开关电源主电路方案选择与设计

第二节、AC/DC开关电源主电 路方案选择与设计
浙江大学电气工程学院 应用电子学系 二零一零年七月 Email: ywxi@https://www.360docs.net/doc/9c6711513.html,
2010-7-13
1

主要内容
1 评估设计要求(指标) 2 主电路方案选择 3 元器件设计方法 4 各种模式Flyback 电路设计 5 损耗分析及机构布局设计 6 PCB布板和EMI
2010-7-13
2

一、评估设计指标(1)
1.输入参数:输入电压大小,交流还是直流,相数,频率等。
? 国际电压等级有单相120Vac,220Vac,230Vac等。国际通用的交 流电压范围为85~265V。一般包括输入电压额定值及其变化范 围; ? 3kW以下功率常选用单相输入,5kW以上选用三相输入; ? 工业用电频率一般为50Hz或者60Hz,航空航天电源、船舶用电为 400Hz. ? 有无功率因数(Power Factor)和谐波(Total Harmonics Distortion)指标
2010-7-13
3

一、评估设计指标(2)
2.输出参数:输出功率,输出电压,输出电流,纹波,稳压(稳流)
精度,调整率,动态特性(稳定时间:settling time)、电源的启 动时间和保持时间。 ? 输出电压:额定值+调节范围。输出电压的上限应尽量靠近额定 值,以避免不必要的过大的设计余量。 ? 输出电流:额定值+过载倍数。有稳流要求的还会指定调节范围。 有些电源不允许空载,因此还应指定电流下限。 ? 稳压稳流精度:影响因素包括输入电压调整率,负载调整率,时 效偏差。基准源精度、检测元件精度、控制电路中运放的精度对 稳压稳流精度影响很大。
2010-7-13
4

一、评估设计指标(3)
? 纹波:纹波成分包括远高于开关频率的高频尖刺,与开关频率fs 相关的纹波以及低频纹波(如电网单相整流后的100Hz纹波)。 纹波系数:输出电压中交流成分总有效值与直流成分的百分比。 是最常用的量化方法。 峰峰电压值:纹波电压的峰峰值,可以反映出幅值很高有效值却 很小的尖峰噪声的含量,但不能反映出纹波有效值的大小。一般 的电源纹波要求<+/-(1%-2%)。 共模纹波:正负端都有的纹波 其它。。。。。
2010-7-13 5

一、评估设计指标(4)
3.效率:额定输入电压与额定输出电压、额定输出电流时输出功率
与输入有功功率的比值。 损耗: 与开关频率密切相关的损耗:开关器件的开关损耗,磁性元件的铁 损,吸收电路的损耗。 电路中的通态损耗:开关器件的通态损耗,磁性元件的铜损,线路 损耗。这部分损耗取决于电流。 其它损耗:控制电路损耗,驱动电路的损耗等 一般输出电压较高的电源的效率高于输出电压较低的电源。高 输出电压的电源效率可达90%~95%的效率。大功率电路的效率 可以比小功率电路的效率做得更高。
2010-7-13
6

一、评估设计指标(5)
4.电压调整率和负载调整率
? 电压(源)调整率:电源调整率通常以额定负载条件下,由输入 电压变化所造成其输出电压偏差率。如下列公式所示: Vo(max)-Vo(min) / Vo(normal) 或者规定其输出电压之偏差量须於规定之上下限范围内,即 输出电压之上下限绝对值以内。 ? 负载调整率:负载调整率的定义为开关电源於输出负载电流变化 时,提供其稳定输出电压的能力 。或者输出负载电流变化下,其 输出电压偏差量不得超过上下限绝对值。 测试方法:待测电源在正常输入电压及负载状况下热机稳定 後,测量正常负载下的输出电压值,再分别测量轻载(Min)、重载 (Max)负载下其输出电压值(分别为Vmax与Vmin),负载调整率通常 以正常固定输入电压下,由负载电流变化所造成其输出电压偏差 率的百分比,如下列公式所示: V0(max)-V0(min) / V0(normal)
2010-7-13 7

一、评估设计指标(6)
5.动态特性:负载突变时输出电压的变化
? 开关电源通过反馈控制回路保证其输出电压稳定,实际上反馈控制回路 有一定的频宽,因此限制了电源供应器对负载电流变化时的反应,可能 引起开关电源不稳定、失控或振荡之现象。实际上,电源供应器工作时 的负载电流也是动态变化的,因此动态负载测试对电源供应器而言是极 为重要的。 ? 可编程序电子负载可用来模拟电源供应器实际工作时最恶劣的负载情 况,如负载电流迅速上升、下降之斜率、周期等,若电源供应器在恶劣 负载状况下,仍能够维持稳定的输出电压不产生过冲(Overshoot)或过低 (Undershoot)情形,否则会导致电源输出电压超过负载元件(如TTL电路 其输出瞬时电压应介於4.75V至5.25V之间,才不致引起TTL逻辑电路之误 动作)工作范围。
2010-7-13
8

一、评估设计指标(7)
6.电源启动时间(Set-Up Time)与保持时间(Hold-Up Time)
? 启动时间:指电源从输入接上电源起到其输出电压上升到稳压范 围内为止的时间,以一输出为5V的电源供应器为例,启动时间为 从电源开机起到输出电压达到4.75V为止的时间。 ? 保持时间:电源从切断输入电源起到其输出电压下降到稳压范围 外为止的时间,以一输出为5V的电源供应器为例,保持时间为从 关机起到输出电压低於4.75V为止的时间,一般值为10-20ms,以 避免电力公司供电中由于短时电压中断(半个或一个电网电压周 期)时负载工作受到影响。
2010-7-13
9

一、评估设计指标(8)
7. 多路输出电源的交叉调整率:
? 多输出还需要考虑交叉调整率(Cross Regulation)。 什么是交叉调整率? 一路输出负载变化时,另一路输出电压的变化范围。 提高交叉调整率的常规办法:后级调整 如:小功率多路输出Flyback
2010-7-13
10

输入电压范围..............90~264VAC, 120-370VDC 输入电流..................2.0A/115V 1.1A/230V,输入频率:47~63HZ 冲击电流..................冷启动电流 20A/115V 40A/230V 漏电流....................< 2mA/240VAC 输出电压调节范围..........CH1 : -5~+10% 电压调整率................CH1:< 1% , CH2:< 1% 负载调整率................CH1:< 3% ,CH2/3:< 4-8% 过载保护..................105%~150% 保护类型:电流限制,自动恢复 过压保护..................115-135%CH1额定输出电压 温度系数..................±0.03%℃(0~50℃) 启动、上升、保持时间......800ms,60ms,20ms 抗震性....................10~500Hz,2G 三轴 10min./1周期,每轴1小时 耐压性....................输入-输出:3KVAC,输入-外壳:1.5KVAC, 输出-外壳:0.5KVAC 1分钟 绝缘电阻...............输入-输出、输入-地、输出-地 500VDC/100M Ohms 工作温度、湿度............-10℃~+60℃,20%~90%RH(0-45℃/100%, -10℃/80%,60℃/60% LOAD) 存储温度、湿度............-20℃~+85℃,10%~95RH 外形尺寸..................199*99*50mm CASE 916A 重量......................0.6kg;20pcs/13kg/1.17CUFT 安全标准..................满足UL1310,TUV EN60950要求 EMC/谐波标准............... 满足 EN55022 class B/A,EN61000-3-2,3 EN61000-4-2,3,4,5,6,8,11,ENV50204
2010-7-13 11

二 、选择合适主电路拓扑(AC-DC)(1)
基本原则:功率等级,成本,效率,尺寸大小
? 功率在75瓦以下时,一般不对输入侧谐波进行限制。因此选用电 路简单、成本低廉的反激式电路。日本限制50W以下。照明要求 更高,25W。 电路功率在75瓦以上一般电源要求满足谐波IEC61000-3-2。一般 要求有功率因数校正,因此大多采用两级的方案。 Boost PFC+Flyback; <100W Boost PFC+half bridge 100W< <500W ? 当更大功率(500瓦以上),可采用半桥或者全桥。成本要求严, 就选择半桥,功率大则选择全桥。推挽型电路通常用于功率较 大,输入电压很低的场合。
?
2010-7-13
12

二 、选择合适主电路拓扑(AC-DC)(2)
? 一般功率小于20W时,由于电源的损耗以磁元件,开关,和驱动 损耗为主,通态损耗比重小(电流小),因此选择电路拓扑简单 的方案。如 DCM Flyback。 ? 当电源的损耗以通态损耗为主时(大功率,或者低压大电流), 需要考虑能够降低通态损耗的方案。比如:同步整流,多级转 换,并联,混合拓扑等。
2010-7-13
13

三、元器件设计
? 例:Flyback主电路中哪些元器 件需要我们设计?
① 计算电路工作参数。输入、输出电压 ② 运行参数。开关频率、最大占空比 ③ 变压器。 ④ 开关管-电压,电流 ⑤ 副边二极管-电压、电流 ⑥ 输出滤波电容 ⑦ 吸收电路
iL
1
iL2折算 到原边
iL
2
iL1折算到 副边
2010-7-13
14

举例:小功率DCM of Flyback (1) 设计步骤
(一)、确定输入直流母线的电压变化范围: 1)随输入变化范围 2)每个工频周期内电压变化
直流母线 AC输入: 90-135
Flyback
2010-7-13
15

举例:小功率DCM of Flyback (2)
母线电压变化范围 Vlinemax*1.4-VDCmin
2010-7-13
16

举例:小功率DCM of Flyback (3)
(二)、设计开关频率fs,最大占空比 Dmax=0.45
? ? 按照要求设定开关频率 根据输入功率,并假定最低电压最大占空比,刚好临界连续,然 后确定电感峰值电流
Pinmax=Pomax/efficiency Iavgmax=Pinmax/VDCmin Ipeak=2*Iavgmax/D
ip
Ts Ipeak Iavgmax
D*Ts
2010-7-13 17

举例:小功率DCM of Flyback (4)
(三)、设计反激变压器
– 根据最大峰值电流,确定原边电感量 Pinmax=0.5*Lm*Ipeak2*fs – 根据经验,选定磁芯尺寸,计算原边匝数。 Np=(Lm*Ipeak)/(Ae*Bmax) Ae是磁芯截面积;Bmax是设计的最大磁通密度。 – 根据电感量和匝数,设计气隙。 – 根据原边开关管的额定电压选择合适的匝比。为了获得较好 的副边交叉调整率,有时候需要调整变压器原边的匝数。 例:副边 Vo1:Vo2=5:3 初步计算得到:Ns1=3,Ns2=1.8;如果Ns2取2匝,则调整率 可能比较差。于是,修改副边匝数,Ns1=5,Ns2=3。
2010-7-13 18

举例:小功率DCM of Flyback (5)
(四)、开关管选择:功率MOSFET
? 开关管电压应力: 例:原边选择650V的MOSFET,则原边的开关管 的电压应力不应超过600V。 于是计算最大应力: Vpmax=VDCmax+(Vo+Vdrop)*Np/Ns+60V ? 开关管电流应力:
– 计算变压器原边的最大电流 iL
一般情况下:Vo*Np/Ns<140V; 考虑,原边开关管的应力,副边二极 管的电压应力, 最大占空比 三者折衷。
2010-7-13
1
iL2折算 到原边
iL
2
iL1折算到 副边
19

举例:小功率DCM of Flyback (6)
(五)、副边二极管的选择:
– 快恢复二极管 – 计算二极管的耐压
VD=(Vdcmax*Ns/Np+Vo)*1.3
– 计算二极管的电流:
(六)、输出滤波电容的选择: 根据电流/电压应力,纹波要求,选择电解电容。
2010-7-13
20

单端正激式开关电源主电路的设计

单端正激式开关电源主 电路的设计 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

摘要:电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠工作。目前,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的相控稳压电源,并广泛应用于电子设备中。 本设计的单端正激式开关电源是一种间接直流变流技术,本设计以正激电路为主体,采用以TOPSwitch系列开关电源集成芯片TOP244Y为核心的脉宽调制电路实现交-直-交-直变流,输出稳压稳频的直流电。 关键词开关电源;正激电路;变压器;脉宽调制; ABSTRACT Power is an indispensable part of electronic equipment, its performance directly related to electronic equipment technical indicators and safe work can. At present, switching power supply for has the advantages of small size, light weight, high efficiency, low calorific value and stable performance advantages and replace traditional technology of phased manostat, and widely used in electronic equipment. The design of the single straight separate-excited switching power supply is a kind of indirect dc converter technology, this design was adopted for the main circuit, induced by TOPSwitch series of switch power integration chip TOP244Y as the core of the pulse width modulation circuit implementation delivered straight into - - - the voltage output variable flow straight, dc frequency stability. KEY WORDS Switching power supply;Is induced circuit;Transformer;Pulse width modulation

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

单端正激式开关电源-主电路地设计

摘要:电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠工作。目前,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的相控稳压电源,并广泛应用于电子设备中。 本设计的单端正激式开关电源是一种间接直流变流技术,本设计以正激电路为主体,采用以TOPSwitch系列开关电源集成芯片TOP244Y为核心的脉宽调制电路实现交-直-交-直变流,输出稳压稳频的直流电。 关键词开关电源;正激电路;变压器;脉宽调制; ABSTRACT Power is an indispensable part of electronic equipment, its performance directly related to electronic equipment technical indicators and safe work can. At present, switching power supply for has the advantages of small size, light weight, high efficiency, low calorific value and stable performance advantages and replace traditional technology of phased manostat, and widely used in electronic equipment. The design of the single straight separate-excited switching power supply is a kind of indirect dc converter technology, this design was adopted for the main circuit, induced by TOPSwitch series of switch power integration chip TOP244Y as the core of the pulse width modulation circuit implementation delivered straight into - - - the voltage output variable flow straight, dc frequency stability. KEY WORDS Switching power supply;Is induced circuit;Transformer;Pulse width modulation 目录 前言 (1)

美的内部资料-QMN-J33[1].228-2009_电流检测电路设计指引

美的家用空调国内事业部设计规范规范编号:QMN-J33.228-2009 电流检测电路设计指引 (发布日期:2009-04-02) 1范围 本设计指引对电流检测电路的电路原理,各器件的参数计算选择,相关技术要求和实际使用中的有关问题进行了阐述。 本设计指引适用于美的家用空调国内事业部的电流检测电路的设计。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 QMN-J52.053 电流互感器(原标准号05.132) 3定义 无 4总述 在空调整机上,常用到电流互感器检测压缩机工作电流,下面根据常用电流检测电路介绍其工作原理及注意事项。 1

美的家用空调国内事业部设计规范规范编号:QMN-J33.228-2009 5电路原理 5.1电路原理图 5.2工作原理简介 在了解电路工作原理之前,首先简单介绍电流互感器CT1的工作原理。电流互感器实际是一个线性变压器。其输入电流(被检测电流)与输出电流跟它的内部线圈匝数成正比关系(均为交流电流量)。这样我们开始叙述电路的工作原理: 假如检测压缩机电流值为Ii,根据电流互感器固定的初级/次级线圈匝数比(常量)C,可确定输出电流(为交流)Io=Ii/C;在选取负载电阻R6(通常为1KΩ、1%)时,其阻值远远小于两分压电阻值。这样,R6的阻值约等于实际的负载电阻值。于是,R6两端的电压Uo=R6*Io=R6*Ii/C;(注:此为交流电压值)。 在经过整流二极管D10半波整流后(由于MCU 的A/D口所需输入电流很小,此处按严格的计算关系),二极管D10的负极与地之间的直流电压V1=1.414/2*Uo=0.707*R6*Ii/C;要减掉二极管上的压降约0.5V。 直流电压V1在分压电阻R14和R13上分压,得出该点的电压值V2=R13/(R13+R14)*V1=R13/(R13+R14)*(0.707*R6*Ii/C-0.5),这就是最终输入到芯片检测口的压缩机电流参数模拟量(该值仍需通过实验最终确定。电流互感器0057W对应不同分压电阻R14时输入到芯片检测口的电压参数表见附录)。 直流电压V2必须经过电解电容E6平滑波形,成为较平稳的电压模拟量输入到芯片A/D口。钳位二极管D9目的是确保输入到芯片口的模拟量不大于5V,以保证芯片的工作可靠性;电阻R12和电容C8滤除输入量的高频成分,减小其对MCU的影响。 5.3各元器件作用 电流互感器CT1——将要求检测的交流电流转化成电压信号(交流); 模拟负载电阻R6——主要是为CT1的磁场转化提供一个偏置电阻,保证CT1内部的转化磁场处 于非饱和状态; 2

300w开关电源设计(图纸)

TND313/D Rev 3, Sep-11 High-Efficiency 305 W ATX Reference Design Documentation Package ? 2011 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this reference design documentation package “AS IS” and the recipient assumes all risk associated with the use and/or commercialization of this design package. No licenses to ON Semiconductor’s or any third party’s Intellectual Property is conveyed by the transfer of this documentation. This reference design documentation package is provided only to assist the customers in evaluation and feasibility assessment of the reference design. The design intent is to demonstrate that efficiencies beyond 80% are achievable cost effectively utilizing ON Semiconductor provided ICs and discrete components in conjunction with other inexpensive components. It is expected that users may make further refinements to meet specific performance goals.

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

PI开关电源电路设计

PI开关电源设计指引 (发布日期:2011-11) 1范围 本标准描述了开关电源电路硬件控制的实现方法,一般开关电源电路设计者在使用不同型号的开关电源控制IC及不同的开关电源电路方案时可以此为参考,更快、更好地完成特定功能的硬件设计。希望本标准能对硬件可靠性的提升有所帮助。 本标准适用于PI开关电源电路的设计。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 7725 房间空气调节器 GB/T 15184 按能力批准评定质量的电子设备用开关电源变压器分规范 GB/T 14714 微小型计算机系统设备用开关电源通用技术条件 QMK-J33.242 开关变压器设计指引 3硬件接口定义及相关原理图 3.1控制芯片型号——TinySwitch-III系列离线开关IC(TNY276~TNY279); 3.2管脚功能说明如下: EN/UV脚:输入使能信号和输入线电压欠压检测。 1、EN功能:在正常工作时,通过此引脚可以控制功率MOSFET的开关,当从此引脚拉出的 电流大于115μA,MOSFET被关断。当此引脚拉出的电流小于75μA时,MOSFET重新开启。 2、UV功能:在EN/UV引脚和DC电压间连接一个外部电阻可以用来感测输入电压的欠压情况。 如果没有外部电阻连接到此引脚,TinySwitch-III可检测出这情况并禁止输入电压欠压保护功能。 BP/M脚:旁路/多功能控制脚。 1、旁路:一个外部旁路电容连接到这个引脚,用于生成内部5.85 V的供电电源。 2、外部限流点设定:根据所使用电容的容值选择电流限流值。 3、关断功能:在输入掉电时,当流入旁路引脚的电流超过I SD时关断器件,直到BP/M电压下降 到4.9 V之下。还可将一个稳压管从BP/M引脚连接到偏置绕组供电端实现输出过压保护。 D脚:旁路电容充电引脚,同时也是内部功率MOSEFT的漏极(D极)。 S脚:内置功率MOSEFT的源极(S极),同时也是开关电源控制电路的参考点。 3.3参考设计原理图

反激开关电源主电路工作原理

反激开关电源 一.定义: 直流电压正好激励变压器的初级线圈时,变压器的次级线圈并没有向负载提供输出功率,而是仅在关断变压器初级线圈的激励电压后,才对负载提供输出功率。 二.反激开关电源的主电路 开关管导通时,反激开关电源将电能转化为磁能,存储在变压器中; 开关管关断时,发激开关电源再将存储的磁能转化为电能传送给负载。 电路特点: 1.结构简单,效率高,体积小,造价低 2.输出纹波电压比较大

3.输出功率一般在150W一下,经常作为辅助电源应用在控制系 统中 4.适合多输出小功率场合 三.反激开关电源原理分析 CCM模式 1.开关管T导通 电源电压 in V加在变压器的初级绕组1N上,在次级绕组2N 上产生感应电压 2 2 1 N in N u V N =-,初级绕组电流线性增加,in P P V di dt L =, 电流 P i最大值max min in P P P V I I DT L -- =+,变压器铁心被磁化,磁通线 性增加, () 1 in V DT N + ?Φ=。 2.开关管T关断 初级绕组开路,次级绕组工作,次级绕组电压 2 N o u V =,次级绕

组电流线性下降, S o S di V dt L =,电流S i 最小值 min m (1)o S S ax S V I I D T L --=- -,变压器铁心去磁,磁通线性减小,()2 (1)o V D T N -?Φ= -。 3. 基本关系: ()()+-?Φ=?Φ?211(1)(1)o in V N D D V N D n D =?=?--,其中12 N n N = 开关管T 电压应力:1 21in T in o V N V V V N D =+ =- 二极管D 的电压应力:2 1o D o in V N V V V N D =+ = 此时,负载电流o I 等于二极管电流的平均值,即 min m 1 ()(1)2 o S S ax I I I D --=+- 由变压器工作原理 1min 2min 1max 2m P S P S ax N I N I N I N I ----== 可得 2max 11 12in P o P V N I I DT N D L -= +- 11m max 22112in S ax P o P V N N I I I DT N D N L --= =+- 临界模式 此时有min 0P I -=且min 0S I -=,则有下列式子成立:

按键和LED复用电路设计指引

电控设计规范按键和LED复用电路设计指引 1总述 在空调整机上,常常用到按键和LED显示电路,但由于芯片口资源有限,需要按键和LED复用芯片口,下面根据常用按键和LED复用电路介绍其工作原理及注意事项。 2电路原理 2.1电路原理图 2.2工作原理简介 74LS164芯片(以下简称164芯片):8位串入并出移位寄存器。 如图所示,数码管与LED采用共阳极驱动,164芯片Q0-Q7需输出低电平才能点亮与其对应的数码管字段或LED灯;164芯片输出口作为SEG口输出信号,主芯片口作为COM口, 且数码管和LED 的显示采用COM口逐一点亮,SEG口一次全亮的方式;由于数码管个位、十位和LED等的点亮时序不同,所以他们之间不会相互干扰; 由于数码管与LED显示用了3个COM口,建议按键扫描程序每隔8 ms左右进入一次,连续四次检测到按键输入就确定,如此可消除按键抖动,增强抗干扰; 由于按键扫描频率为8ms,远小于人眼能感知的闪烁频率12ms,因此数码管和LED灯看起来都是没有闪烁的。 2.3各元器件作用 第 1 页

在电路中,164芯片输出口Q0-Q7作为SEG口输出信号,包括数码管、LED显示信号及按键扫描信号; Q1、Q2分别控制数码管个位,十位的显示与否,Q3控制LED的显示与否; 电阻R28,R39,R40确保三极管Q1,Q2,Q3可靠导通与截止; 二极管D2-D9,D20-D26利用其单向导通的特性,起隔离作用,确保按键不相互干扰。 2.4各元器件的选型 该电路中各元器件可选择性较大,出于通用性和标准化考虑,经实际应用验证,各元器件选型标准要求如下: 5.4.1选择三极管Q1, Q2, Q3 一般选取三极管KTC9012 5.4.2选择二极管D2-D9,D20-D26 一般选取二极管1N4148 5.4.3选择电阻R8-R10,R38-R40,R11-R12 一般选取电阻2K,5% 5.4.4选择电阻R33,R34 一般选择电阻10K,5% 5.4.5选择电阻R16-R23 一般选择电阻330欧,5%。 5.5 LED或按键驱动电路的扩展 在实际应用中,如须用到更多的LED或者按键,可采用如下方式进行扩展: 5.5.1 扩展SEG口,可将164芯片换成移位串行输入-输出口更多的芯片,可任意扩展; 5.5.2 扩展COM口,可将主芯片I/O口作为新的COM口成组扩展,但不可任意扩展,否则时序难以错开,最大COM口数量与芯片运算能力有关。 第 2 页

48V50A开关电源整流模块主电路设计

48V/50A开关电源整流模块主电路设计 高频开关电源系统具有体积小,重量轻,高效节能,输出纹波小,输出杂音电压小和动态响应性能好等很多优点,现已开始逐步地取代整流式电源而成为现代通讯设备的新型基础电源系统。随着电子技术,电力电子技术,自动控制技术和计算机控制技术的发展,高频开关电源系统的性能也越来越好。通信用开关电源系统作为开关式稳压电源的一种形式,它的设计内容和设计方法都具有自己的特殊性。 要设计一套通信用开关电源系统,首先要明白对它的全面要求,然后再设计系统的各个部分。高频开关电源主回路和控制回路所用的电路形式,元器件,控制方式都发展很快。它们的设计具有特殊的内容和方法。 1设计要求和具体电路设计 通信基础开关电源系统的关键部分是开关电源整流模块。整流模块的规格很多,结合在工 作中遇到的实际情况,提出该模块设计的硬指标如下: 1) 电网允许的电压波动范围 单相交流输入,有效值波动范围:220 V±20%,即176~264 V;频率:45~65 Hz。 2) 直流输出电压,电流 输出电压:标称-48V,调节范围:浮充,43~56?5V;均充,45~58V。 输出电流:额定值:50A。 3) 保护和告警性能 ①当输入电压低到170 VAC或高到270 VAC,或散热器温度高到75 ℃时,自动关机。 ②当模块直流输出电压高到60 V,或输出电流高到58~60 A时,自动关机。 ③当输出电流高到53~55 A时,自动限流,负载继续加大时,调低输出电压。

4) 效率和功率因数 模块的效率不低于88%,功率因数不低于0.99。 5) 其他指标 模块的其他性能指标都要满足“YD/T731”和“入网检验实施细则”等行业标准。 由于模块的输出功率不大,可采用如下的基本方案来设计主电路: 1) 单相交流输入,采用高频有源功率因数校正技术,以提高功率因数; 2) 采用双正激变换电路拓扑形式,工作可靠性高; 3) 主开关管采用 V MOSFET,逆变开关频率取为50 kHz; 4) 采用复合隔离的逆变压器,一只变压器双端工作; 5) 采用倍流整流电路,便于绕制变压器。 依照上述方案,即可设计出主电路的基本形式如图1。 图1 48V/50A整流模块DC/DC主电路基本形式 以下即可按照模块设计的要求来确定主电路中各元器件的基本参数。 1) 输出整流管的选择 输出整流二极管的工作波形如图2所示。

超声波电路设计指导

超声波电路设计指导 1.超声波发射电路 τ 图1 发射电路 T IRFP840 耐压500V以上,额定功率10W以上的场效应管 U1 IR4426 电源电压用12V 注1:若使用IR4427,当注意其输入输出波形不反相,故须正 脉冲输入。 注2:U1极忌长时间导通。在U1与T之间可以插入限流电 阻保护U1,电阻不宜大,否则输出脉冲边沿会变得过缓;在 正常工作状态,U1只在极短时内导通,即使无限流电阻也不 致损坏。 R1 50K~1MΩ电阻取值与两次发射的最小间隔时间有关,间隔越长则回路充 放电时间可越长,R1可以越大。 建议设法取1MΩ,以便减小250V电源的输出电流。 C1 1000pF/1000V 高压瓷片电容 RL 510Ω 简要工作原理如下: 当T截止时,250V电压源通过R1和RL向C1充电。一般认为,持续充电时间大于5倍的回路充放电常数,则C1两端电压能基本达到250V,为驱动超声波发射做好准备。 当T瞬时导通,T、C1和RL构成放电回路。超声波传感器的阻抗约为50Ω,故C1中的电荷被快速释放,在超声波传感器上形成一个负向冲击脉冲,脉冲宽度约为0.5~1.5us。

图2 超声波传感器上信号波形示意2.超声波接收电路 限幅限幅放大检波后级放大比较 或1N60 图3 接收电路 图3中: (1)R1、R2取值一般为100~300Ω,与后级放大器输入阻抗大小有关。 (2)Ci不宜太大,否则超声波发射后电路会有一段时间无法正常接收回波信号,故一般可小于0.1uF; 也不宜太小,否则信号损耗会比较大。 (3)通路上放大器的总增益应大于50dB,大于60dB则更佳。 (4)检波电路时间常数的选取要得当,太大则造成包络展宽,太小则单个回波脉冲会被检测成多个脉冲。可根据超声波工作频率确定,并通过观测检波输出波形加以矫正。 3.脉冲间隔测量电路 请参考并分析ultrasonic.ddb中图纸。 4.声波传导耦合剂 实验中,使用超声波传感器探头探测实验样块。样块与探头的接触面、多个样块层叠时样块之间的接触面,可能因不平整而有空气间隙,影响声波传导,带来较严重的界面衰耗,故建议实验中使用清水在接触面涂抹填充,作为耦合剂,并压实接触面,减小声波传导损耗。 有些同学选择将样块完全浸没在一个盛水容器中。这种做法当十分小心操作,防止将探头完全浸没造成损毁!探头的前部为密封构造,故可局部浸入水中,但后部并不密封。 医学B超常用凡士林作耦合剂,若有条件使用,则效果或许更理想。

电气自动化+PWM型开关电源电路设计

1 引言 当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 1.1 什么是开关电源 电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是 直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环 节的则称开关电源。 1.2 开关电源基本工作原理 开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。 开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。 图1-1 PWM型开关电源原理框图

常见几种开关电源工作原理及电路图

常见几种开关电源工作原理及电路图

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。 单端反激式开关电源使用的开关管VT1 承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。 3.单端正激式开关电源 单端正激式开关电源的典型电路如图四所示。这种电路在形式上与单端反激式电路相似,但工作情形不同。当开关管VT1导通时,VD2也 导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。

电子电路课程设计指导word文档

电子技术基础课程设计 (I) (基础训练部分) 张淑琴编撰 于枫校审 吉林大学电子信息工程2007年 9月

第一篇课程设计的基础知识 电子技术基础课程设计包括选择课题、电子电路设计、组装、调试和编写总结报告等教 学环节。本篇介绍课程设计的有关知识。 l-l 电子电路的设计方法 在设计一个电子电路系统时,首先必须明确系统的设计任务,根据任务进行方案选择, 然后对方案中的各部分进行单元电路的设计、参数计算和器件选择,最后将各部分连接在一 起,画出一个符合设计要求的完整的系统电路图。 一、明确系统的设计任务要求 对系统的设计任务进行具体分析,充分了解系统的性 08、指标、内容及要求,以便明确 系统应完成的任务。 二、方案选择

这一步的工作要求是,把系统要完成的任务分配给若干个单元电路,并画出一个能表示各 单元功能的整机原理框图。 方案选择的重要任务是根据掌握的知识和资料,针对系统提出的任务、要求和条件,完 成系统的功能设计。在这个过程中要敢于探索,勇于创新,力争做到设计方案合理、可靠、 经济、功能齐全、技术先进。并且对方案要不断进行可行性和优缺点的分析;最后设计出一 个完整框图。框图必须正确反映系统应完成的任务和各组成部分的功能,清楚表示系统的基 本组成和相互关系。 三、单元电路的设计、参数计算和器件选择 根据系统的指标和功能框图,明确各部分任务,进行各单元电路的设计、参数计算和器 件选择。 1.单元电路设计 单元电路是整机的一部分,只有把各单元电路设计好才能提高整体设

计水平。

每个单元电路设计前都需明确本单元电路的任务,详细拟定出单元电路的性能指标,与前 后级之间的关系,分析电路的组成形式。具体设计时,可以模仿成熟的先进的电路,也可以 进行创新或改进,但都必须保证性能要求。而且,不仅单元电路本身要设计合理,各单元电 路间也要互相配合,注意各部分的输入信号、输出信号和控制信号的关系。 2.参数计算 (1) 元器件的工作电流、电压、频率和功耗等参数应能满足电路指标的要求; (2) 元器件的极限参数必须留有足够裕量,一般应大于额定值的 1.5倍; (3) 电阻和电容的参数应选计算值附近的标称值。 3.器件选择 (1) 阻容元件的选择:电阻和电容种类很多,正确选择电阻和电容是很重要的。不同 1

开关电源防雷电路设计1

防雷电路开关电源防雷电路设计方案上网时间: 2010-08-30防雷电路开关电源防雷电路设计方案 雷击浪涌分析 最常见的电子设备危害不是由于直接雷击引起的,而是由于雷击发生时在电源和通讯线路中感应的电流浪涌引起的。一方面由于电子设备内部结构高度集成化(VLSI芯片),从而造成设备耐压、耐过电流的水平下降,对雷电(包括感应雷及操作过电压浪涌)的承受能力下降,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波侵入。浪涌电压可以从电源线或信号线等途径窜入电脑设备,我们就这两方面分别讨论: 1)电源浪涌 电源浪涌并不仅源于雷击,当电力系统出现短路故障、投切大负荷时都会产生电源浪涌,电网绵延千里,不论是雷击还是线路浪涌发生的几率都很高。当距你几百公里的远方发生了雷击时,雷击浪涌通过电网光速传输,经过变电站等衰减,到你的电脑时可能仍然有上千伏,这个高压很短,只有几十到几百个微秒,或者不足以烧毁电脑,但是对于电脑内部的半导体元件却有很大的损害,正象旧音响的杂音比新的要大是因为内部元件受到损害一样,随着这些损害的加深,电脑也逐渐变的越来越不稳定,或有可能造成您重要数据的丢失。 美国GE公司测定一般家庭、饭店、公寓等低压配电线(110V)在10000小时(约一年零两个月)内在线间发生的超出原工作电压一倍以上的浪涌电压次数达到800余次,其中超过1000V 的就有300余次。这样的浪涌电压完全有可能一次性将电子设备损坏。 2)信号系统浪涌 信号系统浪涌电压的主要来源是感应雷击、电磁干扰、无线电干扰和静电干扰。金属物体(如电话线)受到这些干扰信号的影响,会使传输中的数据产生误码,影响传输的准确性和传输速率。排除这些干扰将会改善网络的传输状况。 基于以上的技术缺陷和状况,本文根据实际使用设计了一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌的开关电源电路。 防雷击浪涌电路的设计 本文所设计的是一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌电路,并将其应用到仪表的开关电源上。整个电路包括防雷电路和开关电源电路,其中防雷电路采用3个压敏电阻和一个陶瓷气体放电管组成复合式对称电路,共模、差摸全保护。与经典的开关电源电路组成防雷仪表的电源电路,采用压敏电阻并联,延长使用寿命,在压敏电阻短路失效后与开关电源电路分离,不会引起失火。 为了实现上述目的所采取的设计方案是:将压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌电路应用到仪表的电源上。主要分为防雷电路部分和开关电源电路部分,电路简单,采用复合式对称电路,共模、差摸全保护,可以不分L、N端连接。使压敏电阻RV1位于贴片整流模块前端分别与电源L、N并联,主要来钳位L、N线间电压,压敏电阻RV0、RV2与陶瓷气体放电管FD1串联后接地,RV0与FD1串联主要是泄放L线上感应雷击浪涌电流,RV2与FD1串联主要是泄放由信号口串人24V参考电位上的能量,RV0、RV2短路失效后,FD1可将其与电源电路分离,不会导致失火现象。 RV1前端线路上串联了一个线绕电阻,当此RV1短路失效时,线绕电阻可起到保险丝的作用,将短路电路断开,压敏电阻属电压钳位型保护器件,其钳位电压点即压敏电阻参数选择相对比较重要(选压敏电压高一点的,通流量大一些的更安全、耐用,故障率低);根据通流容量要求选择外形尺寸和封装形式,本电路中采用561k-10D的压敏电阻与陶瓷气体放电

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

三相检测电路设计指引

电控设计规范三相检测电路设计指引 1.1三相交流电:由三个频率相同、电势振幅相等、相位差互差120 °角的交流电路组成的电力系统。 1.2相电压:火线对零线的电压。 1.3线电压:火线与火线间的电压。 2总述 在三相空调室外机上,常用到三相检测电路来检测三相电的相序和缺相,以达到保护压缩机的目的。下面介绍其工作原理及注意事项。 3电路原理 3.1电路原理图 图1 3.2工作原理简介 3.2.1在了解电路工作原理之前,首先简单介绍三相交流电的知识。 所谓三相交流电是指由三个频率相同、电势振幅相等、相位差互差120 °角的交流电路组成的电力系统。如图2所示:

图2 其三角函数表示为: 三相交流电有星型(Y)和三角形(Δ)两种接法,如图3所示: a星型接法b三角形接法 图3 星型接法采用三相四线制,有一根公共的零线;线电压是380VAC,相电压是220VAC,因此可以提供380VAC和220VAC电压,适用于三相负载平衡和不平衡的场合。目前市电是采用三相四线制的供电方式,本标准只适用于该接线方式。 三角形接法采用三相三线制,没有公共零线;只能提供380VAC线电压,一般用于三相平衡的场合。有些船舶等环境下使用,本标准不适用于该接线方式。 3.2.2从原理图1可以看到,需检测的电源是采用三相四线制方式,每一相的电压(A、B、C相和零线之间电压,220VAC)通过4007二极管和68K大功率电阻加到PC817光耦上,在正半周期光耦导通,负半周期则光耦截止;由于光耦输出端有上拉电阻,故光耦导通时芯片检测到低电平,光耦截止时芯片检测到高电平。A、B、C三相电的相差是120o,芯片检

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

相关文档
最新文档