正确接线是保证电能表的正常工作的基本条件,因此要准确的计量电能,不仅仅要对电能表本身的精确度进行调整,对于外在的接线也要注意,并且接线引起来的误差往往很大。研究人员在测量的时候,如果对于数据的大小有所怀疑,首先要对电能表的接线进行检查。相对于三相四线有功电能表而言三相三线有功电能表接线比较复杂,更加容易接错,并且不容易被判断出来,因此对于三相三线有功电能表的研究有一定的代表意义。分析电能表的接线错误的方法有很多种,当前采用的典型方法为向量图法,所谓的向量图法就是利用计量仪器对于流经电能表的电流电压的研究,绘出相应的电流电压向量图,然后在结合电路中的负载情况判断三相电能表的接线对错。如若有误,可以再表中找到相应改进的途径。 2 电能表错误接线判断方法造成哪几种后果 1)电压回路的判断方法:首先确定PT及二次回路的运行状态是否正确,测量电压表的三个电压端间的电压高低正常是电能表的电压值应该在接近100伏特,如果一个电压值明显高于100伏特,那么就说明有一根线接错了,电压互感器的极性接反。相关人员应该及时的

三相三线电能表误接线对计量的影响分析

【摘要】三相三线电能表是在电力计量需求发展以及计量技术进步的条件下,在电力系统运行中应用的一种新计量装置。应用三相三线电能表在进行电能情况的计量过程中,由于电力系统中的电流互感器的相序以及极性错误问题,会容易造成三相三线电能表在进行接线计量应用中,出现误接线问题,从而对于电能表计量装置的计量结果造成一定的不利影响。本文将结合计量装置的计量准确性的重要作用意义,根据三相三线电能表误接线问题的具体情况,对于三相三线电能表误接线问题的计量影响进行分析论述,以提高三相三线电能表计量准确性。 【关键词】三相三线;电能表;误接线;计量结果;准确性 在电力运营中,电能计量装置的计量准确性对于电力企业以及电力用户的利益都有很大的影响,并且在一定程度上电能计量装置的电能计量结果准确性还对于电力能源的合理利用也具有一定的影响和作用。三相三线电能表是一种新型的电能计量装置,它多应用于10千伏以及以上的电压系统供电计量中。通常情况下,进行三相三线电能表的接线计量方法相对比较简单,但是在进行三相三线电能表接线过程中,由于电能计量装置中还带有电压互感器以及电流互感器,因此,在进行三相三线电能表安装接线过程中,就容易因为安装接线上的疏忽造成电能表误接线问题出现。通常情况下,三相三线电能表安装接线过程中,一旦出现误接线问题就容易导致电能表的电能计量结果存在误差和不准确情况,对于电能表的正常计量运转也会存在一定的影响,会出现不转动或者是反转情况。本文将结合三相三线电能表安装接线中可能发生的误接线问题与情况,对于电能表误接线问题的计量影响进行分析论述。 1.三相三线电能表误接线问题分析 通常情况下,在进行三相三线电能表等电能计量装置的安装过程中,电能表的安装接线过程比较简单,但是由于三相三线电能表是与电压互感器、电流互感器等连接在一起的,因此,在进行电能表的安装接线过程中,就会由于安装接线过程中疏忽问题,或者是对于电压互感器以及电流互感器的安装接线错误,直接影响到三相三线电能表的安装接线问题,导致误接线问题出现。三相三线电能表安装接线过程中,一旦出现误接线问题,就会表现为电能表运转过程中出现不转动或者是反转动情况,甚至会随着电压功率变化一会反转一会正转,但是不管是哪种情况的电能表转动,其转动计量的结果都是不准确的,具有较大的误差性。 其次,三相三线电能表在计量运转过程中,是与电压互感器以及电流互感器连接在一起的,而电压互感器的电压相序可以根据相序表进行判断,因此计量运转过程中出现错误的几率比较小,进行电力互感器安装接线过程中,一旦将电流互感器的二次接线连接错误,也容易造成电能表不转动或者是反向转动,但是,即使是电能表进行正方向的转动,转动计量的结果也是不准确的。 2.三相三线电能表误接线的计量影响分析 根据上示的三相三线电能表计量装置系统中的电流以及电压关系情况,在进行三相三线电能计量装置安装接线过程中,正确的线路连接方法为:首先,将有功电能表的第一元件线路接入到ua、ub和ia中,同时将有功电能表的第二元件接入到uc、ub和ic中;但是如果进行电能表的安装接线过程中,角度差额为60度时,对于无功电能表的线路连接正确的方法为,电能表的第一元件接入到ub、uc和ia中,第二元件接入到ua、uc和ic中,并且根据电能表的这一接线方式,就可以对于电力线路系统中电能表的有功功率p以及无功功率q进行计算求得。 根据上述三相三线电能表的安装接线原理以及公式结论,就可以对于不同安装接线环境下,电能表的安装接线正确方式以及电能表功率结果进行分析计算出,以用于对于电能表误接线情况下对于计量结果的影响分析。 2.1 电能表ac两相元件误接线影响分析

三相三线电能计量装置错误接线的判断和预防

三相三线电能计量装置错误接线的判断和预防 【摘要】电能计量装置错误接线会给现场运行的设备带来计量误差,使得统计的数据不准确,影响系统工作。文章介绍了电能计量装置电能表错误接线产生的原因,同时陈述了如何判断电能表是否存在错误接线,并简单给出了如何预防接线错误。 【关键词】电能计量装置;错误接线;电能表;预防措施 1.引言 为保证电能计量装置计量数据的准确性,必须保证其中的电能表接线正确。电能表本身的计量的误差通常只有百分之几,可是一旦其计量回路的接线错误,所造成的误差可能就会激增到百分之几百。这样,一旦计量出现几分误差,会造成几百几千分的误差量,导致大量的用电量差错,给企业和用户带来极大的经济损失和不便。因此,对现场电能计量装置等设备的接线问题一定要有足够重视,确保电能表在正常的接线状态下计量电能。 电能表出现接线错误的种类数量很多,通常有:电流、电压互感器接反;电流、电压回路断路或断路;电能表的电流元件、电压元件不是接入对应相别的电流、电压等。在这里,因为三相三线的高压计量装置是广泛应用于电力用户和电力系统的电能计量装置,因此,这里只分析三相三线电能计量装置错误接线的相关内容。 2.三相三线电能计量装置错误接线的判断方法 为保证计量内容的准确性,电能计量装置的接线步骤是关键,必须保证电能计量装置的接线正确,并在其运行前和运行中进行定期检修,保证接线情况良好。接线检查分为带电检查和停电检查。 以下情况需要停电检查:新装的电流、电压互感器;更换的电流、电压互感器;投入运行前的二次回路电能计量装置。还有,在无法判断接线是否正确时已经投入使用的电能计量装置或需要进一步核实带电检查的结果时同样需进行停电检查,这里需要检查的内容是:核对电流、电压互感器的极性、变比、接线组别;进行二次电缆的导通和接线端子的检查。在对计量装置进行停电检查结束后,投入运用时要进行带电检查,同时进行周期检查时也需进行带电检查,从而确保电能计量装置的正确接线。 2.1 有功电能计量装置的计量 无论电能表所接负载是容性还是感性,只要其接线正确,有功功率的传输方向保持不变,则计量表都是处于正转状态。也就是说,不能因为观察到电能表处于正转状态就判断其接线一定正确。当然,若是电能表不转、反转或着随着(功

三相四线电度表错误接线分析

三相四线电度表错误接线分析 1 前言 三相四线有功电度表在低压系统电能计量中应用较为普遍,其接线方式主要有直接接入和经过电流互感器 间接接入两种方式,直接接入法主要用于负荷电流较小的用户,负荷较大的用户一般采用经电流互感器接 入法。采用电流互感器间接接入时,在实际接线中经常会出现电流互感器接反、电流电压不同相、电压回 路断线等造成电度表不能准确计量等现象,本文针对以上几种现象进行了分析,并给出了判断依据。 2 三相四线有功电度表经电流互感器间接接入正确接线 正确接线图及向量图如图 1 所示, 此时三相有功功率的计算式为: P=U a I a COS(180°-Φa)+ U b I b COSΦb+U c I c COSΦc 假设三相负载对称,则此时有功功率为:P=UICOSΦ,是正确接线计量值的1/3, 此时电度表明显走慢。B、C 相CT接反与 A 相接反结果相同。 3.1.2 2CT 接反

3 个CT中2 个CT接反,假设为A、B 相CT接反,其接线图及向量图如图 3 所示: 此时三相有功功率的计算式为: P=U a I a COS(180°-Φa)+ U b I b COS(180°-Φb)+U c I c COS(180°-Φc) 假设三相负载对称,则此时有功功率为:P=-3UICOSΦ,是正确接线计量值的-1 倍, 此时电度表反转。 3.2 电压、电流回路不同相 3.2.1 两元件电压、电流不同相 假设 A 相电压、电流同相,其它两相电压、电流不同相,其接线图、向量图如图 5 所示。

图 6 所示接法中有功功率的计算式为 P=U a I b COS(120°+Φb)+ U b I c COS(120°+Φc)+U c I a COS(120°+Φa)

三相四线及三相三线错误接线向量图分析报告与及更正

三相四线及三相三线错误接线向量图分析报告 与及更正 第一步:测三相电压测量U1n接线图如下: 测量U2n、U3n方法与上面图类似,移动红线到第二、第三元件电压端,零线不动。(注意选择交流500)不带电压互感器时220V为正常,且三相电压数值相接近为正常。如果有某相为0,说明该相电压断线。 能够测出U1=_____V U2=_____V U3=_____V 第二步:测量各元件对参考点Ua的电压测量方法如下图: 测量方法与上类似,移动红线到第二、第三元件电压端,接参考点的连线不动。 目的:测出对参考点电压为0的该相确定为A相

能够测出U1a=_____V U2a=_____V U3a=_____V 第三步:测量三个元件的相电流测量I1的方法如下图: 测量其它相与上图类似,移动黑线到第二、第三元件电流进线端。 目的:判断各元件电流是否正常,正常是三相相电流相接近,如果有某相为0,说明该相电流开路或短路。 能测出I1=_____A I2=_____A I3=_____A 第四步:测量第一元件电压与各元件电流的相位角测量

可以测出

三相三线电能计量装置误接线快速判断

三相三线电能计量装置误接线快速判断 摘要:介绍了三相三线电能计量装置中电能表错误接线的分析过程,提出了错误接线更正系数的快速计算方法,为实际工作提供了有效的参考。 关键词:电能计量装置;错误接线;更正系数 0、引言 随着电力体制改革的不断深入,用户数量的不断增加,电能计量装置也随之增长,电能计量装置作为“公平秤”,其作用越来越重要。电能计量是否准确,除了采用高准确度的计量装置准确计量电能外,还必须减少电能计量装置错误接线造成的电量不准。一旦发生错误接线,可能会使电能计量的误差很大,这会给客户或供电企业带来极大的经济损失。 为了把握好电能计量这一重要环节,电能计量人员必须具备更高的理论基础和专业素质、技能,必须能根据现场测量数据快速判断诸多电能计量中存在的问题,计算和追补因错误接线造成的流失电量,挽回经济损失。 在电力系统和电力用户中,计量装置的错误接线是时有发生的。单相电能表接线较为简单,出现接线错误时容易分析,三相四线电能表采用分相法即可分析出接线正确与否。而经电流互感器(TA)、电压互感器(TV)接入的三相三线电能表误接线的种类和几率较多,出现接线错误,且不易分析判断,文章主要介绍三相三线计量装置错误接线的分析与判断,该方法也同样适用于经互感器接入的三相四线电能表接线的检查。 1、判断电能表电流端钮所属相别 先判断电流回路接地是否正确,可用一根两端带夹子的短路导线来确定,将导线夹子一端接地,另一端依次连接电能表电流端钮,若电能表转速变慢,则该端钮没有接地,若电能表转速无变化,则该端钮就是接地点,若电能表转速都无变化,说明电流回路未接地或电能表电流端钮两端接地,遇此情况应先查明处理后,再做其他测试。 用钳型电流表依次测量电能表电流端钮进线及出线端公共连线电流,当电能表电流端钮进线及出线端公共连线电流值接近相等时,即IN=I1=I2,说明I1、I2二相电流极性相同。当电能表出线端公共连线电流接近电能表电流端钮进线电流的倍时,即IN= I1= I2,说明其中I1、I2有一相极性接反;当电能表出线端公共连线电流为零,而电能表电流端钮进线电流不为零时,说明电能表出线端公共连线回路断开,遇此情况,应先连通电能表出线端公共连线回路,再做其他检测。 2、判断电能表电压端钮所属相别

三相三线有功电能表常见错误接线分析

龙源期刊网 https://www.360docs.net/doc/9c10402301.html, 三相三线有功电能表常见错误接线分析 作者:张静 来源:《中国高新技术企业》2016年第04期 摘要:电能计量装置的计量准确与否直接关系到供用电双方的经济利益,影响电力企业电费的及时回收,因此预防和避免电能表故障及差错成为电能计量工作的重要内容。文章通过分析电能表的电压、电流相量图,计算功率表达式及更正系数的方法,分析了典型的错误接线情况,并介绍了退补电量的计算方法,然后提出了错误接线的防范对策。 关键词:三相三线有功电能表;相量图;错误接线;电量追补;电能计量装置文献标识码:A 中图分类号:TM933 文章编号:1009-2374(2016)04-0133-03 DOI:10.13535/https://www.360docs.net/doc/9c10402301.html,ki.11-4406/n.2016.04.067 电能表是电能计量的重要器具,它的准确可靠直接关系到供用双方的利益,是供用双方关注的焦点,同时也是计量工作的重点。在日常、检测和维护工作中,经常接触到计量高电压、大容量的三相三线有功电能表错误接线。在这种错误的运行状态下,即使电能表和互感器本身的准确度很高,也达不到准确计量的目的。错误接线常常会使计量的电能值发生错误甚至无法计量,严重的还可能造成人身伤亡或仪器仪表、设备的损坏,同时也会给企业带来一定的经济损失。因此判断和分析电能计量装置接线错误类型,并对错误电量进行准确计算,是保证供用电双方利益的关键。 1 三相三线有功电能表正确接线 在电力系统和电力用户中,计量装置的错误接线是有可能发生的,若有人为窃电的话,错误的接线更是花样百出。单相电能表或直接接入式三相表,其接线较为简单,差错少,即使接线有错误也比较容易发现和改正;而高压大工业用户所使用的经互感器接入的三相三线有功电能表,则比较容易发生错误接线。因为是电流、电压二次回路两者的结合,再加上极性反接和断线等就有很多种可能的接线方式。 1.1 三相三线有功电能表的正确接线 图1是三相三线有功电能表经电流互感器和电压互感器计量系统中有功电能表的接线图:

三相三线电能计量装置错误接线判断分析

三相三线电能计量装置错误接线判断分析 发表时间:2019-01-15T15:58:55.030Z 来源:《基层建设》2018年第34期作者:项国钢[导读] 摘要:电能计量装置错误接线不仅会导致现场运行设备产生计量误差,而且还会导致统计数据失真,从而对整个电力系统的正常运行产生不利影响。 广东电网有限责任公司阳江阳西供电局广东阳江 529500摘要:电能计量装置错误接线不仅会导致现场运行设备产生计量误差,而且还会导致统计数据失真,从而对整个电力系统的正常运行产生不利影响。本文将会对三相三线电能计量装置错误接线的判断方法进行介绍,为具体工作开展提供参考。 关键词:三相三线电能计量装置;错误接线;判断方法;预防措施对于电力系统而言,为了确保电能计量装置计量数据的真实性、准确性,就需要保证电能表接线正确。通常情况下,电能表本身计量误差仅有百分之几,但是如果计量回路的接线出现差错,将会导致计量误差增到百分之几百,不仅会诱发大量的用电量差错,而且还会影响用户及电力企业的经济效益。因此,要对电能计量装置错误接线问题给予高度的重视,以确保电能表可以在正常的接线状态下对电能进 行计量。实际上,电能计量装置错误接线种类比较多,常见的有电压、电流互感器接反;电能表的电压元件、电流元件未接入对应相别的电压、电流;电压、电流回路断路等,这些都会对电能计量结果产生影响。在电力系统和电力用户的电能计量装置中,三相三线高压计量装置得到了广泛的应用,因此对三相三线电能计量装置错误接线问题进行分析,并提出错误接线判断方法至关重要。 1.三相三线电能计量装置错误接线判断措施 1.1有功电能计量装置的计量 通常情况下,不管电能表所接负载是感性还是容性,只要其可以正确接线,将会保证有功功率沿着同一个方向进行传输,并使计量表处于正转状态。然而,电能表处于正转状态并非是判断电能计量装置接线正确的唯一标准。当然,如果是电能表反转、不转或随着功率因数(cosφ)值的变化时而正转,时而反转,则该电能表可能存在错误接线问题。下式是电能表在正确接线基础上的功率表达式。图1描述的是电能表在正确接线基础上的相量图。 〖 P〗_0=[U_ab I_a cos 〖(〖30〗^°+φ)+U_ab I_c cos (〖30〗^°-φ) 〗 ] =√3 UI cos φ 图1 电能表接线正确时的向量图 1.2无功电能计量装置的计量 对于无功电能表而言,其表盘的转动方向往往由三相电路的相序决定,并且与负载的性质存在密切的联系。当三相三线电能计量装置接线正确时,并且是正相序感性负载,此时的电能表正转;反之如果为逆相序感性负载时,此时的电能表反转。对于60°型无功电能表而言,其功率计算表达式为: 正相序且为容性负载时,计算表达式为: Q=-√3 UI sin 〖(〖60〗^°+φ)〗逆相序且为感性负载时,计算表达式为: Q=-√3 UI sin φ 通过对上述计算表达式进行分析可以发现,当电能表为正相序容性负载时,可以得到其反转值正比于√3 UI sin φ,其反映的是负的三相无功电能;如果电能表为逆相序容性负载时,可以得到其反转值正比于√3 UI sin 〖(〖60〗^°+φ)〗,其不能代表负的三相无功电能。此时,如果有功电能表接线任务可以顺利完成时,可以有效简化无功电能表的接线任务。因此,需要对电能计量装置接线是否存在错误接线给予详细的检查,以确保其能够正常、高效的运行。 1.3对电压回路接线进行检查 1.3.1测量定电压的相别 (1)借助电压相序表对进入电能计量装置电能表端为2、5、8的电压相序进行测量,如果测量结果为正相序时,此时电能表两端所加电压可以判定是UABC、UBCA、UCAB中的一个,并借助万用表对端子2、5、8的对地电压进行测量后,就可以判定电能表两端电压是UABC、UBCA、UCAB中的哪一个。(2)借助电压相序表对进入电能表端为2、5、8的电压相序进行测量,如果测试所得结果为逆相序时,则可以判定电能表所加电压是UABC、UBCA、UCAB中的一个,并借助万用表对端子2、5、8的对地电压进行测量后,就可以判定电能表两端电压是UABC、UBCA、UCAB中的哪一个。 1.3.2测量二次线电压 在对电能计量装置的线电压进行测量时,一般会选择万用表(电压表),其主要存在下述三种情况:(1)在对电能计量装置电能表电压UAB、UCA、UBC进行测量时,如果万用表的测量结果UAB≈UCA≈UBC≈100V时,此时可以说明与电能表进行连接的电压互感器极性为正常接线状态。(2)在对电能计量装置电能表电压UAB、UCA、UBC进行测量时,如果万用表的测量结果中有两相电压值为100V,而另外一项电压值为173V时,此时可以说明与电能表进行连接的电压互感器中有一台设备出现了极性接线错误问题,未按照要求给予正常接线。(3)在对电能计量装置电能表电压UAB、UCA、UBC进行测量时,如果万用表测量结果中线电压为0V、50V时,此时可以说明电压互感器存在二次断线或一次短线问题。

关于三相三线智能表错接线的判断

关于三相三线智能表错接线的判断与纠正一、了解三相三线正确接线的几种情况 图1 U ab*I a与U cb*I c两组电能和 图2 U ca*I c与U ba*I b两组电能和

图3 U bc*I b与U ac*I a两组电能和 说明:图2和图3 在实际情况下和图1是完全一样的。仔细看一下就会发现图2是图1中把母排的A相移到了内侧,可以把电压看成是图1的B、C、A排列。图3是图1中把母排的C相移到了外侧,可以看成是图1的C、A、B排列,其他均没有任何改变,并且从左到右都是正相序。由于习惯,我们总是认为母排是A、B、C顺序排列的,所以,图2和图3的电能表达式就和图1有点区别,但对于计量来说,三者没有任何差别。了解这一点,就会发现A、B、C实际是我们人为定义的。 二、三相三线接线中,几个特点需了解 1、正常接线情况下,如果电压电流均以U ab作为参考方向的话,那么A相(U ab)电压角为 0°,C相(U cb)电压角为300°,A相电流角(Ia与U ab)为30°附近,C相电流角(Ic 与U ab)为270°附近。 2、A相电流角与C相电流角的差大约为240°(或120°),如果两者差为60°,则一定有 一相电流是接反的。 3、错接线时,既可以通过电压线调整,也可以通过电流线来调整,因为所谓的A、B、C只 是一个参考的方向。目的是要通过接线调整,满足上述3个条件的情况。 4、三相三线中,作为参考零线的这个相上(如图1中的B相)是没有电流采样的。通过向 量图,调整电压接线,把没有电流的这个相,确定为参考零线,接入电表B相的位置。 三、案例分析 案例1:已知三相三线智能表如下信息,表计提示逆相序,请画出向量图并提供正确接线的方法。 通过遥控器显示:A相电压角0 ;C相电压角300; A相电流角275; C相电流角330

相关文档
最新文档