血清免疫球蛋白的提取分离、纯化及鉴定

血清免疫球蛋白的提取分离、纯化及鉴定
血清免疫球蛋白的提取分离、纯化及鉴定

I 血液及组织样品的制备

分析组织中某种物质的含量、探索物质代谢的过程和规律,经常使用动物的肝、肾、脑、粘膜和肌肉等组织,也选用全血、血浆、血清或者无蛋白血滤液等血液样品,有时也采用尿液、胃液等完成各种生化实验。掌握以上各种实验样品的正确处理和制备方法是保证生化实验顺利进行的关键。

一、血液样品

(一)采血

测定用的血液,多由静脉采集。一般在饲喂前空腹采取,因此时血液中化学成分含量比较稳定,采血时所用的针头、注射器,盛血容器要清洁干净;接血时应让血液沿着容器壁慢慢注入,以防溶血和产生泡沫。

(二)血清、全血及血浆的制备

1.血清的制备

血清是全血不加抗凝剂自然凝固后析出的淡黄清亮液体。制备方法是:将刚采集的血液直接注入试管或离心管中。将试管放成斜面,让其自然凝固,一般经3h 血块自然收缩而析出血清;也可将血样放入37 ℃恒温箱内,促使血块收缩,能较快约析出血清。为了缩短时间,也可用离心机分离(未凝或凝固的均可离心),分离出的血青,用吸管吸出置于另一试管中,若不清亮或带有血细胞,应重离心,加盖冷藏备用。

2.全血及血浆的制备

取清洁干燥的试管或其它容器,收集动物的新鲜血液,立即与适量的抗凝剂充分混合,所得到的抗凝血为全血。每毫升血液中加入抗凝剂的种类可以根据实验的需要进行选择,但是用量不宜过大,否则将影响实验的结果。将已抗凝的全二于2,000r / min 离心10min ,沉降血细胞,取上层清液即为血浆。血浆比血清分离得快而且量多:两者的差别,主要是血浆比血清多含一种纤维蛋白原,其它成分基本相同。

3.抗凝剂

凡能够抑制血液凝固反应进行的化合物称为抗凝剂。抗凝剂种类甚多,实验室常用的有如下几种,可根据情况选择使用。

(1)草酸钾(钠)优点是溶解度大,可迅速与血中钙离子结合,形成不溶性草酸钙,使血液不凝固。每毫升血液用1-2mg 即可。

配制方法:配制10%草酸钾水溶液二吸取此液0.1ml 放入一试管中,慢慢转动试管,泛草酸钾尽量铺散在试管壁上,置80 ℃烘箱烤干(若超过150 ℃则分解),管壁即呈一薄层三色粉末,加塞备用。可抗凝血液5ml 。

此抗凝血,常用于非蛋白氮等多种测定项目,但不适用于钾、钙的测定。对乳酸脱氯酸性磷酸酶和淀粉酶具有抑制作用,使用时应注意。

( 2)草酸钾-氟化钠氟化钠是一种弱抗凝剂。但浓度2mg / ml 时能抑制血液内葡萄糖的分解,因此在测定血糖时常与草酸钾混合使用。

配制方法:草酸钾6g、氟化钠3g,溶于100ml 蒸馏水中。每个试管加入0.25ml,于80℃烘干备用。每管含混合剂22. 5mg,可抗凝5ml 血液。

此抗凝血,因氟化钠抑制睬酶,所以不能用于脉酶法的尿素氮测定;也不能用于淀粉酶及磷酸酶的测定。

(3)乙二胺四乙酸二钠盐(简称EDTANa2 ) EDTANa2 易与钙离子络合而使血液不凝。

有效浓度为0.5mg 可抗凝lml 血液。

配制方法:配成4 % EDTANa :水溶液。每管装0.lml , 80 ℃烘干,可抗凝5ml 血液。此抗凝血液适用于多种生化分析。但不能用于血浆中含氮物质、钙及钠的测定。

(4)肝素最佳抗凝剂,主要抑制凝血酶原转变为凝血酶,从而抑制纤维蛋白原形成纤维蛋白而凝血:0.1 -0.2mg 或20 单位可抗凝lml 血液。

配制方法:配成10mg /ml 的水溶液。每管加0.lml 于37-56 ℃烘干,可抗凝5-10ml血液(市售品为肝素钠溶液,每毫升含12,500 国际单位,相当干100mg ,故每125 国际单位相当于lmg )

除上述抗凝剂外,还有柠檬酸钠、草酸铵等,因不常用,故不作介绍。

(三)无蛋白血滤液的制备

测定血液或其它体液化学成分时,样品内蛋白质的存在常常干扰测定。因此,需要先做成无蛋白血滤液再行测定。

无蛋白血滤液制备的基本原理是以蛋白质沉淀剂沉淀蛋白,用过滤法或离心法除去沉淀的蛋白。现介绍几种常用的方法:

1.钨酸法

原理:钨酸钠与硫酸混合,生成钨酸:

Na2WO4 + H2SO4 →H2WO4 十Na2SO4

血液中蛋白质在pH 值小于等电点的溶液中可被钨酸沉淀:沉淀液过滤或离心,上清液即为无色而透明、pH 约等于6 的无蛋白滤液。可供非蛋白氮、血糖、氨基酸、尿素、尿酸及氯化物等项测定使用。

制备方法:

(1)取50ml 锥形瓶1 只,加入蒸馏水7 份;(2)用奥氏吸管吸取抗凝血1 份,擦去管壁外血液,将吸管插入锥形瓶底部,缓缓放出血液。放完血液后,将吸管提高吸取上清液再吹入,反复洗管3 次。充分混合,使红细胞完全溶解;( 3)加入0.333mol/l,硫酸溶液1 份,随加随摇,充分混匀,此时血液由鲜红变成棕色,静置5-10min ,使其酸化完全;(4) 加入10 %钨酸钠1 份,随加随摇;(5)放置约5min 后,如振摇亦不再发生泡沫,说明蛋白质已完全变性沉淀。用定量滤纸过滤或离心(2,500r/min , 10min) ,即得完全澄清无色之无蛋白血滤液。

用此法制得的无蛋白血滤液为10 倍稀释的血滤液。即每毫升血滤液相当于0.lml全血。

试剂:(1) 10 %钨酸钠溶液(2) 0.333mol/L 硫酸溶液

2.氢氧化锌法

原理:血液中蛋白质在pH 大于等电点的溶液中可用znZ 十来沉淀。生成的氢氧化锌本身为胶体可将血中葡萄糖以外的许多还原性物质吸附而沉淀,所以此法所得滤液最适作血液葡萄糖的测定(因为葡萄糖多是利用它的还原性来定量的)。但测定尿酸和非蛋白氮时含量降低,不宜使用此滤液。

制备方法:(1)取干燥、洁净的50ml 锥形瓶或大试管1 支,准确加入7 份水;(2)加入混匀的抗凝血1 份,摇匀;(3)加入10 %硫酸锌溶液1 份,摇匀;(4)慢慢加入0.5mol / L 氢氧化钠溶液1 份,边加边摇,放置5min ,用定量滤纸过滤或离心(2,500,10min ) ,除去沉淀,便得到完全澄清的无蛋白血滤液。此滤液亦为稀释10 倍之血滤液。

试剂:(l) 10 %硫酸锌溶液(2) 0.5mol / L 氢氧化钠溶液

3.三氯醋酸法

原理:三氯醋酸为一有机强酸,能使蛋白质变性而沉淀。

制备方法:取10 %三氯醋酸9 份置于锥形瓶或大试管中,加1 份已充分混匀的抗凝血液。加时要不断摇动,使其均匀。静置5min ,过滤或离心。即得10 倍稀释之清明透亮的滤液。

二、组织样品

在生化实验中,经常利用离体组织研究各种物质代谢途径和酶系的作用。或者从组织中分离、

纯化核酸、酶以及某些有意义的代谢物质进行研究。

但是,在生物组织中,因含有大量的催化活性物质,离体组织的采集必需在冰冷条件下进行,并日需尽快完成测定。否则其所含物质的量和生物活性都将发生变化。一般采用断头法处死动物,放出血液,立即取出所需脏器或组织,除去脂肪和结缔组织,用冰冷生理盐水洗去血液,再用滤纸吸干,称重后,按试验要求制成匀浆或者组织糜。

组织糜:迅速将组织剪碎,用捣碎机绞成糜状,或加入少量砂于乳钵中,研磨至糊状。组织匀浆:取一定量新鲜组织剪碎,加入适量匀浆制备液,用高速电动匀浆器或者玻璃匀浆器磨碎组织。由于匀浆器的柞头在高速运转中会产生热量,因此在制备匀浆时,需将匀浆器置于冰水中。

常用的匀浆制备液有生理盐水、缓冲液和0 .25mol/L 的蔗糖液等,可根据实验的要求,加以选择。

组织浸出液:上述组织匀浆液再经过离心分离出的上清液就是组织浸出液。

II 蛋白质的沉淀反应

1.实验原理

在水溶液中,蛋白质分子表面结合大量的水分子,形成水化膜,同时蛋白质分子本身带有电荷,与溶液的反离子作用,形成双电层,因而每个蛋白质分子可形成一个稳定的胶粒。整个蛋白质溶液就形成稳定的亲水溶胶体系。当某些物理化学因素导致蛋白质分子失去水化膜或失去电荷,甚至变性时,它就丧失了稳定因素,以固态形式从溶液中析出,这就是蛋白质的沉淀作用。蛋白质的沉淀作用分为两类:

1)可逆沉淀作用

在发生沉淀作用时,虽然蛋白质已经沉淀析出,然而其分子内部结构并没发生明显的改变,仍保持原有的结构和性质。如除去沉淀因素,蛋白质可重新溶解在原来的溶剂中。因此,这种沉淀作用称为可逆沉淀作用。属于此类的有盐析作用,低温下丙酮、乙醇使蛋白质沉淀的作用,以及利用等电点的沉淀。盐析作用:用大量中性盐使蛋白质从溶液中析出的过程。在高浓度的中性盐影响下,蛋白质分子的水化膜被剥夺。同时蛋白

质分子所带的电荷被中和,因而破坏了蛋白质溶胶的稳定因素,使蛋白质沉淀析出。但中性盐并不破坏蛋白质的分子结构和性质,因此,若除去中性盐或减低盐的浓度,蛋白质就会重新溶解。

有机溶剂沉淀蛋白质:在蛋白质溶液中加入适量丙酮或乙醇,蛋白质分子的水化膜被破坏而沉淀。若及时将蛋白质沉淀与丙酮或乙醇分离,蛋白质沉淀则可重新溶解于水中。

2)不可逆沉淀作用

一些物理化学因素往往会导致蛋白质分子结构,尤其是空间结构破坏,因而失去其原来的性质,这种蛋白质沉淀不能再溶解于原来的溶剂中。重金属盐,生物碱试剂、过酸、过碱、加热、震荡、超声波和有机溶剂等都能使蛋白质发生不可逆沉定:重金属盐类Cu2+、Ag+、Pb2+和Hg2+等均能与蛋白质分子中的巯基等基团结合,生成不溶物而沉淀。生物碱试剂与蛋白质结合形成不溶物,使蛋白质沉淀。植物体内具有显著生理作用的含氮碱性化合物称为生物碱(或植物碱)。能沉淀生物碱或与其产生颜色反应的物质称为生物碱试剂,如鞣酸、苦味酸、磷钨酸等。

2.试剂和器材

1)试剂

(1)蛋白质氯化钠溶液取20ml 蛋清,加蒸馏水200ml 和饱和氯化钠溶液l00ml ,充分搅匀后纱布滤去不溶物。(加氯化钠的目的是溶解球蛋白)。

(2)蛋白质溶液取5ml 蛋清,用蒸馏水稀释至100ml ,搅拌均匀后,用纱布过滤。(3)饱和硫酸铵溶液称固体(NH4)2SO4 加于l000ml 蒸馏水中,在70-80℃下搅拌促溶,室温中放置过夜,瓶底析出白色结晶,上清液即为饱和硫酸铁溶液。

(4)饱和苦味酸溶液取2g 苦味酸放入三角烧瓶,加蒸馏水100ml,80℃水浴约10min 使之完全溶解,于室温下冷却后瓶底析出黄色结晶,上清液即为饱和苦味酸,此液可存放数年。

(5) 1 %醋酸铅溶液

(6) 1 %硫酸铜溶液

(7) 1 %三氯乙酸溶液

(8) 0.5%磺基水杨酸溶液

(9) 1%醋酸溶液

(10) 5%鞣酸溶液

(11)硫酸铵粉末

2)器材

试管及试管架,抽滤瓶、量筒、布氏漏斗等

3.操作方法

1)蛋白质的盐析作用

取1 支试管加入3ml 蛋白质溶液和3ml 饱和硫酸铵溶液,混匀,静置约10min,球蛋白则沉淀析出,过滤后向滤液中加入硫酸铵粉末,边加边用玻璃棒搅拌,直至粉末不再溶解达到饱和为止析出的沉淀为清蛋白,再加水稀释,观察沉淀是否溶解。

2)乙醇沉淀蛋白质

取1 支试管加蛋白质溶液lml ,加晶体氯化钠少许(加速沉淀并使沉淀完全)待溶解后再加95%乙醇2ml 混匀,观察有无沉淀析出。

3)有机酸沉淀蛋白质

取2 支试管,各加入蛋白质溶液约0.5ml ,然后分别滴加10%三氯乙酸和0.5%磺基水杨酸数滴。观察蛋白质沉淀。

4)重金属盐沉淀蛋白质

取2 支试管各加蛋白质溶液2ml,一管内滴加1%醋酸铅溶液,另一管内滴加1%硫酸铜溶液,观察沉淀生成。

5)生物碱试剂沉淀蛋白质

取2 支试管各加蛋白质溶液2ml,及1%醋酸4-5 滴,其中一管滴加5%鞣酸,另一管滴加饱和的苦味酸溶液,观察沉淀的形成。

III 总氮量的测定一微量凯氏定氮法

常用微量凯氏定氮法测定天然含氮有机物中的含氮量。含氮有机物与浓硫酸共热,被氧化成二氧化碳和水,而氮则转变成氨,氨进一步与硫酸作用生成硫酸铁。由大分子分解成小分子的过程通常称为“消化”。消化过程一般进行的比较缓慢。通常需要加入硫酸钾或硫酸钠以提高消化液的沸点(消化液的沸点由290℃-400℃),加入硫酸铜作为催化剂,过氧化氢作为氧化剂,以促进反应的进行。

硫酸铵与浓碱作用可游离出氨,借水蒸汽将产生的氨蒸馏到一定浓度的硼酸溶液中,硼酸吸收氨后使溶液中的H+浓度降低,然后用标准无机酸滴定,直至恢复溶液中原来H+浓度为止。最后根据所用标准酸的量计算出待测物中总氮量。

( NH4 ) 2SO4+2NaOH →2NH4OH + Na2SO4

NH4OH→NH3 + H2O

H3BO4→ H + + H2BO4

NH3 + H++H2BO4-→ NH4H2BO4

NH4H2BO4+ HCI → NH4CI + H++H2BO4-

一、试剂和器材

1.试剂

(1)消化液30%过氧化氢与硫酸与水的比例为3:2:1,即在1 份的蒸馏水中缓慢加入2 份的硫酸,待冷却后,将其加到3 份的过氧化氢中。临用时配制。

(2) 催化剂硫酸铜(CuSO4·5H2O )与硫酸钾(K2SO4)以1 : 3 配比研磨混合。

(3)40 %氢氧化钠溶液(4) 2 %硼酸溶液

(5)标准盐酸溶液(约0.0100mol/L) (6)混合指示剂(田氏指示剂)混合指示剂由50ml 0.1%甲烯蓝乙醇溶液与200ml 0.1%甲基红乙醇溶液混合配成。

贮于棕色瓶中备用。这种指示剂酸性时为紫红色,碱性时为绿色,变色范围很窄且很灵敏。

2.器材

消化管或凯氏烧瓶、凯氏定氮蒸馏装置、电炉、100ml 锥形瓶、5ml 酸式滴定管。

一、操作方法

(一)微量凯氏定氮仪的构造和安装

凯氏定氮仪由蒸汽发生器、反应室、冷凝管三部分组成。蒸汽发生器包括一个电炉及一个

3-5 升容积的烧瓶。蒸汽发生器借橡皮管与反应室相连。反应室上边有二个小烧杯,一个供加样用,一个盛放碱液。样品和碱液由此可直接到反应室中。反应室中心有一长玻璃管,其上端通到反应室外层,下端靠近反应室的底部。反应室下端底部有一开口,上有橡皮管和管夹。由此放出反应废液。反应所产生的氨可通过反应室上端细管经

冷凝管通入收集瓶中。反应室与冷凝管之间由橡皮管相连。安装仪器时,将蒸汽发生器垂直地固定在铁架台上,用橡皮管把蒸汽发生器、反应室、冷凝管连接起来。橡皮管连接的部位应在同一水平位置。冷凝管下端与实验台的距离以放得下收集瓶为准。安装完毕后,不得轻易移动,以免仪器损坏。要认真检查整个装置是否漏气,以保证所测结果的准确性。(二)样品的处理

1.固体样品随机取一定量研磨细的样品放入恒重的称量瓶中,置于105℃的烘箱中干燥4h ,用增锅钳将称量瓶取出放入干燥器内,待降至室温后称重,随后继续干燥样品,每干燥lh,称重一次,恒重即可。

2.血清样品取人血(或猪血)放入离心管中,干冰箱中放置过夜。次日离心除去血凝块,

上层透明清液,即为血清。吸出lml 血清加到50ml 容量瓶中,用蒸馏水稀释至刻度,混匀备用。溶液如果显浑浊,加少量氯化钠再混匀。

(三)消化

取5 支消化管并编号,在1 、2 、3 号管中各加入精确称取的干燥样品(注意:加样品时应直接送入管底,避免沾到管口和管颈上), 加催化剂05g,混合消化液3ml ,在4 、5 号管中各加相同量的催化剂和混合消化液(若样品是液体时,还要加与样品等体积的蒸馏水)作为对照,用以测定试剂中可能含有的微量含氮物质。摇匀后,将5 支消化管放在通风厨内的远红外消煮炉上消化。先用小火加热煮沸,不久看到消化管内物质

碳化变黑,并产生大量泡沫,此时要特别注意,不能让黑色物质丘升到消化管的颈部,否则将严重地影响样品测定结果。当混合物停止冒泡,蒸汽与二氧化碳也均匀地放出时,适当加强火力。在消化时,应使全部样品都浸泡在消化液中,如在瓶颈t 发现有黑色颗粒,应小心地将消化管倾斜振摇,用消化液将它冲洗下来。通常消化需要1-3h(对于那些赖氨酸含量较高的样品需要更长的时间)。待消化液变成褐色后,为了加速消化完成,可将消化管取出,稍冷,加30%过氧化氢溶液1-2 滴于管底消化液中,再继续消化,直到消化液由淡黄色变成清晰的淡蓝绿色,消化即告成功。为了保证消化彻底,再继续加热0.5h 。消化完毕,取出消化管冷却至室温。

(四)蒸馏

1.仪器的洗涤仪器应先经一般洗涤,再经水蒸汽洗涤。目的在于洗去冷凝管中可能残留的氨。对于处于使用状态的仪器(正在测定中的仪器)加样前使蒸汽通过1-2min 即可,对于较长时间未使用的仪器,必须用水蒸汽洗涤到吸收蒸汽的硼酸一指示剂混合液中指示剂的颜色合格为止。洗涤方法如下:取2-3 个100ml 锥形瓶,加入10m1 2%硼酸、2 滴混合指示剂,用表面皿覆盖备用。先煮沸蒸汽发生器,器中盛有2/3 体积的用几滴硫酸酸化过的蒸馏水,样品杯中也加入2/ 3 体积蒸馏水进行水封。关闭夹子使蒸汽通过反应室中的插管进入反应室,再由冷凝管下端逸出。在冷凝管下端放一空烧杯以承受凝集水滴。这样用蒸汽洗涤5min 左右,在冷

凝管下口放一个准备好的盛有硼酸-指示剂的锥形瓶,位置倾斜,冷凝管下口应完全浸泡于液体内,继续用蒸汽洗涤1-2 min ,观察锥形瓶中的溶液是否基本上不变色,若不变色,则证明蒸馏器内部已洗涤干净。下移锥形瓶,使硼酸液面离开冷凝管口约1cm ,继续通蒸汽lmin 。最后用蒸馏水冲洗冷凝管外口,排废开始。用右手轻提样品杯中棒状玻塞,使水流入反应室的同时,立即用左手关闭夹子,盖好玻塞。由于反应室外层中蒸汽冷缩、压力降

低,反应室内废液通过反应室中插管自动抽到反应室外壳中,再在样品杯中加入2 / 3 体积蒸馏水,如此反复三次即可排尽废液及洗涤液。打开夹子将反应室外壳中积存的废液排出,关闭夹子再使蒸汽通过全套蒸馏仪1-3min ,可进行下一次蒸馏。

2.样品及空白的蒸馏取5 个100ml 锥形瓶,分别加入2%硼酸10ml ,混合指示剂2 滴,溶液呈紫红色,用表面皿覆盖备用。把消化管中的消化液全部转移到样品杯中,用约2ml 蒸馏水冲洗消化管,重复3 次,把洗涤液都倒入样品杯中,打开样品杯的棒状玻塞,将样品放入反应室,用少量燕溜水冲洗样品杯后也使之流入反应室,盖上玻塞,并在样品杯中加约2/3 体积的蒸馏水进行水封。而后将装有硼酸一指示剂的锥形瓶放在冷

凝管口下方,打开存放碱液杯下端的夹子,放10ml40%氢氧化钠溶液于反应室后,立即上提锥形瓶,使冷凝管下口浸没在锥形瓶的液面下。反应液沸腾后,锥形瓶中的硼酸-指示剂混合液由紫红色变为绿色,自变色时起计时,蒸馏3-5min,移动锥形瓶,使硼酸液面离开约1cm ,并用少量蒸馏水冲洗冷凝管下口外面,继续蒸馏lmin,将锥形瓶取出,用表面皿覆盖以待滴定。排废和洗涤等操作与前面相同。排废洗涤后,可进行下一个样品的蒸馏(每一个样品要同时做三份,以求得准确结果)。待样品和空白消化液蒸馏完毕后,同时进行滴定。

(五)滴定

全部蒸馏完毕后,用0.0100mol/I 标准盐酸溶液滴定各锥形瓶中收集的氨量,直至硼酸-指示剂混合液由绿色变回淡紫色,即为滴定终点。

(六)计算

样品的总氮含量(g 氮/%)= ( A-B )×0.0100×14×100/ (C×1000)

若测定的样品含氮部分只是蛋白质,(如血清)则:

样品中的蛋白含量(g / % ) = ( A-B )×0.0100×14×6.25×100/ (C×1000)式中:A 为滴定样品用去的盐酸体积(ml ) ; B 为滴定空白用去的盐酸体积(ml ) ; C为称量样品的量(g ) ; 0 . 0100 为盐酸的摩尔浓度(mol/l ) (实际上,此项应按实验中使用盐酸的实际浓度填写);

14 为氮原子量;6.25 为系数(1 ml0.01mol / I 盐酸相当于0.14mg 氮)。若样品中除有蛋白质外,尚有其它含氮物质,则样品蛋白质含量的测定要复杂一些。首先,需向样品中加入三氯乙酸,使其最终浓度为5 % ,然后测定未加入三氯乙酸的样品及加入三氯乙酸后样品的上清液中的含氮量,得出非蛋白氮量,从而计算出蛋白氮,再进一步折算出蛋白质含量。蛋白氮=总氮-非蛋白氮蛋白质含量(g/%) =蛋白氮×6.25

IV 透析

原理:透析是利用蛋白质分子不能通过半透膜的性质,使蛋白质和其它小分子物质如无机盐、单糖等分开。常用的半透膜是玻璃纸或称塞璐玢纸、火棉纸或称塞璐锭纸盒其他改型的纤维素材料,透析时把待纯化的蛋白质溶液装在半透膜的透析袋里,放入透析液(蒸馏水或缓冲液)中进行的,透析液可以更换,直至透析袋内无机盐等小分子物质降低到最小值为止。一、试剂和器材

1.试剂

EDTA,NaCO3,NaOH。

2.器材

电炉,磁力搅拌器,500ml 烧杯

二、操作过程

1.透析袋的预处理:取100ml 0.01mol/l 的EDTA 溶液,加入1gNaCO3,溶解后用NaOH 调pH 值为7.0;将透析袋剪成适宜长度,放入EDTA 溶液中煮沸10 分钟,然后用蒸馏水冲洗,再用EDTA 溶液煮10 分钟,反复处理4-5 次,在蒸馏水中与4℃保存备用。2.透析:将样品放入透析袋内,两端封闭(注意袋内不要留气泡),放入透析液中在磁力搅拌器上透析。

V 蛋白质含量测定

一、双缩脲法测定蛋白质浓度

(一)目的

了解并掌握双缩脉法测定蛋白质浓度的原理和方法。

(二)原理

具有两个或两个以上肽键的化合物皆有双缩脲反应,在碱性溶液中蛋白质与硫酸铜形成紫色络合物,在540nm 处有最大吸收。在一定浓度的范围内,蛋白质浓度与双缩脲反应所呈的颜色深浅成正比,可用比色法定量测定。双缩脲法最常用于需要快速但不要求十分精确的测定。

(三)实验仪器

容量瓶、试管、吸管、分光光度计等。

(四)实验试剂

1.标准蛋白溶液(5mg/ml)准确称取已定氮的酪蛋白(干酪素或牛血清白蛋白)用0.05mol/l 氢氧化钠溶液配制,冰箱存放备用。

2.双缩脲试剂:溶解1.5g 五水硫酸铜和酒石酸钾钠于500ml 蒸馏水中,在搅拌下加入300ml10%氢氧化钠溶液,用水稀释到1000ml,贮存于内壁涂以石蜡的瓶内,此试剂可长期保存。

3.样品血清:动物血清用水稀释10 倍,置于冰箱保存备用。

(五)操作

1.标准曲线的绘制:将7 只干燥试管编号,按下表加人试剂:

各管混匀后,分别加入双缩脲试剂3.0ml 充分混匀,于37℃水浴30min,在波长540nm处比色,以0 号管调零点测定各管吸光度,以吸光度为纵坐标,蛋白含量为横坐标,绘制标准曲线。

2. 样品测定取未知浓度的蛋白质溶液

3.0ml,置试管内,加入双缩脲试剂3.0ml充分混匀,在540nm 处测吸光度,对照标准曲线,求得未知溶液的蛋白质浓度(含量),在根据样品稀释倍数换算为g/100ml。

操作1、2 应同时进行。此外还可用标准管法测定(可参见相关资料)

二、福林-酚试剂法测定蛋白质浓度

(一)目的

熟悉并掌握福林-酚法测定蛋白质浓度的原理和方法。

(二)原理

蛋白质(或多肽)分子中含有酪氨酸或色氨酸,能与Folin-酚试剂起氧化还原反应,生成蓝色化合物,蓝色的深浅与蛋白质浓度成正比,可用比色法测定蛋白质浓度。

此法也适用于酪氨酸或色氨酸的定量测定。

(三)实验器材

1.蛋白质及其水解产物。

2.722 型(或7220 型)分光光度计。

3.试管1.5cmx1.5cm (×8)。

4.吸管0.50ml、0.10ml、0.20ml、

5.0 ml。

(四)实验试剂

1.福林-酚试剂A :将19 Na2CO3溶于50ml0.lmol/lNaOH 溶液。另将0.5gCuSO4·5H2O 溶于100mll%酒石酸钾(或酒石酸钠)溶液。将前者50ml 与硫酸铜-酒石酸钾溶液lml 混合。混合后的溶液一日内有效。

2.Folin-酚试剂B :将100g 钨酸钠(Na2WO4·2H2O)、25g 钼酸钠(Na2MoO4·2H2O )、700ml 蒸馏水、50ml 85%磷酸及100ml 浓盐酸置于1500ml 磨口圆底烧瓶中,充分混匀后,接上磨口冷凝管,回流10h 。再加入硫酸锂150g,蒸馏水50ml 及液溴数滴,开口煮沸15min,驱除过量的溴(在通风橱内进行)。冷却,稀释至1000ml,过滤,滤液呈微绿色,贮于棕色瓶中。临用前,用标准氢氧化钠溶液滴定,用酚酞作指示剂(由于试剂微绿,影响滴定终点的观察,可将试剂稀释100 倍再滴定)。根据滴定结果,将试剂稀释至相当于1mol/l 的酸(稀释1 倍左右),贮于冰箱中可长期保存。

3.卵清蛋白溶液:约1g 卵清蛋白溶于100 ml0.9%NaCI 溶液,离心,取上清液,用克氏定氮法测定其蛋白质含量。根据测定结果,用0.9 % NaCI 溶液稀释卵清蛋白溶液,使其蛋白质含量为2mg/l ,亦可用2mg/m1 的牛血清白蛋白溶液。将卵清蛋白溶液准确稀释至

500ug/l。

(五)、操作

1.标准曲线的绘制

将7 支干净试管编号,按下表顺序加人试剂。混匀,室温放置10min,各管再加Folin-

酚试剂B 0.5ml,30min 后比色(500nm),做吸光度-蛋白质浓度曲线。

Folin-酚法测定蛋白质浓度—标准曲线的绘制

2.样液测定

准确吸取样液0.5ml 置干净试管内,加入4mlFolin-酚试剂A , 10min 后,再加试剂B 0.5ml ,

30min 后比色,对照标准曲线求出样液蛋白质浓度。

三、紫外光吸收法测定蛋白质浓度

(一)目的

1.了解紫外吸收法测定蛋白质浓度的原理。

2.熟悉紫外分光光度计的使用。

(二)原理

蛋白质组成中常含有酪氨酸和色氨酸等芳香族氨基酸,在紫外光280nln 波长处有最大吸收峰,一定浓度范围内其浓度与吸光度成正比,故可用紫外分光光度计通过比色来测定蛋白质的含量。

由于核酸在280nm 波长处也有光吸收,对蛋白质测定有一定的干扰作用,但核酸的最大吸收峰在260 处。如同时测定260nm 的光吸收,通过计算可以消除其对蛋白质测定的影响。因此如溶液中存在核酸时必须同时测定280nm 及260nm 的吸光度,方可通过计算测得溶液中的蛋白质浓度。

(三)实验器材

1 . UV-9100 型紫外可见分光光度计

2 .容量瓶50ml

3 .试管

4 .吸管0.50ml、1.0ml、2.0ml、5.0ml

(四)实验试剂

1.卵清蛋白标准液:准确配制1mg/1 卵清蛋白溶液。

2.未知浓度蛋白质溶液:用酪蛋白配制,浓度控制在1.0 -2.5ml/l 范围内。

3. 0.9%NaCI。

(五)操作

1.直接测定法

在紫外分光光度计上,将未知的蛋白质溶液小心盛于石英比色皿中,以生理盐水为对照,测得280nm 和260nm 两种波长的吸光度。将280nm 及260nm 波长处测得的吸光度按下列公式计算蛋白质浓度。

C = 1.45A280 — 0.74A260

式中C:蛋白质质量浓度(mg/ml);

A280nm:蛋白质溶液在280nm 处测得的吸光度;

A260nm:蛋白质溶液在260nm 处测得的吸光度。

本法对微量蛋白质的测定既快又方便,它还适用于硫酸铵或其他盐类混杂的情况,这时用其他方法测定往往较困难。

为简便起见对于混合蛋白质溶液,可用A280nm 乘以0.75 来代表其中蛋白质的大致含量(mg/ml)。

2.标准曲线法

1)标准曲线的绘制

取8 支干净试管,编号,按下表加人试剂。

紫外吸收法测定蛋白质浓度― 标准曲线的绘制

加毕,混匀,用紫外分光光度计测A280,以吸光度为纵坐标,蛋白质浓度为横坐标作图。2)样液测定

取未知浓度的蛋白液1.0ml,加蒸馏水3.0ml,测A280,对照标准曲线求得蛋白质浓度。四、考马斯亮蓝结合法测定蛋白质浓度

(一)目的

学会用考马斯亮蓝结合法测定蛋白质浓度。

(二)原理

考马斯亮蓝能与蛋白质的疏水微区相结合,这种结合具有高敏感性。考马斯亮蓝G250的磷酸溶液呈棕红色,最大吸收峰在465nm。当它与蛋白质结合形成复合物时呈蓝色,其最大吸收峰改变为595nm,考马斯亮蓝G250 -蛋白质复合物的高消光效应导致了蛋白质定量测定的高敏感度。

在一定范围内,考马斯亮蓝G250-蛋白质复合物呈色后,在595nm 下,吸光度与蛋白质含量呈线性关系,故可以用于蛋白质浓度的测定。

(三)实验器材

1.旋涡混合器

2.试管

3.吸管0.10ml、0.50ml、1.Oml、2.0ml、5.0ml

4. 722 型(或7220 型)分光光度计

5.容量瓶1000ml

6.量筒100ml

7.电子分析天平

(四)实验试剂

1. 0.9% NaCI 溶液。

2.标准蛋白液:牛血清白蛋白(0.lmg / ml ) ,准确称取牛血清白蛋白0.2g , 用0.9%NaCI 溶液溶解并稀释至2000ml 。

3.染液:考马斯亮蓝G250 ( 0.01% ) ,称取0.19 考马斯亮蓝G250 溶于50ml 95%乙醇中,再加人l00ml 浓磷酸,然后加蒸馏水定容到1OOOml。4 .样品液:取牛血清白蛋白(0.lmg/ml)溶液,用0.9%NaCI 稀释至一定浓度。

五、操作

1.标准曲线的制备

取7 支干净试管,按下表进行编号并加入试剂。

混匀,室温静置3min ,以第l 管为空白,于波长595nm 处比色,读取吸光度,以吸光度为纵坐标,各标准液浓度(ug/ml)作为横坐标作图得标准曲线。

2.样液的测定

另取一支干净试管,加人样品液1.0ml 及考马斯亮蓝染液4.0 ml,混匀,室温静置3min,于波长595nm 处比色,读取吸光度,由样品液的吸光度查标准曲线即可求出含量。

注意:

样品蛋白质含量应在10-100ug 为宜。一些阳离子如K+、Na+、Mg2+、乙醇等物质对测定无影响,而大量的去污剂如SDS 等会严重干扰测定。

VI 凝胶层析法分离纯化蛋白质

一、目的

了解凝胶层析的基本原理,并学会用凝胶层析分离纯化蛋白质。

二、原理

凝胶层析也称凝胶过滤、凝胶过滤层析、分子排阻层析和分子筛层析。凝胶是具有一定孔径的网状结构物质,凝胶层析是一种分子筛效应,主要用于分离分子大小不同的生物大分子以及测定其相对分子质量。相对分子质量小的物质可通过凝胶网孔进人凝胶颗粒的内部,而相对分子质量大的物质不能进人凝胶内部,被排阻在凝胶颗粒之外,随着洗脱的进行,相对分子质量小的物质由于进人凝胶内部,不断地从一个网孔穿到另一个网孔,这样“绕道”而移动,走的路程长,下来得慢(迁移速度慢),而相对分子质量大的物质因不能进人凝胶内部即随洗脱液从凝胶颗粒之间的空隙挤落下来,走的路程短,下来得快(迁移速度映),这样就可达到分离的目的。

目前常用的凝胶有葡聚糖凝胶(商品名sephadex)、聚丙烯酰胺凝胶(商品名Bio-GelP)、琼脂糖凝胶(商品名因生产厂家而不同,如瑞典的Sepharose ,美国的Bio-Ge1 A),其中最常用的是sephadex。sephadex 有各种不同型号,用于分离相对分子质量大小不同的物质。

三、实验器材

1.层析柱1cm×90cm

2.恒流泵

3.紫外检测仪

4.部分收集器

5.记录仪

6.试管等普通玻璃器皿

四、实验试剂

1.待分离样品:胰岛素、牛血清白蛋白等

2.葡聚糖凝胶Sephadex G-75

3.蓝色葡聚糖2000

4.洗脱液:0.1lmol/l pH6.8 磷酸缓冲液

五、操作

1.凝胶的处理

Sephadex G-75 干粉经蒸馏水室温充分溶胀24h ,或沸水浴中3h ,这样可大大缩短溶胀时间,而且可以杀死细菌和排除凝胶内部的气泡。溶胀过程中注意不要过分搅拌,以防颗粒破碎。凝胶颗粒大小要求均匀,使流速稳定。凝胶充分溶胀后用倾泌法将不易沉下的较细颗粒除去。

将溶胀后的凝胶抽干,用10 倍体积的洗脱液处理约lh ,搅拌后继续用倾泌法除去悬浮的较细颗粒。

2.装柱

将层析柱垂直装好,关闭出口,加人洗脱液约Icm 高。将处理好的凝胶用等体积洗脱液搅成浆状,自柱顶部沿管内壁缓缓加人柱中,待底部凝胶沉积约Icm 高时,再打开出口,继续加人凝胶浆,至凝胶沉积至一定高度(约70cm ) 即可。装柱要求连续,均匀,无气泡,无“纹路”。

3.平衡

将洗脱液与恒流泵相连,恒流泵出口端与层析柱人口相连,用2 一3 倍床体积的洗脱液平衡,流速为0.5ml / min 。平衡好后在凝胶表面放一片滤纸,以防加样时凝胶被冲起。

柱装好和平衡后可用蓝色葡聚糖2 000 检查层析行为,在层析柱内加lml ( 2mg / ml )蓝色葡聚糖2 000 ,然后用洗脱液进行洗脱(流0.5ml/rnin ) ,若色带狭窄并均匀下降,说明装柱良好,然后再用2 倍床体积的洗脱液平衡。

4.加样与洗脱

将柱中多余的液体放出,使液面刚好盖过凝胶,关闭出口,将1 司样品沿层析柱管壁小心加入,加完后打开底端出口,使液面降至与凝胶面相平时关闭出口,用少量洗脱液洗柱内壁2 次,加洗脱液至液层4cm 左右,按上恒流泵,调好流速(0.5ml / rn in ) ,开始洗脱。上样的体积,分析用量一般为床体积的1%一2% ,制备用量一般为床体积的20%一30%。5.收集与测定

用部分收集器收集洗脱液,每管4ml。紫外检测仪280nm 处检测,用记录仪或将检测信号输人色谱工作站系统,绘制洗脱曲线。

6.凝胶柱的处理

一般凝胶用过后,反复用蒸馏水通过柱(2 一3 倍床体积)即可,若凝胶有颜色或比较脏,需用0.5mol/l NaOH 一0.5mol/l NaCI 洗涤,再用蒸馏水洗。冬季一般放2 个月无长霉情况,但在夏季如不用,则要加0.02%的叠氮钠防腐。

VII SDS-聚丙烯酰胺凝胶电泳法测定蛋白质的相对分子质量

一、目的

了解SDS-聚丙烯酰胺凝胶电泳法的原理,并学会用这种方法测定蛋白质的相对分子质量。

二、原理

聚丙烯酰胺凝胶电泳之所以能将不同的大分子化合物分开,是由于这些大分子化合物所带电荷的差异和分子大小不同之故,如果将电荷差异这一因素除去或减小到可以忽略不计的程度,这些化合物在凝胶上的迁移率则完全取决于相对分子质量。SDS 是十二烷基硫酸钠的简称,它是一种阴离子去污剂,它能按一定比例与蛋白质分子结合成带负电荷的复合物,其负电荷远远超过了蛋白质分子原有的电荷,也就消除或降低了不同蛋白质之间原有的电荷差别,这样就使电泳迁移率只取决于分子大小这一个因素,就可根据标准蛋白质的相对分子质量的对数对迁移率所作的标准曲线求得未知蛋白质的相对分子质量。SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)可以用圆盘电泳,也可以用垂直平板电泳,本实验用目前常用的垂直平板电泳,样品的起点一致,便于比较。

三、实验器材

1.直流稳压电泳仪。

2.垂直平板电泳槽。

3.移液器(1.0ml 、200ul 、20ul )。

4.微量注射器(20ul )。

5.烧杯、试管、滴管、直尺等

四、实验试荆

1.凝胶贮备液:丙烯酰胺(Acr ) 29.2g,亚甲基双丙烯酞胺(Bis ) 0.8g, 加重蒸水至100ml 。外包锡纸,4℃冰箱保存,30 天以内使用。

2.分离胶缓冲液:1.5mol/lTris-HCI , pH8.8。

18.15 Tris(三经甲基氨基甲烷),加约80ml 重蒸水,用lmol/lHCI 调pH 到8.8,用重蒸水稀释至最终体积为l00ml, 4℃冰箱保存。

3.浓缩胶缓冲液:0.5mol/lTris-HCI , pH6.8。

6gTris,加约60ml 重蒸水,用lmol/lHCI 调pH 至6.8,用重蒸水稀释至最终体积为

100ml,4℃冰箱保存。

4.10%SDS,室温保存。

5.两类样品缓冲液:

(l) 2 倍还原缓冲液

0.5mol/LTris-HCI,pH6.8 2.5ml

甘油2.0ml

质量浓度10%SDS 4.0ml

质量浓度0.1%溴酚蓝0.5ml

β-巯基乙醇1.0ml

总体积10ml

(2) 2 倍非还原缓冲液

重蒸水1.0ml

0.5mol/LTris-HCI,pH6.8 2.5ml

甘油2.0ml

质量浓度10% SDS 4.0ml

质量浓度0.1%溴酚蓝0.5ml

总体积10ml

6.电极缓冲液,pH8.3 。

Tris 3g,甘氨酸14.4g,SDS 1.0g,加重蒸水至1000ml , 4℃冰箱保存。

7.低相对分子质量标准蛋白质(上海产),开封后溶于200ml 重蒸水,加200ul2 倍样品缓冲液(还原缓冲液),分装20 小管,-20℃保存。临用前沸水浴3-5min。其相对分子质量如下:

标准蛋白质Mr

兔磷酸化酶B 97400

牛血清白蛋白66 200

兔肌动蛋白43 000

牛碳酸酐酶31 000

胰蛋白酶抑制剂20 100

鸡蛋清溶菌酶14400

8.质量浓度为10%过硫酸按:此溶液需临用前配制。

9. 1.5%琼脂:1.5g 琼脂粉加l00ml 重蒸水,加热至沸腾,未凝固前使用。

10.染色液:0.25g 考马斯亮蓝R250 ,加人91ml50 %甲醇,9 ml 冰醋酸。

11.脱色液:50ml 甲醇,75ml 冰醋酸与875ml 重蒸水混合。

12. 待测相对分子质量的样品。

五、操作

1.将垂直平板电泳槽装好,用1.5%琼脂趁热灌注于电泳槽平板玻璃的底部,以防漏。2.分离胶的选择和配制方法

(l)按照蛋白质不同的相对分子质量选用不同浓度的分离胶。

蛋白质相对分子质量的范围分离胶的浓度

<104 20%-30%

1×104 - 4×104 15%-20%

4×104 - 1×105 10%-15%

1×105 - 5×105 5%-10%

>5×1052%-5%

(2)不同分离胶的配制方法

3.分离胶的灌制

根据待测蛋白质样品的相对分子质量选择合适的分离胶浓度,本实验选用12 %的分离胶。在15ml 试管中依次加入重蒸水3. 35ml、1.5mol/lTris - HCI ( pH8. 8 )缓冲液2.5ml、10 % SDS 0.lml 、凝胶贮备液0.8ml、10%过硫酸铵25ul 和TEMED5ul,由于加入TEMED 后凝胶就开始聚合,所以应立即混匀混合液,然后用滴管吸取分离胶,在电泳槽的两玻璃板之间灌注,留出梳齿的齿高加Icm 的空间以便灌注浓缩胶。用滴管小心地在溶液上覆盖一层重蒸水,将电泳槽垂直静置于室温下约30-60min ,分离胶则聚合,待分离胶聚合完全后,

除去覆盖的重蒸水,尽可能去干净。

4.浓缩胶的配制和灌制

一般采用5%的浓缩胶,配制方法:重蒸水2.92ml、0.5mol/LTris-HCI 缓冲液

(pH6.8 )1.25ml、10%SDS0.05rnl、凝胶贮备液4.0ml、10%过硫酸铵25ul、TEMED5ul,在试管中混匀,灌注在分离胶上。小心插人梳齿,避免混入气泡,将电泳槽垂直静置于室温下至浓缩胶完全聚合(约30min)。

5.样品的制备

(1)标准蛋白质样品的制备

取出一管预先分装好的20ul 低相对分子质量标准蛋白质,放人沸水浴中加热3-5min,取出冷至室温。

(2)待测蛋白质样品的制备

a . 10ulVEGF(约含5ug VEGF)加10ul 2 倍还原缓冲液。

b . 10ul VEJ(约含5ug VEGF ) ,加10ul 2 倍非还原缓冲液。

以上a、b 两管均同标准蛋白质样品一样,在沸水浴中加热3-5min ,取出冷至室温。6.电泳

(1)待浓缩胶完全聚合后,小心拔出梳齿,用电极缓冲液洗涤加样孔(梳孔)数次,然后将电泳槽注满电极缓冲液。

(2)用微量注射器按号向凝胶梳孔内加样。

(3)接上电泳仪,上电极接电源的负极,下电极接电源的正极。打开电泳仪电源开关,调节电流至20-30mA 并保持电流强度恒定。待蓝色的溴酚蓝条带迁移至距凝胶下端约Icm 时,停止电泳。

7.染色与脱色

小心将胶取出,置于一大培养皿中,在溴酚蓝条带的中心插一细钢丝作为标志。加染色液染色lh ,倾出染色液,加人脱色液,数小时更换一次脱色液,直至背景清晰。

8.相对分子质量的计算

用直尺分别量出标准蛋白质、待测蛋白质区带中心以及钢丝距分离胶顶端的距离,按下式计算相对迁移率:

相对迁移率=样品迁移距离/染料迁移距离

以标准蛋白质Mr 的对数对相对迁移率作图,得到标准曲线。根据待测蛋白质样品的相对迁移率,从标准曲线上查出其相对分子质量。

体液免疫球蛋白测定

体液免疫球蛋白测定 第一节血清IgG、IgA、IgM测定 血清免疫球蛋白IgG、IgA、IgM定量测定方法一般有单向环状免疫扩散法、火箭免疫电泳法、ELlSA、免疫比浊法、放射免疫分析法等。临床常用单向环状免疫扩散法和免疫比浊法来测定血清免疫球蛋白含量。 一、血清IgG、IgA、lgM测定 (一)单向环状免疫扩散法 该法的原理是将抗血清均匀地分散于琼脂或琼脂糖凝胶内,胶板上打孔,孔内注入抗原或待测血清,抗原在含有抗血清的胶内呈放射状(环状)扩散,在抗原抗体达到一定比例时形成可见的沉淀环。在一定条件下,抗原含量越高,沉淀环越大。 (二)免疫比浊法 该法具有检测范围宽、测定结果准确、精密度高、检测时间短(一般在几分钟内即可完成测试)、敏感度高、稳定性好等优点。 二、血清IgG、IgA、IgM测定的临床意义 (一)年龄 新生儿可由母体获得通过胎盘转移来的IgG,故血液中含量较高,接近成人水平。 (二)免疫球蛋白IgG、IgA、IgM均升高 慢性肝脏疾病如慢性活动性肝炎、原发性胆汁性肝硬化、隐匿性肝硬化患者血清中可见3种Ig均升高。慢性细菌感染如慢性支气管炎、肺结核,血IgG可升高。宫内感染时脐血或出生后的新生儿血清中IgM含量可增高。SLE患者以IgG、IgA升高较多见。类风湿关节炎患者以IgM增高为主。 (三)单一免疫球蛋白升高 主要是指患者血清中某一类免疫球蛋白含量显著增多,大多在30g/L以上,这种异常增多的免疫球蛋白其理化性质十分一致,称为单克隆蛋白(MP)即M蛋白。此类异常增多的免疫球蛋白多无免疫活性,故又称副蛋白。由它所致的疾病称为免疫增殖病如多发性骨髓瘤、巨球蛋白血症、恶性淋巴瘤、重链病、轻链病等。 (四)免疫球蛋白降低 先天性低Ig血症,主要见于体液免疫缺陷病和联合免疫缺陷病。IgA缺乏患者,易发生反复呼吸道感染。IgG缺乏患者,易发生化脓性感染。IgM缺乏患者,易发生革兰阴性细菌败血症。 第二节血清IgD和IgE测定 正常人血清中IgD含量很低,仅占血清免疫球蛋白总量的0.2%。膜结合型IgD(mIgD)构成BCR,是B 细胞分化发育成熟的标志。未成熟的B细胞仅表达mIgM,成熟B细胞可同时表达mIgM和mIgD。活化的B 细胞或记忆B细胞其表面的mIgD逐渐消失。 IgE是正常人血清中含量最少的免疫球蛋白,要由黏膜下淋巴组织中的浆细胞分泌。其重要特征为糖含量高达12%。IgE为亲细胞抗体,可引起Ⅰ型超敏反应。IgE可能与机体抗寄生虫免疫有关。 第1页

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

-生物化学实验--聚丙烯酰胺凝胶电泳法分离血清蛋白质

-生物化学实验--聚丙烯酰胺凝胶电泳法分离血清蛋白质

————————————————————————————————作者:————————————————————————————————日期:

聚丙烯酰胺凝胶电泳法分离血清蛋白质 【目的】 1 .掌握圆盘电泳分离血清蛋白的操作技术。 2 .熟悉聚丙烯酰胺凝胶电泳的原理。 【原理】 带电粒子在电场中向着与其自身电荷方向相反的电极移动,称为电泳。聚丙烯酰胺凝胶电泳( PAGE )就是以聚丙烯酰胺凝胶作为电泳介质的电泳。在电泳时,蛋白质在介质中的移动速率与其分子的大小,形状和所带的电荷量有关。 聚丙烯酰胺凝胶是一种人工合成的凝胶,是由丙烯酰胺( Acr )单体和少量交联剂 N,N- 亚甲基双丙烯酰胺( Bis )在催化剂过硫酸铵( Ap )和加速剂四甲基乙二胺( TEMED )的作用下发生聚合反应而制得的(其化学结构式见第 2 篇第 1 章)。 聚丙烯酰胺凝胶具有网状结构,其网眼的孔径大小可用改变凝胶液中单体的浓度或单体与交联剂的比例来加以控制。根据血清蛋白分子量的大小,学生实验一般选用 7 %聚丙烯酰胺凝胶分离血清蛋白质。 不连续聚丙烯酰胺凝胶电泳利用浓缩效应、分子筛效应和电荷效应的三重作用分离物质(见第 2 篇第 1 章),使样品分离效果好,分辨率较高。一般醋酸纤维薄膜电泳只能把血清蛋白质分离出 5 ~ 7 条带,而聚丙烯酰胺凝胶电泳却能分离出十几条到几十条来(图 3-4 ),是目前较好的支持介质,应用十分广泛。

图 3-4 血清蛋白聚丙烯酰胺凝胶电泳图谱 根据凝胶支持物的形状不同,分为垂直板电泳和盘状电泳两种,二者原理相同。本实验采用的盘状电泳是在直立的玻璃管中,以孔径大小不同的聚丙烯酰胺凝胶作为支持物,采用电泳基质的不连续体系,使样品在不连续的两相间积聚浓缩(浓缩效应)成厚度为 10 -2 cm 的起始区带,然后再利用分子筛效应和电荷效应的双重作用在分离胶中进行电泳分离。 【器材】 1 .电泳仪 直流稳压电源,电压 400 ~ 500V ,电流 50mA 。 2 .垂直管型圆盘电泳装置 目前这类装置的种类很多,可根据不同的实验要求选择其中的一种。这类装置均由两个基本的部分组成,一部分为载胶玻璃管,须选用内径均匀( 5 ~ 6mm ) , 外径 7 ~ 8mm ,长 80 ~ 100mm 的玻璃管作为材料,也可以使用更细的玻璃管。另一部分为电泳液槽,可分为上下两槽。电泳时,上下两槽通过凝胶柱沟通电流(图 3-5 )。 图 3-5 聚丙烯酰胺凝胶圆盘电泳示意图 (A 为正面, B 为剖面 ) 3 .大号试管和中号试管 4 .微量移液器 5 . 5ml 注射器和 9 号注射针头 6 .洗耳球、滤纸条、封口膜等

免疫球蛋白的结构

第一节免疫球蛋白的结构(The Structure of Immunoglobulin) B淋巴细胞在抗原刺激下增殖分化为浆细胞,产生能与相应抗原发生特异性结合的免疫蛋白,这类免疫球蛋白被称为抗体(antibody, Ab)。 1937年,Tiselius用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,其后又证明抗体的活性部分是在γ球蛋白部分。因此,相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。 实际上,抗体的活性除γ球蛋白外,还存在于α和β球蛋白处。1968年和1972年的两次国际会议上,将具有抗体活性或化学结构与抗体相似的球蛋白统一命名为免疫球蛋白(immunoglobulin,Ig)。 Ig是化学结构的概念,它包括正常的抗体球蛋白和一些未证实抗体活性的免疫球蛋白,如骨髓瘤病人血清中的M蛋白及尿中的本周氏(Bence Jones, BJ)蛋白等。 免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后者是B细胞表面的抗原识别受体。 ☆☆相关素材☆☆ 图片正常人血清电泳分离图 一免疫球蛋白的基本结构 The basical structure of immunoglobulin 免疫球蛋白分子是由两条相同的重链(heavy chain,H链)和两条相同的轻链(light chain,L链)通过链间二硫键连接而成的四肽链结构。 X射线晶体结构分析发现,IgG分子由3个相同大小的节段组成,位于上端的两个臂由易弯曲的铰链区(hinge region)连接到主干上形成一个"Y"形分子,称为Ig分子的单体,是构成免疫球蛋白分子的基本单位。

蛋白质的分离纯化和表征

蛋白质的分离纯化和表征 第一节蛋白质的酸碱性质 各个解离基团的pK 值与游离氨基酸的不完全相同。等电点要用等电聚焦等方法测定。 第二节蛋白质分子的大小与形状

一、根据化学组成测定最低相对分子质量 假定某种微量成分只有一个,测出其百分含量后,可用比例式算出最低相对分子质量。 若测出两种微量成分的百分含量,分别用比例式算出的最低相对分子质量不相同时,可计算两个最低相对分子质量近似的最小公倍数。 例题:一种纯酶含亮氨酸(Mr 131)1.65%,含异亮氨酸(Mr131)2.48%,求最低相对分子质量。 解:按照Leu 的百分含量计算,最低Mr X1: X1=(100′ 131)/1.65=7939.4。 按照Ile 的百分含量计算最低Mr X2: X2=(100′ 131)/2.48=5282.3。 由于X1 和X2 数字差异较大,提示这种酶含Leu 和Ile 不止1 个,为了估算Leu 和Ile 的个数,首先计算: X1/X2=7939.4/5282.3≈1.5。 这种酶含任何氨基酸的个数均应是整数,说明该酶至少含有2 个Leu,3 个Ile,其最低相对分子质量为: 7939.4 ′2 =15878.8或5282.3×3=15846.9。 二、渗透压法测定相对分子质量 三、沉降分析法测定相对分子质量

基本原理: (一)离心力(centrifugal force,Fc) 当一个粒子(生物大分子或细胞器)在高速旋转下受到离心力作用时,此离心力“Fc”由下式定义: F=m·a=m·ω2 r a—粒子旋转的加速度,m—沉降粒子的有效质量,ω—粒子旋转的角速度,r—粒子的旋转半径(cm)。 (二)相对离心力(relative centrifugal force,RCF) 由于各种离心机转子的半径或者离心管至旋转轴中心的距离不同,离心力而受变化,因此在文献中常用“相对离心力”或“数字×g”表示离心力,只要RCF 值不变,一个样品可以在不同的离心机上获得相同的结果。 RCF 就是实际离心场转化为重力加速度的倍数。

血清蛋白的分离、提纯与鉴定

血清清蛋白、γ-球蛋白的分离、提纯于鉴定 一、实验目的: 1、掌握盐析法分离蛋白质的原理和基本方法 2、掌握凝胶层析法分离蛋白质的原理和基本方法 3、掌握离子交换层析法分离蛋白质的原理和基本方法 4、掌握醋酸纤维素薄膜电泳法的原理和基本方法 5、了解柱层析技术 二、实验原理: 蛋白质的分离和纯化是研究蛋白质化学及其生物学功能的重要手段。对于不同的蛋白质,其分子量、溶解度及等电点等都有所不同。利用不同蛋白质在这些性质上的差别,利用相应的物理方法可分离纯化不同蛋白质。 A.盐析法:在蛋白质溶液中加入大量中性无机盐后,由于中性盐与水分子的亲和力大于蛋白质,致使蛋白质分子周围的水化膜减弱乃至消失。同时,加盐后由于离子强度发生改变,蛋白质表面的电荷大量被中和,从而破坏了蛋白质的胶体性质,导致蛋白质溶解度降低,蛋白质分子之间易于聚集沉淀,进而使蛋白质从水溶液中沉淀析出。 B.凝胶层析:利用蛋白质与无机盐类之间分子量的差异。当溶液通过SephadeG-25凝胶柱时,溶液中分子直径大的蛋白质不能进入凝胶颗粒网孔,而分子量小的无机盐能进入凝胶颗粒的网孔中,因此在洗脱过程中,小分子的盐会被阻滞而后洗脱出来,从而达到去盐的目的。 C.离子交换层析:离子交换层析是指流动相中的离子和固定相上的离子进行可逆的交换,利用化合物的电荷性质及电荷量不同进行分离。 D.纯度鉴定(醋酸纤维素薄膜电泳):血清中各种蛋白质的等电点不同,一般都低

于pH7.4。它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。由于血清中各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速度也不同。因此电泳时可将它们分离为清蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。 三、材料与方法 A材料 样品:人混合血清 试剂:葡聚糖凝胶(G-25)层析柱、DEAE纤维离子交换层析柱、饱和硫酸铵溶液、醋酸铵缓冲溶液、20%磺基水杨酸、1%BaCl 溶液、氨基黑染色液、漂洗液、pH8.6巴比妥缓 2 冲溶液、电泳仪、电泳槽 B实验步骤 盐析(粗分离)→葡聚糖凝胶层析(脱盐)→DEAE纤维素离子交换层析(纯化)→醋酸纤维素薄膜电泳(纯度鉴定) 具体操作流程示意:

蛋白质纯化的方法选择

蛋白质纯化的方法选择 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1、蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2、各种蛋白纯化方法及其优、缺点 2.1 蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。 2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用于大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。 2.3 离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

生化血清蛋白分离提纯实验报告

生物化学实验报告 姓名: 学号: 专业年级: 组别: 生物化学与分子生物学实验教学中心

实验名称血清清蛋白、γ蛋白分离提纯与纯度鉴定 实验日期2018-12-27实验地点 合作者指导老师 评分教师签名批改日期 格式要求:正文请统一用:小四号,宋体,1.5倍行距;数字、英文用Times New Roman;标题用:四号,黑体,加粗。需强调的地方请用蓝颜色标出。不得出现多行、多页空白现象。 一、实验目的 1.掌握盐析法分离蛋白质的原理和基本方法 2.掌握凝胶层析法分离蛋白质的原理和基本方法 3.掌握离子交换层析法分离蛋白质的原理和基本方法 4.掌握醋酸纤维素薄膜电泳法的原理和基本方法 5.了解柱层析技术 二、实验原理 蛋白质的分离和纯化是研究蛋白质化学及其生物学功能的重要手段。 不同蛋白质的分子量、溶解度及等电点等都有所不同。利用这些性质的差别,可分离纯化各种蛋白质。 三、材料与方法:以流程图示意 材料:人混合血清、葡聚糖凝胶G-25(Sephadex G-25)层析柱、二乙基氨基乙基(DEAE)、纤维素离子交换层析柱、饱和硫酸铵溶液、各不同浓度的醋酸铵缓冲溶液、20%磺基水杨酸溶液、1%BaCl2溶液 器材:层析柱、电泳仪、电泳槽等

操作方法:

取浓度最高的一管做纯度鉴定。 2管均作纯度鉴定 最后DEAE-纤维柱先用6ml 1.5mol/L NaCl-0.3mol/LNH4AC溶液流洗,再用10ml 0.02mol/L NH4AC 缓冲液流洗再生平衡。 醋酸纤维素薄膜电泳:

点样(粗面)→电泳→染色和漂洗 注意: ①点样线尽量点得细窄而均匀 ②电泳时薄膜粗面朝下、点样端置阴极端、两端紧贴在滤纸盐桥上,膜应轻轻拉平,切勿使点样处与电泳槽接触 ③电泳完毕后,关闭电源,将膜取出,直接浸于染色液中5min。取出膜,尽量沥净染色液,移入漂洗液中浸洗脱色(一般更换2次),至背景颜色脱净为止。取出膜,用滤纸吸干即可。 四、结果与讨论:①结果:实验数据、现象、图谱;②讨论:以结果为基础的逻辑推论,并得出结论。 从上到下分别为血清、清蛋白一、清蛋白二、球蛋白。 从上图可以看出,此次实验结果不太理想,血清电泳结果只有两条带,推测原因有 ①血清点样时量不足 ②点样时手法不恰当

蛋白质的分离纯化方法(参考资料)

蛋白质的分离纯化方法 2.1根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 2.2 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

蛋白质提取、纯化、鉴定的方法(二)

蛋白质提取、纯化、鉴定的方法(二) 一、层析技术 1.离子交换层析的亲和洗脱这种技术结合了离子交换与亲和层析。如在某一pH时,目的蛋白质带正(负)电荷,用阳(阴)离子交换剂吸附,这一过程去除了很大一部分不吸附的杂蛋自。然后用该目的蛋白质的配体来洗脱,该配体特异性地结合目的蛋白质并使之洗脱,但不洗脱其他吸附的蛋白质,达到纯化的目的。注意,该配体需带有一定量的阴(阳)电荷,有效降低目的蛋白质与阳(阴)离子交换剂之间的电荷相互作用。 2.固相金属亲和层析重组蛋白质可在C-或N-端引入组氨酸标签,一般为6个组氨酸残基(His-tag)。这些组氨酸残基与过渡金属(transitionalmetals)Ni2+或Co2+形成配位键。用固相化的Ni2+或Co2+(如商品化的树脂,Ni-NTA)可吸附带有His-tag的重组蛋白质,用含有咪唑(imidazole)的缓冲液可洗脱重组蛋白质。注意,有些含有较多组氨酸的蛋白质也可与吸附剂结台,但较弱,因此可用低浓度的咪唑洗脱;在层析过程中不能引入金属螯合剂如EDTA;避免使用还原剂如DTT或DTE,但可用低浓度的巯基乙醇。 该技术也用于提取磷酸化的蛋白质。将螫合剂交联到树脂,螯合三价铁或三价镓,该亲和吸附剂可吸附混合物中的磷酸化的蛋白质。洗去不吸附的非磷酸化蛋白质后,用磷酸缓冲液即可将磷酸化蛋白质从该亲和吸附剂上洗脱。要注意的是酸性蛋白质也可被不同程度地吸附。 3.凝胶过滤该技术过去也被称为分子筛。构成凝胶的小珠(bead)中有大小不一的孔,分子量大的分子能进入较大的孔而不能进入小的孔,分子量小的则不仅能进入较大的孔也能进入小的孔,因此在层析过程中,小分子经过的路程较长而大分子经过的路程较短,如此就可分离分子量不同的蛋白质。然而,分子量相近的蛋白质非常多,因此,用这种技术得到的蛋白质是分子量相近的混合蛋白质。然而这种技术在某些研究中很有用,如丙酮酸激酶M2(PKM2)由四个相同的亚基组成,PKM2在细胞中以三种形式存在——单体、二聚体、四聚体,这三种形式的功能不同,若要鉴定细胞中PKM2的各种形式的量,先用凝胶过滤技术分离细胞裂解液中的PKM2的三种形式,之后用Western blot对每一种形式的PKM2做相对定量。 4.反相层析该技术是指用疏水固相的一种层析技术。“反相”是相对“正相”而言,正相是指亲水的固相如硅胶表面带有硅羟基(silanol group),硅羟基可与被分离的化台物相互作用,被分离的化合物的亲水性越强,则滞留在正相

【CN109810185A】一种重组人血清白蛋白的分离纯化方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910276004.5 (22)申请日 2019.04.08 (71)申请人 北京蛋白质组研究中心 地址 102206 北京市海淀区中关村生命科 学园生命园路38号 (72)发明人 钱小红 张养军 余谦 张普民  高方圆 焦丰龙 夏朝双 张汉卿  (74)专利代理机构 北京纪凯知识产权代理有限 公司 11245 代理人 关畅 (51)Int.Cl. C07K 14/765(2006.01) C07K 1/36(2006.01) C07K 1/18(2006.01) C07K 1/20(2006.01) C07K 1/30(2006.01) (54)发明名称 一种重组人血清白蛋白的分离纯化方法 (57)摘要 本发明公开了一种重组人血清白蛋白的分 离纯化方法。该方法首先采用热乙醇沉淀法从转 基因猪血浆中对重组人白蛋白进行粗提纯,再利 用两种色谱方法以串联方式进一步精纯化,即先 用阴离子交换色谱法进行第一步精纯化,再采用 反相色谱法或者凝胶色谱法进行二次精纯化。结 果表明,本发明能从转基因猪血浆中分离纯化出 高纯度的重组人血清白蛋白,并有望替代人血清 白蛋白用于临床用药和生化研究中。权利要求书2页 说明书5页 附图3页CN 109810185 A 2019.05.28 C N 109810185 A

权 利 要 求 书1/2页CN 109810185 A 1.一种对含有重组人血清白蛋白的血浆中的重组人血清白蛋白进行分离纯化方法,包括: 1)去除含有重组人血清白蛋白的血浆中的凝血因子和纤维蛋白原后,将所得血浆上清液用热乙醇沉淀法进行粗提纯,得到rHSA粗提取液; 2)将所述rHSA粗提取液脱盐浓缩后,用阴离子交换色谱柱洗脱,收集洗脱液即为第一步精纯化rHSA溶液; 3)将所述第一步精纯化rHSA溶液脱盐浓缩后,用反相色谱柱或凝胶色谱柱进行二次精纯化,即得到rHSA溶液,完成所述重组人血清白蛋白的分离纯化。 2.根据权利要求1所述的方法,其特征在于:所述含有重组人血清白蛋白的血浆按照如下步骤制得:对含有重组人血清白蛋白的血进行血浆抗凝处理后离心,收集上清液而得; 具体的,所述血浆抗凝处理步骤中,所用抗凝剂为柠檬酸钠水溶液;所述含有重组人血清白蛋白的血与抗凝剂的体积比为15:1~20:1;所述抗凝剂的浓度为70g/L~90g/L; 所述离心步骤中,离心力为1500-2500×g;具体为2000×g;时间为20-40min;具体为30min。 3.根据权利要求1或2所述的方法,其特征在于:所述步骤1)去除含有重组人血清白蛋白的血浆中的凝血因子和纤维蛋白原的方法包括:将所述含有重组人血清白蛋白的血浆冷冻沉淀,解冻后离心,收集上清液,即为所述血浆上清液; 具体的,所述冷冻沉淀步骤中,温度为-30--10℃;具体为-20℃; 所述解冻步骤中,温度为0-10℃;具体为4℃; 所述离心步骤中,离心力为4500-5500×g;具体为5000×g;时间为10-20min;具体为15min。 4.根据权利要求1-3中任一所述的方法,其特征在于:所述步骤1)热乙醇沉淀法包括:将所述血浆上清液与由蛋白保护剂、变性剂、氯化钠和水组成的混合液混匀后,调节pH至 5.0~7.0,在55℃~80℃,恒温保持20~60min,冷却至室温后调节pH至4.0~5.0,静置,一次离心,收集上清,淋洗所得沉淀,再进行二次离心,收集上清,合并两次上清,即为所述rHSA粗提取液。 5.根据权利要求4所述的方法,其特征在于:所述蛋白保护剂为辛酸钠;所述辛酸钠在由蛋白保护剂、变性剂、氯化钠和水组成的混合液中的浓度为5~10g/L; 所述变性剂为有机溶剂;具体为乙醇;所述氯化钠在由蛋白保护剂、变性剂、氯化钠和水组成的混合液中的浓度为5~9g/L;所述由蛋白保护剂、变性剂、氯化钠和水组成的混合液的体积用量与所述血浆上清液相同; 所述变性剂的用量为所述血浆上清液体积的8%~12%; 所述静置步骤中,温度为室温;时间为1-3h;具体为2h; 所述淋洗步骤中,所用淋洗液为pH值为4.8的蒸馏水; 所述一次离心和二次离心步骤中,离心力为4500-5000×g;具体为5000×g;时间为50-70min;具体为60min。 6.根据权利要求1-5中任一所述的方法,其特征在于:所述步骤2)中,所用流动相A为0.02mol/L Tris-HCl,流动相B为0.02mol/L Tris-HCl+0.3mol/L NaCl; 所用阴离子交换色谱柱为DEAE弱阴离子交换色谱柱;流速为1mL/min;柱温为室温;检 2

蛋白质分离与纯化教学设计课题

蛋白质分离与纯化教学设计 一、教学背景分析 【教材分析】 “蛋白质的分离与纯化”实验是《高中生物》选修1生物技术实践 5.3血红蛋白的提取与分离中的容。本节课的主要容包括蛋白质的提取、分离纯化等基本知识,主要要求学生掌握凝胶电泳的实验原理以及操作方法。“血红蛋白分离与纯化”实验不仅是学习血红蛋白的提取、分离纯化方法,而且也是进一步掌握蛋白质的组成、结构和功能的基础。 【学情分析】 到目前为止,学生已经学习了蛋白质的相关知识,对蛋白质有了一定的了解,“蛋白质的分离与纯化”实验目的是使学生体验从复杂细胞混合物体系中提取和纯化生物大分子的基本原理、过程和方法,虽然操作难度较大,但原理清晰,动手机会较多,学习兴趣很高。学生有必修“生命活动的主要承担者——蛋白质”的基础,在一定程度上掌握了蛋白质的组成、结构和功能等基础知识,学生在进行实验前还是能大概了解影响蛋白质分离纯化的因素的,再者经过老师的指导,实验能取得良好的结果的。 二、教学目标 【知识目标】 1.了解从血液中提取蛋白质的原理与方法。 2.说出凝胶电泳的基本原理与方法。 【能力目标】 运用凝胶电泳对蛋白质进行分离纯化。 【情感态度与价值观目标】 1.培养学生科学实验的观点。 2.初步形成科学的思维方式,发展科学素养和人文精神。 三、教学重难点

【教学重点】 从血液中提取蛋白质;凝胶电泳分离纯化蛋白质。 【教学难点】 样品预处理,色谱柱的装柱,纯化分离操作。 四、实验实施准备 【教师准备】 1.分组。学生按学科能力的强中弱平均分组,各组尽量平衡,各组自行分工,并由实验员统一安排实验过程。 2.实验材料:血液 仪器:试管、胶头滴管、烧杯、玻璃棒、离心机、研磨器、透析袋、电泳仪等。 试剂:20mmol/L磷酸缓冲液(pH为8.6)、蒸馏水、聚丙烯酸铵、生理盐水、5%醋酸水溶液等。 【学生准备】 1.预习实验“蛋白质分离纯化”,了解蛋白质的相关信息。 2.进行分组。 五、教学方法 【教法】分析评价法、任务驱动法、直观演示法 【学法】自主学习法、合作交流法 六、教学媒体 黑板、多媒体 七、课时安排 两个课时(80min) 一个课时用来讲述理论部分知识:样品处理与色谱柱分离纯化蛋白质的原理与方法; 另一课时用来进行实验。

牛血清白蛋白分离提纯工艺

课程设计说明书 课程名称:生物分离工程 设计题目:牛血清白蛋白的分离提纯工艺 院系:环境与化学工程学院 学生姓名:孙盼盼 学号:41004020111 专业班级:10级生物工程01班 指导教师:王晓军 2013年6月20日

目录 1.设计任务书 (1) 2.设计背景 (1) 2.1 牛血清白蛋白分离提纯的简介 (1) 2.2 牛血清白蛋白分离提纯的意义 (1) 3.设计原理 (2) 4.设计工艺流程及设计方案说明 (2) 4.1对原材料的粗分级分离 (3) 4.2对粗分离成分进行细分级分离 (3) 4.3 蛋白的结晶与重结晶 (3) 4.4 对分离出的蛋白质进行纯度鉴定 (3) 4.5 牛血清白蛋白质分离提纯的整个工艺流程 (3) 5.操作过程 (4) 5.1蛋白质分离的准备阶段 (4) 5.2细分级分离设备的设计 (4) 5.3蛋白质的纯度鉴定 (8) 6.参考文献 (8) 7.课程设计心得 (9)

1.设计任务书 现有一混合物料液中含有酪蛋白(分子量:57000Da,pI 4.5)、β-乳球蛋白(分子量:35000Da,pI 5.1)、α-乳白蛋白(分子量:14000Da,pI 4.2)和牛血清白蛋白(分子量:66200Da,pI 4.7),设计一个分离纯化工艺纯化其中的牛血清白蛋白。 2.设计背景 2.1 牛血清白蛋白分离提纯的简介 蛋白质是(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16%~20%,即一个60kg重的成年人其体内约有蛋白质9.6~12kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新。 蛋白质具有很多生物化学共性,运用相关性质进行蛋白质的分离制备多种不同的单一蛋白质,更好的为人们所有。蛋白质的分离提纯技术已经很成熟,相关的工艺流程包含各种不同的分离提纯设备,这些设备运用蛋白质的不同原理对其进行分离纯化,单一蛋白质的分离提纯在现实生活中具有重要意义! 2.2 牛血清白蛋白分离提纯的意义 牛血清中的简单蛋白,是血液的主要成分(38g/100ml),分子量68kD。等电点4.8。含氮量16%,含糖量0.08%。仅含已糖和已糖胺,含脂量只有0.2%。白蛋白由581个氨基酸残基组成,其中35个半胱氨酸组成17个二硫

蛋白表达、分离和纯化

蛋白质的表达、分离、纯化和鉴定 来源:易生物实验浏览次数:2704网友评论0 条第一部分蛋白质的表达、分离、纯化克隆基因在细胞中表达对理论研究和实验应用都具有重要的意义。通过表达能探索和研究基因的功能以及基因表达调控的机理,同时克隆基因表达出所编码的蛋白质可供作 结构与功能的研究。 第二部分蛋白质的鉴定电泳可用于分离复杂的蛋白质混合物,研究蛋白质的亚基组成等。在聚丙烯酰胺凝胶电泳中,凝胶的孔径,蛋白质的电荷,大小,性质等因素共同决定了蛋白质的电泳迁移率。 关键词:蛋白质蛋白质表达克隆基因聚丙烯酰胺凝胶电泳氯霉素酰基转移酶十二烷基硫酸钠SDS聚丙烯酰 胺凝胶 第一部分蛋白质的表达、分离、纯化 目的要求 (1)了解克隆基因表达的方法和意义。 (2)了解重组蛋白亲和层析分离纯化的方法。 实验原理 克隆基因在细胞中表达对理论研究和实验应用都具有重要的意义。通过表达能探索和研究基因的功能以及基因表达调控的机理,同时克隆基因表达出所编码的蛋白质可供作结构与功能的研究。大肠杆菌是目前应用最广泛的蛋白质表达系统,其表达外源基因产物的水平远高于其它基因表达系统,表达的目的蛋白量甚至能超过细菌总蛋白量的80%。本实验中,携带有目标蛋白基因的质粒在大肠杆菌BL21中,在37℃,IPTG诱导下,超量表达携带有6个连续组氨酸残基的重组氯霉素酰基转移酶蛋白,该蛋白可用一种通过共价偶连的次氨基三乙酸(NTA)使镍离子(Ni2+)固相化的层析介质加以提纯,实为金属熬合亲和层析(MC AC)。蛋白质的纯化程度可通过聚丙烯酰胺凝胶电泳进行分析。 试剂和器材

一、试剂 [1] LB液体培养基:Trytone 10g, yeast extract 5g, NaCl 10g, 用蒸馏水配至1000mL. [2] 氨苄青霉素:100mg/mL [3] 上样 缓冲液:100 mM NaH2PO4, 10 mM Tris, 8M Urea, 10 mM2-ME, pH8.0 [4] Washing Buffer:100 mM NaH2PO4, 10 mM Tris, 8 M Urea, pH6.3 [5] Elution Buffer:100 mM NaH2PO4, 10 mMTris, 8M Urea, 500 mM Imidazole, pH 8.0 [6] IPTG 易生物仪器库:.ebioe./yp/product-list-42.html 易生物试剂库:.ebioe./yp/product-list-43.html 二、器材 摇床,离心机,层析柱(1′10 cm) 操作方法 一、氯霉素酰基转移酶重组蛋白的诱导 1. 接种含有重组氯霉素酰基转移酶蛋白的大肠杆菌BL21菌株于5mL LB液体培养基中(含100ug/mL 氨苄青霉素),37℃震荡培养过夜。 2. 转接1mL过夜培养物于100mL(含100ug/mL 氨苄青霉素)LB液体培养基中,37℃震荡培养至OD600 = 0.6 - 0.8。取10ul 样品用于SDS-PAGE 分析。 3. 加入IPTG至终浓度0.5 mmol/l, 37℃继续培养1-3h.

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

实验十蛋白质的表达、分离纯化和鉴定

实验十蛋白质的表达、分离纯化和鉴定 第一部分蛋白质的表达、分离纯化 目的要求 (1)了解重组蛋白表达的方法和意义。 (2)了解重组蛋白亲和层析分离纯化的方法。 实验原理 目的基因在宿主细胞中的高效表达及表达的重组蛋白的分离纯化对理论研究和实验应用都具有重要的意义。通过表达能探索和研究基因的功能以及基因表达调控的机理,同时目的基因表达出所编码的蛋白质可供作结构与功能的研究。大肠杆菌是目前应用最广泛的蛋白质表达系统,其表达外源基因产物的水平远高于其它表达系统,表达的目的蛋白量甚至能超过细菌总蛋白量的80%。本实验中,携带有目标蛋白基因的质粒在大肠杆菌BL21(DE3)中,在37℃,IPTG诱导下,超量表达携带有6个连续组氨酸残基的重组氯霉素酰基转移酶蛋白,该蛋白N端带有6个连续的组氨酸残基,可通过固相化的镍离子(Ni2+)亲和层析介质加以分离纯化,称为金属熬合亲和层析(MCAC)。蛋白质的纯化程度可通过聚丙烯酰胺凝胶电泳进行分析。 试剂和器材 一、试剂 [1] LB液体培养基:Trytone 10g, yeast extract 5g, NaCl 10g, 用蒸馏水配至1000mL。 [2] 氨苄青霉素:100mg/mL。 [3] 上样缓冲液(GLB):100 mM NaH2PO4, 10 mM Tris, 8M Urea, 1 mM β-巯基乙醇, pH8.0。 [4] 清洗缓冲液(UWB):100 mM NaH2PO4, 10 mM Tris, 8 M Urea, pH6.3。 [5] 洗脱液缓冲液:100 mM NaH2PO4, 10 mM Tris, 8M Urea, 500 mM 咪唑, pH8.0。 [6] IPTG 二、器材 摇床,离心机,层析柱(1 10 cm),蠕动泵 操作方法 一、氯霉素酰基转移酶重组蛋白的诱导 1. 接种含有重组氯霉素酰基转移酶蛋白表达载体的大肠杆菌BL21(DE3)菌株于5mL

相关文档
最新文档