太阳能光伏电站设计要点及影响因素分析

太阳能光伏电站设计要点及影响因素分析
太阳能光伏电站设计要点及影响因素分析

太阳能光伏电站设计要点及影响因素分析

自然资源紧张是全世界共同面对的问题。近些年来,我国经济实现了飞跃式发展,自然资源紧张问题随之凸显。我国幅员辽阔,光照充足,太阳能发电市场前景十分广阔。太阳能光伏发电是当前新型能源开发利用中的一项重要形式。国家不断加大对可再生能源开发的鼓励和扶持,陆续推出了一系列光伏发电项目建设的支持政策,国家能源局《关于下达2015年光伏发电建设实施方案的通知》(国能新能[2015]73号)也对地方光伏发电项目建设容量提出了明确要求。相较于先进国家,我国太阳能利用技术尚处于起步阶段,研究时间短、技术基础薄弱,在实际应用中存在很多问题。积极发展太阳能光伏发电,是我国十三五能源规划中的重要任务之一。文章围绕太阳能光伏电站设计有关问题进行探讨,分析了太阳能光伏发电站的技术特性和光伏电站设计影响因素,阐述了太阳能光伏电站的设计要点,希望可以对设计人员更好地开展太阳能光伏电站设计工作有所帮助。

标签:太阳能光伏电站;设计;影响因素

引言

人类的生存与发展,离不开能源的支持。石油、煤炭等传统能源紧张问题日渐凸显,严重限制了人类文明的发展,已经成为全世界人们共同面对的难题。为妥善解决能源紧张问题,各国都下大力气进行新型能源的开发研究工作。太阳能光伏发电具有高效、环保、清洁、绿色、可再生的特点。太阳能光伏发电是利用光伏电池吸收太阳辐射能,将之直接转换为电能的发电技术。我国太阳能光伏发电事业起步较晚,经过几年的发展,也取得了阶段性成效,是我国新型清洁能源产业中的中坚力量。

1 光伏电站运行特点分析

1.1 周期性、间歇性、随机性

光伏电站吸收太阳光能并将之转换为电能,这个运作机理决定了光伏发电效率必然受到太阳光辐射变化的影响。太阳光辐射有其自然规律,太阳光辐射强度呈现出由低到高,再由高到低的周期性特点,太阳能光伏电站的发电效率也随之呈现出对应的周期变化。天气变化导致太阳能辐照度变化,从而影响光伏电站发电效率,这些都说明光伏电站具有随机性和间歇性。光伏电站出力的间歇性和随机性会导致电压波动、闪变等电能质量问题,是电网安全运行的重要风险因素。上述因素都必须在进行大型并网光伏电站二次系统设计予以充分考虑。

1.2 静止发电性

太阳能光伏发动属于静止型发电,电站所用设备中不包含旋转部件,部件损耗速度慢,维护、保养难度和成本较低,在进行电气二次系统设计时可以按照有人值守、无人值班模式进行设计。

光伏电站电气二次系统设计

电气二次 1.4. 2.1电站二次设计原则 (1)电站以1回110kV出线接至220kV海东变。电站的调度管理方式暂定由大理市调度中心调度。电站按“少人值守”的方式进行设计,采用微机监控装置,可以实现遥控、遥测、遥信,按电网要求配置监测点等。 (2)电站监控系统采用以计算机监控系统为基础的集中监控方案。 (3)综合自动化系统采用开放式分层分布系统结构。 计算机监控系统应能满足全站安全运行监视和控制所要求的全部设计功能。控制室设置计算机监控系统的值班员控制台。整个光伏发电站安装一套综合自动化系统,具有保护、控制、通信、测量等功能,可实现光伏发电系统及配电室的全功能综合自动化管理,实现光伏发电站与地调端的遥测、遥信功能及发电公司的监测管理。 本工程110kV设备、35kV配电装置、升压变、站用电源、逆变器等控制均纳入综合自动化计算机控制系统。控制电源为直流220V。 计算机监控系统置主控站,一个当地监控主站和一个远方调度站,实现就地和远方(电网调度)对光伏电站的监视控制,其控制操作需互相闭锁。 1.4. 2.2电气微机监控系统控制范围 (1)计算机监控系统站级控制层操作控制 操作控制指运行人员在单元控制室操作员工作站上调出操作相关的设备图后,通过操作键盘或鼠标,就可对需要控制的电气设备发出操作指令,实现对设备运行状态的变位控制。纳入控制的设备有: 110kV断路器、隔离开关等电气设备的分、合闸; 主变器有载调压。 35kV断路器的分、合闸; 就地发电子系统逆变器低压断路器的分、合闸; 操作控制的执行结果反馈到相关设备图上。其执行情况也产生正常(或异常)执行报告。执行报告在操作员工作站上予以显示并打印输出。 (2)计算机监控系统间隔级控制层控制 当计算机监控系统站级控制层停运或故障时,间隔级控制层能独立于站级控制层控制。站级控制层和间隔级控制层的控制不得同时进行,在软件作相应的闭锁配置,并设有远方/

光伏电站电气一次设计研究

光伏电站电气一次设计研究 发表时间:2018-12-17T17:01:03.857Z 来源:《基层建设》2018年第31期作者:王重洋王阳李博 [导读] 摘要:光伏发电是目前最具开发价值的可再生能源之一,在我国得到了快速的发展。 陕西省水利电力勘测设计研究院陕西西安 710001 摘要:光伏发电是目前最具开发价值的可再生能源之一,在我国得到了快速的发展。本文重点分析了光伏电站电气的一次设计。 关键词:光伏电站;电气;一次设计; 随着经济社会的发展,对电力的需求也在逐渐加大,光伏电站也有了一定的进步,对满足人们生活有着一定的意义。同时,开发利用可再生资源已成为我国缓解能源供需矛盾、减轻环境污染、调整能源结构的重要举措,建设光伏电站对实现可持续发展的能源战略起到积极的促进作用。 一、光伏电站简介 1、概述。光伏电站是指一种利用太阳光能、采用特殊材料诸如晶硅板、逆变器等电子元件组成的发电体系,与电网相连并向电网输送电力的光伏发电系统,其可分为带蓄电池的独立发电系统和不带蓄电池的并网发电系统。光伏电站是目前属于国家鼓励力度最大的绿色电力开发能源项目。 2、工作原理。光伏发电是利用半导体界面的光生伏特效应,而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池,太阳能电池经过串联后进行封装保护,可形成大面积的太阳电池组件,再配合上功率控制器等部件形成光伏发电装置。太阳能光伏组件将直射太阳光转化为直流电,光伏组串通过直流汇流箱并联接入直流配电柜,汇流后接入逆变器直流输入端,将直流电转变为交流电,逆变器交流输出端接入交流配电柜,经交流配电柜直接并入用户侧。 3、优点。①无枯竭危险;②安全可靠,无噪声,无污染排放外,绝对干净(无公害);③不受资源分布地域的限制,可利用建筑屋面的优势;④无需消耗燃料和架设输电线路即可就地发电供电;⑤能源质量高;⑥建设周期短,获取能源花费的时间短。 二、光伏电站电气系统 1、太阳电池组件的选型。太阳电池组件的类型一共有三种,分别是晶体硅太阳电池、薄膜太阳电池和非晶硅太阳电池,这三种电池各具优缺点。第一是晶体硅太阳电池,优点是成熟稳定、安全可靠,而且应用的范围较为广泛。晶体硅电池包括单晶硅和多晶硅电池,价格合理,效率较高。而晶体硅的缺点是,在光照和大气环境下,电池会出现能量衰竭的情况。第二是薄膜太阳电池,优点是高效低廉,性能稳定,缺点是原料稀缺,对大规模生产产生制约。第三是非晶硅太阳电池,优点是在弱光下,性能较好,缺点是电池转换的效率较低。综合上述三种电池类型,我国选择较多的是晶体硅太阳电池组件。 2、光伏汇流箱。方阵连接盒是连接太阳电池方阵和逆变器专用器件,主要功能有太阳电池过载保护、雷击保护、过压保护、多路太阳能方阵并联等功能。在设计选型时,重点要求箱体结构、光伏组串过流保护、防雷、通信、显示功能、外壳防护等级、安全、浪涌、环境要求、温升等方面的因素。 3、逆变器的选型。逆变器技术结构一共有三种类型,分别是集中式逆变器、组串式逆变器和组件式逆变器。第一是集中式逆变器,其优点是效率较高,成本较低,大型的集中逆变器可以联网,减少输电损耗,提高发电效率。第二是组串式逆变器,其优点是增加了发电量,减少阳光阴影带来的损失。第三是组件式逆变器,优点是应用范围比较大,缺点是铭牌容量较小。综合上述三种逆变器类型,我国市场上应用最多的是集中型逆变器。 4、交直流配电柜。在光伏电站电气系统中,交直流配电柜的输入端与光伏电站电气系统中的直流汇流箱相连接,其输出端则与光伏电站电气系统中的逆变器相连接。在具体的发电过程中,交直流配电柜其中的直流配电单元,实现了与光伏组件输入的直流电源的汇流,之后再将其接入到逆变器中。这个装置,基本上相当于光伏电站电气系统的二级汇流装置。此外,交直流配电柜还包括其他单元,如防反二极管、直流输入短路器、光伏防雷器。并且交直流配电柜在具体的使用中,还具有一些优势,如布线简单、操作简单、维护方便、系统可靠、安全性能好等。 三、光伏电站电气一次设计研究 1、光伏电站主要接线设计 1)升压变接线设计。在具体设计过程中,受逆变器容量大小的影响,需要将光伏组件与逆变器相互连接,使之成为最小发电单元。在具体设计过程中,主要有三种形式,即发电机与双绕组变压器之间的单元接线、发电机和双绕组变压器之间的扩大单元接线、发电机和双分裂绕组变压器之间的扩大单元接线。这三种接线设计形式中,发电机-双分裂绕组变压器扩大单元接线,不但减少了相互间的电磁干扰及环流影响,还提高了输电的质量,是最为推荐的一种接线设计方式。 2)光伏电站集电线路连接方式。在光伏电站电气一次设计研究中,光伏电站集电线路的连接方式主要有两种,即电压等级选择、单元分组连接方式设计。在设计的过程中,电路电压等级的选择主要有10kw和35kw两种方案,以及链形、环形和星形三种设计形式。 电路电压等级设计过程中,必须要结合场区的面积大小、光伏场区内是否有遮挡太阳光的建筑物。在设计中,如果选择直接的方式接入到升压站,就会由于电缆截面过大,与安装要求不相符合。因此,为了减少安装中出现的耗损,并使整个安装过程更加简单,在设计中就必须要升高电压,使其达到10kw或35kw,才能接入到升压站中。 在对发电单元分组连接方式设计中,应充分考虑投资成本。目前,从我国光伏电站电气设计中发现,链形连接由于结构简单、成本不高,是最主要的设计方式。 3)升压站主接线设计。升压站主接线设计过程中,要注意两个关键点,即升压站的电压等级及电力系统的位置。并据此选择出一种有效的连接方式,使其与升压站在系统中地位和作用相互适应,以保证电网的安全、可靠。 2、设备配置。光伏系统中的设备和部件应按照系统设计整体要求来选择,其性能应符合国家和行业的标准,产品应通过国家认证机构的认证。设备配置如下:光伏组件选择;光伏接线(汇流)箱;光伏配电柜(交、直流);逆变器选择;变压器;蓄电池及充电控制器(独立系统);综合自动保护系统;开关柜;SVG设备;户外成套设备(AIS);光伏系统监测装置。 3、光伏电站中性点接地。光伏电站中性点接地设计,具有很强的综合性。因此,在针对中性点接地的具体设计过程中,要保证设计方式与和电压等级、过电压水平、保护配置等之间有一个密切的关系,使其作用于整个电力系统的运行,并保障电网系统在发生故障后能快

水面光伏电站的设计方案与成本

一、某地区大型水库项目概况(参考) 本项目选址,水域开阔,面积约为3000亩,项目现场照片情况如下: 水库的深度约3~4米,采用漂浮式光伏水面电站形式。组件和汇流箱漂浮在水面上,逆变器及后端设备设置在岸基上。 二、水面漂浮式光伏电站解决方案 第一方案:传统浮筒 + 光伏支架方案 1)结构方案 传统浮筒尺寸为500*500*400mm,方阵主要采用单排浮筒,即可提供足够支撑。 另外一方面,考虑到系统维护通道的情况,需要每个浮筒阵列间隔使用双排浮筒。 组件子阵为2*11,采用255W组件,大方阵为6*16个子阵。大方阵单排浮筒和双排浮筒间隔使用。目的是综合考虑成本及电站维护通道的要求。 阵列面积—6327.75㎡ 光伏组件----2112块,538.56KW 浮筒----4191个 锚----预估60组 支架-----96组

2)方阵抛锚固定方案 锚固系统采用水下抛锚方式。先将组装好的浮码头拖移到合适的位置,与岸边通道对齐后,进行初步定位,待整个码头位置基本就位后开始进行锚固作业。 3)系统容量 本方案组件阵列面积6327.75㎡,功率容量为538.56KW。本项目3000亩水域,水域利用率通常60%-80%。保守情况下按照60%水域利用率计算,可以放置190个模块化组件阵列,约合102.3MW。 4)电气方案 电气系统与结构方案配套,22块组件全部串联形成子阵。每16个子阵并联入一个汇流箱。阵列为6*16个子阵组成,即每个阵列有6个汇流箱。 每2个阵列,即4224块组件(1077.12KW)接入到一台1MW的集中逆变站升压到35KV,送往站区再升压并网。汇流箱放置在光伏支架背面,漂浮于水面上,逆变器及后端设备安置于岸基上。 本项目共401280块255W多晶硅组件, 95组1MW的集中光伏逆变站,1140个16路入口的汇流箱,合计容量102.3MW。 5)方案概算表 水面电站电气设备及并网部分成本与地面电站基本无异,在此不再阐述。

太阳能光伏发电系统方案书

(BIPV)光伏发电示范项目系统设计建议书 示范项目名称:XXXXXXXXX示范项目 二〇一〇年十月

目录 第1章项目概况 (1) 1.1 项目地理情况 (1) 1.1.1 地理位置 (1) 1.1.2 供电要求 (1) 1.2 项目建筑类型(BIPV) (2) 第2章一般光伏发电系统的价格构成...............................................错误!未定义书签。第3章光伏并网发电系统设计原则与原理. (2) 3.1 总体设计原则 (3) 3.1.1 视觉美观性 (3) 3.1.2 太阳辐射量 (3) 3.1.3 电缆长度 (4) 3.2 方案设计原理 (4) 第4章光伏系统监控设计 (6) 第5章效益分析 (7) 5.1 发电量计算与节能减排量分析 (8) 5.2 资金投入与效益分析 (10) 第6章某太阳能电源技术有限公司...................................................错误!未定义书签。 6.1 雄厚的集团背景.................................................................................................................. 错误!未定义书签。 6.2 超强的项目管理能力.......................................................................................................... 错误!未定义书签。 6.3 卓越的设计团队.................................................................................................................. 错误!未定义书签。 6.4 “一揽子交钥匙服务”...................................................................................................... 错误!未定义书签。 6.5 增值服务 ............................................................................................................................. 错误!未定义书签。第7章在节能方面为万达服务过的项目 .. (20) 第8章附录《政策分析》 (21)

光伏电站电气设计的研究与应用

光伏电站电气设计的研究与应用 发表时间:2017-10-23T21:09:10.747Z 来源:《电力设备》2017年第16期作者:(山东省莒县供电公司) [导读] 摘要:社会经济的繁荣发展依靠能源的支持,然而目前的石油、煤炭等传统一次性能源面临着严峻的供需问题,阻碍了社会的可持续发展。 (山东省莒县供电公司) 摘要:社会经济的繁荣发展依靠能源的支持,然而目前的石油、煤炭等传统一次性能源面临着严峻的供需问题,阻碍了社会的可持续发展。面对能源短缺的问题,各国都加大了科技研发的力度,大力开发新型能源。光伏发电具有高效、环保、可再生等特点,我国的光伏发电技术经过多年的发展,已经取得了阶段性的成效,因此应当把光伏发电作为开发研究的重点。本文主要针对光伏电站电气设计的研究和应用做简要分析。 关键词:光伏电站;电气设计;研究;应用 1.太阳电池组件和逆变器的设计 1.1太阳电池组件的选型 太阳电池组件的类型一共有三种,分别是晶体硅太阳电池、薄膜太阳电池和非晶硅太阳电池,这三种电池各具优缺点。第一是晶体硅太阳电池,优点是成熟稳定、安全可靠,而且可应用的范围较为广泛。晶体硅电池包括单晶硅和多晶硅电池,价格合理,效率较高,目前单晶硅与多晶硅价格差距越来越小,工程实例中二者占比差也越来越小。而晶体硅的缺点是,在光照和大气环境下,电池会出现转换能量衰竭的情况。第二是薄膜太阳能电池,优点是高效且性能稳定,缺点是原料稀缺,价格偏高,对大规模生产产生制约。第三是非晶硅太阳电池,优点是在弱光下,性能仍然较好,缺点是电池转换的效率较低。综合上述三种电池类型,我国选择较多的是晶体硅太阳电池组件。 1.2逆变器的选型 逆变器技术结构有三种类型,分别是集中式逆变器、组串式逆变器和组件式逆变器。第一是集中式逆变器,其优点是效率较高,成本较低,大型的集中逆变器可以联网,减少输电损耗,提高发电效率。第二是组串式逆变器,其优点是增加了发电量,减少阳光阴影带来的损失。第三是组件式逆变器,优点是应用范围比较大,缺点是铭牌容量较小。综合上述三种逆变器类型,我国市场上应用最多的集中型逆变器。 2.光伏阵列布置方案设计 2.1逆变器布置方案 在布置逆变器的过程中,可以采用以下几种布置方案:第一种方案是采用1MW逆变器单元,与两个500kWp太阳电池方阵相连,形成一个1MWp的光伏子方阵。两个500kWp的太阳电池方阵经过汇流箱,与2×500kW的逆变器相连,可以实现对光伏阵列的布置。 第二种方案是采用500kW的逆变器,与一个500kWp的太阳电池组件相连,输出35kV的交流电。500kW的太阳电池方阵经过汇流箱和500kW的逆变器相连接,最终可以构成0.5MWp光伏的光伏子方阵。 将两种方案进行对比,可以发现二者具有不同的优缺点:第一种方案便于安装和管理,发生故障的几率较小,经济效益较好,但是线损比较高。第二种方案便于布置,线损比较低,但是故障发生的几率较大,经济效益较低。因此,在光伏电站电气设计的应用中,一般采用第一种方案。 2.2光伏阵列分层结构 首先,光伏阵列的分层结构包括光伏发电单元系统。将一定容量的太阳电池方阵,和一台匹配太阳电池方阵容量的逆变器连接,二者所构成的发电系统,可以称为光伏发电的单元系统。 其次,光伏阵列的分层结构包括光伏发电分系统。将一台箱式的升压变压器和另一台逆变器相连接,二者所构成的发电系统被称为光伏发电的分系统。再次,光伏阵列的分层结构包括光伏电站。将许多台箱式变压器相互连接,在接入电网之后所形成的发电系统被称为光伏电站。在光伏电站中,一般采用500kW的逆变器和315V/35kV(或10kV)的箱式升压变压器,以满足光伏电站的发电需要。 2.3光伏阵列电气系统 首先,光伏阵列电气系统包括直流发电系统。光伏阵列直流发电系统中,有太阳电池组件、汇流箱、逆变器和配电柜等等,在发电的过程中,太阳电池组件经过光伏作用,把太阳能转化成为电能。在转换电能时,一般采用多晶硅太阳电池组件构成的太阳电池阵列。 其次,光伏阵列电气系统包括交流输出系统。光伏阵列交流输出系统中,有电缆、开关柜等等,逆变器采用了最大功率跟踪的技术,可以实现直流电转换成交流电的效率最大化,使输出的电能符合电网的需求。在转换电能的过程中,控制器和外部的传感器连接,动态监测外部的日常环境和光伏阵列的运行情况,保证光伏阵列的正常运行。光伏阵列和发电分系统之间没有直接的电气联系,这样一来,当光伏发电的分系统出现问题,光伏阵列并不会出现运行停止的状况,方便检修人员对光伏发电分系统进行维护的检查。在光伏组件的选择上,可以减少光伏组件的块数,进而减少光伏电缆的数量,将工程投入成本限制在一定的范围之内,提高分系统的发电效率。 3浅析主要设计方案 3.1站场选址方案的分析 站场选选择在煤矿塌陷区、地势比较平坦的废弃荒山等地带,既不占用耕地,又能减少征地费用。做到对环境影响最小化。 3.2光伏组件选型方案的分析 开发太阳能电池的两个关键问题就是:提高转换效率和降低成本。由于非晶硅薄膜太阳能电池其光学带隙为1.7eV,使得材料本身对太阳辐射光谱的长波区域不敏感,这样一来就限制了非晶硅太阳能电池的转换效率,目前电池转化效率一般在5%-9%。此外,其光电效率会随着光照时间的延续而衰减,即所谓的光致衰退S-W效应,使得电池性能不稳定,衰减较快。但同时由于它的稳定性不高,使用寿命短(10-15年)。因此工程设计中多选用大功率的260W多晶硅电池组件。具有如下有点:使用寿命长,组件转换效率最高,晶体硅电池组件故障率极低,运行维护最为简单,在开阔场地上使用晶体硅光伏组件安装简单方便,布置紧凑,可节约场地等优点。 3.3光伏阵列运行方式的设计方案分析 目前大型地面光伏电站光伏支架的常用型式有两大类:固定倾角式和跟踪式。固定式布置从技术经济上要优于逐日跟踪式系统;另外

太阳能光伏发电的现状与前景

太阳能光伏发电的现状与前景.txt心脏是一座有两间卧室的房子,一间住着痛苦,一间住着快乐。人不能笑得太响,否则会吵醒隔壁的痛苦。本文由haitaohuahua贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 太阳能光伏发电研究现状与发展前景探讨 可再生能源,包括太阳能、风能、生物质能、水能、地热能、海洋能等,是取之不尽、用之不竭、清洁环保、免费使用的能源,也是世界上最终可依赖的初级 [1] 能源。太阳能是一种清洁的可再生能源。太阳能开发利用的巨大潜力推动着太阳能光伏发电技术不断向前发展。 1893 年,法国科学家贝克勒尔发现“光生伏打效应” , 即“光伏效应”。1930 年,朗格首次提出用“光伏效应”制造“太阳能电池”,使太阳能变成电能。1954 年,恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶太阳能电池。同年,韦克尔首次发现了砷化镓有光伏效应,并在玻璃上沉积硫化镉薄膜,制成了第 1 块薄膜太阳能电池。随着世界经济的不断发展,全球能源短缺、环境污染等问题日益严重,可再生能源的应用受到了各国的普遍关注。太阳能光伏发电作为可再生能源利用的重要组成部分,得到了众多国家政府的大力扶持。20 世纪 70 年代以来,美国、德国、日本等国政府陆续出台相关政策,加大太阳能光伏发电产业的发展力度,使得世界光伏发电产业高速发展。 1997—2007 年,太阳能电池的产量由 125.8MW(该功率为峰值功率,下同)增加到 4 000. 05MW,年平均增长率高达 41.3%。根据欧盟联合研究中心的预测,到 2030 年太阳能光伏发电在世界总电力供应中将达到 10%以上, 到 2040 年这一比例将达到 20%以上,在不远的未来将成为世界能源供应的主体。 [2] 1 太阳能光伏产业的发展现状 在技术进步和相关鼓励政策的双重推动下,太阳能光伏产业自 20 世纪 90 年代后期进入了快速发展时期。截止 2007 年底,世界累计生产了 12. 64GW 太阳能 [3] 电池,由此推断,光伏发电的实际总装机应该接近 12GW 。欧洲光伏市场是世界最大的光伏市场,而且在持续增长。其中,德国光伏市场份额全球最大, 2006 年占 51. 0%, 2007 年占 46. 99%。亚洲光伏市场近几年有所萎缩(主要由于亚洲拥有最大光伏市场的日本结束了光伏补贴政策,导致市场发展滞后),我国光伏市场份额更小。2006 年、2007 年亚洲太阳能电池产量约占世界电池产量的 65%。由此可见,亚洲是太阳能电池的主要生产和输出地区。亚洲的太阳电池生产主要集中在中国大陆、中国台湾和日本。2007 年中国大陆太阳能电池产量达到 1 088MW,占全世界太阳能电池产量的 27. 2%。从产量看,我国已经成为太阳能电池的第一生产国。 2 太阳能光伏发电的原理 光伏发电的基本原理如图 l 所示。半导体材料组成的 PN 结两侧因多数载流子(N 区中的电子和 P 区中的空穴)向对方的扩散而形成宽度很窄的空间电荷区 w, 建立自建电场 Ei。它对两边多数载流子是势垒,阻挡其继续向对方扩散,但它对两边的少数载流子(N 区中的空穴和 P 区中的电子)却有牵引作用,能把它们迅速拉到对方区域。稳定平衡时,少数载流子极少,难以构成电流和输出电能。但是, 当太阳光照射到 PN 结时,如图 l(a)、(b)所示,以光子的形式与组成 PN 结的原子价电子碰撞,产生大量处于非平衡状态的电子-空穴对,其中的光生非平衡少数载流子在内建电场Ei 的作用下,将 P 区中的非平衡电子驱向 N 区,N 区中的非平衡空穴驱向 P 区,从而使得N 区有过剩的电子,P 区有过剩的空穴。这样在 PN 结附近就形成与内建电场方向相反的光生电场 Eph。光生电场除一部分抵消内建电场外,还使 P 型层带正电,N 型层带负电,在 N 区和 P 区之间的薄层产生光生电动势。当接通外部电路时,就会产生电流,输出电能。当把众多这样小的太阳能光伏电池单元通过串并联的方式组合在一起构成光伏阵列,就会在太阳能作用下输出足够 [4] 大的电能。 3 太阳能光伏发电的几个关键问题

10MWp大型光伏电站方案

10兆瓦太阳能电站方案 10 兆瓦的太阳能光伏并网发电系统,推荐采用分块发电、集中并网方案,将系统分成10个1兆瓦的光伏并网发电单元,分别经过0.4KV/35KV变压配电装置并入电网,最终实现将整个光伏并网系统接入35KV中压交流电网进行并网发电的方案。 本系统按照10个1 兆瓦的光伏并网发电单元进行设计,并且每个1兆瓦发电单元采用4台250KW并网逆变器的方案。每个光伏并网发电单元的电池组件采用串并联的方式组成多个太阳能电池阵列,太阳能电池阵列输入光伏方阵防雷汇流箱后接入直流配电柜,然后经光伏并网逆变器和交流防雷配电柜并入0.4KV/35KV变压配电装置。(一)太阳能电池阵列设计 1、太阳能光伏组件选型 (1)单晶硅光伏组件与多晶硅光伏组件的比较 单晶硅太阳能光伏组件具有电池转换效率高,商业化电池的转换效率在15%左右,其稳定性好,同等容量太阳能电池组件所占面积小,但是成本较高,每瓦售价约36-40元。 多晶硅太阳能光伏组件生产效率高,转换效率略低于单晶硅,商业化电池的转换效率在13%-15%,在寿命期内有一定的效率衰减,但成本较低,每瓦售价约34-36元。 两种组件使用寿命均能达到25年,其功率衰减均小于15%。 (2)根据性价比本方案推荐采用165W P太阳能光伏组件,全部为国内封装组件,其主要技术参数见下表:

2、并网光伏系统效率计算 并网光伏发电系统的总效率由光伏阵列的效率、逆变器效率、交流并网等三部分组成。 (1)光伏阵列效率η1:光伏阵列在1000W/m2太阳辐射强度下,实际的直流输出功率与标称功率之比。光伏阵列在能量转换过程中的损失包括:组件的匹配损失、表面尘埃遮挡损失、不可利用的太阳辐射损失、温度影响、最大功率点跟踪精度、及直流线路损失等,取效率85%计算。 (2)逆变器转换效率η2:逆变器输出的交流电功率与直流输入功率之比,取逆变器效率95%计算。 (3)交流并网效率η3:从逆变器输出至高压电网的传输效率,其中主要是升压变压器的效率,取变压器效率95%计算。 (4)系统总效率为:η总=η1×η2×η3=85%×95%×95%=77% 3、倾斜面光伏阵列表面的太阳能辐射量计算 从气象站得到的资料,均为水平面上的太阳能辐射量,需要换算成光伏阵列倾斜面的辐射量才能进行发电量的计算。 对于某一倾角固定安装的光伏阵列,所接受的太阳辐射能与倾角有关,较简便的辐射量计算经验公式为: Rβ=S×[sin(α+β)/sinα]+D 式中:Rβ——倾斜光伏阵列面上的太阳能总辐射量 S ——水平面上太阳直接辐射量

3kw太阳能光伏发电系统设计方案解读

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。 光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个的小型系统,平均每天

发电,可供一个1kW的负载工作小时。 2.系统方案 现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度2.5℃;最热月7月份,平均温度27.6℃。 Nature Resources:

光伏系统方案的确定 本项目采用独立型光伏系统方案。系统由电池组件PV阵列,充电控制器、逆变器、蓄电池等部件组成。(原理图如下:)

独立系统原理图 本系统由太阳电池组件,跟踪控制系统,控制器,逆变器,蓄电池等部分组成。太阳电池组件在太阳光的照射下产生直流电流;而充电控制器则协调太阳能电池板、蓄电池和负载的工作,具有自动防止太阳能光伏系统的储能蓄电池过充电和过放电的功能。蓄电池在系统中的作用就是存储能量,还能对系统起着调节电量、稳定输出的作用。逆变器的作用是将蓄电池的直流电转变为适合负载使用的正弦波交流电,逆变器输出的交流电能进入配电柜;在配电柜内装有用于输出控制、过流保护、防雷保护等器件。 计算机仿真 2.3.1太阳能资源

光伏发电站设计规范GB 50797-2012

光伏发电站设计规范(GB 50797-2012)1总则 1.0.1为了进一步贯彻落实国家有关法律、法规和政策,充分利用太阳能资源,优化国家能源结构,建立安全的能源供应体系,推广光伏发电技术的应用,规范光伏发电站设计行为,促进光伏发电站建设健康、有序发展,制定本规范。 1.0.2本规范适用于新建、扩建或改建的并网光伏发电站和l00kWp及以上的独立光伏发电站。 1.0.3并网光伏发电站建设应进行接入电网技术方案的可行性研究。 1.0.4光伏发电站设计除符合本规范外,尚应符合国家现行有关标准的规定。 2术语和符号 2.1术语 2.1.1光伏组件 PV module 具有封装及内部联结的、能单独提供直流电输出的、最小不可分割的太阳电池组合装置。又称太阳电池组件(solar cell module) 2.1.2光伏组件串 photovoltaic modules string 在光伏发电系统中,将若干个光伏组件串联后,形成具有一定直流电输出的电路单元。 2.1.3光伏发电单元 photovoltaic(PV)power unit 光伏发电站中,以一定数量的光伏组件串,通过直流汇流箱汇集,经逆变器逆变与隔离升压变压器升压成符合电网频率和电压要求的电源。又称单元发电模块。 2.1.4光伏方阵 PV array 将若干个光伏组件在机械和电气上按一定方式组装在一起并且有固定的支

撑结构而构成的直流发电单元。又称光伏阵列。 2.1.5 光伏发电系统 photovoltaic(PV)power generation system 利用太阳电池的光生伏特效应,将太阳辐射能直接转换成电能的发电系统。 2.1.6 光伏发电站 photovoltaic(PV)power station 以光伏发电系统为主,包含各类建(构)筑物及检修、维护、生活等辅助设施在内的发电站。 2.1.7辐射式连接 radial connection 各个光伏发电单元分别用断路器与发电站母线连接。 2.1.8 “T”接式连接 tapped connection 若干个光伏发电单元并联后通过一台断路器与光伏发电站母线连接。 2.1.9跟踪系统 tracking system 通过支架系统的旋转对太阳入射方向进行实时跟踪,从而使光伏方阵受光面接收尽量多的太阳辐照量,以增加发电量的系统。 2.1.10单轴跟踪系统 single-axis tracking system 绕一维轴旋转,使得光伏组件受光面在一维方向尽可能垂直于太阳光的入射角的跟踪系统。 2.1.11双轴跟踪系统 double-axis tracking system 绕二维轴旋转,使得光伏组件受光面始终垂直于太阳光的入射角的跟踪系统。 2.1.12集电线路 collector line 在分散逆变、集中并网的光伏发电系统中,将各个光伏组件串输出的电能,经汇流箱汇流至逆变器,并通过逆变器输出端汇集到发电母线的直流和交流输电线路。

屋顶分布式光伏电站设计及施工方案范本

屋顶分布式光伏电站设计及施工方案

设 计 方 案 恒阳 6 月

1、项目概况 一、项目选址 本项目处于山东省聊城市,位于北纬35°47’~37°02’和东经115°16’~116°32 ‘之间。地处黄河冲击平原,地势西南高、东北低。平均坡降约1/7500,海拔高度27.5-49.0米。属于温带季风气候区,具有显著的季节变化和季风气候特征,属半干旱大陆性气候。年干燥度为1.7-1.9。春季干旱多风,回暖迅速,光照充分,太阳辐射强;夏季高温多雨,雨热同季;秋季天高气爽,气温下降快,太阳辐射减弱。年平均气温为13.1℃。全年≥0℃积温4884—5001℃,全年≥10℃积温4404—4524℃,热量差异较小,无霜期平均为193—201天。年平均降水量578.4毫米,最多年降水量为1004.7毫米,最少年降水量为187.2毫米。全年降水近70%集中在夏季,秋季雨量多于春季,春季干旱发生频繁,冬季降水最少,只占全年的3%左右。光资源比较充分,年平均日照时数为2567小时,年太阳总辐射为120.1—127.1千卡/cm^2,有效辐射为58.9—62.3千卡/cm^2。属于太阳能资源三类可利用地区。

结合当地自然条件,根据公司要求的勘察单选定站址,并充分考虑了以下关键要素: 1、有无遮光的障碍物(包括远期与近期的遮挡) 2、大风、冬季的积雪、结冰、雷击等灾害 本方案屋顶有效面积60m2,采用260Wp光伏组件24块组成,共计建设6.44KWp屋顶分布式光伏发电系统。系统采用1台6KW光伏逆变器将直流电变为220V交流电,接入220V线路送入户业主原有室内进户配电箱,再经由220V线路与业主室内低压配电网进行连接,送入电网。房屋周围无高大建筑物,在设计时未对此进行阴影分析。 2、配重结构设计 根据最新的建筑结构荷载规范GB5009- 中,对于屋顶活荷载的要求,方阵基础采用C30混凝土现浇,预埋安装地角螺栓,前后排水泥基础中心

光伏材料的发展及应用

光伏材料的发展及应用 摘要:太阳能光伏发电技术是集半导体材料、电力电子技术、现代控制技术、蓄电池技术及电力工程技术于一体的综合性技术是当今新能源发电领域的一个研究热点。本文介绍了光伏发电技术的相关概念,综述了该领域的主要研究内容和应用现状,并对光伏发电产业的未来发展趋势进行分析。 关键词:太阳能电池材料;光伏发电材料 0 引言 随着全球经济的迅速发展和人口的不断增加,以石油、天然气和煤炭等为主的化石能源正逐步消耗,能源危机成为世界各国共同面临的课题。与此同时,化石能源造成的环境污染和生态失衡等一系列问题也成为制约社会经济发展甚至威胁人类生存的严重障碍。新能源应用正成为全球的热点。太阳能资源是最丰富的可再生能源之一,它分布广泛,可再生,不污染环境,是国际上公认的理想替代能源。光伏发电是太阳能直接应用的一种形式。作为一种环境友好并能有效提高生活标准的新型发电方式,光伏发电技术正在全球范围内逐步得到应用。 1太阳能光伏发电原理及运用材料 1.1太阳能光伏发电的工作原理 “光伏发电”是将太阳光能直接转换为电能的一种发电形式。1839年,法国科学家贝克勒尔(A.E.Becqure1)首先发现了“光生伏打效应(Photovoltaic Effect)”。然而,第一个实用单晶硅光伏电池(Solar Cel1)直到一个多世纪后的1954年才在美国贝尔实验室研制成功。20世纪70年代中后期开始,光伏电池技术不断完善,成本不断降低,带动了光伏产业的蓬勃发展。光伏发电原理如图1所示。PN结两侧因多数载流子(N 区中的电子和P区中的空穴)向对方的扩散而形宽度很窄的空间电荷区w,建立自建电场E i。它对两边多数载流子是势垒,阻挡其继续向对方扩散;但它对两边的少数载流子(N 区中的空穴和P区中的电子)却有牵引作用,能把它们迅速拉到对方区域。稳定平衡时,少数载流子极少,难以构成电流和输出电能。但是,如图la、b所示,光伏电池受到太阳光子的冲击,在光伏电池内部产生大量处于非平衡状态的电子一空穴对,其中的光生非平衡少数载流子(即N 区中的非平衡空穴和P区中的非平衡电子)可以被内建电场E i牵引到对方区域,然后在光伏电池中的PN 结中产生光生电场E PV一当接通外电路时,即可流出电流,输出电能。当把众多这样小的太

太阳能光伏发电项目EPC工程施工组织设计

编号: 太阳能光伏发电项目EPC工程施工组织设计方案 编制人:职务(称): 审核人:职务(称): 批准人:职务(称): 批准部门(章): XX建设集团股份有限公司 20XX年X月X日

一、概述 (1) 1.1. 项目名称 (1) 1.2. 项目概况 (1) 1.3. 厂址概述 (1) 1.4. 气候条件 (1) 1.5. 交通 (2) 二、编制依据 (2) 2.1. 编制依据 (2) 2.2. 编制的原则及规范 (3) 三、工程设计、施工范围及主要工程量 (5) 3.1. 施工范围 (5) 3.2. 土建工程 (5) 3.2.1总平面布置 (5) 3.2.1.1布置方案 (5) 3.2.1.2管线布置 (6) 3.2.2土建工程设计 (6) 3.2.2.1新建牛舍设计 (6) 3.2.2.2综合楼设计 (7) 3.2.2.3 逆变器室设计 (7) 3.2.2.4 其他建(构)筑物 (7) 3.3. 钢结构工程 (7) 3.4.光伏工程 (7) 3.5. 电气工程 (9) 3.5.1光伏阵列—变压器组合方案 (9) 3.5.2电站主接线 (9) 3.5.3站用电接线 (10) 3.5.4电气设备布置 (10) 3.5.5防雷接地及过电压 (10) 3.5.6电缆敷设及防火 (10) 3.5.7 "孤岛效应"保护 (11) 3.6. 通讯工程 (11) 3.6.1光伏电站远动系统 (12) 3.6.2计算机监控系统 (12) 3.7. 调试工程 (12) 3.8. 保修和服务 (13) 3.9. 工程主要实物工作量 (13) 四、项目组织机构设置及职责 (16) 4.1. 施工组织机构设置 (16) 4.2. 项目部组成及职责 (18) 4.2.1.项目部组成 (18) 4.2.2.项目部各项人员职责 (18) 4.2.2.1 项目经理职责 (18) 4.2.2.2 项目总工职责 (18) 4.2.2.3 现场负责人职责 (19) 4.2.2.4 资料员职责 (19)

太阳能光伏发电材料的发展现状概要

第26卷第5期2008年10月 可再生能源 RenewableEnergyResources Vol.26No.5Oct.2008 太阳能光伏发电材料的发展现状 殷志刚 (辽宁太阳能研究应用有限公司,辽宁沈阳 摘 110034) 要:对太阳能光伏材料的研究进展做了简要综述。介绍了硅太阳能电池材料、铜铟硒(CIS)薄膜太阳能电 池材料的研究现状及其存在的问题;还介绍了与纳米技术相结合的纳米晶太阳能电池材料以及在现有基础上的进一步技术创新。 关键词:晶体硅;铜铟硒薄膜;纳米晶太阳能电池中图分类号:TN304;TM914 文献标志码:A 文章编号:1671-5292(2008)05-0017-04 ResearchstatusofsolarPVgeneratepowermaterials YINZhi-gang (LiaoningSolarEnergyR&DCO.LTD,Shenyang110034,China) Abstract:Inthispaper,wesummarizedtheresearchprogressandtheproblemsofsolarPVsili-conmaterialsatpresent.TheresearchprogressofCISthinfilmmaterialandnanocrystallinesola rcellmaterialswereintroducedrespectively.Thelatestinnovationsoftheoriginaltechnologies werealsoelaboratedinashortsummary. Keywords:crystalsilicon;CuInSe2film;nanocrystalsolarcell0 引言 家认为,到2010年太阳能光伏发电成本将降低到可与常规能源竞争的程度。 制作太阳电池的材料要满足如下要求:①半导体材料的禁带不能太宽;②要有较高的光电转换效率;③材料本身对环境不造成污染;④便于工业化生产且性能稳定。符合以上条件的太阳能光伏材料被不断地开发和应用。 1839年,法国科学家贝克雷尔发现,光照能 使半导体材料的不同部位之间产生电位差,这种现象后来被称为“光生伏打效应”。1954年,美国科学家恰宾和皮尔松在贝尔实验室首次制成了实用的单晶硅太阳能电池,从此太阳能转换为电能的实用光伏发电技术诞生[1]。如今太阳能电池的种类不断增加,应用范围日益广阔,市场规模逐步扩大,太阳能电池的研究在欧洲,美洲,亚洲大规模展开。近几年,全世界太阳能电池的生产量平均每年

太阳能光伏发电课程设计

《太阳能光伏发电原理与应用》 课程设计 课题名称:家用独立型光伏发电系统的优化设计 专业班级:光电02班 学生学号:1009040204 学生姓名:黄斌 学生成绩: 指导教师:刘国华 课题工作时间:2013.6.24 至2013.6.28 武汉工程大学教务处

一、课程设计的任务和要求 要求:1、具备独立查阅光伏发电系统设计的相关文献和资料的能力;具有查阅光伏电池、蓄电池、控制器和逆变器等光伏器件参数和型号的能力;具有 收集、加工各种信息及获取新知识的能力。 2、具备独立设计光伏发电系统的能力,能提出并较好地实施方案,能对光 伏发电系统的结构和配置进行分析研究和优化设计。 3、具备数值计算、仿真、绘图和文字处理等能力。 4、工作努力,遵守纪律,工作作风严谨务实,按期圆满完成规定的任务。 5、报告内容简练完整、立论正确、讨论充分、论述流畅、结构严谨、结论 合理;技术用语准确、符号规范统一、编号齐全、书写工整、图表完备。 6、工作中有创新意识,对前人工作有一定改进或独特见解。 7、内容不少于3000字。 技术参数:1、光伏发电系统安装地点:成都; 2、使用单晶硅光伏电池; 3、负载表 数量功率使用时间 荧光灯8 18w/盏5h/天 电视机,电脑 2 120w/个3h/天 洗衣机 1 600wh/天 电冰箱 1 1000wh/天 任务:1、选择适当的光伏电池、蓄电池、逆变器和控制器; 2、设计合理的光伏发电系统; 3、利用PVsyst软件和有关理论模拟优化设计,并对结果进行分析和总结。 二、进度安排 1、2013.6.24 选题、分析查找相关资料、熟悉PVsyst软件 2、2013.6.25 提出设计方案、思路和系统框图、系统的优化设计 3、2013.6.26 讨论、修改、进一步优化方案,光伏发电系统各部件的选型 4、2013.6.27 写出课程设计报告初稿 5、2013.6.28 整理课程设计报告、交稿 三、参考资料或参考文献 1、杨金焕、于化丛、葛亮著. 太阳能光伏发电应用技术. 第1版. 电子工业出版 社. 2009年。 2、李钟实著. 太阳能光伏发电系统设计施工与维护. 第1版. 人民邮电出版社. 2010年。 3、PVsyst软件应用教程。 指导教师签字:刘国华2013年 6 月 1 日 教研室主任签字:2013年6 月1 日

太阳能光伏发电系统(PVsyst运用)

扬州大学能源与动力工程学院本科生课程设计 题目:北京市发电系统设计 课程:太阳能光伏发电系统设计 专业:电气工程及其自动化 班级:电气0703 姓名:严小波 指导教师:夏扬 完成日期:2011年3月11日

目录 1光伏软件Meteonorm和PVsyst的介绍---------------------------------------------3 1.1 Meteonorm--------------------------------------------------------------------------3 1.2 PVsyst-------------------------------------------------------------------------------4 2中国北京市光照辐射气象资料-------------------------------------------------------11 3独立光伏系统设计----------------------------------------------------------------------13 3.1负载计算(功率1kw,2kw,3kw,4kw,5kw)-----------------------------13 3.2蓄电池容量设计(电压:24V,48V)----------------------------------------13 3.3太阳能电池板容量设计,倾角设计--------------------------------------------13 3.4太阳能电池板安装间隔计算及作图。-----------------------------------------16 3.5逆变器选型--------------------------------------------------------------------------17 3.6控制器选型--------------------------------------------------------------------------17 3.7系统发电量预估--------------------------------------------------------------------18

相关文档
最新文档