道康宁有机硅凝胶TDS

道康宁有机硅凝胶TDS
道康宁有机硅凝胶TDS

脱模剂原理和分类

(一)有机硅脱模剂 用作脱模剂的有机硅是指聚有机硅氧烷(也可称作聚硅酮)。 1.二甲基硅油 这是一种无色无味的透明粘稠液体,溶于苯、甲苯、二甲苯、乙醚,部分溶于乙醇、丁醇、丙醇,不溶于环己醉、甲醇、植物油、水、石蜡油。本品无毒。二甲基硅油具有优良的耐温性,其粘度随温度变化小,电性能优良,具有憎水性,是一种用途广泛的脱模剂。 2.甲基苯基硅油 这是一种无色或微黄色油状液体,物理性能随组成和分子量而异,它除了有二甲基硅油的一般性能外,还具有较佳的耐高温、抗辐射性能,但温度粘度系数比二甲基硅油差。 3.二乙基硅油 它是一种无色至浅黄色透明液体,耐高温粘度系数小,具有优良的润滑性能和介电性能,无毒、无腐蚀性.溶于甲苯、乙醚、氯仿等有机溶剂。 4.乳化硅油 乳化硅油是聚甲基硅氧烷乳化剂。这是一种白色乳状液,含硅油30-40%,耐高温、不易挥发、抗氧化、耐腐蚀、对金属无腐蚀作用,无毒。 5.甲基乙烯基硅橡胶 本品无色透明,全溶于苯。 6.甲基嵌段温室硫化硅橡胶 这是一种无色至淡黄色透明粘稠液体,它是含端羟基的聚二甲基硅氧烷和聚甲基乙氧基硅氧烷的共混物。不需要加交联剂,加触媒后即可在温室下固化成弹性硅橡胶。 7.甲基硅树脂 甲基硅树脂是由甲基三乙氧基水解缩聚而得的黄色透明液体。在加热下或在室温下加入适当固化剂能固化成膜,其膜透明、坚硬、耐磨,耐水性优良。 (二)其它脱模剂 其它脱模剂主要可分为混合溶液型、薄膜型和油膏型三类。 1.混合溶液型 混合溶液型主要有聚乙烯醇溶液、聚丙烯酰胺溶液、醋酸纤维素溶液、聚苯乙烯等有机溶剂溶液。 2.薄膜型 薄膜型主要有聚酯薄膜、聚乙烯醇薄膜、聚乙烯薄膜、氟塑料薄膜、玻璃纸、醋酸纤维素薄膜、锡纸、金纸等。 3.油膏型 油膏型主要有汽车蜡、地板蜡、石蜡、巴西棕榈蜡、豆油、凡士林等。此外,还可由不同组分配制成油膏,如石蜡3份、凡士林2份配成蜡膏;凡土林10份、石蜡1份、硬脂酸2份和煤油7份配成凡士林油膏;石蜡100克、凡士林20克、松节油40毫升和汽油80-100毫升配成代用地板蜡。 脱模剂是为防止成型的复合材料制品在模具上粘着,而在制品与模具之间施加一类隔离膜,以便制品很容易从模具中脱出,同时保证制品表面质量和模具完好无损。常用的脱模剂主要有以下几类: (1)按脱模剂的使用方式不同有外脱模剂及内脱模剂之分。外脱模剂是直接将脱模剂涂敷在模具上;内脱模剂是一些熔点比普通模制温度稍低的化合物,在加热成型工艺中将其加

塑料配方设计要点

塑料配方设计要点 塑料配方设计的关键为选材、搭配、用量、混合四大要素,表面看起来很简单,其实包含了很多内在联系,要想设计出一个高性能、易加工、低成本的配方也并非易事,要考虑的因素很多,下面将介绍配方设计的基本原则。 1、树脂的选择 (1)树脂品种的选择树脂要选择与改性目的最接近的品种,以节省加入助剂的使用量。 如耐磨改性,树脂要首先考虑选择三大耐磨树脂PA、POM、UHMWPE。 如透明改性,树脂要首先考虑选择三大透明树脂PS、PMMA、PC。 如改善冲击韧性,树脂可首先选择HDPE;改善断裂伸长率,树脂可首先选择LDPE。改善成型加工性能,可首先选择PS、PA。 (2)树脂牌号的选择同一种树脂的牌号不同,其性能差别也很大,应该选择与改性目的性能最接近的牌号。如耐热改性PP,可在热变形温度100~140℃的PP牌号范围内选择,如大韩油化的PP-4012, (3)树脂流动性的选择 ①配方中各种塑化材料的粘度要接近,以保证加工流动性。对于粘度相差悬殊的材料,要加过渡料,以减少粘度梯度。如PA6增韧、阻燃配方中常加入HDPE作为过渡料。 ②不同加工方法要求流动性不同 不同品种的塑料具有不同的流动性,按此将塑料分为高流动性塑料、低流动性塑料和不流动性塑料,具体如下所述。 高流动性塑料——PA、PP、PE、PS、ABS、HIPS等。 低流动性塑料——PC、PVC、MPPO、PPS等。 不流动性塑料——PTFE、UHMWPE、PPO等。 同一品种塑料也具有不同的流动性,主要原因为分子量、分子链分布的不同,所以同一种原料分为不同的牌号,如注塑级、挤出级、吹塑级、压延级等。 ③不同改性目的要求流动性不同,如高填充要求流动性好,如磁性塑料、无卤阻燃电缆料等。 (4)树脂对助剂的选择性 ①如PPS不能加入含铅和含铜助剂,否则会引起铅、铜污染。 ② PC的阻燃改性中不能加入三氧化二锑,否则会导致PC解聚。 ③助剂的酸碱性,应与树脂的酸碱性一致,否则会引起两者的反应。 2、助剂的选择 (1)加入的助剂应能充分发挥其功效,并达到规定指标。规定指标一般为国家标准、国际标准,或客户提出的性能要求。助剂的具体选择范围如下。 ①增韧选弹性体,热塑性弹性体如:MBS、SBS、CPE、POE、EPDM、EV A、TPU、ACR等,刚性增韧材料如纳米CaCO3。 ②增强选玻璃纤维、碳纤维、晶须和有机纤维。 ③阻燃溴类,如:十溴二苯醚、十溴二苯乙烷、四溴双酚A、六溴环十二烷等。磷类,如:磷酸一铵、磷酸二铵、红磷、芳基磷酸酯类等。水合金属氢氧化物类,如:氢氧化铝、氢氧化镁。 ④导电碳类(炭黑、石墨、碳纤维、碳纳米管)、金属纤维、金属氧化物。 ⑤耐热玻璃纤维、无机填料。 ⑥耐磨PTFE、石墨、二硫化钼。 ⑦绝缘煅烧高岭土。 (2)助剂对树脂具有选择性 ①红磷阻燃剂对PA、PBT、PET有效。 ②氮系阻燃剂对含氧类有效,如PA、PBT、PET等。 ③成核剂对共聚聚丙烯效果好。 ④玻璃纤维耐热改性对结晶性塑料效果好,对非结晶性塑料效果差。

道康宁有机硅

Page: 1 of 10 Version: 1.5 Revision Date: 2010/04/12 DOW CORNING(R) 9-6346 SILANE 1. PRODUCT AND COMPANY IDENTIFICATION Dow Corning Corporation South Saginaw Road Midland, Michigan 48686 24 Hour Emergency Telephone: Customer Service: Product Disposal Information: CHEMTREC: (989) 496-5900 (989) 496-6000 (989) 496-6315 (800) 424-9300 MSDS No.: 04021703 Revision Date: 2010/04/12 Generic Description: Organosilane. Physical Form: Liquid Color: Colorless to pale yellow Odor: Alcoholic odor NFPA Profile: Health3Flammability3Instability/Reactivity0 Note: NFPA = National Fire Protection Association 2. HAZARDS IDENTIFICATION POTENTIAL HEALTH EFFECTS Acute Effects Eye: May cause irreversible damage and burns to the eyes. Skin: May cause moderate irritation. Inhalation: Vapor and/or mist may irritate nose and throat. Overexposure by inhalation may cause drowsiness, dizziness, confusion or loss of coordination. Oral: Overexposure by ingestion may cause effects similar to those listed under repeated exposure. Prolonged/Repeated Exposure Effects Skin: Repeated or prolonged exposure may irritate seriously. Overexposure may injure internally if absorbed. Inhalation: Overexposure to vapor may cause blindness and nervous system effects due to methyl alcohol poisoning. Overexposure by inhalation may injure the following organ(s): Bladder. Kidneys. Liver. Adrenals. Oral: If swallowed, blindness, even death may result due to methyl alcohol poisoning. Other Health Effects This product contains a chemical(s) that has the following effect(s): Mutagenicity

高分子材料复习

1.通用热塑性塑料;2其他塑料;3通用热固性塑料;4工程塑料;5.纤维;6纺丝工艺;7橡胶;8热塑性弹性体;9涂料;10黏合剂;11功能高分子材料;12助剂 1.通用热塑性塑料:PE、PP、PVC和PS PE:结晶度:LDPE

1)酚醛树脂(PF):定义:凡酚类化合物和醛类化合物经缩聚反应制得的树脂统称为酚醛树脂。 热塑性酚醛树脂是在酸性条件下、甲醛与苯酚的物质的量的比<1时合成的一种热塑性线性树脂 热固性酚醛树脂是在碱性条件下、过量的甲醛与苯酚经缩聚反应合成的一种热固性网状树脂 氨基树脂(AF):定义:是含有氨基或酰胺基团的化合物与醛类化合物缩聚的产物, 种类:脲甲醛树脂(UF)三聚氰胺甲醛树脂(MF)(又叫密胺树脂,是在碱性条件下,三聚氰胺与甲醛通过缩聚反应得到产物) 环氧树脂(EP)的种类:缩水甘油醚类、缩水甘油酯类、缩水甘油胺类、线性脂肪族类、酯环族类 不饱和树脂(UP):定义:是主链上含有酯键的高分子化合物的总称,是由二元醇或多元醇与二元酸或多元酸缩合而成,也可从同一分子内含有羟基和羧基的物质制得。 4工程塑料:定义:是指物理力学性能及热性能比较好的、可以当做结构材料使用的且在较宽的温度范围内课承受一定的机械应力和较苛刻的化学、物理环境中使用的塑料材料。 1)通用工程塑料:用量大,长期使用温度在100~150℃。

道康宁部分树脂参数

道康宁? RSN-6018 树脂中间体 Dow Corning? RSN-6018 Resin Intermediate 彩色耐高温涂料用有机硅中间体 组成: ?硅羟基官能团的有机硅片状固体树脂。 典型物性: 规格制订者:以下数值不可用于规格制订,制订本产品规格前。请联络您当地的XIAMETER?销售处或客户服务部。 CTM 参 数单位数值 0176 外观片状固体 0208 不发挥成分含量,在135℃%(min)98.0 (275°F)下1.5g保持3小时 0208 挥发性,在250℃(482°F) 下1.5g保持3小时% 4.5 0077 二氧化硅含量,在165℃(329°F) 下保持0.5小时,在800℃(1472 °F)下保持1.0小时 %(min) 48 0540 25℃(77°F)下比重 1.25 0936 软化点℃(°F) 40(104) 0553 分子量 数量平均1200 重量平均 2400理论二氧化硅残留量 % 50 苯基/丙基比 2.7/1.0 取代度 1.0 稀释剂酮,酯,氯代溶剂,芳香烃和kahri 丁醇值>50的溶剂化合物 应用: ?道康宁RSN-6018 树脂主要用于养护及建筑涂料,电器涂料,卷材涂料和高温涂料。?采用道康宁RSN-6018 树脂中间体改性有机树脂中间体共聚物的养护涂料,卷材涂料和建筑涂料,在暴露于室外多年后仍呈现良好的耐粉化性,并保持自身光泽和颜色。 ?由有机硅-有机共聚物或冷拼物制备的高温涂料显示出优异的保光和保色性,可用在加热器、烤炉、焚化炉等高温设备上。 ?道康宁RSN-6018 树脂中间体冷拼有机形成的混合物还可用在要求更好耐候性和耐热性的粉末涂料应用中。 特性和优点: ?使配制的油漆具有良好的耐热性和耐候性,即: ? —抗粉化和开裂 ? ?

有机硅脱模剂生产及应用技术

有机硅脱模剂生产及应用技术 橡胶塑料制品在模具中成型加工,橡塑材料与模具表面接触,可能因模具工作表面凹凸等微缺陷,使橡塑制品自模具剥离时会有一定的摩擦阻力。橡胶塑料在注射或挤出的加工过程中,橡塑材料和模具之间往往会形成负压,或二者之间因物理吸附或化学键合而致黏结,导致在橡塑制品成型后从模具中剥离困难。为了弱化制品与模具间的吸附或黏结,常常采用能够形成有效隔离膜的添加剂——脱模剂。脱模剂是一种用在两个彼此易于黏着的物体表面的一个界面膜层,使黏结物与被黏物之间形成隔离,从而易于剥离,使制品脱模更容易和更便捷。 1、脱模剂种类与应用概述 广义脱模剂包括许多种类型,分别应用于化工、冶金、建材等领域。本文局限于化工领域的脱模剂,主要讨论有关橡胶塑料等材料成型加工的外脱模剂。 可用做脱模剂的基础物质有很多种,常用的脱模剂有无机物、有机物和聚合物等类型。常用的无机物类脱模剂有石墨粉、滑石粉、云母粉、二硫化钼等粉体;常用的有机物类脱模剂有脂肪酸、脂肪酸皂、各种蜡类、乙二醇等,这类脱模剂兼有润滑剂的作用;聚合物类脱模剂主要有聚乙烯醇、醋酸纤维素、有机氟聚合物和有机硅聚合物等,其中有机硅聚合物是最适宜的脱模剂。 脱模剂的剂型分为固体和液体两种类型。固体形态是应用细粉状物料,因粉末状物质应用不便和可能转移附着于橡塑制品表面,在橡塑制品加工应用较少。经常使用的脱模剂初始形态大都是液体,有的应用液态本体聚合物,还有以有效主体物质为主再添加溶剂、乳化剂、填料等组分配制的溶液、乳液、糊状物,也可以由他们再加抛射剂制得气雾剂等。涂覆于模具上的脱模剂有的是以液膜的形态存在,有的则固化成固体膜。 2、有机硅脱模剂的类型与特点 2.1有机硅脱模剂的分类 2.1.1按产品组成及形态分类 以有机硅为基础材料的脱模剂有多种类型。依照产品形态、物质组成、使用形式等特点分类: (1)有机硅烷及其溶液 脱模剂基材是有机氯硅烷或有机烷氧基硅烷。例如,甲基氯硅烷、甲基乙氧基硅烷、苯基氯硅烷、苯基乙氧基硅烷等有机硅化合物,或上述有机硅烷溶于有机溶剂的有机硅烷溶液,涂覆于模具表面,即可形成抗黏结的工作膜。有机硅烷直接用做脱模剂具有一定的局限性,其中有机氯硅烷在成膜过程吸收空气中的水分而水解,放出的氯化氢有腐蚀性,因此,只适用于玻璃、陶瓷等耐腐蚀的模具。(2)硅油及其溶液、油膏 脱模剂基材为甲基硅油、甲基苯基硅油及各种改性硅油等惰性线形高分子有机硅聚合物。通常应用的硅油型脱模剂是以硅油为主体组分,再添加甲苯、汽油等有机溶剂配制而成的硅油溶液。以硅油添加白炭黑、硅藻土、云母粉等固体组分,混炼可制成半固体膏状物型脱模剂。 (3)硅橡胶及其溶液 液体硅橡胶可直接用做脱模剂,但更多应用是将硅橡胶加有机溶剂配制成硅橡胶

常用橡胶性能一览表

常用橡胶性能一览表

由于具有优异的耐老化性能耐冲击性也较好,所以常用做胎侧。EPDM三元乙丙胶三元乙丙橡胶是一种在乙烯和丙烯共聚物中引入了第三单体的高分子聚合物,产品性能及优点:超高分子量,高乙烯含量,可高度填充填充剂和油,易碎的性能缩短了混炼的时间. 分子结构和特性 三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。另一个不饱和的不会成为聚合物主链,只会成为边侧链。三元乙丙的主要聚合物链是完全饱和的。这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。

在三元乙丙生产过程中,通过改变三单体的数量,乙烯丙烯比,分子量及其分布以及硫化的方法可以调整其特性。 热塑性弹性体(TPE) 高刚性耐高温且保有低温的弯曲性,优异的耐化学品性,应用于管材、静音齿轮、电线被覆、发卷、自动收缩管线. TPE热塑性弹性体特性: 1、材料有半透、高透明、白色、黑色供选择。 2、已通过ROHS、PAHs、FDA测试,等级测试。 3、材料环保无卤无毒无味,不含塑胶软化剂、磷苯二甲酸盐、重金属等化合物。 4、良好的减震性和防滑耐磨。 5、良好的抗紫外线及耐化学药品性。 6、广阔的硬度范围选择(邵氏0度-110度)。可根据需求任意调整。 7、在—60度至135度的长期使用温度 8、压缩变形及永久变形小 9、卓越的抗动态疲劳性能 10、极优的耐臭氧及耐候性能 11、亮面、雾面均可,光滑的外观和舒适的橡胶柔软质感。 12、材料不含水分,无须干燥可直接使用,节约能源。 13、易于加工,着色。水口料即边角料可百分百回收再利用,降低产品,且不影响产品物性。 14、它可以通过二次注塑成型,与PP、PE、PS、ABS、PC、PA等基体材料包覆粘合,也可单独成形。替代软质PVC部分硅橡胶。 TPE/TPR 之应用领 域运动器材: 手把类(高尔夫球、各种球拍、脚踏车、滑雪器材、滑水器材等), 潜水器材(蛙鞋、蛙镜、呼吸管、手电筒等)、刹车块、运动护垫。日常用品:

脱模剂品种分类

脱模剂品种分类 1.按用法分类:内脱模剂、外脱模剂; 2.按寿命分类:常规脱模剂、半永久脱模剂; 3.按形态分类:溶剂型脱模剂、水性脱模剂、无溶剂型脱模剂、粉末脱模剂、膏状脱 模剂 4.按活性物质分类: ①硅系列——主要为硅氧烷化合物、硅油、硅树脂甲基支链硅油、甲基硅油、乳化甲基硅油、含氢甲基硅油、硅脂、硅树脂、硅橡胶、硅橡胶甲苯溶液、 ②蜡系列——植物、动物、合成石蜡;微晶石蜡;聚乙烯蜡等。 ③氟系列——隔离性能最好,对模具污染小,但成本高聚四氟乙烯;氟树脂粉末;氟树脂涂料等 ④表面活性剂系列——金属皂(阴离子性)、EO、PO衍生物(非离子性) ⑤无机粉末系列——滑石、云母、陶土、白粘土等 ⑥聚醚系列——聚醚和脂油混合物,耐热乃化学性好,多用于对硅油有限制的某些橡胶行业。成本较硅油系列高。 其它含掩蔽剂的含水脱模剂:用掩蔽剂固定水分子耐久型脱模剂:硅油+硅树脂体系,800次以上多层复合型脱模剂:卤代烃膜+聚乙烯脱模剂+聚乙烯醇脱模剂芳香族聚砜类脱模剂模具处理之脱模剂含卤聚醚类脱模剂:降低蒸气压,提高分解温度,不会引起带电接触羰烷基硅烷脱模剂:内脱模,提高对水性油墨表面粘合性反应型脱模剂:涂覆后自身进行化学反应成膜,同时与模具表面粘着以上是一些有代表性的脱模剂,它们具有各自的特征,并可根据用途分别使用。例如,用来作为纤维粘着带等的背面处理剂、剥离纸、防粘剂(电线杆、电话箱、招牌、标志),防污染用(内、外壁涂饰、车辆、路障、路栏等)防止粘合剂周围的余粘。 用作脱模剂的有机硅是指聚有机硅氧烷(也可称作聚硅酮)。 1.二甲基硅油 这是一种无色无味的透明粘稠液体,溶于苯、甲苯、二甲苯、乙醚,部分溶于乙醇、丁醇、丙醇,不溶于环己醉、甲醇、植物油、水、石蜡油。本品无毒。二甲基硅油具有优良的耐温性,其粘度随温度变化小,电性能优良,具有憎水性,是一种用途广泛的脱模剂。 2.甲基苯基硅油

最全的塑胶材料特性

表1?塑料性能一种类推荐表 表2常用热塑性塑料性能与用途 表3常用热固性塑料性能与用途 表4塑料的燃烧特征 表5塑料的密度、色相、耐热温度和成型性表6常用塑料的脱模斜度推荐值 表7常用塑料的收缩率 表8塑料工艺方法选用参考 表9塑料加工工艺方法用制品设计指南 表1塑料性能一种类推荐表

表常用热塑性塑料性能与用途

(PE) 低压聚乙烯质地坚硬,有良好的耐磨性、耐蚀 性和电绝缘性能,而耐热性差,在沸水中变 软;高压聚乙烯是聚乙烯中较轻的—种,其化 学稳定性高,有良好高频绝缘性、柔软性、耐 冲击性和透明性;超高分子量聚乙烯冲击强度 高,耐疲劳,耐磨,需冷压浇铸成型 低压聚乙烯用于制造塑料板、塑 料绳,承受小载荷的齿轮、轴承 等;高压聚乙烯最适宜吹塑成型 薄膜、软管、塑料瓶等用于食品 和药品包装的制品,超高分子量 聚乙烯可作减摩、减磨件及传动 件,还作电线及电缆包皮等 聚丙烯 (PP) 密度小,是常用塑料中较轻的一种。强度、硬 度、刚度和耐热性均优于低压聚乙烯,可在 100~120C长期使用,几乎不吸水,并有较好 的化学稳定性,优良的高频绝缘性,且不受温 度影响。但低温脆性大,不耐磨,易老化制作一般机械零件,如齿轮、管道、接头等;制作耐腐蚀件,如泵叶轮、化工管道、容器、绝缘件;制作电视机、收音机、电扇、电动机等的外罩 聚酰胺(俗称尼龙)(PA 无味、无毒;有较高强度和良好韧性;有一定 耐热性,可在100C下使用。优良的耐磨性和 自润滑性,摩擦因数小,良好的消声性和耐油 性,能耐水、油、一般溶剂;耐蚀性较好;抗 菌霉;成型性好。但蠕变较大,导热性较差, 吸水性咼,成型收缩率较大常用的有尼龙6、尼龙66、尼龙610、尼龙1010等。用于制造要求耐磨、耐蚀的某些承载和传动零件,如轴承、齿轮、滑轮、螺钉、螺母及一些小型零件;还可以作咼压耐油密封圈,金属表面的防腐耐磨涂层 聚甲基丙烯酸甲酯(俗称有机玻璃) (PMMA 透明性好,可透过99%以上太阳光;着色性 好,有一定强度,耐紫外线及大气老化,非常 耐腐蚀,优良的电绝缘性能,可在-6 0~+100C使用。但质较脆,溶于有机溶剂中, 表面硬度不咼,易擦伤 制作航空。仪器仪表、汽车和无 线电工业中的透明件,如飞机座 窗、灯罩、电视。雷达的屏幕、 油标、油杯、设备标牌、仪器零 件等 本乙烯-一丁烯-丙烯腈共聚体 (ABS 性能可通过改变三种单体的含量来调整。有咼 的冲击韧度和较咼的强度,优良的耐油、耐水 性和化学稳定性,高的电绝缘性和耐寒性,高 的尺寸稳定性和一定得耐磨性。表面可以镀饰 金属,易于加工成型,但长期使用易起层制作电话机、扩音机、电视机、仪表、电动机的外壳,齿轮,泵叶轮,轴承,把手,管道,储槽内衬,仪表盘、轿车车身,汽车扶手等

玻璃钢常用脱模剂的配方及配制

玻璃钢/FRP常用脱模剂的配方及配制方法 玻璃钢制品无论选择用何种工艺成型都必须用到脱模剂,不管是外脱模剂还是内脱模剂,总之脱模剂是其生产过程中必不可少的辅助材料。外脱模剂是为防止成型的制品粘附在模具上,从而在制品与模具之间施加一层隔离膜,以便制品能够很容易的从模具中脱出,同时保证制品表面质量和模具完好无损。外脱模剂也叫离型剂。内脱模剂是一些熔点比成型温度稍低的化合物,将其加入树脂中,它与液态树脂相容,在一定温度条件下,从树脂基体渗出,在模具和制品之间形成一层隔离膜。 凡是与合成树脂粘接力小的非极性或极性微弱的一类物质,都可以作为脱模剂。但脱模剂必须符合下列条件: (1)使用方便,成膜时间短; (2)不腐蚀模具,不影响树脂固化; (3)成膜均匀,光滑,对树脂的粘附力小; (4)操作安全,对人无毒害; (5)价格便宜,来源广泛,配制简单。 一种脱模剂同时满足上述条件比较困难,某些情况下,要同时使用几种脱模剂才能满足使用要求。 选用脱模剂时,主要考虑下列两个条件: (1)模具材料、树脂种类和固化条件。 (2)制品的成型周期和脱模剂的成模时间。 脱模剂的种类很多,常见的有薄膜型、溶液型和油蜡类三种。 一、薄膜状脱模剂 属于此类的有:玻璃纸、聚酯薄膜、聚氯乙烯薄膜、聚乙烯薄膜、聚四氟乙烯薄膜等。这类脱模剂使用方便,只要用一般油膏把薄膜粘贴在模具的工作表面上。此类脱模剂脱模方便,但薄膜变形性小,使用有一定的局限性,在复杂的型面上不易贴平。聚氯乙烯薄膜和聚乙烯薄膜不适用于聚酯玻璃钢的脱模,因为树脂中的苯乙烯易把这两种脱模剂溶胀。对于高温固化的玻璃钢制品,要用聚四氟乙烯薄膜、聚酰亚胺薄膜等。 二、溶液型脱模剂 此类脱模剂很多,应用最为广泛。常用的有以下几种: (一)聚乙烯醇溶液 配方: 聚乙烯醇5-8份 乙醇35-60份

高强度有机硅凝胶配方

高强度有机硅凝胶配方 本帖最后由fly99 于2010-9-3 10:57 编辑 各位老师们,专家们,小的献丑了。 有机硅凝胶实验配方: 5000mm2/s乙烯基硅油(双端乙烯基)100份 含氢硅油(KF99)3份 乙烯基MQ硅树脂(M/Q=,乙烯基质量分数%)20份 卡尔斯特催化剂适量 钛酸正丁酯份 KH570 适量 抑制剂适量 实验步骤:先将乙烯基MQ硅树脂加热搅拌溶解在乙烯基硅油中,抑制剂,偶联剂,含氢硅油逐步加入。 实验结果:130度30min又一定的拉伸强度和撕裂强度,对PET聚酯薄膜有一定的附着力。但物理性能与晨光的GN521差距不是一般的大,为何小弟就此提几个问题,望老师们能帮忙解答,谢谢! 1、听说,做液体胶的对基础油和基础树脂处理很重要,我知道有个热处理,但感觉用MQ 硅树脂作补强填料体系没什么明显变化,白炭黑的试过了,的确如此。不知业内人士所谓的基胶处理是怎么样的处理呢(稍微提示下)怎么样才能处理得更好呢? 2、好像论坛里有为高手说过用乙烯基MQ树脂补强,拉伸强度随便都能达到3MPA,我怎么随便不到这个程度呢,很费解。更费解的是按照我这种简单的处理方法即使用晨光的乙烯基MQ树脂还是那个样。我试过很多家的硅树脂,差别是有,不是特别明显。怎么样才能用好乙烯基硅树脂作补强填料啊? 3、对于乙烯基硅油的结构问题,正常的有双封端,单封端,双乙烯基双封端,侧链的,这些结构的硅油我都有,但使用的效果明显跟资料介绍的有出入。高乙烯含量侧链的可以提高交联密度单封端的提高强度不同黏度的硅油配合效果也差不多。是不是用量有讲究怎么样才能体现各种结构硅油的特性? 4、含氢硅油也有问题。高含氢的可以提高硬度,低含氢的可以集中交联。我之所以一直在用KF99试验,是因为用了低含氢的效果更差,主要体现在对PET的附着力变差,仅仅使胶变得有弹性,拉伸强度稍微变好一点。论坛里的高手说过交联剂有很多种结构。像我这样的硅凝胶使用什么样的含氢适合点呢 其实,还有很多问题,一时说不上来。这些问题对于老师们来说应该是一眼就能看明白的,

有机硅改性酚醛树脂的制备及其性能研究【开题报告】

毕业设计开题报告 高分子材料与工程 有机硅改性酚醛树脂的制备及其性能研究 一、选题的背景、意义 酚醛树脂是世界上最早实现工业化的合成树脂,经历了100多年的历史,酚醛树脂的显著特征是价格低廉、耐热、耐烧蚀、阻燃、燃烧发烟少等,广泛用作模塑料、胶粘剂、涂料等。但是,酚醛树脂结构上的酚羟基和亚甲基容易氧化,耐热性受到影响。因此,随着工业的不断发展,为适应汽车、电子、航空、航天及国防工业等高新技术领域的需要,对酚醛树脂进行改性,提高其韧性及耐热性是酚醛树脂的发展方向[1]。酚醛树脂分为两种类型,线型酚醛树脂和可熔酚醛树脂。线型酚醛树脂在无固化剂存在时一般不能固化,可以在熔融状态下用热塑性弹性体对其进行改性。相对于线型酚醛树脂而言,可熔酚醛树脂只能通过加热来固化,导致很难得到它与其它热塑性塑料的共混物,但它具有很多活泼的羟基,可以通过与聚氨酯和丁腈橡胶等发生化学反应来改性[2]。普通酚醛树脂的脆性大,由其制得的材料硬度大、模量高、韧性差、易在界面上产生应力裂纹。 有机硅材料是一类以Si-O键为主链,在Si原子上再引入有机基团作为侧链的半有机、半无机结构的高分子化合物。其不仅具有优良的耐高温特性、柔韧性、介电性、耐候性、无毒无腐蚀、低表面张力等性能外,还具备有机高分子材料易加工的特点。因此,若在酚醛树脂中引入有机硅高分子链段,有望使得酚醛树脂的整体性能得到较好的提高。目前,关于有机硅改性酚醛树脂的方法主要有物理方法和化学方法两大类,其中大部分都是针对热固性酚醛树脂的改性。物理法多采用共混改性,但该类方法改性效果并不明显;化学法主要采用溶胶凝胶法,使酚醛与有机硅形成稳定化学键,且固化后形成IPN或半IPN结构,从而达到永久改性的目的。日本、俄罗斯等国家在有机硅改性酚醛树脂方面研究报道较多,主要集中在提高酚醛树脂的韧性和保持耐热性能方面。这类树脂大多已成功用于制造耐烧蚀材料、胶粘剂等领域,同时也有许多在电子电器用模塑料与包封料等领域得到部分应用。相比之下,国内在这方面缺乏系统研究,而在相关产品应用开发方面更是鲜有报道。 二、相关研究的最新成果及动态 酚醛树脂的发展方向是功能化、精细化,提高酚醛树脂的性能的同时在酚醛树脂的生产过程

高分子改性复习题及答案

简答题: 接枝共聚反应的原理是什么? 答:接枝共聚反应首先要形成活性接枝点,各种聚合机理的引发剂或催化剂都能为接枝共聚提供活性种,而后产生接枝点。活性点处于链的末端,后才形成接枝共聚物。 1、从嵌段共聚物的角度来说,热塑性弹性体的组成是什么?各组成的作用是什么? 答:热塑性弹性体是由大量的软嵌段和少量的硬嵌段组成的两相嵌段共聚物。软硬两种嵌段各有各的用处,软嵌段提供柔韧的弹性,而硬嵌段则提供物理交联点和起填料的功能。 2、反应挤出过程对工艺条件的要求是什么? 答:①高效率的混合功能:②高效率的脱挥功能③高效率的向外排热功能④合理的停留时间⑤强输送能力和强剪切功能 1、什么是热力学相容性和工艺相容性?为什么说工艺相容性比热力学相容性应用更普遍? 答:热力学相容性是指两种聚合物在热和比例时都能形成稳定的均相体系的能力,即指聚合物在分子尺寸上相容,形成均相共混体系。工艺相容性是指由于聚合物的分子质量很高,黏度特别大,靠机械力场将两种混合物强制分散混合后,各项的自动析出或凝聚的现象也很难产生,故仍可长期处于动力学稳定状态,并可获得综合性能良好的共混体系。 因为工艺相容性仅仅是一个工艺上比较的概念,期含义是指两种材料共混对分散的难易程度,和所得的共混物的动力学稳定性,对于聚合物而言,相容性有两方面含义:一是可以混合均匀的程度,二是混合的聚合物分子间作用力,若分子间的作用力越相近,则越容易分散均匀,分散性越好。 2、影响聚合物共混的结构形态因素是什么?简述如何影响。 答:①两相组成的配比:在“海-岛”结构两相体系共混物中,确定哪一相为连续相,哪一相为分散相具有重要意义,可计算理论临界含量。小于26%为分散相,大于74%为连续相。②熔体黏度:黏度低的一相倾向于生成连续相,黏度高的一项倾向于生成分散相。 ③黏度与配比的综合影响 ④粘度比、剪切应力及界面的综合影响:当分散相与之连续相黏度相等时,分散相粒径d达到一个最小值,当界面张力降低时,分散相颗粒粒径d变小,当剪切应力增大时,分散相粒径降低。 ⑤其他因素:如加工温度、组分间的相容性等。 3、控制分散相粒径的主要方法是什么? 答:a. 共混时间: 对于同一共混体系,同样的共混设备,分散相粒径会随共混时间延长而降低,粒径分布也会随之均化,直至达到破碎与集聚的动态平衡。 b. 共混组分熔体粘度: ?提高连续相粘度或降低分散相粘度,都可以使分散相粒径降低。?“软包硬”规律,熔体粘度较低的一相总是倾向于成为连续相,而熔体粘度较高的一相总是倾向于成为分散相。?等粘点:考虑到在接近等粘点的条件下,可获得较小的分散相粒径,所以,宜在略高于或略低于等粘点的条 件下共混。④调控熔体粘度的方法(1)采用温度调节 (2)用助剂进行调节(3)改变分子量 c.界面张力与相容剂的影响,使界面张力降低,从而使分散相粒径变小。 d.剪切力,剪切力增大粒径减小。 4.什么是银纹-剪切带理论? 答:在橡胶(或其他弹性体)增韧塑料的两相体系中,橡胶是分散相,塑料是连续相。橡胶颗粒在增韧塑料中发挥两个重要作用:一,作为应力集中中心诱发大量银纹和剪切带。二,控制银纹的发展并使银纹及时终止而不致发展成破坏性的裂纹。银纹末端的应力场可诱发剪切带而使银纹终止,银纹扩展遇到已有剪切带也可阻止银纹进一步发展。大量银纹和/或剪切带的产生和发展,消耗大量能量,因而可显著提高增韧塑料的韧性。 1.填料的作用是什么? 答:①增量:降低成本; ②增强:性能改善,如力学强度、耐热性、成型收缩率和线膨胀系数等; ③赋予新功能:功能性填料,赋予如导电性、磁性、电波吸收性、抗紫外线和抗菌等各种特殊功能。 2.填料―聚合物界面的作用机理主要有哪五类?简述浸润理论及化学键理论。 答:(1)浸润性理论:浸润是形成界面的基本条件之一。当两个理想清洁表面靠物理作用结合时,要使树脂对填料紧密接触(结合),就必须使树脂对填料表面有很好的浸润。 (2)化学键理论:要使两相之间实现有效粘结,基体树脂中与填料表面上应有能相互发生化学反应的活性官能团,通过官能团的反应以化学键结合形成两相界面。 (3)界面酸碱作用理论:构成聚合物基复合材料的 填料和聚合物基体可视为广义的酸碱,酸性表面可与 碱性表面相互结合。 (4)过渡层理论:为消除由于聚合物基复合材料成 型时基体和填料的膨胀系数相差较大而在固化过程 中产生的附加应力,在界面区存在着一个过渡层,该 过渡层起到了应力松弛作用 (5)摩擦理论:聚合物基体与填料界面的形成是由 于摩擦作用,基体与填料 间的摩擦因数决定了复合材料的强度。 1.纤维增强聚合物复合材料有哪些基本特性? 答:(1)比强度与比模量高:轻质高强工程结构材料 (2)抗疲劳性提高:界面能阻止裂纹扩展 (3)耐热性高:50~100℃→100℃以上 (4)减震性好:粘弹性和纤维与基体界面的吸振能 力好 (5)线膨胀系数小:纤维类材料的线膨胀系数小 2.举例说明为什么聚合物增强材料要进行表面处理 (无机纤维、有机聚合物纤维、天然纤维各举一例)。 答:(1)无机纤维中玻璃纤维表面的偶联剂处理,通 过偶联剂使两种不同性质的材料很好的“偶联”起来, 从而是复合材料获得较好的粘结强度。 (2)有机聚合纤维中碳纤维的表面处理,其表面惰 性大,表面能低,缺乏有化学活性的官能团,反应活 性低与基体的粘性差,限制了碳纤维的高性能发挥, 经表面处理后其复合材料夹层间剪切强度有显著提 高。 (3)天然纤维的表面处理主要有化学处理法和物理 处理法,可以提高材料力学性能,如剑麻纤维KH-550 偶联剂处理后能有效改善刚性的剑麻纤维与脆性的 酚醛树脂基体界面的粘结,提高了综合力学性能,接 枝丙烯酸对降低复合材料吸水性有较好的效果。 1.高分子改性剂的基本过程和机理是什么?举例说明。 答:?基本过程:在加工过程中,基体聚合物和改性 剂均处于黏流状态,通常 所用模具材料(如钢材)的表面能很高,它与基体聚合 物的表面能相差较大,为减小张力,改性剂向制品表 面迁移、富集,且疏水端向内取向与本体聚合物相容, 亲水基团朝模具取向。成型后取出制品时,表面改性 剂的这种构象基本保留下来,即疏水端被困于基体亲 水端朝外取向。 ?机理:高分子表面改性剂有亲水链段和疏水链段, 共聚物中的亲水链段在制品成型时明显富集在制品 表面,疏水链段与基体缠结起到锚固作用,加入少量 两种两性聚合物,就能使其基体材料的接触角与其它 材料的剥离强度明显增强。 ?例如在PP共混物中,改性剂无规聚丙烯—甲基丙烯 酸接枝共聚物(APP-g-MAA)和聚丙烯蜡—甲基丙烯 酸接枝共聚物(PPVV-g-MA A)的流水端在表面朝外取 向,从而改变聚丙烯表面的流水性。 2.等离子体的含义是什么?等离子体处理聚合物表面, 其表面形态及结构都发生了哪些改变? 答;?等离子体是部分离子化的气体,是由电子、任一 极性的离子、以基态的或任何激发态形式高能态气态 原子、分子以及光量子组成的气态复合体。等离子体 中,电子和带正电荷的离子的总数基本相等,呈电中 性。 ?等离子体处理聚合物的表面之后,材料表面发生了 氧化分解反应,从而改善材料的粘合、染色、吸湿, 反射光线、摩擦、手感、防污、抗静电等性能。 低温等离子体处理纤维,可在纤维表面形成微坑和裂 纹。 等离子体处理可在聚合物材料表面引入极性基团或 活性点,形成与被黏材料,复合基体的化学键和,或 增加被粘合材料基体间树脂的范德华力,达到改善粘 结和复合界面的目的。 3.辐射接枝改性的基本原理是什么? 答:①共辐射接枝法:指将待接枝的聚合物A和乙烯 基单体B共存的条件下辐照,易生成均聚物,同时产生 活性粒子,相邻的两个自由基成键,这时单体接枝聚 合反应。 ②预辐射接枝法:是将聚合物A在有氧或真空条件下 辐照,然后在无氧条件下放入单体B中进行接枝聚合。 主干聚合物产生的自由基与单体进行聚合反应,最终 生成接枝共聚物和少量的均聚物。 1.根据共混物熔体与温度关系式阿仑尼乌兹方程式共 混物的黏流活化能与加工流动性能有何关系?其对 加工成型有何指导意义? 答:关系:共混体系的黏流活化能较小,共混物的黏 度对温度的变化不敏感且切变速率对黏流活化能的 影响不大,通常加入某种流动性比较好的聚合物的加 工流动性。 指导意义:对于一些共混体系,共混的黏流活化能可 高于纯肪,对于这样的共混体系,需在较高温度下加 工成型。 2.举例说明为什么纤维增强材料要进行表面处理? (无机纤维、有机聚合物纤维、天然纤维) 答:①无机纤维:玻璃纤维表面的偶联剂处理,如果 含有双键的乙烯基-三氧硅氧烷和正丙烯-三甲氧基硅 氧烷以及相容性助剂,混合物处理玻璃纤维的界面, 可使玻璃纤维增强聚丙烯复合材料的冲击强度,拉伸 强度和弯曲强度得到大幅提高。 ②有机聚合物纤维:碳纤维表面处理,如气相氧化性 气体来氧化纤维表面而引入极性基团,并给予了适宜 的粗糙度来提高复合材料层间的剪切强度。 ③天然纤维:在短剑纤维/酚醛树脂复合体体系中, 剑麻纤维KH-550偶联剂处理后能有效改善刚性剑麻 纤维与脆性剑麻纤维树脂基体界面的粘结,提高复合 材料的综合性能,接枝丙烯酸对降低复合材料吸水性 有良好的效果。 3.抗静电改性,阻燃改性,抗起球改性,吸湿排汗, 抗紫外线改性等功能话聚酯改性的基本原理。 答:I、抗静电改性:由于涤纶的疏水性易在纤维上积 聚静电荷,造成加工困难,故需进行抗静电改性。① 加入抗静电添加剂:通过共混添加抗静电剂以制备抗 静电聚酯纤维。②抗静电共聚酯:a、在聚合阶段用 共聚方法引入抗静电单体或通过化学方法引入吸湿 性抗静电基团,制备抗静电纤维。b。用表面接枝法。 II、阻燃改性:涤纶的氧指数(LOI)21%左右,阻燃 性改性时期改性的重要方面,方法有两种:①工具阻 燃改性:在聚酯的合成阶段将阻燃单体与聚酯组分进 行缩聚以制备阻燃共聚酯。阻燃共聚酯一般含磷,含 卤共聚酯。②添加改性:用共混的方法将阻燃物与聚 酯共混得到阻燃改性聚酯。 III、抗起球改性:目前抗起球聚酯纤维可通过以下几 种方法获得:低粘度树脂直接纺丝、并聚合法、复合 纺丝法、低粘度树脂增黏法、普通树脂法、织物成纤 维表面处理法。 IV、吸湿排汗改性:①外观结构改性:采用截形异截 面,部分配合使用成孔剂,实现纤维异形化和表面微 孔化处理。②表面接枝:在大分子结构内部引入亲水 集团,也可以增加纤维导湿排汗性能。③复合纺丝: 采用复合纺丝在皮层引入具有吸湿功能的聚合物,利 用皮层的性能将水分吸入内部芯层,从而实现吸湿快 改性纤维制备。 V、抗紫外线改性:对于紫外线的屏蔽一般可以通过吸 收成物理反射、散射实现,因此可将紫外线屏蔽分为 紫外吸收剂和紫外散射剂,前者一般为有机化合物, 后者为无机氧化物等。 名词解释: 1、高分子改性:为了满足不同的用途,利用化学或 物理方法改进高分材料的一些性能,以达到预期的目 的。 2.聚合物的化学改性:通过聚合物的化学反应,改变 大分子链上的原子或原子团的种类及其结合方式的 一类改性方法。 3.聚合物的填充改性:在聚合物基体中添加与基体在 组成与结构不同的固体添加物,以降低成本,或是使 聚合物制品的性能有明显的变化。 4.接枝共聚:在大分子链上通过化学键结合适当的支 链或动能侧基的反应。 5.热弹性体:既有交联橡胶的力学性能,又有线型热 塑性聚合物的加工性能,是由大量的软钳段和少量的 硬嵌段组成的两相嵌段聚合物。 6.反应挤出:是聚合物或可聚单体的连续挤出的过程 中完成的一系列化学反应的操作过程。 7.聚合物共混物:含有多种组分的聚合物均相或多相 体系。 8.相容性;是指共混物各组分被此相互容纳,形成宏观 均匀材料的能力。1完全相容的聚合物共混体系,其 共混物可形成均相体系具有单一的T g2部分相容的聚 合物,其共混物为两相体系。聚合物对部分相容的判 据,是两种聚合物的共混物具有两个T g,且两个Tg 峰较每一种聚合物自身的Tg峰更为接近3不相容不 相容聚合物的共混物也有两个Tg峰,但两个T g峰的 位置与每一种聚合物自身的T g峰是基本相同的 9.聚合物力学相容性:指两种高聚物在任何比例时都 能形成稳定的均相体系的能力,即指聚合物在分子尺 度上相容,形成稳定的均相体系的能力。 11.简单混合:是指分散相粒径大小不变,只增加分散 相在空间分布的随机性的混合过程。 12.分散混合:是指既增加分散相分布的随机性,又减 小粒径,改变分散相粒径分布的过程。 13.等粘点:在两相粘度接近于相等的情况下,最有利 于获得良好的分散结果。两相熔体粘度相等的一点, 被称为“等粘点”。 14. 表面效应:是指纳米粒子表面原子数与总原子数 之比随粒径的变小而急剧增大后所引起的性质上的 变化。 15. 小尺寸效应是指纳米粒子的尺寸与传导电子的德 布罗意波长相当或更小时,周期性的边界条件将被破 坏,磁性、内压、光吸收、热阻、化学活性、催化性 及熔点等都较普通粒子发生了很大变化。 16.复合材料:由两个或两个以上独立的物理相,包括 粘结材料(基体)和粒料、纤维或片状材料所组成的一 种固体产物。 17.比强度:指材料强度与相对密度之比,比模量是指 材料模量与相对密度之比。 18.疲劳破坏:材料在循环应力下,由于裂纹的形成和 扩散而引起的低应力破坏。 19.弱边界层:由于污染,纤维等表面粘度下降的现象。 20.热塑性弹性体:这种材料兼有高温下热塑性塑料的 可熔融加工性和常温下硫化橡胶的弹性。 21. 表面富集:指所研究的聚合物多相复合体系中, 某一种组分在聚合物表面聚集,导致其在表面层中的 浓度高于其基体浓度的现象。 22. 等离子体:是部分离子化的气体,是由电子、任 一极性的离子、以基态的或任何激发态形式高能态气 态原子、分子以及光量子组成的气态复合体。 23.电晕放电即低频放电:是指在大气压条件下,以空 气为介质,由高电压弱电流所引起的放电,产生的是 一种低离子密度的低温等离子体。 24.表面刻蚀:通过等离子体处理,使高分子材料表面 发生氧化分解反应,形成微坑和微细裂纹,以及引入 极性基团或活性点,从而改善材料的粘合、染色、吸 湿、反射光线、摩擦、手感、防污、抗静电等性能。 25.交联改性:利用低温等离子体中活性粒子的撞击作 用,使纤维材料分子中的氢原子等被放出,从而形成 自由基,再通过自由基的相互结合,形成分子链间的 交联。 26.化学改性:利用等离子体作用在材料表面产生一定 的可反应化学作用基团,并在一定的条件下发生化学 反应,从而改变材料表面的化学组成,引发其表面化 学性质发生变化,同时引起其表面产生某些机械物理 性质的相应变化。 27.表面接枝改性:是通过激发分子、原子、自由基等 活性离子与有机物分子发生相互作用而导致聚合或 接枝,最终达到改性的目的。 填空: 1.高分子改性主要方法:化学改性共混改性填充改性 复合增强表面改性 2.接枝共聚原理:接枝共聚反应首先要形成活性接枝 点,各种聚合机理的引发剂或催化剂都能为接枝共聚 提供活性种,而后产生接枝点。活性点处于链的末端, 聚合后将形成嵌段共聚物;活性点处于链的中间,聚 合后才形成接枝共聚物 3.接枝共聚方法:1链转移法自由基夺取聚合物主链上 的氢而链转移形成链自由基引发单体聚合2活性基团 引入法主干上导入易首先在聚合物的主干上导入易 分解的活性基团然后在光、热作用下分解成自由基与 单体进行接枝共聚3功能基团引入法含有侧基功能基 的聚合物,可加入端基聚合物与之反应形成接枝共聚 物 4、接枝共聚物性能与应用:1玻璃化转变温度Tg 2稀 溶液性质3共混增容性 5、共混增容性:原因在于接枝共聚物具有独立组分的 微相结构,从而可以较自由地控制接枝共聚物与组分 聚合物形成的共混物的相容性。接枝共聚物在共混中, 能发挥其组分的综合性能,可以作为增容剂使共混物 的两相界面粘附力增加,大大改善了共混材料的力学 性能,拉伸强度、冲击强度和断裂伸长率明显增加 6、嵌段共聚物三种链段序列基本结构形式Am—Bn 两嵌段聚合物;Am—Bn—Am 或Am—Bn—Cn三嵌段聚合物;(Am—Bn) n多嵌段聚 合物 7、单相嵌段:两嵌段高度相容,模量温度关系与无 规共聚物相似,一个T g 8、两相嵌段:两嵌段不相容,保持了两种嵌段固有 的性质,有两个Tg 9、热塑弹性体:A–B–A型和(A–B)n型这种共聚 物,叫做热塑弹性体,它同时具有交联橡胶(室温) 的力学性能,又具有线形热塑聚合物(加工温度)的 加工性能;热塑性弹性体是由大量的软嵌段和少量的 硬嵌段组成的两相嵌段共聚物;软嵌段提供柔韧的弹 性,而硬嵌段则提供物理交联点和起填料的功能 10、嵌段增容性:两相嵌段共聚物(A –B )有一个 特性,就是可以与其嵌段组分相同的均聚物(B )有 部分相容性,两相嵌段共聚物也有表面活化性能 11、反应挤出: 最大特点反应过程能连续进行,把对 聚合物的改性和对聚合物的加工、成型为最终制品的 过程由传统上分开的操作改变为联合操作,反应挤出 存在化学反应优点1适合于高粘度的聚合物熔体聚合 2反应可控性好3缩短反应时间,提高生产效率4生 产的灵活性强 5环境污染小6成本低,产率高缺点1技术难度大2 难以观察检测3技术含量高 12、聚合物共混: 是指将两种或两种以上聚合物材料、 无机材料以及助剂在一定温度下进行机械掺混,最终 形成一种宏观上均匀且力学、热学、光学及其他性能 得到改善的新材料的过程,这种混合过程称为聚合物 的共混改性,所得到的 新的共混产物称为聚合物共混物 13、聚合物共混目的:改善聚合物的综合性能和加工性 能、降低成本,以获得性能优异功能齐全的新的高分 子材料1综合均衡各聚合物组分的性能以改善材料的 综合性能2改善聚合物的加工性能3提高性能/价格 比 14、相容性理论:1.热力学相容性从热力学角度来探讨 聚合物共混组分之间的相容性,实际上研究的范畴是 互溶性,或称溶解性、相溶性。这里称为“热力学相

相关文档
最新文档