推荐-40万吨煤制甲醇精馏工艺设计课程设计 精品

推荐-40万吨煤制甲醇精馏工艺设计课程设计 精品
推荐-40万吨煤制甲醇精馏工艺设计课程设计 精品

陕西能源职业技术学院课程设计40万吨煤制甲醇精馏工艺设计

学生姓名:

指导老师:李秉昌

专业:应用化工技术

系部:地质测量系

摘要

甲醇是煤化工中非常重要的有机产品,在甲醇合成工业生产过程中,粗甲醇的精制不仅是决定甲醇产品质量的重要工序,而且也是影响甲醇生产成本的关键因素之一。换热器是化工生产中重要的通用热工设备之一,管壳式换热器以其结构简单、牢固、操作弹性大等特点被广泛应用于工业生产中。

本文的研究对象是四塔甲醇精馏工艺,与传统工艺相比新工艺能够节约能量,节约软水;但是同时新工艺增加了系统的藕合程度,加强了塔之间的关联性,提高了系统对于进料波动的响应的复杂性,给控制带来了很大的难题。为了能够实现新工艺的工业应用,对新工艺进行详细的研究。

关键词:甲醇精馏,Aspen Plus模拟,换热器计算,设备选型

目录

前言

甲醇是重要的有机基本产品,用途非常广泛。甲醇的产品质量、能耗指标是甲醇精馏系统的关键因素。甲醇精馏工艺对整个甲醇生产流程的生产能力、产品质量、能源消耗与原料消耗、环境保护都有重大影响。精馏过程占总能耗的很大部分,甲醇生产能耗其中约60%就用于精馏过程。精馏投资约占项目总投资的30%-40%。

要研究和开发一种新工艺,传统的方法是先进行实验,再经过小试、中试、工业规模生产等等逐级放大的过程,周期长,投资大。应用流程模拟软件,对工艺流程进行模拟,则很容易实现对流程的考察,可以改进工艺流程布置,优化工艺操作参数,只要选择的模型及热力学方法适当,模拟结果是相当可靠的,可以用来指导生产,或者为装置改造以及新装置的设计提供基础数据。

国内一些甲醇生产装置,甲醇精馏能耗较高、产品收率较低、甚至一些装置的甲醇产品质量较差。同时,国内甲醇产能的扩张很迅速,但是目前新项目设计还是沿袭以往设计为主、没有足够的甲醇精馏系统设计应用理论研究基础。因此,对甲醇精馏工艺作系统的研究对于甲醇精馏系统的合理设计、通过设备改造和调整工艺来降低甲醇精馏的能耗、提高甲醇产品质量和收率有突出的现实意义。

现本文通过查阅国内外文献和实际生产中的工艺资料,利用流程模拟软件,使用专有的物性热力学包模拟计算了四塔甲醇精馏工艺流程,并和实际的工艺数据进行了对比,同时对常规甲醇精馏工艺的不同流程的设计参数和操作参数进行了总结和分析,提出了甲醇精馏系统的工艺设计原则和设备设计原则。在此基础之上对于甲醇精馏系统提出了新的改进流程和全新流程的开发。对于甲醇工业的发展具有重要的意义。

由于本人水平有限,文章中有不妥之处还望老师批评指正。

第一章文献综述

1.1研究背景

1.1.1课题的提出

粗甲醇中含有多种有机杂质和水分,需要精制。精制过程包括精馏与化学处理。化学处理主要用碱破坏在精馏过程中难以分离的杂质,并调节pH。精馏主要是除去易挥发组分,如二甲醚、以及难以挥发的组分、高级醇、水等[1]。

在确定粗甲醇精馏的工艺流程时,应对生产过程中能耗、自动化程度、精甲醇质量要求等进行综合考虑,合理选择适当的精馏方法。甲醇精馏过程的物耗与粗甲醇质量关系很大,随着甲醇合成条件改进,甲醇精馏工艺出现了较大变化。根据甲醇质量要求不同,甲醇精馏可分为一塔流程、双塔流程和三塔流程。另外,ICI公司上世纪80年代末为节省能耗,还将双塔流程改为四塔流程。

因此,对甲醇精馏工艺作系统的研究对于甲醇精馏系统的合理设计、通过设备改造和调整工艺来降低甲醇精馏的能耗、提高甲醇产品质量和收率有突出的现实意义。现本文通过查阅国内外文献和实际生产中的工艺资料,利用流程模拟软件,使用专有的物性热力学模拟计算了四塔甲醇精馏工艺流程,并和实际的工艺数据进行了对比,同时对常规甲醇精馏工艺的不同流程的设计参数和操作参数进行了总结和分析,提出了甲醇精馏系统的工艺设计原则和设备设计原则。

1.1.2研究目标

本的研究目标是:甲醇精馏工段进行初步设计

(1)通过热力学原理对甲醇精馏工段的工艺流程进行选择,进行物料衡算和能量衡算;

(3)根据换热器的热力计算、流动计算、结构计算和强度设计,对换热器进行合理的选型;

(4)利用Auto CAD软件,绘制甲醇精馏工段的物料流程图、带控制点的工艺流程图、冷却器的设备图、 0.000平面的精馏工段设备布置图。

1.2 甲醇的简介

纯甲醇为无色透明略带乙醇气味的易挥发液体,沸点65℃,熔点-97.8℃,和水相对密度0.7915。甲醇能和水以任意比互溶,但不形成共沸物,能和多数常用的有机溶剂(乙醇、乙醚、丙酮、苯等)混溶,并形成恒沸混合物。甲醇剧毒,内服10ml有失明危

险, 30ml能导致人死亡,空气中允许最高甲醇蒸汽浓度为0.05mg/h。易燃烧,其蒸汽能和空气形成爆炸性混合物,爆炸极限6.0~36.5%(体积) [2]。

甲醇具有上述多种重要的物理化学性质,使它在许多工业部门得到广泛的用途,特别是由于能源结构的改变,和C化学工业的发展,甲醇的许多重要的工业用途正在研究开发中。例如甲醇可以裂解制氢,用于燃料电池,日益引人注目。甲醇通过ZMS-5分子筛催化剂转化为汽油已经工业化为固体燃料转化为液体燃料开辟了捷径。甲醇加一氧化碳加氢可以合成乙醇。又如甲醇可以裂解制烯烃。这对石油化工原料的多样化,面对石油资源日渐枯竭对能源结构的改变,具有重要意义。甲醇化工的新领域不断地被开发出来其广度和深度正在发生深刻的变化。

1.3 甲醇精馏流程发展

1.3.1 工艺流程概述

常规甲醇精制流程可以分为两大部分,第一部分是预精馏部分,另一部分是主精馏部分。预精馏部分除了对粗甲醇进行萃取精馏脱出某些烷烃的作用之外,另外的还可以脱除二甲醚,和其它轻组分有机杂质。其底部的出料被加到主塔的中间入料板上,主塔顶部出粗甲醇,底部出废液,下部侧线出杂醇[3]。

甲醇市场竞争非常激烈,特别是近年来,随着甲醇精馏技术的进步和计算机在该领域的广泛应用,老的工艺装置由于能耗过高,在市场竞争力下降,技术更新和技术进步成为必走之路。

1.3.2 典型的工艺流程

甲醇精馏产生工艺有多种,分为单塔精馏,双塔精馏,三塔精馏与四塔精馏[4]。

(1)单塔流程描述

单塔流程(见图1.1)为粗甲醇产品经过一个塔就可以采出产品。粗甲醇塔中部加料口送入,轻组分由塔顶排出,高沸点的重组分在进料板以下若塔板处引出,水从塔底排出,产品甲醇在塔顶以下若干块塔板引出。

图1.1 甲醇精馏工艺的单塔流程(aspen 模拟图)

(2)双塔流程描述[5]

从合成工序来的粗甲醇入预精馏塔,此塔为常压操作。为了提高预精馏塔后甲醇的稳定性,并尽可能回收甲醇,塔顶采用两级冷凝。塔顶经部分冷凝后的大部分甲醇、水及少量杂质留在液相作为回流返回塔,二甲醚等轻组分(初馏分)及少量的甲醇、水由塔顶逸出,塔底含水甲醇则由泵送至主精馏塔。主精馏塔操作压力稍高于预精馏塔,但也可以认为是常压操作,塔顶得到精甲醇产品,塔底含微量甲醇及其它重组分的水送往水处理系统(见图1.2)。

2

图1.2 甲醇精馏工艺的双塔流程

(3)三塔流程描述

从合成工序来的粗甲醇入预精馏塔,在塔顶除去轻组分及不凝气,塔底含水甲醇由泵送加压塔。加压塔操作压力为57bar(G),塔顶甲醇蒸气全凝后,部分作为回流经回流泵返回塔顶,其余作为精甲醇产品送产品储槽,塔底含水甲醇则进常压塔。同样,常压塔塔顶出的精甲醇一部分作为回流,一部分与加压塔产品混合进入甲醇产品储槽。三塔

流程(见图1.3)的主要特点是,加压塔塔顶冷凝潜热用作常压塔塔釜再沸器的热源,这样既节省加热蒸汽,还节省冷却水,达到节能的目的。[6]

图1.3 甲醇精馏工艺的三塔流程

(4)四塔流程描述

四塔流程(见图1.4)包含预精馏塔、加压精馏塔、常压精馏塔和甲醇回收塔。粗甲醇经换热后进入预精馏塔,脱除轻组分后(主要为不凝气、二甲醚等),塔底甲醇及高沸点组分加压后进入加压精馏塔;加压精馏塔顶的气相进入冷凝蒸发器,利用加压精馏塔和常压精馏塔塔顶、塔底的温差,为常压塔塔底提供热源,同时对加压塔塔顶气相冷凝。冷凝后的精甲醇进入回流罐,一部分作为加压塔回流,一部分作为精甲醇产品出装置;加压塔塔底的甲醇、高沸组分、水等进入常压塔,常压塔顶馏出精甲醇产品,在进料板下方设置侧线抽出,抽出物主要为甲醇、水和高沸点组分,进入甲回收塔再回收甲醇,塔底废水进入生化系统处理;回收塔设有侧线抽出,主要抽出物为高沸点醇类,以保证回收塔塔顶精甲醇质量和塔底废水中总醇含量要求,塔底废水送生化处理。

图1.4 甲醇精馏工艺的四塔流程

1.3.3 影响精馏操作的因素与调节

(1)进料状态[7]

精馏塔的进料(含水甲醇):当进料状况发生变化(回流比、塔顶精馏产物的组成固定)时,这直接影响到提馏段回流量的改变,进料板的位置也随着改变,将引起理论板数和精馏段、提馏段塔板数分配的改变。对于固定进料状况的精馏塔来说,进料状况的改变,将会影响到产品质量及损失情况的改变。

(2)回流比

回流比对精馏塔操作影响很大,直接关系着塔内各层扳上的物料浓度的改变和温度的分布。最终反映在塔的分离效率上,是重要的操作参数之一。

一般情况下,选取适宜回流比为最小回流比的1.3~2倍。

两塔甲醇精馏甲醇主精馏塔的回流比为2.0~2.5。其调节的依据是根据塔的负荷和精甲醇的质量。当塔的热负荷较低时,可以取较低的回流比比较经济,为保证精甲醇的质量,精馏段灵敏板的温度可以控制的略低;反之,则增大回流比,在照顾精甲醇质量的同时,为保持塔釜温度,灵敏板温度可控制略高。对粗甲醇精馏,回流比过大或过小,都会影响精馏操作的经济性和精甲醇的质量,一般在正常生产条件受到破坏或产品不合格时,才调节回流比;调节后尽可能保持塔釜的加热量稳定,使回流比稳定。在调节回流的同时,要注意板式塔的操作特点,防止液泛和严重漏液,都将会造成塔内操作温度的混乱。

当改变回流比时,由于操作的变动,必然会引起塔内每层板上浓度(组成)和温度的改变,影响甲醇的质量和甲醇的收率,必须通过调节,控制塔内适宜的温度,达到新的平衡,在粗甲醇含量和产量确定的条件下,甲醇精馏系统正确的设计十分关键。

(3)进料量和组成

甲醇精馏塔进科量和组成改变时,都会破坏塔内物料平衡和气液平衡,引起塔温的波动,如不及时调节,将会导致精甲醇的质量不合格或者增加甲醇的损失。随着进料量的调节,各层塔板上的气液组成重新分配,可以控制一定的灵敏板温度与之相适应。

粗甲醇的组成一般是比较稳定的,只是在合成催化剂使用的前后期随着反应温度的升高而变化较大。但是预精馏后的含水甲醇中,甲醇浓度总会有些小幅度波动。不论是其中甲醇浓度增加或降低,都会造成塔内物料不平衡,形成轻组分下降或重组分上升,引起塔釜温度降低或塔项温度升高,加大了甲醇损失或降低了精甲醇的质量。这时,在回流比仍属适宜的情况下,只需对精甲醇的采出量稍作调节,就可达到塔温稳定,物料和气液又趋平衡;如果粗甲醇的组分变化较大时,则需适当改变其进料板的位置,或是改变回流比,才保证粗甲醇的分离效率。当合成催化剂后期生产的粗甲醇进行蒸馏时,有时为确保精甲醇的质量,以保证精馏塔进料位置降低,同时适当加大回流比。

如前所述,对粗甲醇精馏塔的操作概念,可以概括如下:在稳定塔压的前提下,采

用在较高蒸汽速度(负荷)下操作,既提高传质效果又最经济;选择适宜的回流比,降低能量消耗;一般在进料稳定和变化缓慢的情况下,通过经常性小量调节精甲醇和重组分的采出量,以保持塔温的合理分布和稳定,维持好塔内三个平衡,使产品甲醇达到质量指标,同时回收副产品──重组分,并尽最大可能降低残液中有机物的含量。

第二章甲醇精馏工段物料衡算

2.1 甲醇精馏原理

甲醇精馏的目的,是实现甲醇与水及有机物等杂质的分离,生产出合格的精甲醇产品。本课题研究四塔甲醇精馏工段工艺,,包括预精馏塔、加压塔、常压塔以及回收塔。粗甲醇经换热后进入预精馏塔,脱除轻组分后,塔底甲醇及高沸点组分通过泵提压后送入加压塔,加压塔顶部出来的气体进入常压塔再沸器换热后,再以回流的方式全部返回加压塔,从加压塔塔顶第2块填料位置采出产品,加压塔塔釜液送入常压塔,常压塔塔顶馏出精甲醇产品,塔釜液送入汽提塔处理,常压塔提馏段侧线采出杂醇油送往回收塔处理,回收塔塔釜液与来自常压塔塔釜液一并送往汽提塔处理。

2.1.1 预精馏塔的作用

预塔精馏的主要作用是脱除粗甲醇中的低沸点杂质和可与甲醇形成共沸物的杂质,它们一般由二氧化碳、醚类、胺类、烃类、酯类、醛酮类物质组成。二氧化碳、醚类、胺类等低沸物可随不凝气一起放空。

对预塔的作用国内外有不同的看法,主要有两种观点:一种认为预塔对保证甲醇的质量有重要作用,国外大都持这种观点,它们的预塔比较高。国内亦有不少厂家的预塔较高,如大庆、吉林、兰州、太原等化肥厂,以及80年代末、90年代初投建的小联醇厂;另一种观点认为铜基触媒的选择性好,粗甲醇中杂质少,预塔高度不必太高,甚至将预塔冷凝器直接垂直安放在塔顶,回流量没有计量,早期的小联醇就是这样[14]。

2.1.2 加碱对甲醇精馏的改善

利用NaOH处理在精馏过程中难以分离的杂质,例如粗甲醇中的酸类、酯类等,使其生成较容易被脱出的盐。粗甲醇中含有的有机酸,对设备,管道腐蚀厉害,经过碱的中和作用,减轻了腐蚀,延长了设备、管道的使用寿命。例如羧酸与NaOH反应生成羧酸钠:

RCOOH + NaOH →RCOONa+H

O

2

还调节了粗甲醇的pH值。

在碱存在下,酯发生皂化反应,生成羧酸盐:

RCOOR’+NaOH → RCOONa + R’OH

羧酸钠溶于水,易于分离。加碱处理使得一些难分离的杂质,在预精馏塔分解[15]。

2.1.3 萃取精馏在甲醇精馏中的应用

粗甲醇中的一些烃类、酯类杂质,它们常温下与甲醇混溶,但不溶或难溶于水。这些醇溶性杂质对精甲醇水溶性特别敏感,只要甲醇中残存几十g/m3 ,其水溶液就会混浊,达不到精甲醇水溶性的要求。又因为杂质密度与甲醇密度差距较大,杂质多时也容易造成精甲醇密度指标不合格。这类物质的沸点较高,且易与甲醇形成低于甲醇沸点的共沸物,主要集中在预塔塔顶而大量进入二级冷凝器回流液。这类物质如不在回流液中脱除,就会造成预塔塔釜出料杂质多,影响精甲醇的质量。脱除这些杂质的方法主要是利用其不溶于水的特性。在预塔加入萃取水可提高醛、酮类物质的相对挥发度,从而使其从塔顶采出。[16]

2.1.4 回流比的选择

回流比对精馏塔操作影响很大,直接关系着培内各层扳上的物料浓度的改变和温度的分布。一般情况下,选取适宜回流比为最小回比的1.3~2倍。

两塔甲醇精馏甲醇主精馏塔的回流比为2.0~2.5。其调节的依据是根据塔的负荷和精甲醇的质量。为保持四塔精馏系统的稳定操作、降低能耗并减少投资,应选取:加压塔回流比R1≥2.5,常压塔回流比R2≥2;两塔负荷比Q1/Q2:0.59-0.79;并在保持稳定生产、产品质量合格的基础上,R1,R2选取得尽量小。

2.2 四塔精馏工段工艺的物料衡算

2.2.1 甲醇精馏工段物

料衡算任务

已知:

原料是粗甲醇,成分及含量如下

表2.1粗甲醇组成

设计要求:

(1)粗甲醇中甲醇回收率不小于99%;

(2)精馏工段产品为精甲醇,其甲醇含量不低于99.5% 2.2.2 甲醇精馏工段物料衡算计算原理

[18]

全塔物料衡算(通过全塔物料衡算,可以求出精馏产品的流量、组成之间的关系)。连续精馏塔做全塔物料衡算,并以单位时间为基准,即

总物料 F D W =+

易挥发组分 F D W Fx =Dx +Wx 式中 F —原料液流量,kmol/h ; D —塔顶产品(馏出液)流量,kmol/h ; W —塔底产品(釜残液)流量,kmol/h ;

F x —原料液中易挥发组分的摩尔分数;

D x —馏出液中易挥发组分的摩尔分数; W x —釜残液中易挥发组分的摩尔分数。 塔顶易挥发组分回收率100%D

F

Dx Fx =? 塔底难挥发组分回收率(1)

100%(1)

W F W x F x -=

?-

2.2.3 甲醇精馏工段物料衡算

以精甲醇年产40万吨计,粗甲醇中含甲醇90.29 %,则每年所需粗甲醇总量为:400000/0.934=428266t/y

年工作日以330天计,则精甲醇每日、每小时产量为:

400000/330=1212.1t/d=50.505t/h=50505.1kg/h

每日、每小时所需粗甲醇量为:428266/330=1297.78t/d=54.07t/h=54074kg/h 1)粗甲醇组成

(1)甲醇含量:93.40%

(2)水含量:5.6%

(3)轻馏分含量:二甲醚0.42%

(4)初馏分含量:异丁醇0.26%

(5)高级烷烃:辛烷0.32%

2)预塔物料衡算

(1)入料:

①粗甲醇入料量:54047kg/h

②碱液

每吨精甲醇消耗92%的NaOH 0.811kg,则消耗10%的碱液量:

%

10 1000

% 92

811

.0

1.

50505

??

?

=376.8kg/h

则甲醇年消耗量:376.8×24×330=2984t

碱带入的水量=376.8×(1-0.1)=339.12kg/h(相当于加入的萃取水量)

③粗甲醇含水量=54047×0.056=3026.6kg/h

水量=粗甲醇含水量+碱液含水量

=3026.6+339.12=3365.72kg/h

④轻馏分量=54047×0.0042=227kg/h

⑤初馏物=54047×0.0026=140.5kg/h

⑥高级烷烃=54047×0.0032=172.95kg/h

总入料量=粗甲醇量+碱液量=54047+376.8=54423.8kg/h

(2)出料

①甲醇:50505 kg/h

②水量:3365.72 kg/h

③NaOH:376.8 kg/h

④轻馏分:227kg/h

⑤初馏物:140.5kg/h

⑥高级烷烃:172.95 kg/h

其中:

气相塔顶=轻馏分+高级烷烃=227 +172.95=399.95 kg/h

液相塔底=甲醇+水+初馏物+NaOH=50505+3365.72+140.5+376.8=54388kg/h

(3)预塔回流量

脱醚塔回流量回流比一般R 20,且考虑到节省能源的问题。结合ASPEN简捷模拟取R=31.5

则回流量=1071.2×31.5=33787.68kg/h

3)加压塔物料衡算

加压塔出料甲醇含量86.7%(即塔底甲醇含量)

(1)入料:

总入料量=出料液相=54388kg/h

其中:

①水量=预出料水量=3365.72kg/h

②甲醇量=预出料甲醇量=50505kg/h

③NaOH=预出料碱量=376.8kg/h

④初馏物=预出料初馏物=140.5kg/h

(2)出料:

①出料水量=入料水量=3365.72kg/h

②NaOH=376.8kg/h

③初馏物=140.5kg/h

④甲醇=(出口水量+NaOH+初馏物)×出料甲醇含量/(1-出料甲醇含量)

=(3365.72+376.8+167.8)×0.867/(1-0.867)

=25491kg/h

⑤采出精甲醇量=入塔甲醇量-出料甲醇量=50505-25491=25014kg/h

⑥总出料量=总入料量-采出精甲醇量=54388-25014=29374kg/h

其中

塔顶:液相=精甲醇量=25014kg/h

塔底:液相=粗甲醇量=29374kg/h

(3)回流量

为保持系统的稳定操作,降低能耗,并减少投资,应选取:

加压塔回流比R1≥2.5

常压塔回流比R2≥2.0

并且在保持稳定生产,产品质量合格的基础上,R1、R2选取的尽量小。

则取加压塔回流比R=2.8

回流量=R×D=2.8×25014=70039.2kg/h

4)常压塔物料衡算

(1)入料

总入料量=加压塔塔底总出料量=29374kg/h

其中

①甲醇=29374×0.867=25467.3kg/h

②水=3365.72kg/h

③NaOH=376.8kg/h

④初馏物=140.5kg/h

(2)出料

①侧线排出量=初馏物+水+甲醇

初馏物=140.5kg/h 占0.26%

则侧线排出量=140.5/0.0026=5403.8kg/h

其中:

甲醇=5403.8×0.6062=3275.8kg/h(占60.62%)

水=5403.8×0.3023=1633.6kg/h(占30.23%)

初馏物=140.5kg/h(占0.26%)

②塔底排出残液

其中:

NaOH=376.8kg/h

水=入料水-侧线排出=3365.72-1633.6=1732.12kg/h

塔底排出残液中含甲醇量

=(残液中水+NaOH)×残液甲醇含量/(1-残液中甲醇含量)=(1732.12+376.8)×0.001/(1-0.001)

=2.1110kg/h

残液总量=水量+NaOH+醇量

=1732.12+376.8+2.1110

=2111.0kg/h

③塔顶

塔顶采出精甲醇=入塔精甲醇-侧线排出-残液中含醇量

=25467.3-3275.8-2.1110

=22189.4kg/h

总出料量:

塔顶精甲醇=22189.4kg/h

塔侧线=初馏物+水+甲醇=5403.8kg/h

塔底残液=NaOH+水+甲醇=2111.0kg/h

(3)回流量

回流量=R×D

=2×22189.4=44378.8kg/h

5)回收塔物料衡算

(1)入料

入料量=侧线排出量=5403.8kg/h

其中甲醇=3275.8kg/h

水=1633.6kg/h

初馏物=140.5kg/h

(2)出料:

①塔顶

采出精甲醇量=3275.8×0.97367

=3189.5kg/h(精甲醇占入料精甲醇的97.367%)

②侧线抽出物

甲醇=入料甲醇-塔顶甲醇

=3275.8-3189.5=86.3kg/h(甲醇占20.27%)

侧线抽出物=86.3/20.27%=425.8kg/h

其中

异丁醇=425.8×0.0026=1.11kg/h

水=425.8×0.056=23.8kg/h

甲醇=86.3kg/h

③塔底

其中

水=入料水量-侧线出水

=1633.6-23.8=1622.8kg/h

异丁醇=入料异丁醇-侧线抽出异丁醇

=14.05-1.11=12.94kg/h

总量=水量+异丁醇

=1622.8+12.94=1635.74kg/h

(3)回流液量

回流比:R取5

回流量=D×R=5×3189.5=15947.5kg/h

6)粗甲醇中甲醇回收率

甲醇回收率

=(加压塔采出精甲醇量+常压塔采出精甲醇量+回收塔采出精甲醇量)/粗甲醇中精甲醇量

=(25014+22189.4+3189.5)/50505.1=99.778%

第三章常压塔冷却器的设计

3.1确定设计方案

两流体温度变化情况:精甲醇进口温度71℃,出口温度49℃;冷却水进口温度25℃,出口温度30℃。该换热器用循环冷却水冷却,冬季操作时进口温度降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式换热器。

3.2确定物性数据[18]

⑴流体平均温度T m和t m

T m1=(T

i

+T

o

)/2=(71+49)/2=60℃

t m1=(t

i

+t

o

)/2=(25+30)/2=27.5℃

⑵平均温度下的物性数据

表3-1 各组分物性数据

3.2.1计算总传热系数

⑴热负荷Q

Q = Q0 c p0 t0+Q0r

=22189.4×2.943×(71-49)+22189.4/30 35.28/3600 = 1436.682kW

⑵平均传热温差

'==

25

304971ln

25

304971--+--=11.4712≈℃

⑶冷却水用量

i w =

t c Q pi ?0=)

2530(08.43600

682.4361-??=253532kg/h 总传热系数K 管程传热系数

Re =

i

i

i i u d μρ=

000725

.0994

5.002.0??=13710

i a =0.023

)()(8.0i

i p i i i i i i c u d d λμμρλ4.0=0.023?

4

.08.0)626.010********.008.4()13710(02.0626.0?? =2734.6w/(m 2?K) 壳程传热系数

假设壳程的传热系α0 = 290W/(m 2·℃); 污垢热阻

si R =0.000172m 2 ·

℃/W so R =0.000172 m 2 ·℃/W 管壁的导热系数λ= 45W/(m?K)

K =i

i i si i so d a d d d R d bd R a 00001

1

++++λ

=

02

.06.2734025.002.0025.0000172.00225.045025.00025.01072.129011

4?+?+??+?+-

=229.67 W/(m 2·℃) 3.2.2计算传热面积

S'='

m t K Q ?=1267.22910682.43613??=512.3m 2

考虑15%的面积裕度,S=1.15×S'=1.15×512.3=599.5m 2

3.2.2 工艺结构尺寸 管径和管内流速

选用Φ25×2.5传热管(碳钢),去管内流速i u =0.5m/s

管程数和传热管数

s n =

u

d V

i 24

π

=

5

.002.0785.0)

3600994/(2535322???=452(根)

按单程管计算,所需的传热管长度为 L = S/(πd 0n s ) =512.3/(3.14×0.025×452) = 8.3(m) 取传热管长l=9m ,则该换热器管程数为 Np = L/l =8.3/9≈ 1(管程)

传热管总根数N = 452×1= 452(根) 平均传热温差校正及壳程数 平均传热温差校正系数

R = (71-49)/(30-25) = 8.8 P = (30-25)/(71-25) = 0.102

按单壳程,多管程结构,温差校正系数查《化工原理(上册)》第232页图4-19,可得t ??=0.99

平均传热温差

m t ?=t ??m t ?'=0.99×12=12℃ 传热管排列和分程方法

采用组合排列法,取管心距t = 1.25d 0,则 t = 1.25×25 = 31.25 ≈ 32 mm 横过管束中心线的管数

c n =N 19.1=19.1452=26(根) 壳体内径

采用多管程结构,取管板利用率η= 0.8,则壳体内径为

D =1.05ηN

t =1.058

.0452

32

?=798.7

圆整可取D = 800mm

圆整后,换热器壳体圆筒内径为D=800mm ,壳体厚度选择10mm 。长度定为9000mm 。

壳体的标记:筒体 DN800 δ=10

年产20万吨煤制甲醇生产工艺初步设计_毕业设计书

年产20万吨煤制甲醇生产工艺初步设计 摘要 甲醇是一种极重要的有机化工原料,也是一种燃料,是碳一化学的基础产品,在国民经济中占有十分重要的地位。近年来,随着甲醇下属产品的开发,特别是甲醇燃料的推广应用,甲醇的需求大幅度上升。为了满足经济发展对甲醇的需求,开展了此20万t/a的甲醇项目。设计的主要内容是进行工艺论证,物料衡算和热量衡算等。本设计本着符合国情、技术先进和易得、经济、环保的原则,采用煤炭为原料;利用GSP气化工艺造气;NHD净化工艺净化合成气体;低压下利用列管均温合成塔合成甲醇;三塔精馏工艺精制甲醇;此外严格控制三废的排放,充分利用废热,降低能耗,保证人员安全与卫生。 关键词:甲醇、合成、精馏。

abstract Methanol is a kind of extremely important organic industrial chemicals, and a kind of fuel too, it is the basic products of the chemistry of carbon one. It is very important in national economy. In recent years, with the development of the products that are made from methanol, especially the popularization and application of the fuel of methanol, the demand for the methanol rises by a large margin. In order to satisfy economic development's demands for methanol , have launched the methanol project of this 200,000t/a. Main content that design to carry on craft prove, supplies weighing apparatus regard as with heat weighing apparatus charging etc The principle of the design in line with according with the national conditions, technologically advanced and apt, economy, protecting environment,. Coals is adopted as raw materials; the craft of GSP gasification is utilized to make water gas; the craft of NHD purification is utilized to purify the syngas; tubular average -temperature reaction is utilized to synthesize methanol keeping in low pressure; the rectification craft of three towers is utilized to rectify methanol; In addition control the discharge of the three wastes strictly, fully utilize used heat, reduce energy consumption, guarantee the personal security and hygiene. Keyword: Methanol, synthesis, rectification. 目录

化工原理甲醇—水连续填料精馏塔

化工原理课程设计说明书 设计题目:甲醇—水连续填料精馏塔 设计者: 专业: 学号: 指导老师: 2007年7 月13日

目录 一、设计任务书 (1) 二、设计的方案介绍 (1) 三、工艺流程图及其简单说明 (2) 四、操作条件及精熘塔工艺计算 (4) 五、精熘塔工艺条件及有关物性的计算 (14) 六、精馏塔塔体工艺尺寸计算 (19) 七、附属设备及主要附件的选型计算 (23) 八、参考文献 (26) 九、甲醇-水精熘塔设计条件图

一、设计任务书 甲醇散堆填料精馏塔设计: 1、处理量:12000 吨/年(年生产时间以7200小时计算) 2、原料液状态:常温常压 3、进料浓度:41.3%(甲醇的质量分数) 塔顶出料浓度:98.5%(甲醇的质量分数) 塔釜出料浓度:0.05%(甲醇的质量分数) 4、填料类型:DN25金属环矩鞍散堆填料 5、厂址位于沈阳地区 二、设计的方案介绍 1、进料的热状况 精馏操作中的进料方式一般有冷液加料、泡点进料、汽液混合物进料、饱和蒸汽进料和过热蒸汽加料五种。本设计采用的是泡点进料。这样不仅对塔的操作稳定较为方便,不受厦门季节温度影响,而且基于恒摩尔流假设,精馏段与提馏段上升蒸汽的摩尔流量相等,因此塔径基本相等,在制造上比较方便。 2、精熘塔的操作压力 在精馏操作中,当压力增大,混合液的相对挥发度减小,将使汽相和液相的组成越来越接近,分离越来越难;而当压力减小,混合液的相对挥发度增大,α值偏离1的程度越大,分离越容易。但是要保持精馏塔在低压下操作,这对设备的要求相当高,会使总的设备费用大幅度增加。在实际设计中,要充分考虑这两

甲醇-水精馏课程设计—化工原理课程设计

甲醇-水分离过程板式精馏塔的设计 1.设计方案的确定 本设计任务为分离甲醇和水混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷凝冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.8倍。塔釜采用间接蒸汽加热①。 2.精馏塔的物料衡算 2.1.原料液及塔顶、塔顶产品的摩尔分率 甲醇的摩尔质量M A=32.04kg/kmol 水的摩尔质量M B=18.02 kg/kmol x F= 0.46/32.04 0.324 0.46/32.040.54/18.02 = + x D= 0.95/32.04 0.914 0.95/32.040.05/18.02 = + x W= 0.03/32.04 0.0171 0.03/32.040.97/18.02 = + 2.2.原料液及塔顶、塔底产品的平均摩尔质量 M F=0.324*32.04(10.324)*18.0222.56 +-=kg/kmol M D=0.914*32.04(10.914)*18.0230.83 -=kg/kmol M W=0.0171*32.04(10.0171)*18.0218.26 +-=kg/kmol 2.3.物料衡算 原料处理量F= 30000*1000 184.7 24*300*22.56 =kmol/h 总物料衡算184.7=D+W 甲醇物料衡算184.7*0.324=0.914D+0.0171W 联立解得D=63.21 kmol/h W=121.49 kmol/h 3.塔板数的确定 3.1.理论塔板层数N T的求取 3.1.1.由手册查的甲醇-水物系的气液平衡数据

年产15万吨甲醇制乙烯精馏工段工艺设计毕业设计

中国矿业大学银川学院本科毕业设计 (2010 届) 题目年产15万吨甲醇制乙烯精馏工段 工艺设计

1.设计年产15万吨甲醇精馏段,年开车时间7920小时,工艺采用以煤制气为原料合成粗甲醇,经预精馏塔、加压精馏塔和常压精馏塔分离后得到精甲醇的新节能型三塔工艺流程开发的 2.计算条件: ①原料气组成 CH3OH H2O CH3CH2OH 轻馏分杂醇 Wt% 95 3.72 0.1 1.11 0.07 ②精甲醇收集:99.6% ③废水中甲醇含量:50ppm 3.设计要求: ①编写计算说明书,其中包括综述,工艺路线选择,物料衡算与工艺计算,主要塔设备计算,热量衡算等。 ②图纸(3张):甲醇精馏段带控制点工艺流程图,平面布置图,工段主要物料管道图,精馏塔图,主要设备图等 ③说明书可以电脑打字,图纸均为CAD绘图

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

煤制甲醇工艺设计

煤制甲醇工艺流程化设计 主反应为:C + O 2 → C O + C O 2 + H 2 → C H 3O 副反应为: 1 造气工段 (1)原料:由于甲醇生产工艺成熟,市场竞争激烈,选用合适的原料就成为项目的关键,以天然气和重油为原料合成工艺简单,投资相对较少,得到大多数国家的青睐,但从我国资源背景看,煤炭储量远大于石油、天然气储量,随着石油资源紧缺、油价上涨,在大力发展煤炭洁净利用技术的形势下,应该优先考虑以煤为原料,所以本设计选用煤作原料。 图1-1 甲醇生产工艺示意图 (2)工艺概述:反应器选择流化床,采用水煤浆气化激冷流程。原料煤通过粉碎制成65%的水煤浆与99.6%的高压氧通过烧嘴进入气化炉进行气化反应,产生的粗煤气主要成分为CO ,CO 2,H 2等。 2423CO H CH H O +?+2492483CO H C H OH H O +?+222CO H CO H O +?+

2 净化工段 由于水煤浆气化工序制得粗煤气的水汽比高达1.4可以直接进行CO变换不需加入其他水蒸气,故先进行部分耐硫变换,将CO转化为CO2,变换气与未变换气汇合进入低温甲醇洗工序,脱除H2S和过量的CO2,最终达到合适的碳氢比,得到合成甲醇的新鲜气。 CO反应式: CO+H O=CO+H 222 3 合成工段 合成工段工艺流程图如图1。 合成反应要点在于合成塔反应温度的控制,另外,一般甲醇合成反应10~15Mpa的高压需要高标准的设备,这一项增加了很大的设备投资,在设计时,选择目前先进的林达均温合成塔,操作压力仅5.2MPa,由于这种管壳式塔的催化剂床层温度平稳均匀,反应的转化率很高。在合成工段充分利用自动化控制方法,实行连锁机制,通过控制壳程的中压蒸汽的压力,能及时有效的掌控反应条件,从而确保合成产品的质量。 合成主反应: CO+2H=CH OH 23 主要副反应: CO+3H=CH OH+H O 2232 4 精馏工段 精馏工段工艺流程图见图2。 合成反应的副产主要为醚、酮和多元醇类,本设计要求产品达质量到国家一级标准,因此对精馏工艺的合理设计关系重大,是该设计的重点工作。设计中选用双塔流程,对各物料的进出量和回流比进行了优化,另外,为了进一步提高精甲醇质量,从主塔回流量中采出低沸点物继续进预塔精馏,这一循环流程能有效的提高甲醇的质量。

化工原理课程设计,甲醇和水的分离精馏塔的设计

郑州轻工业学院 ——化工原理课程设计说明书 课题:甲醇和水的分离 学院:材料与化学工程学院 班级: 姓名: 学号: 指导老师: 目录 第一章流程确定和说明 (2) 1.1.加料方式 (2)

1.2.进料状况 (2) 1.3.塔型的选择 (2) 1.4.塔顶的冷凝方式 (2) 1.5.回流方式 (3) 1.6.加热方式 (3) 第二章板式精馏塔的工艺计算 (3) 2.1物料衡算 (3) 2.3 塔板数的确定及实际塔板数的求取 (5) 2.3.1理论板数的计算 (5) 2.3.2求塔的气液相负荷 (5) 2.3.3温度组成图与液体平均粘度的计算 (6) 2.3.4 实际板数 (7) 2.3.5试差法求塔顶、塔底、进料板温度 (7) 第三章精馏塔的工艺条件及物性参数的计算 (9) 3.1 平均分子量的确定 (9) 3.2平均密度的确定 (10) 3.3. 液体平均比表面积张力的计算 (11) 第四章精馏塔的工艺尺寸计算 (12) 4.1气液相体积流率 (12) 4.1.1 精馏段气液相体积流率: (12) 4.1.2提馏段的气液相体积流率: (13) 第五章塔板主要工艺尺寸的计算 (14) 5.1 溢流装置的计算 (14) 5.1.1 堰长 (14) 5.1.2溢流堰高度: (15) 5.1.3弓形降液管宽度 (15) 5.1.4 降液管底隙高度 (16) 5.1.5 塔板位置及浮阀数目与排列 (16) 第六章板式塔得结构与附属设备 (24) 6.1附件的计算 (24) 6.1.1接管 (24) 6.1.2 冷凝器 (27) 6.1.3再沸器 (28) 第七章参考书录 (28) 第八章设计心得体会 (29)

甲醇-水溶液连续精馏塔课程设计91604

目录 设计任务书 一、概述 1、精馏操作对塔设备的要求和类型 (4) 2、精馏塔的设计步骤 (5) 二、精馏塔工艺设计计算 1、设计方案的确定 (6) 2、精馏塔物料衡算 (6) 3、塔板数的确定 (7) 的求取 (7) 3.1理论板层数N T 3.2实际板层数的求取 (8) 4、精馏塔的工艺条件及有关物性数据的计算 4.1操作温度的计算 (11) 4.2平均摩尔质量的计算 (11) 4.3平均密度的计算 (12) 4.4液相平均表面张力计算 (12) 4.5液体平均粘度计算 (13) 5、精馏塔塔体工艺尺寸计算 5.1塔径的计算 (14) 5.2精馏塔有效高度的计算 (15) 6、塔板主要工艺尺寸计算 6.1溢流装置计算 (16) 6.2塔板的布置 (17) 6.3浮阀计算及排列 (17) 7、浮阀塔流体力学性能验算 (19) 8、塔附件设计 (26) 7、精馏塔结构设计 (30)

7.1设计条件 (30) 7.2壳体厚度计算………………………………………………… 7.3风载荷与风弯矩计算………………………………………… 7.4地震弯矩的计算………………………………………………… 三、总结 (27) 化工原理课程设计任务书 一、设计题目: 甲醇-水溶液连续精馏塔设计 二、设计条件: 年产量: 95%的甲醇17000吨 料液组成(质量分数): (25%甲醇,75%水) 塔顶产品组成(质量分数): (95%甲醇,5%水) 塔底釜残液甲醇含量为6% 每年实际生产时间: 300天/年,每天24小时连续工作 连续操作、中间加料、泡点回流。 操作压力:常压 塔顶压力4kPa(表压) 塔板类型:浮阀塔 进料状况:泡点进料 单板压降:kPa 7.0 厂址:安徽省合肥市 塔釜间接蒸汽加热,加热蒸汽压力为0.5Mpa 三、设计任务 完成精馏塔的工艺设计,有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书. 设计内容包括: 1、 精馏装置流程设计与论证 2、 浮阀塔内精馏过程的工艺计算 3、 浮阀塔主要工艺尺寸的确定 4、 塔盘设计 5、 流体力学条件校核、作负荷性能图 6、 主要辅助设备的选型 四、设计说明书内容 1 目录 2 概述(精馏基本原理) 3 工艺计算 4 结构计算 5 附属装置评价 6 参考文献 7 对设计自我评价 摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主

浅述三塔精馏技术在甲醇生产中的运用

浅述三塔精馏技术在甲醇生产中的运用 摘要三塔精馏技术具有产品质量高、操作容易、能耗低等优点,其在甲醇生产中的应用,能够有效提高甲醇生产效益,因此应结合甲醇生产要求,积极发挥三塔精馏技术优势,优化三塔精馏工艺,全面提高甲醇生产质量。本文简要介绍了甲醇生产现状,分析了三塔精馏技术在甲醇生产中的运用。 关键词三塔精馏技术;甲醇生产;运用 甲醇生产过程中不仅会发生很多副反应,而且产生很多杂质,三塔精馏技术是一种新型精馏技术,通过在甲醇生产中运用三塔精馏技术,可以有效减少甲醇损耗,提高甲醇生产质量。 1 甲醇生产现状 1.1 甲醇酸度不达标 由于预塔蒸汽用量较多,为了节约蒸汽,预塔回流量减小,并且由于不凝气管线中含有大量的甲醇积液不能及时回收,因此只能将原本的不凝汽温度下调,但是这样又造成甲醇酸度过高,如果采用加碱量方式,预塔底部pH值会明显提升,最终严重影响甲醇酸度。 1.2 甲醇浪费严重 根据甲醇的生产流程,常压塔和加压塔在实际应用中相互制约、相互影响,为了控制两塔的气液平衡、物料平衡和热量平衡,必须做好常压塔和加压塔的控制处理。甲醇生产操作时,通过控制加压塔回流量,降低蒸汽用量,甲醇生产负荷较高,甲醇采出量较大,这使得甲醇含水量较高,并且加压塔中蒸汽上升量相对较少,对于常压塔的供热量也较少,这时常压塔的运行负荷远远低于标准限值,然而由于物料在常压塔和加压塔分配存在较大差异,这使得常压塔供热量较少,无法保障常压塔运行负荷,上升蒸汽量较少,甲醇采出量不足,塔顶区域处于负压状态。在某些甲醇生产工艺中,为了调整常压塔负压状态,往往选择提高回流温度或者增加回流量的方式,但是其實际应用效果较差,提高回流温度,会使得甲醇采出温度大幅度上升,由于甲醇容易挥发,因此在生产过程中会浪费大量的甲醇,还会污染周围环境。虽然加大回流量在一定程度上能够保持塔顶处于正压状态,然而回流量过大,往往会降低灵敏板温度,由于常压塔底部几乎没有热负荷,这样更加加剧了热负荷上升的状态,甲醇轻组分不断向下移动,造成大量甲醇融入废水中被排出,造成生产原料的浪费[1]。 2 三塔精馏技术在甲醇生产中的应用 2.1 具体生产工艺

甲醇精馏的方法

1.4.2 甲醇精馏的典型工艺流程甲醇精馏产生工艺有多种,分为单塔精馏,双塔精馏,三塔精馏与四塔精馏(即三塔加回收塔) (1) 单塔流程描述 采用铜系催化剂低压法合成甲醇,由于粗甲醇中不仅还原性杂质的含量大大减少,而且二甲醚的含量几十倍地降低,因此在取消化学净化的同时,可将预精馏及甲醇-水-重组分的分离在一台主精馏塔内同时进行,即单塔流程,就能获得一般工业上所需要的精甲醇。单塔流程更适用于合成甲基燃料的分离,很容易获得燃料级甲醇。 单塔流程(见图1.1)为粗甲醇产品经过一个塔就可以采出产品。粗甲醇塔中部加料口送入,轻组分由塔顶排出,高沸点的重组分在进料板以下若塔板处引出,水从塔底排出,产品甲醇在塔顶以下若干块塔板引出。 (2) 双塔流程描述 双塔工艺是由脱醚塔,甲醇精馏塔或者主塔组成。主塔在工厂中产量在100万吨/年以下,仅仅能提供简单的过程,所以设备和投资较低。 传统的工艺流程,是最早用于30MPa压力下以锌铬催化剂合成粗甲醇的精制。主要步骤有:中和、脱醚、预精馏脱轻组分杂质、氧化净化、主精馏脱水和重组分,最终得到精甲醇产品。在传统工艺流程上,取消脱醚塔和高锰酸钾的化学净化,只剩下双塔精馏(预精馏塔和主精馏塔)。其高压法锌铬催化剂合成甲醇和中、低压法铜系催化剂合成甲醇都可适用。 从合成工序来的粗甲醇入预精馏塔,此塔为常压操作。为了提高预精馏塔后甲醇的稳定性,并尽可能回收甲醇,塔顶采用两级冷凝。塔顶经部分冷凝后的

大部分甲醇、水及少量杂质留在液相作为回流返回塔,二甲醚等轻组分(初馏分)及少量的甲醇、水由塔顶逸出,塔底含水甲醇则由泵送至主精馏塔。主精馏塔操作压力稍高于预精馏塔,但也可以认为是常压操作,塔顶得到精甲醇产品,塔底含微量甲醇及其它重组分的水送往水处理系统(见图1.2)。 (3) 三塔流程描述 三塔工艺是由脱醚塔,加压精馏塔和常压精馏塔组成,形成二效精馏与二甲醇精馏塔甲醇产品的镏出物的混合物。三塔流程(见图1.3)的主要特点是,加压塔塔顶冷凝潜热用作常压塔塔釜再沸器的热源,形成双效精馏二效精馏,因此热量交换在加压塔顶部和常压塔底部之间进行。这种形式节省大约30%~40%的能源,同时降低了循环冷却水的速度。 从合成工序来的粗甲醇入预精馏塔,在塔顶除去轻组分及不凝气,塔底含水甲醇由泵送加压塔。加压塔操作压力为57bar(G),塔顶甲醇蒸气全凝后,部分作为回流经回流泵返回塔顶,其余作为精甲醇产品送产品储槽,塔底含水甲醇则进常压塔。同样,常压塔塔顶出的精甲醇一部分作为回流,一部分与加压塔产品混合进入甲醇产品储槽。 (4) 四塔流程描述 四塔流程(见图1.4)包含预精馏塔、加压精馏塔、常压精馏塔和甲醇回收塔。粗甲醇经换热后进入预精馏塔,脱除轻组分后(主要为不凝气、二甲醚等),塔底甲醇及高沸点组分加压后进入加压精馏塔,加压精馏塔顶的气相进入冷凝蒸发器,利用加压精馏塔和常压精馏塔塔顶、塔底的温差,为常压塔塔底提供热源,同时对加压塔塔顶气相冷凝。冷凝后的精甲醇进入回流罐,一部分作为加压塔回流,一部分作为精甲醇产品出装置,加压塔塔底的甲醇、高沸组分、

甲醇水筛板精馏塔课程设计

化学与化学工程学院 《化工原理》专业课程设计 设计题目常压甲醇-水筛板精馏塔设计 姓名:潘永春 班级:化工101 学号: 2010054052

指导教师:朱宪 荣 课程设计时间2013、6、8——2013、6、20 化工原理课程设计任务书 专业:化学与化学工程学院:化工101 姓名:潘永春 学号 20100054052 指导教师朱宪荣 设计日期: 2013 年6月8日至 2013年6月20日 一、设计题目:甲醇-水精馏塔的设计 二、设计任务及操作条件: 1、设计任务 生产能力(进料) 413.34Kmol/hr 操作周期 8000小时/年 进料组成甲醇0.4634 水0.5366(质量分率下同) 进料密度 233.9Kg/m3 平均分子量 22.65 塔顶产品组成 >99% 塔底产品组成 <0.04% 2、操作条件 操作压力 1.45bar (表压) 进料热状态汽液混合物液相分率98% 冷却水 20℃ 直接蒸汽加热低压水蒸气 塔顶为全凝器,中间汽液混合物进料,连续精馏。 3、设备形式筛板式或浮阀塔

4、厂址齐齐哈尔地区 三、图纸要求 1、计算说明书(含草稿) 2、精馏塔装配图(1号图,含草稿) 一.前言5 1.精馏与塔设备简介 5 2.体系介绍 5 3.筛板塔的特点 6 4.设计要求: 6 二、设计说明书7 三.设计计算书8 1.设计参数的确定8 1.1进料热状态8 1.2加热方式8 1.3回流比(R)的选择8 1.4 塔顶冷凝水的选择 8 2.流程简介及流程图 8 2.1流程简介8 3.理论塔板数的计算与实际板数的确定9 3.1理论板数计算9 3.1.1物料衡算9 3.1.2 q线方程9 3.1.3平衡线方程10 3.1.4 Rmin和R的确定10 3.1.5精馏段操作线方程的确定10 3.1.6精馏段和提馏段气液流量的确定10 3.1.7提馏段操作线方程的确定10 3.1.8逐板计算10 3.1.9图解法求解理论板数如下图: 12 3.2实际板层数的确定12 4精馏塔工艺条件计算12 4.1操作压强的选择12 4.2操作温度的计算13

年产40万吨甲醇精馏工艺设计概述

毕业设计(论文)任务书 设计(论文)题目:年产40万吨甲醇精馏工艺设 计 学院:专业:班 级:晋艺 学生:指导教师: 1.设计(论文)的主要任务及目标 (1) 结合专业知识和工厂实习、分析选定合适的工艺参数。 (2) 进行工艺计算和设备选型能力的训练。 (3) 进行工程图纸设计、绘制能力的训练。 2.设计(论文)的基本要求和内容 (1) 本车间产品特点及工艺流程。 (2) 主要设备物料、热量衡算、结构尺寸计算及辅助设备的选型计算。 (3) 参考资料 3.主要参考文献 [1] 谢克昌、李忠.甲醇及其衍生物.北京.化学工业出版社.2002.5~7 [2] 冯元琦.联醇生产.北京.化学工业出版社.1989.257~268. [3] 柴诚敬、张国亮。化工流体流动与传热。北京。化学工业出版社。2000.525-530 4.进度安排 设计(论文)各阶段名称起止日期 1 收集有关资料2010-01-28~2010-02-11 2 熟悉资料,确定方案2010-02-12~2010-02-26 3 论文写作2010-02-27~2010-03-19 4 绘制设计图纸2010-03-20~2010-04-03 5 准备答辩2010-4-10 目录 摘要 (1) 第1章甲醇精馏的工艺原理 2 第1.1节基本概念 2 第1.2节甲醇精馏工艺 3 1.2.1 甲醇精馏工艺原理 3 1.2.2 主要设备和泵参数 3 1.2.3膨胀节材料的选用 6 第2章甲醇生产的工艺计算7 第2.1节甲醇生产的物料平衡计算7 第2.2 节生产甲醇所需原料气量9

2.2.1生产甲醇所需原料气量9 第2.3节联醇生产的热量平衡计算15 2.3.1甲醇合成塔的热平衡计算15 2.3.2甲醇水冷器的热量平衡计算18 第2.4节粗甲醇精馏物料及热量计算21 2.4.1 预塔和主塔的物料平衡计算21 2.4.2 预塔和主塔的热平衡计算25 第3章精馏塔的设计计算33 第3.1节精馏塔设计的依据及任务33 3.1.1设计的依据及来源33 3.1.2设计任务及要求33 第3.2节计算过程34 3.2.1塔型选择34 3.2.2操作条件的确定34 3.2.2.1 操作压力34 3.2.2.2进料状态35 3.2.2.3 加热方式35 3.2.2.4 热能利用35 第3.3节有关的工艺计算36 3.3.1 最小回流比及操作回流比的确定36 3.3.2 塔顶产品产量、釜残液量及加热蒸汽量的计算37 3.3.3 全凝器冷凝介质的消耗量37 3.3.4热能利用38 3.3.5 理论塔板层数的确定38 3.3.6全塔效率的估算39 3.3.7 实际塔板数40 第3.4节精馏塔主题尺寸的计算40 3.4.1 精馏段与提馏段的体积流量40 3.4.1.1 精馏段40 3.4.1.2 提馏段42 第3.5节塔径的计算43 第3.6节塔高的计算45 第3.7节塔板结构尺寸的确定46 3.7.1 塔板尺寸46 3.7.2弓形降液管47 3.7.2.1 堰高47 3.7.2.2 降液管底隙高度h0 47 3.7.3进口堰高和受液盘47 3.7.4 浮阀数目及排列47 3.7. 4.1浮阀数目48 3.7. 4.2排列48 3.7. 4.3校核49 第3.8节流体力学验算49 3.8.1 气体通过浮阀塔板的压力降(单板压降) 49

南昌大学甲醇-水连续精馏塔的课程设计

化工原理课程设计 一、设计题目 甲醇-水连续精馏塔的设计 二、设计条件 1、常压操作:p=1atm 2、进精馏塔的料液含甲醇61%(质量),其余为水 3、产品的甲醇含量不得低于99%(质量) 4、残液中甲醇含量不得高于3%(质量) 5、生产能力为日处理(24h)66.5吨粗甲醇 三、设计内容 3.1:设计方案的确定及流程说明 3.1.1:选择塔型 精馏塔属气—液传质设备。气—液传质设备主要有板式塔和填料塔两大类。该塔设计生产时日要求较大,由板式塔与填料塔比较知:板式塔直径放大时,塔板效率较稳定,且持液量较大,液气比适应范围大,因此本次精馏塔设备选择板式塔。 筛板塔是降液管塔板中结构最简单的,制造维修方便,造价低,相同条件下生产能力高于浮阀塔,塔板效率接近浮阀塔。本次设计为分离甲醇与水,所以由各方面条件考虑后,本次设计应用筛板塔。 3.1.2:精馏方式 由设计要求知,本精馏塔为连续精馏方式 3.1.3:装置流程的确定 为获取也液相产品,采用全凝器。 含甲醇61%(质量分数)的甲醇-水混合液经过预热器,预热到泡点进料。进入精馏塔后分离,塔顶蒸汽冷凝后有一部分作为产品经产品冷却器冷却后流入甲醇贮存罐,一部分回流再进入塔中,塔底残留液给再沸器加热后,部分进入塔中,部分液体作为产品经釜液冷却器冷却后流入釜液贮存罐。 3.1.4:操作压强的选择 常压操作可减少因加压或减压操作所增加的增、减压设备费用和操作费用,提高经济效益,在条件允许下常采用常压操作,因此本精馏设计选择在常压下操作。 3.1.5:进料热状态的选择 泡点进料时,塔的操作易于控制,不受环境影响。饱和液体进料时进料温度不受季节、气温变化和前段工序波动的影响,塔的操作比较容易控制。此外,泡点进料,提馏段和精馏段塔径大致相同,在设备制造上比较方便。冷液进塔虽可减少理论板数,使塔高降低,但精馏釜及提馏段塔径增大,有不利之处。所以根据设计要求,可采用泡点进料,q=1。 3.1.6:加热方式 本次采用间接加热,设置再沸器 3.1.7:回流比的选择 选择回流比,主要从经济观点出发,力求使设备费用和操作费用最低,一般经验值为:R=(1.2~2)Rmin 经后面简捷法计算对应理论板数N时,可知,R=2Rmin时,理论板数最少,所以回流比选择为最小回流比的2倍。

甲醇精馏塔设计说明书

设计条件如下: 操作压力:105.325 Kpa(绝对压力) 进料热状况:泡点进料 回流比:自定 单板压降:≤0.7 Kpa 塔底加热蒸气压力:0.5M Kpa(表压) 全塔效率:E T=47% 建厂地址:武汉 [设计计算] (一)设计方案的确定 本设计任务为分离甲醇-水混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却后送至储罐。 该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。塔釜采用间接蒸气加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1、原料液及塔顶、塔底产品的摩尔分率 甲醇的摩尔质量:M A=32 Kg/Kmol 水的摩尔质量:M B=18 Kg/Kmol x F=32.4% x D=99.47% x W=0.28% 2、原料液及塔顶、塔底产品的平均摩尔质量 M F= 32.4%*32+67.6%*18=22.54 Kg/Kmol M D= 99.47*32+0.53%*18=41.37 Kg/Kmol M W= 0.28%*32+99.72%*18=26.91 Kg/Kmol 3、物料衡算 原料处理量:F=(3.61*103)/22.54=160.21 Kmol/h 总物料衡算:160.21=D+W 甲醇物料衡算:160.21*32.4%=D*99.47%+W*0.28% 得D=51.88 Kmol/h W=108.33 Kmol/h (三)塔板数的确定 1、理论板层数M T的求取 甲醇-水属理想物系,可采用图解法求理论板层数 ①由手册查得甲醇-水物搦的气液平衡数据,绘出x-y图(附表) ②求最小回流比及操作回流比 采用作图法求最小回流比,在图中对角线上,自点e(0.324,0.324)作垂线ef即为进料线(q线),该线与平衡线的交战坐标为 (x q=0.324,y q=0.675) 故最小回流比为R min= (x D- y q)/( y q - x q)=0.91 取最小回流比为:R=2R min=2*0.91=1.82 ③求精馏塔的气、液相负荷 L=RD=1.82*51.88=94.42 Kmol/h V=(R+1)D=2.82*51.88=146.30 Kmol/h L′=L+F=94.42+160.21=254.63 Kmol/h

甲醇三塔精馏工艺技术

浅析甲醇三塔精馏工艺技术 ( 新疆新业能源化工有限责任公司郑军 ) 摘要:甲醇是重要的工业有机原料之一,也是煤基产业链合成新型能源的优质基础产品,它的主要下游产品有芳烃、烯烃、二甲醚、1,4丁二醇、甲醇叔丁基醚等。随着科技的发展及工业技术的提高,甲醇的应用也愈加广泛,国内甲醇产能持续快速增长,工业生产技术更是精益求精。精馏在甲醇生产中极为重要,本文以精馏塔为例论述了甲醇精馏技术中双塔和三塔精馏工艺, 介绍了精馏塔中导向型浮阀塔板的优点。对双塔和三塔精馏技术的经济性进行了比较。 关键词:甲醇; 导向型浮阀塔板; 双塔精馏; 三塔精馏 前言 在以CO和H2为原料合成甲醇过程中,尽管生产工艺有单醇及联醇工艺,操作压力有高压法和低压法,催化剂有铜基和锌一铬基,但无论何种工艺生产都会不同程度地发生一些副反应,从而产生除甲醇以外的其它化合物杂质。同时由于二氧化碳的存在,会有相当量的水生成。 为了获得高纯度、高质量甲醇产品,甲醇精馏成为甲醇生产企业重要后处理工序。甲醇的质量、单位产品能耗是其主要的技术经济指标,而且,这一工序的能耗高低对甲醇产品的成本有重

要影响。在国家大力提倡节约能源、降低消耗、实现循环经济的大背景下,如何提高甲醇的质量、降低能耗已是每个企业争生存、求发展、取得更高经济效益的大事。 对于精馏系统来说,降低能耗的措施从两方面着手,一是提高精馏塔内件的分离效率,即采用高效的分离元件来提高板效率或降低等板间距,从而在设备高度不增加的情况下,增加了理论板数,降低回流比。二是改进工艺流程,即利用甲醇饱和温度随压力增大而提高的特点,利用较高压力下甲醇的冷凝热来加热低压下的甲醇使其沸腾,实现热量的梯级利用,提高热利用率,从而降低能耗。综上两点,我公司结合当前工艺流程的优化,引进了以导向型浮阀塔板为分离元件的甲醇三塔精馏工艺技术,实现高分离效率及能源梯级利用的结合,在提高能源利用率方面取得了非常好的效果。 一、导向型浮阀塔板的结构原理及特点 我公司甲醇精馏塔采用的是导向型浮阀塔板,利用气体的动量推动液体向前流动的导向推液作用,从而减小直至消除液面落差,减小局部漏液,改善气体流动的均匀性,进而提高塔板效率。导向浮阀塔板保留F1型浮阀塔板上优点,克服了浮阀塔板存在的缺点。具有良好的流体力学和传质性能,为目前国内外最佳塔板之一。导向浮阀塔板与F1型浮阀塔板相比,处理能力可提高20-30%,塔板效率提高10-20%,塔板压降减小20%

煤制甲醇工艺设计

煤制甲醇工艺流程化设计 主反应为:C + O 2 → C O + C O 2 + H 2 → C H 3O 副反应为: 1 造气工段 (1)原料:由于甲醇生产工艺成熟,市场竞争激烈,选用合适的原料就成为项目的关键,以天然气和重油为原料合成工艺简单,投资相对较少,得到大多数国家的青睐,但从我国资源背景看,煤炭储量远大于石油、天然气储量,随着石油资源紧缺、油价上涨,在大力发展煤炭洁净利用技术的形势下,应该优先考虑以煤为原料,所以本设计选用煤作原料。 图1-1 甲醇生产工艺示意图 (2)工艺概述:反应器选择流化床,采用水煤浆气化激冷流程。原料煤通过粉碎制成65%的水煤浆与99.6%的高压氧通过烧嘴进入气化炉进行气化反应,产生的粗煤气主要成分为CO ,CO 2,H 2等。 2 净化工段 由于水煤浆气化工序制得粗煤气的水汽比高达1.4可以直接进行CO 变换不需加入其他水蒸气,故先进行部分耐硫变换,将CO 转化为CO 2,变换气与未变换气汇合进入低温甲醇洗工序,脱除H 2S 和过量的CO 2,最终达到合适的碳氢比,得到合成甲醇的新鲜气。 CO 反应式: 222CO+H O=CO +H 2423CO H CH H O +?+2492483CO H C H OH H O +?+222CO H CO H O +?+

3 合成工段 合成工段工艺流程图如图1。 合成反应要点在于合成塔反应温度的控制,另外,一般甲醇合成反应10~15Mpa 的高压需要高标准的设备,这一项增加了很大的设备投资,在设计时,选择目前先进的林达均温合成塔,操作压力仅 5.2MPa ,由于这种管壳式塔的催化剂床层温度平稳均匀,反应的转化率很高。在合成工段充分利用自动化控制方法,实行连锁机制,通过控制壳程的中压蒸汽的压力,能及时有效的掌控反应条件,从而确保合成产品的质量。 合成主反应: 23CO+2H =CH OH 主要副反应: 2232CO +3H =CH OH+H O 4 精馏工段 精馏工段工艺流程图见图2。 合成反应的副产主要为醚、酮和多元醇类,本设计要求产品达质量到国家一级标准,因此对精馏工艺的合理设计关系重大,是该设计的重点工作。设计中选用双塔流程,对各物料的进出量和回流比进行了优化,另外,为了进一步提高精甲醇质量,从主塔回流量中采出低沸点物继续进预塔精馏,这一循环流程能有效的提高甲醇的质量。 合 成 塔 驰放气 中压蒸汽 锅炉给水 新鲜气 过热蒸汽去锅炉 甲醇合成工段工艺流 程图 粗甲醇去精馏 氢循环 分 离器 合成操作条件1. 反应压力:5.0MPa 2. 反应温度:250~270℃ 3. 流量: 出口 699.8 kmol/h 入口 783.6 kmol/h 2.24 MPa 5.0 MPa 215 ℃ 5.0 MPa 285℃ 图1 甲醇合成工艺流程图

粗甲醇三塔精馏操作控制及其优势分析

粗甲醇三塔精馏操作控制及其优势分析 吕利霞 (内蒙古化工职业学院,内蒙古呼和浩特 010070) 摘 要:精馏是使液体混合物得到高纯度分离的方法,在化工、医药、炼油轻工、食品、冶金等部门等领域得到了广泛的应用。如石油化工中原油的精馏,酿酒行业中酒精的精馏,甲醇工业中粗甲醇的精制等。 关键词:粗甲醇精馏;操作控制;优势分析 中图分类号:T Q223.12+1 文献标识码:A 文章编号:1006—7981(2012)23—0009—02 精馏是一种使液体混合物得到高纯度分离的蒸馏方法,在化工、医药、炼油轻工、食品、冶金等部门等领域得到了广泛的应用。如石油化工中原油的精馏,酿酒行业中酒精的精馏,甲醇工业中粗甲醇的精制等。精馏是同时进行传热和传质的过程,为实现精馏过程,需要为该过程提供物料的贮存、输送、传热、分离、控制等设备和仪表。 精馏之所以能使液体混合物得到较完全的分离,关键在于回流的应用。回流包括塔顶高浓度易挥发组分液体和塔底高浓度难挥发组分蒸汽两者返回塔中。气液回流形成了逆流接触的气液两相,从而在塔的两端分别得到相当纯净的单组分产品。塔顶回流入塔的液体量与塔顶产品量之比,称为回流比,它是精馏操作的一个重要控制参数,它的变化影响精馏操作的分离效果和能耗。 目前常见的低压合成甲醇系统是以德士古水煤浆加压气化技术生产的水煤气(压力为2.75MPa,温度为198℃)为原料,经净化冷凝法中温耐硫部分变换、中温有机硫水解、脱硫、部分脱碳、精脱硫等流程,制得总硫体积分数<0.1×10-6和(H2-CO2)/ (CO+CO2)摩尔比为2.05~2.15的合格新鲜气。新鲜气经过联合压缩机压缩段加压至5.3M Pa,与联合压缩机循环段的循环气混合,经入塔预热器加热后进入甲醇合成塔。由于在合成甲醇的同时伴随有许多副反应,从而生成许多副产物。由于这些副产物的存在,使甲醇纯度下降,影响其质量。因此出合成塔的甲醇气经冷却、分离后,制得粗甲醇送往精馏系统得到符合质量要求的精甲醇。 通常,粗甲醇精馏系统采用三塔精馏工艺,从合成工段送来的浓度为93%左右的粗甲醇到粗甲醇贮槽,经粗甲醇泵打到粗甲醇预热器,由蒸汽冷凝水提温至65℃左右进入预蒸馏塔,预蒸馏塔下部的预塔再沸器采用0.5MPa,170℃过热蒸汽间接加热液体粗甲醇,从预蒸馏塔顶冷凝器冷凝下来的液体进入预塔回流槽,经预塔回流泵打入塔内作为回流。预蒸馏塔釜液通过预后甲醇泵进入加压塔,用0.5MPa, 170℃过热蒸汽加热釜液,控制塔釜温度在130-132℃。塔顶蒸汽温度约122℃进入常压塔再沸器冷凝,冷凝液流入加压塔回流槽,一部分通过加压回流泵打回加压精馏塔作为回流液,另一部分经过加压塔产品冷却器冷却至40℃作为产品去精甲醇计量槽。塔底甲醇溶液经减压后进入常压精馏塔。 常压塔再沸器由加压塔塔顶蒸汽加热,维持塔釜温度在105-110℃,塔顶蒸汽去常压塔冷凝器,冷凝液流入常压塔回流槽,经常压塔回流泵一部分打入塔顶作为回流液,另一部分取出经常压塔产品冷却器冷却后作为产品去精甲醇计量槽。 在粗甲醇精馏的过程中,要达到精馏系统的稳定运行,并保证产品的优等品率,必须加强对精馏系统的整体优化和控制。 1 回流比的调节 在实际生产中,回流比是个很重要的操作指标,适宜回流比是通过经济衡算得出来的,当操作费用与设备折旧费用之和最小时的回流比为适宜值。通常适宜回流比为最小回流比的1.1~2.0倍。一般说来,回流比越大,精醇质量越好,但回流比太大,蒸汽消耗量就多,因此在满足甲醇质量、操作比较容易控制的前提下,应尽量采用较小的回流比。 在甲醇精馏中,不管是几塔精馏,其各塔回流比都不一样,一般预精馏塔是全回流,也就是回流比是无穷大;预塔的主要作用是脱除甲酸甲酯、二甲醚、丙酮等轻组分杂质。这类物质沸点较低,常温下为气态,因此不凝气温度的高低决定着轻组分的脱除效果,继而影响到产品质量。 加压塔进料组成比较好,回流比相对较小;常压塔不但要采出合格的精甲醇产品,同时还要保证塔底废水含醇尽量低,回流比要大一些;根据生产负荷和产品质量可以适当调节,这样既能保证精甲醇产 9  2012年第23期 内蒙古石油化工

年产10万吨粗甲醇精馏工艺设计解析

摘要 (3) 第1章甲醇合成的基本概念 (4) 1.1 甲醇的合成方法 (4) 1.常用的合成方法 (4) 2.本设计所采用的合成方法 (4) 1.2 甲醇的合成路线 (5) 1.常用的合成工艺 (5) 2.本设计的合成工艺 (6) 1.3合成甲醇的目的和意义 (7) 1.4 本设计的主要方法及原理 (8) 造气工段:使用二步法造气 (8) 合成工段 (8) 第2章生产工艺及主要设备计算 (9) 2.1 甲醇生产的物料平衡计算 (10) 2.1.2 粗甲醇精馏的物料平衡计算 (19) 2.2 甲醇生产的能量平衡计算 (22) 2.2.1 合成塔能量计算 (22) 2.2.2 常压精馏塔能量衡算 (24) 2.3.1 常压精馏塔计算 (27) 2.3.2 初估塔径 (29) 2.3.3 理论板数的计算 (31) 2.3.4 塔内件设计 (34)

2.3.5 塔板流体力学验算 (37) 2.3.6 塔板负荷性能 (39) 2.3.7 常压塔主要尺寸确定 (41) 2.3.8 辅助设备 (43) 参考文献 (44) 致谢 (45)

摘要 甲醇作为及其重要的有机化工原料,是碳一化学工业的基础产品,在国民经济中占有重要地位。长期以来,甲醇都是被作为农药,医药,染料等行业的工业原料,但随着科技的进步与发展,甲醇将被应用于越来越多的领域。甲醇是一种无色、透明、易燃、易挥发的有毒液体,略有酒精气味。分子量32.04,相对密度0.792(20/4℃),熔点-97.8℃,沸点64.5℃,闪点12.22℃,自燃点463.89℃,蒸气密度1.11,蒸气压13.33KPa(100mmHg 21.2℃),蒸气与空气混合物爆炸下限6~36.5 % ,能与水、乙醇、乙醚、苯、酮、卤代烃和许多其他有机溶剂相混溶,遇热、明火或氧化剂易燃烧。甲醇用途广泛,是基础的有机化工原料和优质燃料。主要应用于精细化工,塑料等领域,用来制造甲醛、醋酸、氯甲烷、甲氨、硫酸二甲脂等多种有机产品,也是农药、医药的重要原料之一。甲醇在深加工后可作为一种新型清洁燃料,也加入汽油掺烧。 我国的甲醇工业经过十几年的发展,生产能力得到了很大提高。1991年,我国的生产能力仅为70万吨,截止2004年底,我国甲醇产能已达740万吨,117家生产企业共生产甲醇440.65万吨,2005年甲醇产量达到500万吨,比2004年增长22.2%,进口量99.1万吨,因此下降3.1%。 于上世纪末相比,现在新建甲醇规模超过百万吨的已不再少数。在2004——2008年新建的14套甲醇装置中平均规模为134万t/a,其中卡塔尔二期工程项目高达230万t/a。最小规模的是智利甲醇项目,产能也达84万t/a,一些上世纪末还称得上经济规模的60万t/a装置因失去竞争力而纷纷关闭。 大型甲醇生产装置必须具备与其规模相适应的甲醇反应器和反应技术。传统甲醇合成反应器有ICI的冷激型反应器,Lungi的管壳式反应器,Topsdpe的径向流动反应器等,近期出现的新合成甲醇反应器有日本东洋工程的MRF--Z反应器等,而反应技术方面则出现了Lurgi推出的水冷一气冷相结合的新流程。 通常的甲醇合成工艺中,未反应气体需循环返回反应器,而KPT则提出将未反应气体送往膜分离器,并将气体分为富含氢气的气体,前者作燃料用,后者返回反应器。 传统甲醇合成采用气相工艺,不足之处是原料单程转化率低,合成气净化成本高,能耗高。相比之下,液相合成由于使用了比热容高,导热系数大的长链烷烃化合物作反应介质,可使甲醇合成在等温条件下进行。

相关文档
最新文档