利用向量解决中学数学中的若干问题

利用向量解决中学数学中的若干问题
利用向量解决中学数学中的若干问题

利用向量解决中学数学中的若干问题

摘要:向量知识是普通中学教学中不可或缺的一项重要内容,向量的概念以及其中所引入的新的思想方法,在一定程度上扩充了中学数学教学内容的容量,同时由于向量是基于一种新的研究和思考方法,不仅拓宽了中学生的视野,而且使得数学知识进一步变得有趣生动起来,大大提高了中学生学习数学的积极性。

关键词:向量;数学教学;向量教学;知识整合

一、中学数学向量知识概述

(一)向量的基本概念

我们把既有大小又有方向的量统称为向量;长度(也称模)为零的向量统称为零向量,记0或0;长度为一的向量统称为单位向量;向量可用黑体小写字母a、b、c…或书写a,b,c…来表示,也可表示为向量AB、向量BC、向量CD等;向量也称自由向量,即与起始点无关,仅由大小和方向决定。

(二)向量的运算

向量的加法、减法和实数与向量积的综合运算,通常叫做向量的线性运算(或线性组合)。向量的运算包括平面向量的运算以及空间向量的运算。以向量的加法、减法以及数乘运算为主。

1. 向量运算的概念

向量的加(减)法:

如图,已知向量a,b,则有a+b=c,c-a=b。此方法称为向量的三角形法则。

同样的,如图,得a+b=c,c-a=b。此方法称为向量的平行四边形法则。

2. 向量运算的性质

加(减)法的性质:

a+b=b+a

(a+b)+c=a+(b+c)

a=λ1e1+λ2e2(其中e1,e2为不共线向量,且称为平面内一组基底)

数乘的运算性质:

λ(a+b)=λa+λb

(λ+μ)a=λa+μa

λa=aλ,其中两向量共线的充要条件是a=λ b

|a|=a?a

二、利用向量解决中学数学中的若干问题

向量的价值在于它的广泛应用性,向量集数和形一身,连接了几何、代数以及三角函数等方面的数学问题。向量以其直观性和可运算性为解决和沟通数学问题提供了极大的便利,如推理约简,方位确定及形状确定等。虽然向量里概

念较多,但其实一大部分有其物理上的背景来源。物理学中有两种基本量:标量和矢量。物理中的矢量包括力、加速度、位移、动量、速度等,矢量与向量虽然相似,但并不完全相同,比如物理学中的矢量力,除过大小和方向外,还有作用点,而向量没有。但其之间微小的差异并不影响向量在物理学中的应用。不仅仅是物理学,下面我列举几种关于向量法在各类型题中的应用,从中可以更直观地看出向量知识的广泛应用性及其存在的重要性。

(一)用向量的方法解决平面几何的相关问题

学习平面向量之后,那么很多我们在初中所学过的基本定理或定义都可以用向量的方法做简单的证明。

【例1】在三角形ABC中,M,N分别是AB、AC的中点。用向量法证明:线段MN是底边BC的一半。

证明:设△ABC两边AB、AC 之中点分别为M、N,那么

MN=AN-AM=12AC-12AB=12(AC-AB)

所以MN∥BC,且MN=12BC。

平面几何问题中的向量作用便是把形化成数的运算,通过平面直角坐标系,使得复杂问题变得清晰简洁,易于与其他知识融合,这里主要体现出向量的工具性及双重性。所以向量知识作为工具在平面几何问题上有着很好的运用。

(二)用向量的方法解决立体几何的相关问题

向量在立体几何中的应用最为常见,结合空间向量的坐标运算,可以解决共线、线段共面、线线(线面、面面)平行、线线(线面、面面)垂直、长度(模)、距离及两点间距离公式等诸多空间几何问题。

【例2】在长、宽、高分别为1、1、1.5的长方体ABCD-A1B1C1D1中,O是底面中心,求A1O与B1C的距离。

解:如图,建立空间直角坐标系D-ACD1,则O12,12,0,A11,1,32,C(0,1,0)

所以A1O=-12,12,-32,B1C=-1,0,-32,A1B1=0,1,0。

?OA1O与B1C的公共法向量为n=x,y,12,则n⊥A1On ⊥B1Cx,y,12?-12,12,-32=0x,y,12?-4,0,

-32=0-x+y-32=0-x-32=0x=-34y=34

所以n=-34,34,12,所以A1O与B1C的距离为

d=|A1B1?n||n|=32222。

当把平面向量推广到空间,与立体几何知识紧密联系起来,就能在很大程度上强化学生的空间思维模式,并且能在立体几何问题的解决中进一步掌握加强掌握向量知识,两者的柔和可谓是相辅相成。在这类型的应用上,可以解决很多长度,距离等空间问题,大大提高中学生解立体几何题的效率。

(三)用向量的方法解决解析几何的相关问题

解析几何的基本思想是用代数的方法来研究几何,为了把代数运算运用到几何中来,最基础的方法就是把空间几何的构造有系统的数量化,代数化。所以我们首先在这里引入向量法以及向量的相关运算方法,而且可以通过向量来建立空间直角坐标系,使得很多解析几何问题更简便快捷的得到解决。

【例3】已知三角形三顶点为P1(x1,y1,z1),P2(x2,y2,z3),P3(x3,y3,z3)。求△P1P2P3的重心(三角形三条中线的公共点)的坐标。

解:如图

设△P1P2P3的三条中线为P1M1,P2M2,P3M3。三中线的公共点为G(x,y,z)

因此有P1G=2GM1。即重心G将中线分为三等分。

因为M1为P2P3的中点,所以得M1的坐标为

M1x2+x32,y2+y32,z2+z32 再由公式得

x=x1+x2+x33,y=y1+y2+y33,z=z1+z2+z33。

所以△P1P2P3的重心坐?宋?Gx1+x2+x33,y1+y2+y33,z1+z2+z33。

在这一问题上,利用向量的线性运算,就可以解决集合中的与共面、共线、定比分点等有关的仿射性质的几何问题。为了解决几何中常见的长度。交角等有关的度量问题,又要

使用到向量的数量积,即内积。我们把几何问题转化为以向量的运算规律为基础的代数的演算,这样,代数的方法也就引入到几何中来了。

(四)用向量的方法解决代数的相关问题

通常情况下,可以先把已知条件转化成向量的表达式,然后进行向量的相关运算,最后把运算得出的结果转化成求证的结论。

向量是代数研究很重要的对象之一。它具有大小和方向,可以进行加减运算,可以与实数结合进行数乘运算,也可以进行内积等运算。这些运算都是重要的几何性质,利用这些性质可以帮助我们计算角度、长度、面积等几何度量问题并且可以帮助我们刻画几何图形(直线、平面等),以及判断它们的位置关系。在以后的学习中我们还可以学到更多关于向量的其他运算。

【例4】已知函数f(x)=9+x2+(4-x)2+4,求函数的最小值。

解:构造向量p=(3,x),q=(4-x,2),则

p+q=(7-x,2+x)。

那么显然

f(x)=9+x2+(4-x)2+4=|p|+|q|≥|p+q|=(7-x)2+(2+x)2,

当且仅当向量p=(3,x),q=(7-x,2)共线且方向相

同时等号成立,

则此时x=4。

在代数问题里,主要是构造向量求最值问题,以向量的不等式为基础性质,对原函数进行化简计算,即可得到最大值(或最小值)。其次,因为运算很多,所以一定要掌握向量的数量积,向量积的定义及数量积的性质,掌握其计算方法。

参考文献:

[1]Fulvia Furinghetti. Teacher education through the history of mathematics[J]. Education studies in Mathematics,2007,V ol.66(2):131-142.

[2]林延胜.向量应用的拓展教学[J].课程?教材?教法,2015,07(5):20-23.

[3]数学必修四[M].北京:北京师范大学出版社数学必修四,2004.

[4]孙庆华,包芳勋.向量在中国的传播[N].太原理工大学学报,2006,13(2):69-71.

[5]吕林根,许子道.解析几何[M].江苏:高等教育出版社,1982.

[6]钟善基.数学教育文选[M].北京:人民教育出版社,2004.

[7]郑平基.例谈向量数量积的代数应用[J].科技信息,

2009,02(17):7-8.

作者简介:

尚瑶瑶,赵院娥(导师),陕西省延安市,延安大学。

用法向量求二面角的大小及其角度关系的确定

用法向量求二面角的大小及其角度关系的确定 我们都知道,向量知识在数学学科里有其非常广泛的应用,尤其是在立体几何求角和距离时,若利用向量知识求解会得到事半功倍的效果,也正体现了向量知识的工具性和灵活性。而在应用向量知识求解二面角的大小时,不是所有的二面角的两个半平面的法向量的夹角都和二面角相等,有时是互补,那么,什么时候相等,什么时候互补,如何确定其“角度之间的大小关系”一直以来是困扰很多教师和学生的一个难题。 向量有其自身的独特性质—自由性,当一个向量在空间的某一位置时,可以自由移动,只要满足其方向不变,其无论移动到任何位置,向量都是相等的。根据这一性质,当我们把二面角的某个半平面的法向量求出后,把它的起点放到坐标原点,然后确定其向量的方向的指向,从而确定其法向量的夹角和二面角的大小的关系,在确定了法向量的夹角与二面角的关系后,再利用向量的数量积求出二面角的大小,下面就来具体阐述一下这一做法。一. 规定法向量的指向方向 1.当法向量的方向指向二面角的内部时称之为向里指, 如:图1中的1n 向量。 2.当法向量的方向指向二面角的外部时称之为向外指,如:图1中的2n 向量。 二. 法向量的夹角和二面角大小的关系 1.设 21,n n 分别为平面βα,的法向量,二面角βα--l 的大小为θ,向量 21,n n 的夹角为?,当两个法向量的方向都向里或都向外指时,则有π?θ=+(图 2); 2.当两个法向量的方向一个向里指一个向外指时?θ=(图3)

1.已知二面角βα--l ,若平面α的法向量)3,4,4(=,由向量的相等条件知,坐标是(4,4,3)的向量有无数多个,根据向量的自由性,我们只需做出由原点出发的一个向量便可,如图4所示,从而,我们很容易的判断出平面α法向量的方向的指向,是指向二面角的里面。 2.若平面α法向量)1,3,4(--=,同理可做出从原点出发的法向量,如图5所示,显然,方向是指向二面角的外面。四.应用举例 例题1. 如图6,在棱长为1的正方体ABCD-A 1B !C 1D 1中G 、E 、F 分别为AA 1、AB 、BC 的中点,求作二面角G —EF —D 半平面GEF 的法向量并判断其方向。

用向量方法解立体几何题(老师用)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线 l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos |||| a b a b

法二、设12,,n n 是二面角l αβ --的两个半平面的法向量, 其方向一个指向内侧,另一个指向外侧,则二面角l α β --的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设A O α ⊥于O,利用A O α ⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||A O . (2)求异面直线的距离 法一、找平面β使b β?且a β ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥ ,n b ⊥ ),则 异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ== (此方法移植 于点面距离的求法).

立体几何中的向量方法(一)——证明平行与垂直

立体几何中的向量方法(一)——证明平行与垂直 1.直线的方向向量与平面的法向量的确定 (1)直线的方向向量:在直线上任取一非零向量作为它的方向向量. (2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为???? ? n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =x v 1+y v 2. (3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1 ∥u 2. 3.用向量证明空间中的垂直关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( ) (2)平面的单位法向量是唯一确定的.( ) (3)若两平面的法向量平行,则两平面平行.( ) (4)若两直线的方向向量不平行,则两直线不平行.( ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( ) (6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( ) 1.下列各组向量中不平行的是( )

第7章 向量代数与空间解析几何 习题 7- (4)

第四节 空间直线及其方程 习题 7-4 1. 求过点(1,1,2)?且与平面20x y z +?=垂直的直线方程. 解 取已知平面的法向量(1,2,1)=?n 为所求直线的方向向量, 则直线的对称式方程为 112 .121 x y z ?+?==? 2. 求过点(1,3,2)??且平行两平面35202340x y z x y z ?++=+?+=及的直 线的方程. 解 因为两平面的法向量12(3,1,5)(1,2,3)=?=?n n 与不平行, 所以两平面相交 于一直线, 此直线的方向向量为 1231 5(7,14,7)7(1,2,1),1 2 3 =×=?=?=??i j k s n n 故可取所求直线的方向向量为(1,2,1)?, 由题设, 所求的直线方程为 132 .121 x y z ++?==? 3. 用点向式方程及参数方程表示直线 10 2340 x y z x y z +++=?? ?++=?. 解 先在直线上找一点. 令1x =, 解方程组2, 36,y z y z +=????=? 得0,2y z ==?, 故(1,0,2)?是直线上一点. 再求直线的方向向量s . 交于已知直线的两平面的法向量为: 12(1,1,1),(2,1,3)==?n n , 12,,⊥⊥s n s n ∵

121 11(4,1,3),213 ∴=×==???i j k s n n 故所给直线的点向式方程为 12 ,413x y z ?+==?? 参数方程为 14,,23.x t y t z t =+?? =???=??? 4. 求过点(2,0,3)?且与直线2470, 35210x y z x y z ?+?=?? +?+=? 垂直的平面方程. 解 要求所求平面垂直于直线, 所以直线的方向向量为所求平面的法向量, 取 1212 4(16,14,11),3 5 2 ==×=?=??i j k n s n n 由点法式可得 16(2)14(0)11(3)0,x y z ??+?++= 即161411650x y z ???=为所求的平面方程. 5. 求过点(3,1,2)?且通过直线 43521 x y z ?+==的平面的方程. 解 法1 所求平面过点0(3,1,2)M ?及1(4,3,0)M ?, 设其法向量为n , 则01,M M ⊥⊥ n n s , 其中(5,2,1)=s . 取01(1,4,2)(5,2,1)(8,9,22)M M =×=?×=?n s , 则平面方程为 8(3)9(1)22(2)0,x y z ??+?++= 即8922590x y z ???=. 法2 直线L 的交面式方程为25230, 230,x y y z ??=???+=? 过L 的平面束方程为 (23)(2523)0.y z x y λ?++??= 点(3,1,2)?在平面上, 因此(143)(6523)0λ+++??=, 解得4 11 λ=, 因此平面的方程为

空间向量及其运算

§8.5 空间向量及其运算 1. 空间向量的概念 (1)定义:空间中既有大小又有方向的量叫作空间向量. (2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB → ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理 如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律 (1)定义 空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23,

立体几何中的向量方法—证明平行和垂直

2017届高二数学导学案编写 审核 审批 课题:立体几何中的向量方法—证明平行和垂直 第 周 第 课时 班 组 组评 姓名 师评 【使用说明】 1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】 理解空间向量的概念;掌握空间向量的运算方法 【学习方法】学案导学法,合作探究法。 【自主学习·梳理基础】 1、 考点深度剖析 利用空间向量证明平行或垂直是高考的热点,内容以解答题为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向. 2.【课本回眸】 1.直线的方向向量与平面的法向量的确定 ①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB → 为直线l 的方向向量,与AB → 平行的任意非零向量也是直线l 的方向向量. ②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量, 则求法向量的方程组为??? ?? n·a =0, n·b =0. 2.用向量证明空间中的平行关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. ②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =xv 1+yv 2. ③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2. 3. 用向量证明空间中的垂直关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 4.共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R), a ⊥ b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). 【课堂合作探究】 探究一:如图,在棱长为2的正方体1111D C B A ABCD -中, N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在 棱 1DD ,1BB 上移动,且()20<<==λλBQ DP . 当1=λ时,证明:直线//1BC 平面EFPQ . 探究二:如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明: (1)AE ⊥CD ; (2)PD ⊥平面ABE .

向量代数与空间解析几何期末复习题高等数学下册

第七章 空间解析几何 一、选择题 1. 在空间直角坐标系中,点(1,-2,3)在[ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2.方程2222=+y x 在空间解析几何中表示的图形为[ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 3.直线3 1 2141: 1+= +=-z y x l 与?? ?=-++=-+-0 20 1:2z y x y x l ,的夹角是 [ C ] A. 4 π B. 3π C. 2 π D. 0 4. 在空间直角坐标系中,点(1,2,3)关于xoy 平面的对称点是[ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 5.将xoz 坐标面上的抛物线x z 42=绕z 轴旋转一周,所得旋转曲面方程是[B ] A. )(42y x z += B. 2224y x z +±=

C. x z y 422=+ D. x z y 422±=+ 6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是[B ] A. 13 - B. 13 C. 23 - D. 23 7. 在空间直角坐标系中,点(1,2,3)关于yoz 平面的对称点是[ A ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 8.方程22 222x y z a b +=表示的是 [ B ] A.椭圆抛物面 B.椭圆锥面 C. 椭球面 D. 球面 9. 已知a ={0, 3, 4}, b ={2, 1, -2},则=b proj a [ C ] A. 3 B.3 1- C. -1 10.已知,a b 为不共线向量,则以下各式成立的是 D A. 222()a b a b =? B. 222()a b a b ?=? C. 22()()a b a b ?=? D. 2222()()a b a b a b ?+?= 11.直线1l 的方程为0 3130290 x y z x y z ++=?? --=?,直线2l 的方程为

空间向量在立体几何中的应用——夹角的计算习题-详细答案

【巩固练习】 一、选择题 1. 设平面内两个向量的坐标分别为(1,2,1),(-1,1,2),则下列向量中是平面的法向量的是( ) A. (-1,-2,5) B. (-1,1,-1) C. (1, 1,1) D. (1,-1,-1) 2. 如图,1111—ABCD A B C D 是正方体,11 11114 A B B E =D F =,则1BE 与1DF 所成角的余弦值是( ) A . 1715 B . 2 1 C .17 8 D . 2 3 3. 如图,111—A B C ABC 是直三棱柱,90BCA ∠=?,点11D F 、分别是1111A B AC 、的中点,若 1BC CA CC ==,则1BD 与1AF 所成角的余弦值是( ) A . 1030 B . 2 1 C .15 30 D . 10 15 4. 若向量(12)λ=a ,,与(212)=-b ,,的夹角的余弦值为8 9 ,则λ=( ) A .2 B .2- C .2-或 255 D .2或255 - 5. 在三棱锥P ABC -中,AB BC ⊥,1 2 AB=BC=PA ,点O D 、分别是AC PC 、的中点,OP ⊥ 底面ABC ,则直线OD 与平面PBC 所成角的正弦值( ) A . 621 B . 33 8 C .60 210 D . 30210 6.(2015秋 湛江校级期末)在正四棱锥S —ABCD 中,O 为顶点在底面内的投影,P 为侧棱SD 的中点,且SO=OD ,则直线BC 与平面PAC 的夹角是( ) A .30° B .45° C .60° D .75° 7. 在三棱锥P ABC -中,AB BC ⊥,1 ==2 AB BC PA ,点O D 、分别是AC PC 、的中点,OP ⊥ 底面ABC ,则直线OD 与平面PBC 所成角的正弦值是( )

空间向量的夹角与距离求解公式-高中数学知识点讲解

空间向量的夹角与距离求解公式1.空间向量的夹角与距离求解公式 【知识点的认识】 1.空间向量的夹角公式 → →设空间向量 ?=(a1,a2,a3),?=(b1,b2,b3), →→cos<?,?>= →→ ??? →→ |?|? |?| = ?1?1+?2?2+?3?3 ?12+?22+?32??12+?22+ ?32 注意: →→→→(1)当 cos<?,?>= 1 时,?与?同向; →→→→(2)当 cos<?,?>=― 1 时,?与?反向; →→→→(3)当 cos<?,?>= 0 时,?⊥?. 2.空间两点的距离公式 设A(x1,y1,z1),B(x2,y2,z2),则 → ??=(?2―?1,?2―?1,?2―?1) → d A,B=|??| = → ?? ? → ??=(?2―?1)2+(?2―?1)2+(?2― ?1)2. 【解题思路点拨】 1.求空间两条直线的夹角 建系→写出向量坐标→利用公式求夹角 2.求空间两点的距离 建系→写出点的坐标→利用公式求距离. 【命题方向】 (1)利用公式求空间向量的夹角 →→

例:已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量??与??的夹角为() 1/ 3

A.30° B.45° C.60° D.90° →→→分析:由题意可得: ??=(0,3,3),??=(― 1,1,0),进而得到??? →→→→→??与|??|,|??|,再由 cos<??,?? >= →→ ????? →→ 可得答案.|??||??| 解答:因为A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1), 所以 →→ ??=(0,3,3),??=(―1,1,0), → 所以??? →→→ ??═0×(﹣1)+3×1+3×0=3,并且|??|=3 2,|??| = 2, →→ 所以 cos<??,??>= →→ ??? ?? →→ |??||??| = 3 32×2= 1 2 , →→ ∴??的夹角为 60° ??与 故选C. 点评:解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题. (2)利用公式求空间两点的距离 例:已知空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),则A,B 两点间的距离是() A.3 B. 29 C.25 D.5 分析:求出AB 对应的向量,然后求出AB 的距离即可. 解答:因为空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2), → →所以 ??=(﹣3,0,﹣4),所以| ??|=(―3)2+02+(―4)2= 5. 故选D. 点评:本题考查空间两点的距离求法,考查计算能力.

空间解析几何与向量代数复习题答案

第八章 空间解析几何与向量代数答案 一、选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是(A ) A 5 B 3 C 6 D 9 2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B ) A (-1,1,5). B (-1,-1,5). C (1,-1,5). D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是( C ) A 2π B 4π C 3 π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3 π D π 6. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( A ) A 138 B 118 C 158 D 1

7. 设,23,a i k b i j k =-=++r r r r r r r 求a b ?r r 是:( D ) A -i -2j +5k B -i -j +3k C -i -j +5k D 3i -3j +3k 8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A ) A 2 B 364 C 3 2 D 3 9. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D ) A 2x+3y=5=0 B x-y+1=0 C x+y+1=0 D 01=-+y x . 10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C ); A -+a b =a b ; B =a b ; C 0?a b =; D ?a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b 12、已知()()2,1,21,3,2---a =,b =,则Pr j b a =( D ); A 5 3; B 5; C 3;

用向量方法证明空间中的平行与垂直

用向量方法证明空间中的平行与垂 直 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

用向量方法证明空间中的平行与垂直 1.已知直线a的方向向量为a,平面α的法向量为n,下列结论成立的是( C > A.若a∥n,则a∥α B.若a·n=0,则a⊥α C.若a∥n,则a⊥α D.若a·n=0,则a∥α 解读:由方向向量和平面法向量的定义可知应选 C.对于选项D,直线a?平面α也满足a·n=0. 2.已知α,β是两个不重合的平面,其法向量分别为n1,n2,给出下列结论: ①若n1∥n2,则α∥β;②若n1∥n2,则α⊥β; ③若n1·n2=0,则α⊥β;④若n1·n2=0,则α∥β. 其中正确的是( A > A.①③ B.①④ C.②③ D.②④ 3.(原创>已知A(3,-2,1>,B(4,-5,3>,则与向量错误!平行的一个向量的坐标是( C >b5E2RGbCAP A.(错误!,1,1> B. (-1,-3,2> C.(-错误!,错误!,-1> D.(错误!,-3,-2错误!>p1EanqFDPw 解读:错误!=(1,-3,2>=-2(-错误!,错误!,-1>,DXDiTa9E3d 所以与向量错误!平行的一个向量的坐标是(-错误!,错误!,-1>,故选C.RTCrpUDGiT 4.设l1的方向向量为a=(1,2,-2>,l2的方向向量为b=(-2,3,m>,若l1⊥l2,则m等于 2 .5PCzVD7HxA 5.设平面α的法向量为(1,2,-2>,平面β的法向量为(-2,-4,k>,若α∥β,则k= 4 . 解读:因为α∥β,所以(-2,-4,k>=λ(1,2,- 2>, 所以-2=λ,k=-2λ,所以k=4. 6.已知错误!=(1,5,-2>,错误!=(3,1,z>.若错误!⊥错误!,错误!=(x-1,y,-3>,且BP⊥平面ABC,则实数x=错误!,y=-错误!,z= 4 .jLBHrnAILg 解读:由已知错误!,xHAQX74J0X 解得x=错误!,y=-错误!,z=4. 7.(原创>若a=(2,1,-错误!>,b=(-1,5,错误!>,则以a,b为邻边的平行四边形的面积为2错误!.LDAYtRyKfE 解读:因为a·b=(2,1,-错误!>·(-1,5,错误!>=0,

空间向量的夹角、距离计算

空间向量的夹角、距离计算 1.已知A (2,-5,1),B (2,-2,4),C (1,-4,1),则直线AC 与AB 的夹角为( ) A.300 B.450 C.600 D.900 2.已知向量a =(0,2,1),b =(-1,1,-2),则a 与b 的夹角为( ) A .0° B .45° C .90° D .180° 3. 如果平面外一条直线和它在这个平面上的投影的方向向量分别是a =(0,2,1),b =(, , ),那么这条直线与平面的夹角为( ) A. 900 B. 600 C.450 D. 300 4. 边长为a 的正六边形ABCDEF 所在平面为α,PA ⊥α且PA =a ,则PC 与α所成的角为 ( ) A. 30° B. 60° C. 45° D. 90° 5.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M 是AA 1的中点,则点A 1到平面MBD 的距离是( ) A.66a B.306a C.34a D.63 a 6. 已知向量n =(1,0,-1)与平面α垂直,且α经过点A (2,3,1),则点P (4,3,2)到α的距离为( ) A. 1 B. C. D. 2 7.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A .120° B .60° C .30° D .60°或30° 8.设ABCD ,ABEF 都是边长为1的正方形,FA ⊥面ABCD ,则异面直线AC 与BF 所成的角等于( ) A .45° B .30° C .90° D .60° 9.在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =2,DD 1=3,则AC 与BD 1所成角的余弦值为( ) A .0 B.37070 C .-37070 D.7070 10.在正方体ABCD -A 1B 1C 1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成的角的正弦值为( ) A .-105 B.105 C .-155 D.155 11.在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为棱AA 1和BB 1的中点,则sin 〈CM ,1D N 〉的值为 ( ) A.19 B.49 5 C.29 5 D.23 12. 已知a ,b 是直线,α,β是平面,a ⊥α,b ⊥β,向量a 1在a 上,向量b 1在b 上,a 1=(1,0,1), b 1=(-1,2,1),则α,β所成二面角的大小为________.

用向量法证明直线与直线平行

用向量法证明直线与直线平行、直线与平面平行、 平面与平面平行导学案 一、知识梳理 1、设直线l 1和l 2的方向向量分别是为1v 和2v ,由向量共线条件得l 1∥l 2或l 1与l 2重合?1 v ∥2v 。 2、直线与平面平行的条件 已知两个不共线向量1v 、2v 与平面a 共面(图(2)), 一条直线l 的一个方向向量为1v ,则由共面向量定理, 可得l ∥a 或l 在平面a 内?存在两个实数x 、y ,使 1v =x 1v +y 2v 。 3、平面与平面平行的条件 已知两个不共线的向量1v 、2v 与平面a 共面,则由两个平面平行的判定定理与性质得 a ∥β或a 与β重合?1v ∥β且2v ∥β 4、点M 在平面ABC 内的充要条件 由共面向量定理,我们还可得到:如果A 、B 、C 三点不共线,则点M 在平面ABC 内的充分 必要条件是,存在一对实数x 、y ,使向量表达式AM x AB y AC =+ 成立。 对于空间任意一点O ,由上式可得(1)O M x y O A xO B yO C =--++ ,这也是点M 位于平 面ABC 面内的充要条件。 知识点睛 用向量法证明直线与直线平行、直线与平面平行、平面与平面平行时要注意: (1)若l 1、l 2的方向向量平行,则包括l 1与l 2平行和l 1与l 2重合两种情况。 (2)证明直线与平面平行、平面与平面平行时要说明它们没有公共点。 例1:如图3-28,已知正方体ABCD -A ′B ′C ′D ′,点M ,N 分别是面对角线A ′B 与面对角线A ′C ′的中点。 求证:MN ∥侧面AD ′;MN ∥AD ′,并且MN =12 AD ′。

用向量方法解立体几何题

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 a l ⊥,在β内 b l ⊥,其方向如图,则二 方法一:在α内 平面角α=arccos |||| a b a b 面角l αβ--的 方法二:设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=12 12arccos |||| n n n n

2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 方法二:在a 上取一点A, 在b 上取一点B, 设a 、b 分别为异面直 线a 、b 的方向向量,求n (n a ⊥, n b ⊥),则异面直线a 、b 的距离 || |||cos ||| AB n d AB n θ== (此方法移植于点面距离的求法). 例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是 棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角; (II )求1BC 和面EFBD 所成的角; (III )求1B 到面EFBD 的距离 记异面直线1DE FC 与所成的角为α, 解:(Ⅰ) 则α 等于向量 1 DE FC 与的夹角或其补角, 1 1 ||||111111cos || ()() ||||||DE FC DE FC DD D E FB B C DE FC α∴=++=

向量讨论平行垂直及夹角

向量讨论平行垂直及夹角 1、如图所示:在三棱锥P-ABQ 中,ABQ PB 平面⊥,BA=BP=BQ,D 、C 、E 、F 分别是AQ,BQ,AP,BP 的中点,AQ=2BD,PD 与EQ 交于点G,PC 与FQ 交于点H,连接GH.求证:AB//GH; 2、如图所示:在四棱柱1111D C B A ABCD -中,侧棱⊥A A 1底面,5,2,1,,1=====⊥CD AD AA AC AB AC AB ABCD 且点M 和N 分别为C B 1和D D 1的中点,求证://MN 平面ABCD .

3、如图所示:在四棱柱1111D C B A ABCD -中,侧棱⊥1AA 底面ABCD ,.6,5,4,3,1,//1k DC k BC k AD k AB AA CD AB =====求证:⊥CD 平面11A ADD 4、如图所示:正方体1111D C B A ABCD -中,求 B A 1与平面CD B A 11所成角的大小。

5、如图所示:直三棱柱111C B A ABC -中底面ABC ?满足090,=∠==BCA a CB CA ,棱N M a AA ,,21=分别是11B A 、1AA 的中点。 (1)求BN 的长; (2)求异面直线1BA 与1CB ,所成角的余弦值; 6、在底面是直角梯形的四棱锥ABCD S -中,090=∠ABC ,⊥SA 平面21,1,====AD BC AB SA ABCD ,求平面SCD 与平面SBA 所成的二面角余弦值;

7、如图所示:在长方体1111D C B A ABCD -中,已知5,4,31===AA BC AB ,分别求点1A 到直线BD AC 、的距离; 8、正方体1111D C B A ABCD -的棱长为2,G F E ,,分别是AB A D C C ,,111的中点,求点A 到平面EFG 的距离;

(完整版)§7空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数 A 一、 1、 平行于向量)6,7,6(-=a 的单位向量为______________. 2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角. 3、 设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴 上的投影,及在y 轴上的分向量. 二、 1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(??-??及; 及(3)a 、b 的夹角的余弦. 2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.

3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、 1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 2、方程02422 2 2 =++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22 =绕x 轴旋转一周,生成的曲面方程为 __ _____________,曲面名称为___________________. 2)将xOy 坐标面上的x y x 22 2 =+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________. 3)将xOy 坐标面上的36942 2 =-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________. 4)在平面解析几何中2x y =表示____________图形。在空间解析几何中 2x y =表示______________图形. 5)画出下列方程所表示的曲面 (1))(42 22y x z += (2))(42 2 y x z += 四、

江苏省淮阴中学高三数学一轮复习 第82课时 利用空间向量证明平行与垂直问题学案(无答案)

第82课时 利用空间向量证明平行与垂直问题 考点解说 利用直线的方向向量和平面的法向量判定直线与直线,直线与平面,平面与平面的位置关系,掌握用向量方法处理空间中的平行与垂直问题. 一、基础自测 1.已知向量),,3(),5,4,2(y x b a ==分别是直线12,l l 的方向向量,若1l ∥2l ,则=x =y . 2.已知)5,6,2(),,3,8(b n a m ==,若m //n ,则=+b a . 3.已知,,a b c r r r 分别为直线,,a b c 的方向向量且 (0),0,a b b c λλ=≠?=r r r r 则a 与c 的位置关系是 . 4.在空间四边形ABCD 中,E 、F 是分别是AB 、AD 上的点,且AE:EB=AF:FD=1:4,又H,G 分别是BC 、CD 的中点,则EFGH 是 形. 5.正三棱柱111ABC A B C -中,底面边长AB=1,且11AB BC ⊥,则侧棱1AA 的长为 . 6.已知平行六面体1111ABCD A B C D -底面为菱形, 0 1160,C CB BD CA ∠=⊥,则1C CD ∠的大小为 . 7.正方体1111ABCD A B C D -中,M 、N 、P 分别是棱1CC 、BC 、CD 的中点,则直线1A P 与平面MND 所成角为 . 8.空间四边形ABCD 中,,AB CD BC AD ⊥⊥,则AC 与BD 的位置关系为 . 二、例题讲解 例1.如图,正方体ABCD -A 1B 1C 1D 1中,O 是AC 和BD 的交点,M 是CC 1的中点,求证:A 1O ⊥平面MBD. 例2.正方体ABCD -A 1B 1C 1D 1中,E,F 分别是BB 1,CD 的中点,求证:平面AED ⊥平面A 1FD 1. 例 3.如图正方体ABCD -A 1B 1C 1D 1中,M,N,E,F 分别是所在棱的中点,求证:平面AMN ∥平面EFBD.

4.4 向量的夹角与长度

实用文档 4.4 向量的夹角与长度 例1.已知.2,120,4||,2||垂直与使向量值求的夹角为与b a b ka k b a b a +-== 例2.已知ABCD 是平行四边形,求证:|).|||(|2|||2222+=+ 例3.已知非零和量.,274;573的值求垂直与垂直与且向量的夹角为与θθb a b a b a b a b a ---+ 例4.已知,1)()(,2||,,=+?-=b a b a a b a 且满足是非零向量 (1)求22)()(b a b a ++- (2)若.,3θ的夹角与求-=? 【备用题】 如果一个角的两边平行于另一个角的两边,那么这两个角相等或互补. 【基础训练】 1.已知的值为则的夹角为与b a b a b a ?==,3 ,6||,3 1||π ( ) A .2 B .±2 C .1 D .±1 2.等式①00=?a ②00=?a ③||||||b a b a =? ④22||a a =其中正确的个数为 ( )

实用文档 A .0 B .1 C .2 D .3 3.下列命题①||||||b a b a =? ②22||a a = ③)()(c b a c b a ??=?? ④)()()(b a b a ?=?λλλ其中正确 命题的个数为 ( ) A .1 B .2 C .3 D .4 4.在ΔABC 中,=?===c b a 则 30,4,3__________________. 5.已知方向上的投影长为在则与,60,4|| =________________. 6.已知b a j i j i a y x j i 与则轴上的单位向量且分别是,346,125,,+=-=夹角的余弦值为___________. 【拓展练习】 1.已知=+?-=-=)(),3,2()4,3(b a a b a 则 ( ) A .-13 B .7 C .6 D .26 2.已知的夹角为则,),3,3(),3,1(-==

巧用平面向量解解析几何问题

巧用平面向量解析几何问题 一:课堂教学设计: 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。所以本节课就这一方面做一归纳。 二:教学目标:利用平面向量的加法,减法,数量积的几何意义解决解析几何问题。 三:教学方法:启发式教学 四:重点难点:把解析几何问题转化为向量问题。 五:例题解析 例1、椭圆14 92 2=+y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是 。 解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ) 21PF F ∠Θ为钝角 ∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ?= -?-u u u r u u u u r ( =9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0 解得:55cos 55<<-θ ∴点P 横坐标的取值范围是(5 53,553-) 点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。 例2、已知定点A(-1,0)和B(1,0),M 是圆1)1(2 2=-+y x 上的一动点, +的最大值和最小值; ②求22MB MA +的最大值和最小值 分析:因为O 为AB 的中点,所以MO MB MA 2=+的最值。

相关文档
最新文档