一元二次方程的公共根与整数根

一元二次方程的公共根与整数根
一元二次方程的公共根与整数根

一、公共根问题

二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根.

二、整数根问题

对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ?=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.

方程有整数根的条件:

如果一元二次方程20ax bx c ++=(0)a ≠有整数根,那么必然同时满足以下条件:

⑴ 24b ac ?=-为完全平方数;

⑵ 2b ak -=或2b ak -,其中k 为整数.

以上两个条件必须同时满足,缺一不可.

另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数)

三、方程根的取值范围问题

先使用因式分解法或求根公式法求出两根,然后根据题中根的取值范围来确定参数的范围.

一、一元二次方程的公共根

【例1】 求k 的值,使得一元二次方程210x kx +-=,2(2)0x x k ++-=有相同的根,并求两个方程的根.

【巩固】三个二次方程20ax bx c ++=,20bx cx a ++=,20cx ax b ++=有公共根.

⑴ 求证:0a b c ++=;

⑵ 求333

a b c abc

++的值.

【例2】 试求满足方程270x kx --=与26(1)0x x k --+=有公共根的所有的k 值及所有公共根和所有相异

根.

【巩固】二次项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++=和

222(1)(2)(2)0b x b x b b --+++=(其中a ,b 为正整数)有一个公共根,求b a

b a a b a b --++的值.

二、一元二次方程的整数根

【例3】 已知关于x 的方程2(6)0x a x a +-+=的两根都是整数,求a 的值.

【巩固】当m 为何整数时,方程222525x mx m -+=有整数解.

【例4】求所有正实数a,使得方程240

-+=仅有整数根.

x ax a

【巩固】方程()(8)10

---=有两个整数根,求a的值.

x a x

【巩固】已知关于x的方程2

-+--=的根都是整数,那么符合条件的整数a有___________个.

(1)210

a x x a

【例5】设方程2(2)(3)0

--+-=有整数解,试确定整数m的值,并求出这时方程所有的整数解.mx m x m

【例6】已知k为常数,关于x的一元二次方程22

-+-+=的解都是整数,求k的值.

k k x k x

(2)(46)80

【巩固】设关于x的二次方程2222

-++--+=的两根都是整数,求满足条件的所有实

k k x k k x k

(68)(264)4

数k的值.

【巩固】k为什么实数时,关于x的方程2

----+=的解都是整数?

(6)(9)(11715)540

k k x k x

【巩固】若关于x 的方程()()()26911715540k k x k x ----+=的解都是整数,则符合条件的整数k 的值有_______个.

【例7】 若k 为正整数,且关于k 的方程()

()221631720k x k x ---+=有两个相异正整数根,求k 的值.

【巩固】已知方程22(1)2(51)240a x a x --++=有两个不等的负整数根,则整数a 的值是__________.

【例8】 关于x 的方程22(3)(2)0ax a x a +-+-=至少有一个整数解,且a 是整数,求a 的值.

【巩固】已知方程()

22238213150ax a a x a a --+-+=(a 是非负整数)至少有一个整数根,那么a = .

【巩固】已知关于x 的方程2222(38)213150a x a a x a a --+-+= (其中a 是非负整数)至少有一个整数根,求a

的值.

【巩固】已知1240m <<,且关于x 的二次方程222(1)0x m x m -++=有两个整数根,求整数m .

【巩固】已知p 为质数,使二次方程222510x px p p -+--=的两根都是整数,求出所有可能的p 的值.

【巩固】已知方程219990x x a -+=有两个质数根,则常数a =________.

【巩固】设p q 、是两个奇整数,试证方程2220x px q ++=不可能有有理根.

【巩固】试证不论n 是什么整数,方程21670s x nx -+=没有整数解,方程中的s 是任何正的奇数.

【巩固】若一直角三角形两直角边的长,a 、b ()a b ≠均为整数,且满足24a b m ab m +=+??=?

.试求这个直角三角形的三边长.

【例10】 已知a 是正整数,如果关于x 的方程32(17)(38)560x a x a x +++--=的根都是整数,求a 的值及方

程的整数根.

【巩固】求方程33222240a b ab a b -+++=的所有整数解.

【巩固】已知a 为整数,关于,x y 的方程组23(2)(1)22x y a x xy a x a +=+??=+-+?

的所有解均为整数解,求a 的值.

【巩固】设a 为质数,b c ,为正整数,且满足

()()2922509410225112a b c a b c b c ?+-=+-??-=?? 求()a b c +的值.

【巩固】已知方程20x bx c ++=及20x cx b ++=分别各有两个整数根12,x x 及12,x x '',且120x x >,120x x ''>.

⑴ 求证:10x <,20x <,10x '<,2

0x '<; ⑵ 求证:11b c b -+≤≤; ⑶ 求,b c 所有可能的值.

一元二次方程公共根

一元二次方程公共根问题 若已知若干个一元二次方程有公共根,求方程系数的问题,叫一元二次方程的公共根问题, 两个一元二次方程只有一个公共根的解题步骤: 1.设公共根为α,则α同时满足这两个一元二次方程; 2.用加减法消去α2的项,求出公共根或公共根的有关表达式; 3.把共公根代入原方程中的任何一个方程,就可以求出字母系数的值或字母系数之间的关系式. 一、公共根问题 二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根. 二、整数根问题 对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ?=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质. 方程有整数根的条件: 如果一元二次方程20ax bx c ++=(0)a ≠有整数根,那么必然同时满足以下条件: ⑴ 2?= ⑵ 2b ak -=或2b ak --,其中k 为整数. 以上两个条件必须同时满足,缺一不可. 另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数) 三、方程根的取值范围问题 先使用因式分解法或求根公式法求出两根,然后根据题中根的取值范围来确定参数的范围 1 已知一元二次方程x 2-4x +k =0有两个不相等的实数根, (1)求k 的取值范围. (2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k =0与x 2+mx -1=0有一个相同的根,求此时m 的值. 2 若两个关于x 的方程x 2+x +a =0与x 2+ax +1=0只有一个公共的实数根,求a 的值 3 已知a >2,b >2,试判断关于x 的方程x 2-(a +b )x +ab =0与x 2-abx +(a +b )=0有没有公共根,请说明理由. 4求k 的值,使得一元二次方程210x kx +-=,2(2)0x x k ++-=有相同的根,并求两个方程的根. 5二次项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++=和 222(1)(2)(2)0b x b x b b --+++=(其中a ,b 为正整数)有一个公共根,求a b b a b a a a --++的值

一元二次方程及根的定义

一元二次方程及根的定 义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及 的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0; (2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, ,

, 所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以,

所以. (3)将原方程展开并整理得, 这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得

中考试题一元二次方程的整数根

学科:数学 专题:一元二次方程整数根 主讲教师:黄炜 北京四中数学教师 重难点易错点辨析 在解决整数根问题时,还是不要忽略了对二次项系数的讨论。 题一 题面:关于x 的方程()21210a x x a -+--=的根都是整数,求符合条件的a 的整数值. 金题精讲 题一 题面:已知关于x 的一元二次方程x 2+2x +2k -4=0有两个不相等的实数根. (1)求k 的取值范围; (2)若k 为正整数,且该方程的根都是整数,求k 的值. 判别式,考虑参数范围 满分冲刺 题一 题面:已知,关于x 的一元二次方程222(23)41480x m x m m --+-+= ⑴若0m >,求证:方程有两个不相等的实数根; ⑵若1240m <<的整数,且方程有两个整数根,求m 的值. 判别式,整数根

题二 题面:已知关于x 的一元二次方程x 2+(m +3)x +m +1=0. (1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)当m 为何整数时,原方程的根也是整数. 判别式,整数根 讲义参考答案 重难点易错点辨析 题一 答案:当1a =时,1x =; 当1a ≠时,122111 x x a ==-- -,(分离常数), a ∵为整数 1023a =-∴,,, 综上,a 的整数值为10123-,,,,. 金题精讲 题一 答案:(1)52 k <;(2)k =2. 满分冲刺 题一 答案:⑴证明:[]2 2=2(23)4(4148)84m m m m ?----+=+ ∵0m >, ∴840m +>. ∴方程有两个不相等的实数根. ⑵(23)x m - 且m 为整数. 又∵1240m <<, ∴252181.m <+< ∴5. 21m +∵为奇数, 7= ∴24m =.

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

5[1].4.4一元二次方程的公共根与整数根.题库学生版

内容 基本要求 略高要求 较高要求 一元二次方程 了解一元二次方程的概念,会将一元二次方程化为一般形式,并指出各项系数;了解一元二次方程的根的意义 能由一元二次方程的概念确定二次项系数中所含字母的取值范围;会由方程的根求方程中待定系数的值 一元二次方程的解法 理解配方法,会用直接开平方法、配方法、公式法、因式分解法解简单的数字系数的一元二次方程,理解各种解法的依据 能选择恰当的方法解一元二次方程;会用方程的根的判别式判别方程根的情况 能利用根的判别式说明含有字母系数的一元二次方程根的情况及由方程根的情况确定方程中待定系数的取值范围;会用配方法对代数式做简单的变形;会应用一元二次方程解决简单的实际问题 一、公共根问题 二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的 值和公共根. 二、整数根问题 对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ?=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质. 方程有整数根的条件: 如果一元二次方程20ax bx c ++=(0)a ≠有整数根,那么必然同时满足以下条件: ⑴ 24b ac ?=-为完全平方数; ⑵ 242b b ac ak -+-=或242b b ac ak ---=,其中k 为整数. 以上两个条件必须同时满足,缺一不可. 另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数) 三、方程根的取值范围问题 先使用因式分解法或求根公式法求出两根,然后根据题中根的取值范围来确定参数的范围. 知识点睛 中考要求 一元二次方程的公共根与整数根

一元二次方程根与系数的关系演示教学

12.4一元二次方程的根与系数的关系 中考考点 1.理解一元二次方程的根与系数的关系(韦达定理)。 2.会运用根与系数的关系,由已知的一元二次方程的一个根求出另一个根与未知系数。 3.会求一元二次方程两个根的倒数和与平方和。 考点讲解 1.若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则 x1+x2=-, x1·x2=。 2.以x1,x2为根的一元二次方程是(x-x1)(x-x2)=0,展开代入两根和与两根积,仍得到方程ax2+bx+c=0 (a≠0)。

3.对二次项系数为1的方程x2+px+q=0的两根为x1,x2时,那么x1+x2=-p,x1·x2=q。反之,以x1,x2为根的一元二次方程是:(x-x1)(x-x2)=0,展开代入两根和与两根积,仍得到方程: x2+px+q=0。 4.一元二次方程的根与系数关系的应用主要有以下几方面: (1)已知一元二次方程的一个根,求另一个根,可用两根和或两根积的关系求另一个根。 (2)已知含有字母系数的一元二次方程的一个根,求另一个根及字母系数的值。可用根与系数关系式,一个关系式求得另一个根,再用另一个关系式求得字母系数的值。 (3)已知一元二次方程,不解方程,可求与所给方程两根和、两根积的某些代数式的值。如,方程2x2-3x+1=0的两根为x1,x2,不解方程,求x12+x22的值。 [∵x1+x2=, x1·x2=,∴

x12+x22=(x1+x2)2-2x1x2=()2-2× = ] (4)验根、求根、确定根的符号。 (5)已知两根,求作一元二次方程(注意最后结果要化为整系数方程)。

初三数学培优之一元二次方程的整数根

初三数学培优之一元二次方程的整数根 阅读与思考 解一元二次方程问题时,我们不但需熟练地解方程,准确判断根的个数、符号特征、存在范围,而且要能深入地探讨根的其他性质,这便是大量出现于各级数学竞赛中的一元二次方程的整数根问题。这类问题因涵盖了整数的性质、一元二次方程的相关理论,融合了丰富的数学思想方法而备受命题者的青睐.. 解整系数(即系数为整数)一元二次方程的整数根问题的基本方法有: 1.直接求解 若根可用有理式表示,则求出根,结合整除性求解. 2.利用判别式 在二次方程有根的前提下,通过判别式确定字母或根的范围,运用枚举讨论、不等分析求解 3.运用根与系数的关系 由根与系数的关系得到待定字母表示的两根和、积式,从中消去待定字母,再通过因式分解和整数性质求解. 4.巧选主元 若运用相关方法直接求解困难,可选取字母为主元,结合整除知识求解. 例题与求解 【例1】 已知关于x 的方程032)1280()8)(4(2 =+----x k x k k 的解都是整数,求整数k 的值. (绍兴市竞赛试题) 解题思路:用因式分解法可得到根的表达式,因方程类型未指明,故须按一次方程、二次方程两种情形讨论,这样确定k 的值才能全面而准确. 【例2】 q p ,为质数且是方程0132 =+-m x x 的根,那么 q p p q +的值是( ) A .22121 B .22123 C .22125 D .22 127 (黄冈市竞赛试题) 解题思路:设法求出q p ,的值,由题设条件自然想到根与系数的关系

【例3】 关于y x ,的方程2922 2=++y xy x 的整数解),(y x 的组数为( ) A .2组 B .3组 C .4组 D .无穷多组 解题思路:把2922 2 =++y xy x 看作关于x 的二次方程,由x 为整数得出关于x 的二次方程的根的判别式是完全平方数,从而确定y 的取值范围,进而求出x 的值. 【例4】 试确定一切有理数r ,使得关于x 的方程01)2(2 =-+++r x r rx 有根且只有整数根. (全国初中数学联赛试题) 解题思路:因方程的类型未确定,故应分类讨论. 当0≠r 时,由根与系数的关系得到关于r 的两个不等式,消去r ,先求出两个整数根. 【例5】 试求出这样的四位数,它的前两位数字与后两位数字分别组成的两位数之和的平方,恰好等于这个四位数. (全国初中数学联赛试题) 解题思路:设前后两个两位数分别为y x ,,99,10≤≥y x ,则y x y x +=+100)(2 ,即 0)()50(222=-+-+y y x y x ,于是将问题转化为求一元二次方程有理根、整数根的问题. 【例6】 试求出所有这样的正整数解a ,使得二次方程0)3(4)12(22 =-+-+a x a ax 至少有一个整数根. (“祖冲之杯”竞赛试题) 解题思路:本题有两种解法. 由于a 的次数较低,可考虑“反客为主”,以a 为元,以x 为已知数整理成一个关于a 的一元一次方程来解答;或考虑因方程根为整数,故其判别式为平方式.

一元二次方程根的差别式

典型例题一 例 求证:如果关于x 的方程922+=+m x x 没有实数根,那么,关于y 的方程0522=+-+m my y 一定有两个不相等的实数根. 分析:由已知,可根据一元二次方程的根的判别式证之. 证明 设方程922+=+m x x 即0922=--+m x x 的根的判别式为1?,方程 0522=+-+m my y 的根的判别式为2?,则 . 36)4( 208)25(4. 440)9(42222221-+=-+=--=?+=++=?m m m m m m m ∵方程922+=+m x x 无实数根, 01+∴m ,即036)4(2>-+m . 故方程0522=+-+m my y 有两个不相等的实数根. 说明:上述证明中,判定02>?用到了01

分析:运用根的判别式判定根的情况时,要首先把方程变形为一元二次方程的一般形式,然后从求出的判别式的值来判定根的判别式的符号,尤其是当方程系数中含有字母时,一般利用配方法将“?”化成完全平方式或完全平方式加上(或减去)一个常数,再根据完全平方式的非负性判断“?”的符号,从而判定方程的根的情况,有时还需要对字母进行讨论.这是不解方程判别根的情况的关键. 解:(1)),1(4,2,1-=-==k c k b a )1(414)2(422-??--=-=?∴k k ac b )2(4)44(416 16422 2≥-=+-=+-=k k k k k ∴方程有两个实数根. (2)0≠a , ∴方程02=+bx ax 是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项,将常数项看作零. ∴2204b a b =?-=?. ∴不论b 取任何实数,2b 均为非负数, 02≥=?b 恒成立. ∴方程有两个实数根. (3)0≠a , ∴方程02=+c ax 是缺少一次项的不完全的一元二次方程,它的一次项系数0=b . ac a 40402-=?-=?, ∴需要讨论a 、c 的符号,才能确定?的符号. 当0=c 时,0=?,方程有两个相等的实数根; 当a 、c 异号时,0>?,方程有两个不相等的实数根; 当a 、c 同号时,0

一元二次方程的根与系数的关系

一元二次方程的根与系数的关系 一、目标认知 学习目标 1.掌握一元二次方程的根与系数的关系; 2.能够利用一元二次方程的根与系数的关系求简单的关于根的对称式的值; 3.能够利用一元二次方程的根与系数的关系判断两个数是否是方程的根; 4.能够利用一元二次方程的根与系数的关系求出以两个已知数为根的一元二次方程. 重点 对一元二次方程的根与系数的关系的掌握,以及在各类问题中的运用. 难点 一元二次方程的根与系数的关系的运用. 二、知识要点梳理 一元二次方程根与系数的关系 如果一元二次方程ax2+bx+c=0的两个实根是x1,x2,那么. 注意它的使用条件为a≠0,Δ≥0. 三、规律方法指导 一元二次方程根与系数的关系的用法: ①不解方程,检验两个数是否为一元二次方程的根; ②已知方程的一个根,求另一个根及未知系数; ③不解方程,求已知一元二次方程的根的对称式的值; ④已知方程的两根,求这个一元二次方程; ⑤已知两个数的和与积,求这两数; ⑥已知方程的两根满足某种关系,确定方程中字母系数的值; ⑦讨论方程根的性质。 四、经典例题透析 1.已知一元二次方程的一个根,求出另一个根以及字母系数的值. 1.已知方程x2-6x+m2-2m+5=0一个根为2,求另一个根及m的值. 思路点拨:本题通常有两种做法,一是根据方程根的定义,把x=2代入原方程,先求出m的值,再通过解方程求另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及m的值. 解:法一:把x=2代入原方程,得 22-6×2+m2-2m+5=0 即m2-2m-3=0 解得m1=3,m2=-1 当m1=3,m2=-1时,原方程都化为 x2-6x+8=0

一元二次方程根与系数的关系各种类型题及训练

一元二次方程根与系数的关系应用例析及训练 一、根据判别式,讨论一元二次方程的根。 例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解? 分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。 解:∵方程(1)有两个不相等的实数根, ∴ 解得; ∵方程(2)没有实数根, ∴ 解得; 于是,同时满足方程(1),(2)条件的的取值范围是 其中,的整数值有或 当时,方程(1)为,无整数根; 当时,方程(1)为,有整数根。 解得: 所以,使方程(1)有整数根的的整数值是。 总结:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出 ,这也正是解答本题的基本技巧。 二、判别一元二次方程两根的符号。 例1:不解方程,判别方程两根的符号。

分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若 判定根的正负,则需要确定或的正负情况。因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。 解:∵,∴△=—4×2×(—7)=65>0 ∴方程有两个不相等的实数根。 设方程的两个根为, ∵<0 ∴原方程有两个异号的实数根。 总结:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中<0,所以可判定方程的根为一正一负;倘若>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。 三、已知一元二次方程的一个根,求出另一个根以及字母系数的值。 例2:已知方程的一个根为2,求另一个根及的值。 分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程,先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。 解法一:把代入原方程,得: 即 解得 当时,原方程均可化为: ,

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) a

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧 12,x m x n <>,(图形分别如下)需满足的条件是 (1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 若()0f m =或()0f n =,则此时()()0f m f n

一元二次方程公共根问题

一元二次方程公共根问题 1、若两个关于x的方程x2+x+a=0与x2+ax+1=0只有一个公共的实数根,求a的值 解:设两个方程的公共根为α,则有α2+α+a=0 ① α2+aα-1=0 ② ①-②得(1-a)α+a-1=0,即(1-a)(α-1)=0因为只有一个公共根,所以a≠1,所以α=1把α=1代入x2+x+a=0得12+1+a=0,a=-2 解:两个方程相减,得:x+a-ax-1=0,整理得:x(1-a)-(1-a)=0,即(x-1)(1-a)=0,若a-1=0,即a=1时,方程x2+x+a=0和x2+ax+1=0的b2-4ac都小于0,即方程无解;故a≠1,∴公共根是:x=1.把x=1代入方程有:1+1+a=0∴a=-2. 2、若两个方程x2+ax+b=0和x2+bx+a=0只有一个公共根,则() A.a=b B.a+b=0 C.a+b=1 D.a+b=-1 3、关于x的方程x2+bx+1=0与x2-x-b=0有且只有一个公共根,求b的值. 解:设方程的公共根为x=t, 则 t2+bt+10 (1) t2?t?b=0 (2) , 由(2)得b=t2-t (3)将(3)代入(1)得:t3+1=0,解得,t=-1,当t=-1时,b=2. 4、已知关于x的方程x2+x-3m=0与x2-mx+3=0只有一个相同的实数根,求m的值.解:将方程x2+x-3m=0和x2-mx+3=0组成方程组得, x2+x?3m=0 x2?mx+3=0 , 解得x=3,m=4. 4、若方程x2+mx+1=0和方程x2-x-m=0有一个相同的实数根,则m的值为()A.2 B.0 C.-1 D.无法确定

一元二次方程整数根问题的几种思维策略

一元二次方程整数根问题的几种思维策略 一、利用判别式 例1. 当m 是什么整数时,关于x 的一元二次方程2440mx x -+= 与2244450x mx m m -+--=的根都是整数。 解:∵方程2440mx x -+=有整数根, ∴⊿=16-16m ≥0,得m ≤1 又∵方程2244450x mx m m -+--=有整数根 ∴⊿=16m 2-4(4m 2-4m -5) ≥0 得54m ≥- . 综上所述,54 -≤m≤1 ∴x 可取的整数值是-1,0,1 当m=-1时,方程为-x 2-4x+4=0 没有整数解,舍去。 而m≠0 ∴ m=1 23.(东城) 已知关于x 的一元二次方程2220x ax b ++=,0,0>>b a . (1)若方程有实数根,试确定a ,b 之间的大小关系; (2)若a ∶b 1222x x -=,求a ,b 的值; (3)在(2)的条件下,二次函数222y x ax b =++的图象与x 轴的交点为A 、C (点A 在点C 的左 侧),与y 轴的交点为B ,顶点为D .若点P (x ,y )是四边形ABCD 边上的点,试求3x -y 的最大值. 解:(1) ∵ 关于x 的一元二次方程2220x ax b ++=有实数根, ∴ Δ=,04)2(2 2≥-b a 有a 2-b 2≥0,(a+b )(a-b )≥0. ∵ 0,0>>b a , ∴ a+b >0,a -b ≥0. ∴ b a ≥. …………………………2分

(2) ∵ a ∶b , ∴ 设2,a k b ==(k >0). 解关于x 的一元二次方程22430x kx k ++=, 得 -3x k k =-或. 当12,= -3x k x k =-时,由1222x x -=得2k =. 当123,= -x k x k =-时,由1222x x -=得25 k =- (不合题意,舍去). ∴ 4,a b ==. …………………………5分 (3) 当4,a b ==2812y x x =++与x 轴的交点为、C 的交点坐标分别为A (-6,0)、(-2,0),与y 轴交点坐标为(0,12),顶点坐标D 为(-4,-4). 设z =3x -y ,则3y x z =-. 画出函数2 812y x x =++和3y x =的图象,若直线3y x =平行移动时,可以发现当直线 经过点C 时符合题意,此时最大z 的值等于-6 ……………7分 二、利用求根公式 例2.设关于x 的二次方程2222 (68)(264)4k k x k k x k -++--+=的两根都是整数, 求满足条件的所有实数k 的值。 解:△=(2k 2-6k-4)2-4(k 2-4)(k 2-6k+8)=4(k-6)2 由求根公式得222642(6)2(68) k k k x k k -++±-=-+ 即 12241,142 x x k k =--=---- 只有当x≠-1时,则有12244,211k k x x -=- -=-++ 两式相减,得 1224211x x -=++, 去分母,整理得 12(3)2x x +=-

一元二次方程根的两个特性及简单运用

一元二次方程根的两个特性及简单运用 我们知道方程的解是由方程的系数(包括常数项)决定的。因此,一元二次方程的根与其系数有着密切的联系。教材中我们探索了一元二次方程的二次项系数为1的情况下的两根之和、两根之积与系数的关系。现在我们接着来探索一般形式下的一元二次方程20(0) ax bx c a ++=≠的两根之和、两根之积与系数的关系。 例1、先阅读,再填空解题: (1)方程:x2-4x-12=0 的根是:x 1=6, x 2 =-2,则x 1 +x 2 =4,x 1 ·x 2 =-12; (2)方程2x2-7x+3=0的根是:x 1= 1 2 , x 2 =3,则x 1 +x 2 = 7 2 ,x 1 ·x 2 = 3 2 ; (3)方程3x2+6x-2=0的根是:x 1= , x 2 = .则x 1 +x 2 = , x 1·x 2 = ; 根据以上(1)(2)(3)你能否猜出:如果关于x的一元二次方程ax2+bx+c=0 (a≠0且a、b、c为常数)的两根为x 1、x 2 ,那么x 1 +x 2 、x 1 x 2 与系数a、b、c有 什么关系?请写出来你的猜想并说明理由。 解析:方程3x2+5x-2=0的根是:x 1= 1 3 x 2 =-2。则x 1 +x 2 = 5 3 -,x1·x2= 2 3 -。 能猜出:如果关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c为常数) 的两根为x 1、x 2 ,那么x 1 +x 2 a b - =、x1x2 a c =。理由如下: 根据求根公式可知,关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c 为常数)的两根为: a ac b b x 2 4 2 1 - + - =, a ac b b x 2 4 2 2 - - - = 所以x 1+x 2 = a ac b b 2 4 2- + - + a ac b b 2 4 2- - - a b - = x 1x 2 = a ac b b 2 4 2- + - · a ac b b 2 4 2- - - a c = 也就是说,对于任何一个有实数根的一元二次方程,这个方程的两个根与系数的关系是:两根之和,等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积,等于常数项除以二次项系数所得的商.

奥数新讲义-一元二次方程-整数根公共根4学

第三讲 一元二次方程4:整数根、公共根 一、 基础知识 1.一元二次方程的根为有理数 对于有理系数的一元二次方程20(0)ax bx c a ++=≠,在240b ac ?=-≥时,方程有实根,且: 方程有有理根??→←?? 24b ac ?=-为完全平方数(有理数平方) 2.一元二次方程的根为整数 (1)对于整系数的一元二次方程20(0) ax bx c a ++=≠,如果有整数根,则必须满足以下两个条件:24b ac ?=-为完全平方数(自然数平方);24b b ac -±-是2a 的整数倍; (2)在首项系数为1的整系数方程20x px q ++=(p 、q 为整数)的判别式24b ac ?=-为一个完 全平方数,则方程的根为整数,反之,亦成立; (3)对于整系数的一元二次方程 20(0)ax bx c a ++=≠,若a 、b 是偶数,c 是奇数,则该方程无整数根; (4)整系数的一元二次方程 20(0)ax bx c a ++=≠,若a 、b 、c 都是奇数,且240b ac ?=->,则方程20(0)ax bx c a ++=≠无整数根. 3. 一元二次方程公共根: 二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根. 二、 整数根问题 例1已知方程22 4(1)3240x m x m m k --+-+=对任意有理数m 都有有理根,求k 的值. 1.整数根讨论:利用判别式 例2不解方程,判定下列各方程的实数根是否是整数根: ○123180x x +-=;○228590x x +-=;○322450x x +-=;○42323870x x +-=

已知一元二次方程有一个根是

填空 11.已知一元二次方程有一个根是2,?那么这个方程可以是_______(填上你认为正确的一个方程即可). 12.方程(x-2)(x-3)=6的解为______. 13.(2006年成都市)已知某工厂计划经过两年的时间,?把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台. 14.若一个等腰三角形三边长均满足方程x 2-6x+8=0,则此三角形的周长为_____. 15、用______法解方程(x-2)2=4比较简便。 16、关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________。 17、已知α,β是方程0522 =-+x x 的两个实数根,则α2+β2+2α+2β的值为_________。 18、若a-b+c=0,a ≠0, 则方程ax 2+bx+c=0必有一个根是_______。 19、已知关于x 的方程x 2-(a +2)x +a -2b =0的判别式等于0,且x = 12是方程的根,则a +b 的值为 ______________。 20、如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________。 1、方程3x 2-5x=0的二次项系数是 2、5x 2+5=26 x 化成一元二次方程的一般形式为 3、一元二次方程ax 2+bx+c=0,若有一个根为﹣1,则a -b+c= ,如果a +b+c=0,则有一根为 4、一元二次方程ax 2+bx+c=0,若有一个根为0,则c= 5、关于x 的方程2x m2-1-3=0是一元二次方程,则m= 6、方程x 2-3x+4=0 和x 2+3x -4=0的公共根是 7、若x 2-3x+1=0,则x+x 1= 8、y= 时, y 2+5y 与6互为相反数。 9、若xy ≠0,且x 2-2x y -8y 2=0,则 y x =

一元二次方程的根系关系

一元二次方程的根的判别式(一) 二、教学重点、难点、疑点及解决方法 1.重点:会用判别式判定根的情况. 2.难点:正确理解“当b2-4ac<0时,方程ax2+bx+c=0(a≠0)无实数根.” 3.疑点:如何理解一元二次方程ax2+bx+c=0在实数范围内,当b2-4ac<0时,无解.在高中讲复数时,会学习当b2-4ac<0时,实系数的一元二次方程有两个虚数根. 三、教学步骤 (二)整体感知:在推导一元二次方程求根公式时,得到b2-4ac决定了一元二次方程的根的情况,称b2-4ac为根的判别式.一元二次方程根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也有利于进一步学习函数的有关内容,并且可以解决许多其它问题.在探索一元二次方程根的情况是由谁决定的过程中,从中体会转化的思想方法以及分类的思想方法,对思维全面性的考察起到了一个积极的渗透作用. (三)重点、难点的学习及目标完成过程 1.复习提问(1)平方根的性质是什么?(2)解下列方程: ①x2-3x+2=0;②x2-2x+1=0;③x2+3=0. 问题(1)为本节课结论的得出起到了一个很好的铺垫作用.问题(2)通过自己亲身感受的根的情况,对本节课的结论的得出起到了一个推波助澜的作用. 2.任何一个一元二次方程ax2+bx+c=0(a≠0)用配方法将 (1)当b2-4ac>0时,方程有两个不相等的实数根.

(3)当b2-4ac<0时,方程没有实数根. 教师通过引导之后,提问:究竟谁决定了一元二次方程根的情况?答:b2-4ac. 3.①定义:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,通常用符号“△”表示. ②一元二次方程ax2+bx+c=0(a≠0). 当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根; 当△<0时,没有实数根. 注意以下几个问题: (1)∵ a≠0,∴ 4a2>0这一重要条件在这里起了“承上启下”的作用,即对上式开平方,随后有下面三种情况.正确得出三种情况的结论,需对平方根的概念有一个深刻的、正确的理解,所以,在课前进行了铺垫.在这里应渗透转化和分类的思想方法.(2)当b2-4ac<0,说“方程ax2+bx+c=0(a≠0)没有实数根”比较好.有时,也说“方程无解”.这里的前提是“在实数范围内无解”,也就是方程无实数根”的意思.4.例1 不解方程,判别下列方程的根的情况: (1)2x2+3x-4=0;(2)16y2+9=24y;(3)5(x2+1)-7x=0. 解:(1)∵△=32-4×2×(-4)=9+32>0,∴原方程有两个不相等的实数根.(2)原方程可变形为16y2-24y+9=0.∵△=(-24)2-4×16×9=576-576=0,∴原方程有两个相等的实数根. (3)原方程可变形为5x2-7x+5=0.∵△=(-7)2-4×5×5=49-100<0, ∴原方程没有实数根.

-一元二次方程的整数根分析

第6讲 一元二次方程的整数根 精巧的论证常常不是一蹴而就的,而是人们长期切磋积累 的成果。 我也是慢慢学来的,而且还要继续不断的学习。 -----阿贝尔 知识方法扫描 1.当含有某个参数k 的一元二次方程的左边比较容易分解成两个一次因式的积时,我们可以先利用因式分解直接求方程的解,通常它们是关于k 的分式形式的解。然后利用其根是整数的要求来解不定方程。此时因参数k 的条件不同,常有两种处理方法。其一是k 为整数,这时只需注意分式形式的解中,分子是分母的倍数即可;其二是k 为实数,此时应该消去参数k ,得到关于两根的关系式,也就是关于两根的不定方程,再解此不定方程即可。 2.我们知道一元二次方程ax 2+bx +c =0在△=b 2-4ac ≥0时有实数根x =a b 2?±-。所以要使整系数的一元二次方程方程有整数根,必须△=b 2-4a c 为完全平方数,并且-b ±?为2a 的整数倍.故处理此类问题,常可用判别式来解决。又可细分为两类: (1)先求参数范围。可利用题设参数的范围,直接求解;也可由不等式△≥0求出参数的范围.再求解。 (2)再设参数法,即设△=k 2(k 是整数)。当△=k 2为关于原参数的一次式时,用代入法来解;当△=k 2为关于原参数的二次式时,用分解因式法来解. 此外,对有理系数的二次方程有有理根的问题,上述解法也是适用的。 3.韦达定理即根与系数的关系是一元二次方程的重要性质,我们也常用它来处理含参数的一元二次方程的整数解得问题,常用的方法有: (1) 从根与系数的关系式中消去参数,得到关于两根的不定方程. (2) 利用“当两根为整数时,其和、积必为整数”来解。 4.在含有参数的一元二次方程中,参数和未知数都是用字母表示的,通常是将未知数看作是主元必要时也可反过来将参数看成是主元,即将方程看成是以参数为未知数的方程,这种方法就是变更主元法。 (1)当方程中参数的次数为一次时,可将参数直接用未知数表示出来,再利用已知参数的范围或性质来求解。 (2)当方程中参数的次数为二次时,可考虑以参数为主元构造一个二次方程,再运用前述的方法(如利用判别式,韦达定理)来处理。 经典例题解析 例1.(1995年山东省初中数学竞赛试题)k 为什么整数时,方程(6-k )(9

一元二次方程的根

初中数学竞赛专题选讲(初三.1) 一元二次方程的根 一 、内容提要 1. 一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的. 根公式是:x=a ac b b 242-±-. (b 2-4ac ≥0) 2. 根的判别式 ① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是: b 2-4a c ≥0. ② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是: b 2-4a c 是完全平方式?方程有有理数根. ③整系数方程x 2+px+q=0有两个整数根?p 2-4q 是整数的平方数. 3. 设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么 ① ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0); ② x 1=a ac b b 242-+-, x 2=a ac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b -, x 1x 2=a c (a ≠0, b 2-4ac ≥0). 4. 方程整数根的其他条件 整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数. 特殊的例子有: C=0?x 1=0 , a+b+c=0?x 1=1 , a -b+c=0?x 1=-1. 二、例题 例1. 已知:a, b, c 是实数,且a=b+c+1. 求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根. (1990年泉州市初二数学双基赛题) 证明 (用反证法) 设 两个方程都没有两个不相等的实数根, 那么△1≤0和△2≤0. 即?? ???++=≤-≤ ③ ② ①-1040412c b a c a b 由①得b ≥ 41,b+1 ≥4 5代入③,得 a -c=b+1≥45, 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0, 即(a -2)2+1≤0,这是不能成立的. 既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.

相关文档
最新文档