合成气一步法制备低碳烯烃的催化剂研究进展-浙大

煤制烯烃研究报告范本

煤制烯烃研究报告

煤制烯烃工艺研究报告 一、煤制烯烃简介 制备丙烯的传统方法是采用轻油(石脑油、轻柴油)裂解工艺,但石油储量有限,因此世界各国开始致力于非石油路线制乙烯和丙烯类低碳烯烃的开发。其中,以煤或天然气为原料制甲醇,再由甲醇制低碳烯烃的工艺受到重视。 煤制烯烃主要指乙烯、丙烯及其聚合物。聚乙烯主要应用于粘合剂、农膜、电线和电缆、包装(食品软包装、拉伸膜、收缩膜、垃圾袋、手提袋、重型包装袋、挤出涂覆)、聚合物加工(旋转成型、注射成型、吹塑成型)等行业。 丙烯是仅次于乙烯的一种重要有机石油化工基本原料,主要用于生产聚丙烯、苯酚、丙酮、丁醇、辛醇、丙烯腈、环氧丙烷、丙二醇、环氧氯丙烷、合成甘油、丙烯酸以及异丙醇等。 煤制烯烃简单来说可分为煤制甲醇、甲醇制烯烃这两个过程。主要有四个步骤:首先经过煤气化制合成气,然后将合成气净化,接着将净化合成气制成甲醇,甲醇在催化剂的作用下脱水生成二甲醚(DME),形成甲醇、二甲醚和水的平衡混合物,然后转化为低碳烯烃,烯烃经过聚合反应生产聚烯烃。当前,国际上有几种领先的甲醇制烯烃工艺,如美国UOP公司与挪威海德鲁(Lydro)公司的甲醇制烯烃工艺(MTO)、德国鲁奇(Lurgi)公司的甲醇制丙烯工艺(MTP)、美国AtoFina与UOP公司的烯烃裂

解工艺等,其中Lurgi公司的MTP工艺已经在国内的生产装置上应用,在最先实现工业化。 二、国外煤制烯烃技术 MTO是国际上对甲醇制烯烃的统一叫法。最早提出煤基甲醇制烯烃工艺的是美孚石油公司(Mobil),随后巴斯夫公司(BASF)、埃克森石油公司(Exxon)、环球石油公司(UOP)及海德鲁公司(Hydro)等相继投入开发,在很大程度上推进了MTO 的工业化。1995年,UOP与挪威Norsk Hydro公司合作建成一套甲醇加工能力0.75 吨/天的示范装置,连续运转90天,甲醇转化率接近100%,乙烯和丙烯的碳基质量收率达到80%。1998年建成投产采用UOP/Hydro工艺的20万吨/年乙烯工业装置,截止已实现50万吨/年乙烯装置的工业设计,并表示可对设计的50万吨/年大型乙烯装置做出承诺和保证。UOP/Hydro的MTO工艺能够在比较宽的范围内调整反应产物中C2与C3;烯烃的产出比,可根据市场需求生产适销对路的产品,以获取最大的收益。 惠生(南京)清洁能源股份有限公司甲醇制烯烃装置采用环球油品公司(UOP)的甲醇制烯烃(MTO)/烯烃裂化(OCP)技术,是全球首套采用霍尼韦尔先进技术(Honeywell)的装置,与传统工艺相比,该项工艺被验证拥有高收率和低副产品形成的优点。

浙大电气工程学院部分专业简介

浙大电气工程学院部分专业简介 电工理论与新技术学科 电工理论与新技术学科于1981年在国内首批建立理论电工硕士点,1996年起获电工理论与新技术博士学位授予权。本学科今年来获国家、部、省级科技成果共6项,发表学术论文130余篇,其中34篇为SCI、EI所检索,编著教材14部,获专利6项。学科实体建于电气工程学院所属电工电子新技术研究所与电工电子基础教学中心,下设一个电工电子新技术研究所。 本学科现有教授2人,副教授12人,高级工程师2人,讲师、工程师9人;具有博士学位的3人,硕士学位的12人;其中40岁以下的青年教师占70%以上。94年以来,本学科培养博士研究生3名,硕士研究生30名。 主要研究方向 电磁装置中综合物理场效应与电磁参数研究的计算机仿真技术;电动车技术的应用研究;电磁兼容技术;电气控制技术;强磁场和磁悬浮技术的应用研究;电磁测量技术;生物电磁场仿真研究。 主干课程 网络理论;电磁场原理;电工电子学;电路原理;信号与系统;可编程控制器系统;电磁场数值分析;电气测量技术;数字信号处理技术等。 指导教师 教授: 王小海,杨仕友(博导),姚缨缨,陈隆道 副教授: 范承志,孙盾,童梅,陈忠根,贾爱民, 姜国均,藩丽萍,王玉芬,应群民,张伯尧, 张兆祥 高级工程师: 汤巍松,黄海龙 电力电子与电力传动学科 电力电子技术学科是我国首批设立的重点学科,设有首批博士学位(1981年)和硕士学位(1981年)授予点和电工一级学科博士后流动站,建有电力电子技术国家专业实验室和电力电子应用技术国家工程研究中心,被列为国家"211"工程浙江大学重点建设学科群及浙江省重点学科。98年来,本学科共荣获国家及省、部级奖励共17项。发表在国内外核心期刊和国际会议论文共400余篇,其中SCI和EI收录70篇,ISTP收录14篇。出版著作教材4部。本学科负责组织了94年第一届电力电子及运动控制国际会议,97年11月在浙大主持承办了第二届电力电子及运动控制国际会议,协办了2000年第三届电力电子及运动控制国际会议。 本学科现有41人,其中,中国工程院院士1人,"长江学者奖励计划"特聘教授1人,正高职14人(博士生导师11人),副高职16人;40岁以下高职6人,具有博士学位16人,硕士学位13人。有多位教授在IEEE、IEE、EPE、全国石化工业电气委员会、中国电工技术学会、电力电子学会、中国电源学会、浙江省电机动力学会、浙江省电源学会等国内外著名

合成气直接制取二甲醚工艺简介

合成气直接制取二甲醚工艺简介 中国科学院大连化学物理研究所 天然气化工与应用催化研究室 1. 前言 随着煤化工、天然气化工和C1 化学的发展,人们竞相寻找除合成气制合成氨和甲醇外的加工途径,合成气(煤基或天然气)直接制取二甲醚已成为关注焦点。由于二甲醚是具有多种用途的环保产品,许多发达国家投入巨资进行合成气直接制取二甲醚合成技术及其下游产品的开发研究。 与国外相比,我国对二甲醚的研究工作起步较晚,大连化学物理研究所则是国内最早从事合成气直接制取二甲醚研究的科研单位之一。合成气直接制取二甲醚是国家“八五”科技攻关项目“合成气经由二甲醚制取低碳烯烃”的子课题,该项目历经实验室研究和中试放大,于1995年八月完成全部工艺开发工作。“合成气经由二甲醚制取低碳烯烃”项目分别获1996年度中国科学院科技进步特等奖、国家“八五”科技攻关重大科技成果奖(国家计委、国家科委及财政部颁发),使建设万吨级二甲醚工业示范装置成为可能。 2.二甲醚的性质与用途 二甲醚的分子式CH3OCH3,常压下沸点:-24.9 ℃,20℃时饱和蒸汽压0.5 MPa,爆炸极限3.4-18℅,自燃温度350℃.二甲醚无毒、无味、易挥发,它不易形成过氧化物,在空气中十分稳定。二甲醚与水及有

机溶剂互容性好。 二甲醚是一种在制药、染料、农药、涂料及日用化学等领域有着非常广泛用途的精细化工产品。随着人们环保意识的增强,目前世界各国都在寻求对环境无害的气雾剂来替代氯氟烃。二甲醚作为气雾剂有其独特的优点-对金属无腐蚀、易液化以及它的溶解能力使二甲醚在配制气雾剂产品中具有双重功能:推进剂和溶剂。由于它水溶性好,可以大幅度降低气雾剂中乙醇及其他有机物的含量,从而减少对环境的污染,因此二甲醚在气溶胶工业中已得到广泛的应用,尤其在欧美发达国家。广东省中山精细化工实业有限公司已建立规模为5000吨/年二甲醚的装置,其全部产品用作气雾剂。此外,精品二甲醚还可用作制冷剂和发泡剂等。我们认为二甲醚最大宗用途是作为民用燃料代替石油液化气及作为车用燃料部分取代柴油,在缺油富气(或多煤)地区可采用合成气经二甲醚制取汽油及乙烯、丙烯等低碳烯烃,以减少对石油资源的依赖,在我国更具迫切性和重要性。 3.合成气直接制取二甲醚 由合成气合成甲醇已实现工业化生产,最大的工业装置已超过100万吨/年,但甲醇的合成反应受热力学平衡限制,单程转化率较低,而由合成气一步法制二甲醚反应的平衡转化率很高,基本不受热力学平衡限制。目前国内外众多科研机构从事合成气制二甲醚生产工艺的研究,按生产步骤分为一步法和两步法两种,现在人们经常提到的合成气制二甲醚生产工艺,实际上已特指一步法(或直接法)而言;按合成气生产所采用的原料来源化分:煤制气、油制气、天然气制气等。

电力电子技术作业1

浙江大学远程教育学院 《电力电子技术》课程作业 姓名:林岩学号:714066202014 年级:14秋学习中心:宁波电大————————————————————————————— 第1章 1.把一个晶闸管与灯泡串联,加上交流电压,如图1-37所示 图1-37 问:(1)开关S闭合前灯泡亮不亮?(2)开关S闭合后灯泡亮不亮?(3)开关S闭合一段时间后再打开,断开开关后灯泡亮不亮?原因是什么? 答: (1)不亮;(2)亮;(3)不亮,出现电压负半周后晶闸管关断。 2.在夏天工作正常的晶闸管装置到冬天变得不可靠,可能是什么现象和原因?冬天工作正常到夏天变得不可靠又可能是什么现象和原因? 答: 晶闸管的门极参数I GT、U GT受温度影响,温度升高时,两者会降低,温度升高时,两者会升高,故会引起题中所述现象。 3.型号为KP100-3,维持电流I H=4mA的晶闸管,使用在如图1-38电路中是否合理?为什么?(分析时不考虑电压、电流裕量) (a) (b) (c) 图1-38 习题5图 .答: (1) 100 H d

R TM U V U >==3112220故不能维持导通 (2) 而 即晶闸管的最大反向电压超过了其额定电压, 故不能正常工作 (3) I d =160/1=160A>I H I T =I d =160A >1.57×100=157A 故不能正常工作 4.什么是IGBT 的擎住现象?使用中如何避免? 答: IGBT 由于寄生晶闸管的影响,可能是集电极电流过大(静态擎住效应),也可能是d u ce /d t 过大(动态擎住效应),会产生不可控的擎住效应。实际应用中应使IGBT 的漏极电流不超过额定电流,或增加控制极上所接电阻R G 的数值,减小关断时的d u ce /d t ,以避免出现擎住现象。 H d I A I I I >==== 9.957.1/...56.152 10220 22

甲醇制取低碳烯烃

成果与项目 Achievements&Projects 2006年.第21卷.第5期 甲醇制取低碳烯烃(DMTO)技术的研究开发及工业性试验 关键词甲醇制取低碳烯烃(DMOT),研究开发,工业性试验 *大连化学物理研究所研究员,该项目负责人 收稿日期:2006年9月1日 刘中民* 齐越 (中国科学院大连化学物理研究所 大连116023) 406 由中科院大连化学物理研究所与陕西新兴煤化工科技发展有限责任公司、中国石化集团洛阳石化工程公司合作的“甲醇制取低碳烯烃(DMTO)技术开发及工业性试验”项目取得重大突破性进展, 在日处理甲醇 50吨的工业化试验装置上实现了近100% 甲醇转化率,低碳烯烃(乙烯、丙烯、丁烯)选择性达90%以上的结果。2006年8月23日该项目通过了国家级鉴定。试验装置的成功运转及下一步大型化DMTO工业装置的建设,对我国综合利用能源、拓展低碳烯烃原料的多样化具有重大的经济意义和战略意义。 1开发背景和意义 乙烯、丙烯等低碳烯烃是重要的基本有机化工原料,传统上乙烯和丙烯的来源主要是烃类蒸汽裂解,原料主要是石脑油。近年来随着国际原油价格上涨,烯烃的生产成本不断攀升。在此背景下,开发烯烃生产新的非石油路线的要求日益紧迫。20世纪70年代以来的三次世界石油危机,促使人们去寻求进一步开发非石油资源的新途径,极大地推动了煤化工和天然气化工的发展。而甲醇制取低碳烯烃过程(MTO)的研究开发,则是 从非石油资源出发制取化工产品的一条全新的工艺路线。随着煤或天然气经合成气生产甲醇的技术日臻成熟,煤或天然气经由甲醇制取低碳烯烃(MTO)成为备受关注的一条生产路线,而关系到这条路线是否能畅通的核心技术主要集中在MTO过程。 近年来,随着我国社会经济的发展及能源需求的日益增长,我国的石油供应面临严峻的形势。另一方面,我国煤炭与天然气资源极其丰富,占世界总储量的1/6,而煤是我国在世界上真正占优势的资源。发展以煤代油及以非石油资源制取石油化工产品和油品的煤化工技术非常符合我国的国情,对于调整产业结构,减轻对石油的过分依赖,开发新的非石油路线的化工过程的发展具有战略性的意义。为此,中央提出加快发展以甲醇、乙醇、二甲醚、煤制油等作为石油替代品的计划,并将煤化工技术列为国家科技攻关的重点之一。中国科学院立足我国基本国情,将开发以煤或/和天然气为原料经由甲醇制取低碳烯烃的新工艺过程列为战略性重点课题。 2主要研制过程 大连化学物理研究所从上世纪80年代初便率先开展了甲醇制取低碳烯烃的新工 艺过程的研究,先后开发了两代甲醇制取低

合成气工艺

四合成气系化学品 由合成气可以生产一系列的化学品。 1.氨及其产品:合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨。 最主要的合成气化学品,是用合成气中的氢和空气中的氮在催化剂作用下加压反应制得的氨。氨加工产品有尿素、各种铵盐(如氮肥和复合肥料)、硝酸、乌洛托品、三聚氰胺等。它们都是重要的化工原料。 合成氨的生产分为三部分: 造气——原(燃)料通人空气(氧气)和蒸汽,汽化成为水煤气(半水煤气),该粗原料气由氢气、氮气、二氧化碳、一氧化碳和少量硫化氢、氧气及粉尘组成,原料气经废热锅炉回收热量后存于气柜; 变换净化——气柜来的原料气通过电除尘器除去粉尘进入气压机加压,经脱硫(脱除硫化氢)、变换(将一氧化碳转化为氢和二氧化碳)、脱碳(吸收脱除二氧化碳)后,再次加压进入铜洗塔(用醋酸铜氨液)和碱洗塔(用苛性钠溶液)进一步除去原料气中的一氧化碳和二氧化碳(含量降至十万分之三以下),获得纯氢气和氢气混合气体; 合成——净化后的氢氮混合气(H2:N2=3:1)经压缩机加压至30~32MPa进入合成塔,在铁触媒存在下高温合成为氨。 生产是在密封、高压、高温下连续进行的。 2.甲醇及其产品:甲醇是合成气化学品中第二大产品,是一氧化碳和氢气在催化剂作用下反应制得的,其用途和加工产品十分广泛。甲醇羰基化制得醋酸,是生产醋酸的主要方法,甲醇羰基化法是以甲醇、CO为原料合成乙酸。所用催化剂最初是Co配合物。1970年,美国Monsanto公司开发了CH3I促进的RhI3的催化剂体系,并使之工业化。Rh工艺的优点在于反应压力相对较低(10~25 bar pco),温度适中(175℃),选择性>99%,没有副产品生成,产品纯度达食品级、药典级;甲醇经氧化脱氢可得甲醛,进一步可制得乌洛托品,后两者都是高分子化工的重要原料。由醋酸甲酯羰基化生产醋酐,被认为是当前生产醋酐最经济的方法,1983年,美国田纳西伊斯曼公司建立了一个年产226.8kt(5亿磅)的工厂。此外,正在开发的尚有通过二醋酸乙二醇酯制醋酸乙烯,由甲醇生产低碳烯烃,由甲醇同系化生产乙醇,由甲醇通过草酸酯合成乙二醇等工艺。 以天然气为原料生产甲醇,大多采用蒸汽一段转化,低压合成,三塔精馏的技术, 工艺过程:以天然气为原料,采用中压蒸汽转化制甲醇合成气中、低压合成甲醇,三塔精馏制取精甲醇的工艺。 工艺装置共分以下四个工序: (1)造气工序 a天然气脱硫 在一定的温度、压力下,天然气通过氧化锰脱硫剂及氧化锌脱硫剂,将天然气中的有机硫、H2S脱至1PPM以下,以满足蒸汽转化催化剂对硫的要求,其主要反应为:COS+MnO →MnS+CO2;H2S+MnO→MnS+H2O;H2S+ZnO→ZnS+H2O b 烃类的蒸汽转化 烃类的蒸汽转化是以水蒸汽为氧化剂,在镍催化剂的作用下将烃类物质转化,得到合成甲醇的原料气。这一过程为吸热过程故需外供热量,转化所需的热量由转化炉辐射段燃烧燃料气提供。 在镍催化剂存在下其主要反应如下:CH4+H2O→CO+3H2+Q;CO+H2O→CO2+H2+Q (2)压缩工序 压缩工序包括原料气压缩、合成气压缩和循环气压缩。 由造气工序来的转化气,经合成气压缩到一定的压力,与合成工序来的循环气混合,进入循环气压缩机升压后返回合成系统。 (3)合成工序 甲醇合成是在一定的压力下,在催化剂的作用下,合成气中的一氧化碳,二氧化碳与氢反应生成甲醇,基本反应式为: CO+2H2=CH3OH+Q;CO2+3H2=CH3OH+H2O+Q. 在甲醇合成过程中,尚有如下副反应; 2CO+4H2=(CH3)O+H2O;2CO+4H2=C2H5OH+H2O;4CO+8H2=C4H5OH+3H2O。

浙江大学电子信息工程专业介绍

电气工程学院电子信息工程专业 第一部分专业历史沿革 浙江大学电子信息工程专业隶属于浙江大学电气工程学院的应用电子学系,是应用电子学系唯一的本科专业。电子信息工程由应用电子技术专业发展来,它是全国最早的电力电子技术学科专业,在国内享有盛誉,在国外也极具影响力。专业师资力量雄厚,既有资深博学的知名教授,如首批中国工程院院士汪槱生教授,也有朝气蓬勃的中青年学术骨干。在科学技术飞速发展的今天,电子信息工程专业始终与时俱进,不断创造新的辉煌。 1.1 专业的发展历史 浙江大学电子信息工程其前身是应用电子技术专业,它是全国最早的属电力电子技术学科专业。 在1953年,浙江大学电机系创办了“电机与电器”专业,共分为电机制造和电器制造两个学科,本专业前身的专业名称为“电机与电器专业电器专门化”。 在1970年,在世界电力电子期间快速发展的前提下,“电机与电器专业电器专门化”专业联合电机系其他教研室进行了可控硅元件制造和可控硅中频电源研制,生产的100A/800V可控硅在当时国内有一定声誉,研制的100kW/1kHz并联逆变中频电源为国内首创,专业名称更改为“工业电子装置”专业。进行可控硅新技术应用,在1973年春开办了可控硅中频电源训练班,为工厂培养了一批(约40人)中频电源制造骨干。从1973年秋开始又以“工业电子技术”专业为名连续四年招收了四届工农兵学员,专业方向扩展为可控硅应用技术和数字控制技术。 在1977年时,专业由“工业电子装置”专业改名为“工业电子技术”专业。1977年起开始招收本科生,1978年起招收硕士研究生,1981年被国家批准为我国第一个电力电子技术硕士和博士授权点。 1985年根据原教育部颁发的专业目录要求,改名为“应用电子技术”专业。专业所对应的二级学科为电力电子技术学科,在1988年被列为首批国家重点学科。1989年至今先后建立了国内唯一的国家电力电子技术专业实验室和国内高校唯一的国家电力电子应用技术工程研究中心(1996年),被列为国家“211”工程浙江大学重点建设学科群。 在1999年时,根据教育部颁布的新的专业目录,由原来的“应用电子技术”改名为“电子信息工程”专业,属于浙江大学电气工程学院应用电子学系。同年,浙江大学信息与电子工程学系与杭州大学电子工程系合并组建新的浙江大学信息与电子工程学系,设立了电子信息工程(信电)专业。此后,浙江大学同时存在2个电子信息工程和专业,分属于信息与电子工程学院的信息与电子工程学系以及电气工程学院的应用电子学系。 2000年成立浙江大学超大规模集成电路研究所,国内知名集成电路专家严晓浪教授担任所长。 2002年,根据集成电路人才培养的需要,新成立“电子信息科学与技术”专业,招收本科生。 2003年,电子信息科学与技术并入电子信息工程专业统一招收本科生。

合成气一步法制备低碳烯烃工艺技术路线

未来煤化工中煤制烯烃发展新趋势 低碳烯烃(乙稀、丙稀和丁稀,C2=~C4=)是化学工业生产中重要的基础有机化工原料,其可以用于制造高附加值的化学品,如:聚合物、塑料、化妆品、有机溶剂、洗涤剂和药品等。低碳烯烃生产主要来源于传统的石油路线工艺,包括石脑油的蒸汽裂解工艺和催化裂化增产烯烃工艺。非石油路线工艺包括甲醇制烯烃(MTO)、甲醇制丙烯(MTP)、丙烷脱氢、乙醇脱水制烯烃、C3/C4烷烃混合脱氢制烯烃、煤基合成气制低碳烯烃等工艺。目前,生产低碳烯烃的工艺朝着多元化方向发展,并不断推向工业化应用,体现出较强的竞争力。 从煤基合成气出发制烯烃工艺包括的工艺有很多种,其中间接法主要有两种:一是指合成气先制成甲醇,再经甲醇制丙烯(Methanol to Propylene, MTP)或低碳烯烃(Methanol to Olefin, MTO);二是合成气先制成二甲醚,再经二甲醚制备低碳烯烃(Syngas/Dimethyl ether to Olefins, SDTO)。直接法是指合成气一步转化制低碳烯烃(Syngas to Olefin, STO)。其中MTO工艺己经实现工业化,是目前合成气间接法制烯烃最成熟的工艺路线。

煤基合成气直接制备低碳烯烃的工艺路线尚未工业化应用,且催化剂研究现处于实验室研发阶段。但是,合成气通过费托合成制低碳烯烃工艺具有较好的原料供应保障和产品市场需求,且与传统蒸汽裂解和经甲醇制烯烃(MTO)工艺相比,具有原料价格优势,工艺技术路线短,并副产高附加值油品,在经济性上具有较强的竞争力,应用前景广阔。煤基合成气一步法制备低碳烯烃烯 烃工艺路线将是今后煤化工发展的新趋势,请大家拭目以待!

天然气制烯烃技术简介

天然气制烯烃技术简介 胡原 李凌辉 陈登峰 (大庆油田化工有限公司技术研究院) 天然气作为相对稳定的化工原料,在生产合成氨、甲醇、乙炔及炔属精细化学品、合成气等化工产品方面一直保持原料和技术经济领先优势。目前,天然气化工仍然是世界化学工业的重要支柱,生产出世界上约85%的合成氨、90%的甲醇、80%的氢气、60%的乙炔及炔属精细化学品。 从20世纪90年代初开始,世界石油价格逐渐升高,天然气探明储量增长,出现了天然气制烯烃(GTO)、天然气合成油(GTL)和天然气制二甲醚等新技术,导致了天然气化工结构的重大变化。这使天然气大规模化工应用成为可能,同时还可以通过低碳烯烃产业链,实现气化工向石油化工转变。 11天然气制烯烃技术(M TO)简介 目前世界上99%的乙烯来自使用石脑油、轻柴油和轻烃作原料,而用天然气为原料则是一条新工艺路线。当前天然气制烯烃的研究开发主要有三种方法:天然气直接合成制烯烃,称为一步法;天然气经合成气制烯烃,称为二步法;天然气经甲醇制烯烃,称为三步法。 一步法制取乙烯是一条较理想的工艺路线,但技术难度很大,这方面的研究工作目前尚处于实验室阶段。二步法是采用费-托法,但催化剂是铁、钴、镍,易形成饱和烃,轻质烯烃收率不高,近期没有工业化可能。 由甲醇制取烯烃的工业化研究已进行了多年。如环球油品公司(UO P)、海德罗公司、美孚石油公司、巴斯夫公司、埃克森石油公司和鲁奇油气公司(L urgi)等均进行了多年研究。 UOP/H YDRO M TO反再系统是由流化床反应器和再生器组成的。M TO反应为放热反应,通过在外催化剂冷却器产生蒸汽带走反应热。失效催化剂送入再生器烧掉积碳,反应在350~600℃、011~013M Pa条件下运行。M TO工艺的烯烃回收系统,与石脑油制烯烃流程相似,但反应温度低,反应过程中有极少炔烃、双烯烃及芳烃产生。反应混合气在急冷系统冷却,混合气被加压,经过脱除CO2系统,再干燥脱水进入产品回收段,该段由脱乙烷塔、乙炔转化器、脱甲烷塔、C2分离塔、C3分离塔、脱丙烷塔和脱丁烷塔组成。 UOP公司于1995年6月建设了一套甲醇加工能力为0175t/d的示范装置,连续运转90d,催化剂经过450次反应-再生循环,性能稳定,甲醇转化率和乙烯选择性高,乙烯和丙烯产物相对收率的变化有很大灵活性。 21经济性比较 M TO工艺的竞争力主要是路线的竞争,即传统的石脑油与天然气制烯烃工艺两条路线的比较。原油价格与石脑油、乙烯、丙烯价格关联性的模型见图1 。 图1 关联模型 在图1价格模型的基础上,分别对天然气—甲醇—M TO(GTO)联合装置进行经济评价,找出项目内部收益率与石油价格的对应关系图。从图中可以明显看出,在天然气价115元/石油标方时,随着石油价格的不断升高,GTO项目的内部收益率也在不断上升,当石油价格超过30美元后, GTE项目的内部收益率已经达到中石油要求的15%以上。 在GTO项目内部收益率15%时,石油价格变化条件下,相对应GTO项目可以承受的天然气价格见图2 。 图2 GTO所得税后内部收益率15%时的 天然气价格与石油价格的对应关系 从图2可看出,GTO项目在内部收益率15%时,随着石油价格的不断升高,GTO项目所能够承受的天然气价格也在不断升高;石油价格在30美元/桶时,GTO项目所承受的天然气价格将达到115元/石油标方。 甲醇制烯烃工艺为乙烯、丙烯的生产提供了新的来源,天然气化工不必再拘泥于甲醇、乙炔、合成氨、醋酸等几个狭窄的领域内。甲醇制烯烃技术将成为天然气化工大发展的一个里程碑。 (栏目主持 樊韶华) 66 油气田地面工程第25卷第8期(200618)

浙江大学电气工程专业

浙江大学电气工程专业 一、专业简介 电气工程及其自动化专业培养从事电力系统及电气装备的运行与控制、信息处理、研制开发、试验分析的高级专门人才;培养方向为电力系统自动化和电气装备与控制。世界电力技术的自动化水平迅速提高,电力行业由垄断走向竞争已成国际趋势,电力市场的运作涉及电气工程、信息、经济、管理等技术领域。电力工业是我国国民经济发展的支柱产业,发展的空间巨大,迫切需要相关技术的支持。电力系统自动化是广泛运用信息和网络技术,进行包括电力市场技术、电子商务管理和地理信息系统等理论和应用研究广泛交叉的技术领域,是信息技术实现产业化的主要领域之一。电气装备与控制方向着眼培养机电一体化高级专业人才。随着科学技术的发展,特别是电力电子技术、微电子技术和信息处理技术的发展,为电气装备与控制领域注入了勃勃生机。目前我国生产的机电产品实现机电一体化的还极少,许多领域近于空白,诸如数控加工中心、工业机器人以及大型成套生产加工设备等还多数依赖进口,电气装备与控制是为国家增强技术创新能力,积极提供高技术和先进适用技术的主要领域之一。我国加入WTO为该专业的发展提供了广阔的前景。本专业现有院士1名、“长江学者计划”特聘教授1名、教授18名(其中博士生导师15名)、副教授17名,所在的学科为国家级重点学科。设有电力系统及其自动化、电机电器及其控制、电力电子与电力传动三个博士点和硕士点,电气工程学科博士后流动站覆盖本专业。本专业培养能够从事与电力系统与电气装备的运行、自动控制、信息处理、试验分析、研制开发,以及电力电子、经济管理、计算机网络应用等工作的宽口径、复合型高级人才。主要特点是强电

与弱电、电工技术与电子技术、软件与硬件、元件与系统相结合,使学生受到电工电子、信息控制及计算机技术方面的基本训练,掌握本专业领域所必需的基本理论和相关的工程技术、经济和管理知识。在宽口径培养的基础上,本专业率先实行本科生导师制,高年级学生可以在导师的指导下选修专业核心课程,走进导师的实验室,参加科研工作。本专业设有电力系统自动化、电力系统动态模拟、继电保护、高压、电机及其控制、电气装备及其控制、数字信号处理器与电气控制、自动控制元件等实验室。设有电力系统自动化、电力市场与电力经济、电机及其控制、航天电气与微特电机四个研究所。毕业生有广泛继续深造机会和广阔的就业去向,不仅在电力工业和电气产业有大量需求,还受到信息、电子、机械、运输、商检、外贸等行业及诸多高技术领域行业的欢迎。主要课程:电路原理、电子技术基础、电机学、计算机软件基础、微机原理及应用、自动控制、数字信号处理、计算机网络与通讯等课程。高年级根据社会需求,分设电气装备的控制与设计分析、发电厂和电力系统的电气设计与运行等方面的专业课和专业选修课。 二、导师信息及研究方向 黄进,男,招生专业:电机与电器;研究方向:电气装备的计算机控制,电机控制与电气传动,智能控制技术应用;为研究生新开设并主讲课程两门。指导硕士研究生10名,博士研究生4名,博士后1名。积极参加教学改革,与同事一道,成功地将传统的电机制造专业改造成电机及其控制专业。成果获国家级教学成果二等奖,浙江省教学成果一等奖。90年以来,共主持国家自然科学基金项目2项,省重大科技计划项目1项,省自然科学基金项目1项,企业合作项目近10项。科研成果1项获国家教委科

煤制烯烃简介

煤制烯烃项目简介 一、煤制烯烃 煤制烯烃简单来说可分为煤制甲醇、甲醇制烯烃这两个过程。主要有四个步骤:首先通过煤气化制合成气,然后将合成气净化,接着将净化合成气制成甲醇,甲醇在催化剂得作用下脱水生成二甲醚(DME),形成甲醇、二甲醚与水得平衡混合物,然后转化为低碳烯烃,烯烃经过聚合反应生产聚烯烃。 煤制烯烃主要指乙烯、丙烯及其聚合物、聚乙烯主要应用于粘合剂、农膜、电线与电缆、包装(食品软包装、拉伸膜、收缩膜、垃圾袋、手提袋、重型包装袋、挤出涂覆)、聚合物加工(旋转成型、注射成型、吹塑成型)等行业。 丙烯就是仅次于乙烯得一种重要有机石油化工基本原料,主要用于生产聚丙烯、苯酚、丙酮、丁醇、辛醇、丙烯腈、环氧丙烷、丙二醇、环氧氯丙烷、合成甘油、丙烯酸以及异丙醇等。 二、国外煤制烯烃技术 MTO就是国际上对甲醇制烯烃得统一叫法。最早提出煤基甲醇制烯烃工艺得就是美孚石油公司(Mobil),随后巴斯夫公司(BASF)、埃克森石油公司(Exxon)、环球石油公司(UOP)及海德鲁公司(Hydro)等相继投入开发,在很大程度上推进了MTO得工业化。1995年,UOP与挪威NorskHydro公司合作建成一套甲醇加工能力0.75 吨/天得示范装置,连续运转90天,甲醇转化率接近100%,乙烯与丙烯得碳基质量收率达到80%。1998年建成投产采用UOP/Hydro工艺得20万吨/年乙烯工业装置,截止2006年已实现50万吨/年乙烯装置得工业设计,并表示可对设计得50万吨/年大型乙烯装置做出承诺与保证、UOP/Hydro得MTO工艺可以在比较宽得范围内调整反应产物中C2与C3;烯烃得产出比,可根据市场需求生产适销对路得产品,以获取最大得收益。 惠生(南京)清洁能源股份有限公司甲醇制烯烃装置采用环球油品公司(UOP)得甲醇制烯烃(MTO)/烯烃裂化(OCP)技术,就是全球首套采用霍尼

第五章合成气生成方法

第五章 合成气的生成方法

5.1概述 一概述 合成气,是以氢气、一氧化碳为主要组分供化学合成用的一种原料气。由含碳矿物质如煤、石油、天然气以及焦炉煤气、炼厂气等转化而得。按合成气的不同来源、组成和用途, 它们也可称为煤气、合成氨原料气、甲醇合成气(见甲醇)等。合成气的原料范围极广,生 产方法甚多,用途不一,组成(体积%)有很大差别:H2 32~67、CO 10~57、CO22~28、CH4 0.1~14、N2 0.6~23。 制造合成气的原料含有不同的H/C摩尔比:对煤来说约为1:1;石脑油约为 2.4:1;天然气最高,为4:1。由这些原料所制得的合成气,其组成比例也各不相同,通常不能直接满足合成 产品的需要。例如:作为合成氨的原料气,要求H2/N2=3,需将空气中的氮引入合成气中(见合成氨原料气);生产甲醇的合成气要求H2/CO≈2或(H2-CO2)/(CO+CO2)≈2;用羰基合成法生产醇类时,则要求H2/CO≈1;生产甲酸、草酸、醋酸和光气等则仅需要一氧化碳。 为此,在合成气制得后,尚需调整其组成,调整的主要方法是利用水煤气反应(变换反应):CO+H2O=CO2+H2。以降低一氧化碳,提高氢气的含量。 二历史沿革 合成气的生产和应用在化学工业中具有极为重要的地位。早在1913年已开始从合成气 生产氨,现在氨已成为最大吨位的化工产品。从合成气生产的甲醇,也是一个重要的大吨位 有机化工产品。1939年,德国开发的乙炔氢羧化工艺曾是生产丙烯酸及其酯的重要方法。 第二次世界大战期间,德国和日本曾建立了十多座以煤为原料用费托合成从合成气生产液体 燃料(见煤间接液化)的工厂,战后由于有廉价的原油,这些厂先后关闭。1945年,德国鲁尔化学公司用羰基合成(即氢甲酰化)法生产高级脂肪醛和醇开发成功,此项工艺技术发展很快。60年代,在传统费托合成的基础上,南非开发了SASOL工艺,生产液体燃料并联产乙 烯等化工产品,以适应当地的特殊情况。1960年,联邦德国巴登苯胺纯碱公司的甲醇羰基 化生产醋酸工艺工业化;1970年,美国孟山都公司对此法作了重大改进,使之成为生产醋 酸的主要方法,进而带动了有关领域的许多研究。70年代石油涨价以后,又提出了碳一化 学的概念。对合成气应用的研究,引起了各国极大的重视。 三生产方法 第二次世界大战前,合成气主要是以煤为原料生产的;战后,主要采用含氢更高的液态烃(石油加工馏分)或气态烃(天然气)作原料。70年代以来,煤气化法又受到重视,新技 术及各种新的大型装置相继出现,显示出煤在合成气原料中的比重今后将有可能增长。但目前仍主要从烃类生产合成气,合成气生产方法主要有蒸汽转化法(SMR)、部分氧化法(POX)和自热转化法(ATR)。 1.蒸汽转化:此法以天然气或轻质油为原料,与水蒸气反应制取合成气。1915年,A.米塔斯和C.施奈德用蒸汽和以甲烷为主的天然气,在镍催化剂上反应获得了氢。1928年,美国标准油公司首先设计了一台小型蒸汽转化炉生产出氢气。第二次世界大战期间,开始用此法生产合成氨原料气。 (1)天然气蒸汽转化:主要工艺参数是温度、压力和水蒸气配比。由于此反应是较强的吸 热反应,故提高温度可使平衡常数增大,反应趋于完全。压力升高会降低平衡转化率。但由于天然气本身带压,合成气在后处理及合成反应中也需要一定压力,在转化以前将天然气加 压又比转化后加压经济上有利,因此普遍采用加压操作,同时增加水蒸气用量以提高甲烷转 化率。高水蒸气用量也可防止催化剂上积炭。除上述主要反应外,还有其他反应发生,此两反应均为放热反应。 在温度800~820℃、压力2.5~3.5MPa、H2O/C摩尔比 3.5时,转化气组成(体积%)为:CH4 10、CO 10、CO2 10、H2 69、N2 1。 为在工业上实现天然气蒸汽转化反应,可采用连续转化和间歇转化两种方法。 ①连续蒸汽转化流程这是目前合成气的主要生产方法。在天然气中配以0.25%~0.5%的氢气,加热到380~400℃时,进入装填有钴钼加氢催化剂和氧化锌脱硫剂的脱硫罐,脱去 硫化氢及有机硫,使总硫含量降至0.5ppm以下。原料气配入水蒸气后于400℃下进入转化炉对流段,进一步预热到500~520℃,然后自上而下进入各支装有镍催化剂的转化管,在管 内继续被加热,进行转化反应,生成合成气。转化管置于转化炉中,由炉顶或侧壁所装的烧 嘴燃烧天然气供热(见天然气蒸汽转化炉)。转化管要承受高温和高压,因此需采用离心浇铸

煤制烯烃

煤制烯烃 烯烃作为重要的化工原料,作为石油化工核心产品,被称为“石化工业之母”。乙烯产量已成为衡量一个国家石油化工发展水平的标志,其生产能力被看作是一个国家经济实力的体现。美国、西欧、日本等发达国家地区和一些发展中国家,在经济起飞阶段,无不把石油化工作为支柱产业,加以发展。 乙烯产品直接繁衍和带动发展塑料深加工、橡胶制品、纺织、石蜡深加工、助剂加工、包装材料、建设材料、化工机械制造、工程建筑、运输、餐饮服务等产业。大到航空航天,小到吃饭穿衣,它与国民经济、人民生活息息相关。一个年产量百万吨级乙烯项目,除本身直接提供数目庞大的就业岗位外,还通过发展配套产品和深加工产品,建立起覆盖性的新兴加工产业。初步测算可增加就业岗位5万余个。 1.煤制烯烃经济市场情况 2010年我国乙烯产能1519万吨/年,产量1419万吨,进口量81.5万吨,出口量3.4万吨,表观消费量约1497万吨,当量消费量近2960万吨,国内保障能力达到48%,乙烯缺口达到1540万吨。2010年国内形成6个百万吨级乙烯生产企业,蒸汽裂解乙烯企业平均规模67万吨/年、装置平均规模54万吨/年,较2005年分别提高了58.4%和44%,规模效益突出,产业竞争力明显提升。

2010年我国丙烯生产能力1583万吨/年,产量1350万吨,进口量152.4万吨,出口量0.8万吨,表观消费量约1502万吨,当量消费量约2150万吨,国内保障能力达到63%。丙烯缺口达到800万吨。 “十二五”中国烯烃工业发展目标 当前中国已经拥有三个CTO示范项目,设计总产能156万吨/年。其中神华宁夏煤业集团旗下50万吨/年甲醇制丙烯(MTP)项目已于2010年10月开始试运;神华包头煤化工有限公司旗下60万吨/年MTO项目已于2010年8月投产;大唐国际发电旗下46万吨/年MTP项目于2011年6月试运。这三套装置的生产已经稳定。河南中原石化旗下20万吨/年CTO装置已于2011年投产。 除这四个项目外,中国还有另外5个CTO项目将在2013年前陆续投产。这些项目已获得政府部门批准。包括宁波禾元化工有限公司旗下一套60万吨/年MTO装置(包括20万吨/年乙烯和40万吨/年丙烯)当前正在建设之中,预计在2012年投产;浙江星星新能源股份有限公司旗下60万吨/年MTO装置(30万吨/年乙烯和30万吨/年丙烯)计划在2012年投产;惠生(南京)清洁能源位于江苏的一套29.5万吨/年MTO装置(13.5万吨/年乙烯和16万吨/年丙烯)当前正在建设之中,预计在2013年投产;大唐国际(榆林)一套60万吨/年MTP装置预计在2013年投产;华运煤电公司位于山西的21.2万吨/年MTO装置预计在2013年投产。

浙大电力电子技术实验在线课后复习

您的本次作业分数为:98分单选题 1.【全部章节】三相桥式全控整流电路电感性负载实验中,关于整流电压ud描述正确的是? ? A 一个周期内,整流电压ud由6个波头组成 ? B 触发角为30°时,整流电压ud会出现瞬时值为零的点 ? C 移相范围是60° ? D 触发角为60°时,整流电压ud平均值为零 ? 单选题 2.【全部章节】自关断器件及其驱动与保护电路实验中,PWM信号占空比与直流电动机电枢电压及转速关系是? ? A 占空比越大,电枢电压越大,转速越小 ? B 占空比越大,电枢电压越小,转速越大 ? C 占空比越大,电枢电压越大,转速越大

? D 占空比越小,电枢电压越大,转速越大 ? 单选题 3.【全部章节】单相桥式半控整流电路实验中,能够用双踪示波器同时观察触发电路与整流电路波形?为什么? ? A 能 ? B 不能,因为示波器两个探头地线必须接在等电位的位置上 ? C 不能,因为示波器量程不足以观察整流电路波形 ? D 不能,因为示波器无法同时观察低压与高压信号 ? 单选题 4.【全部章节】关于锯齿波同步移相触发器描述错误的是

? A 多个触发器联合使用可以提供间隔60°的双窄脉冲? B 可以提供强触发脉冲 ? C 有同步检测环节,用于保证触发电路与主电路的同步? D 移相范围为30°到150° ? 单选题 5.【全部章节】关于“单管整流”现象的描述,错误的是? A 输出电流为单向脉冲波,含有很大的直流分量 ? B “单管整流”会危害电机、大电感性质的负载 ? C 此时电路中只有一个晶闸管导通 ? D 只在负载功率因数角小于触发角时出现 ?

2017浙大远程电力电子技术实验在线作业答案

您的本次作业分数为:100分单选题 1.【全部章节】交流调压电路控制方式中,需要全控器件的是: A 通断控制 B 相位控制 C 斩波控制 D 反馈控制 正确答案:C 单选题 2.【全部章节】自关断器件及其驱动与保护电路实验中,直流电动机反并联二极管的作用是: A 过压保护 B 过流保护 C 为电动机续流 D 自关断器件保护电路的一部分 正确答案:C 单选题 3.【全部章节】单相交流调压电路,在正常范围内,输出电压与触发角的关系为: A 触发角越大,输出电压越高 B 触发角越小,输出电压越高 C 随着触发角增大,输出电压先增大后减小 D 随着触发角增大,输出电压先减小后增大 正确答案:B 单选题 4.【全部章节】自关断器件及其驱动与保护电路实验中,上电顺序正确的是? A 驱动电路上电,直流电机励磁开关闭合,主电路上电,直流电动机负载开关闭合 B 驱动电路上电,主电路上电,直流电机励磁开关闭合,直流电动机负载开关闭合 C 驱动电路上电,直流电动机负载开关闭合,直流电机励磁开关闭合,主电路上电 D 主电路上电,驱动电路上电,直流电机励磁开关闭合,直流电动机负载开关闭合

单选题 5.【全部章节】自关断器件保护电路中电容、电阻及二极管的作用描述错误的是 A 利用电容两端电压不能突变的原理延缓关断时集射电压上升速度 B 电阻作用是限制器件导通时电容的放电电流 C 二极管的作用是在关断过程中将电阻旁路,以充分利用电容的稳压作用 D 电阻的作用是分压,以降低管压降 正确答案:D 单选题 6.【全部章节】三相桥式全控整流电路电感性负载实验中,直流平均电压为零时触发角为多少度? A 30° B 60° C 90° D 120° 正确答案:C 单选题 7.【全部章节】单相桥式半控整流电路实验中,能够用双踪示波器同时观察触发电路与整流电路波形?为什么? A 能 B 不能,因为示波器两个探头地线必须接在等电位的位置上 C 不能,因为示波器量程不足以观察整流电路波形 D 不能,因为示波器无法同时观察低压与高压信号 正确答案:B 单选题 8.【全部章节】关于单相桥式半控整流电路几种描述,哪个是错误的? A 单相桥式半控整流电路电阻性负载时工作情况与全控电路相同 B 单相桥式半控整流电路只有一种主电路结构 C 单相桥式半控整流电路可能会出现失控现象

电力电子与电力传动专业情况及学校排名

电力电子与电力传动专业情况及学校排名 电力电子与电力传动学科主要研究新型电力电子器件、电能的变换与控制、功率源、电力传动及其自动化等理论技术和应用。它是综合了电能变换、电磁学、自动控制、微电子及电子信息、计算机等技术的新成就而迅速发展起来的交叉学科,对电气工程学科的发展和社会进步具有广泛的影响和巨大的作用。 学科研究范围: 电力电子器件的原理、制造及其应用技术;电力电子电路、装置、系统及其仿真与计算机辅助设计;电力电子系统故障诊断及可靠性;电力传动及其自动控制系统;电力牵引;电磁测量技术与装置;先进控制技术在电力电子装置中的应用;电力电子技术在电力系统中的应用;电能变换与控制;谐波抑制与无功补偿。 研究方向: 1 )谐波抑制与无功补偿 2 )电力电子电路仿真与设计 3 )计算机控制系统 4 )电气系统智能控制技术 5 )现代控制理论及其电气传动中的应用 6 )系统故障诊断技术及应用 7 )现代交、直流电机调速技术 8 )功率变换技术的研究 该学科对实践动手能力要求很高,难度较大。本科是电气工程、自动化、电子信息工程的适合报考这个专业。该专业需要的基础是电路基础,模拟电路与数字电路,电机学,单片机技术,计算机控制技术,电力电子技术,电力拖动自动控制系统,数字信号处理。 该专业实力最强的几所院校:浙大(拥有国内唯一的电力电子国家实验室,师资力量雄厚,有汪栖生院士和徐德鸿等知名教授,科研成果较多)西安交通大学(西交的电力电子与能源研究中心在国内处于领先水平,科研成果较多,有电力电子知名专家王兆安教授)南京航空航天大学(有航空电源航空科技重点实验室,师资力量雄厚,科研成果较多)合肥工业大学和中国矿业大学(有电力电子与电力传动国家重点学科) 华北电力大学的张一工教授是国内谐波抑制与无功补偿领军人物之一,另外石新春和韩

煤制烯烃工艺路线及技术可行性分析

煤制烯烃工艺路线及技术可行性分析 一、煤制烯烃工艺路线 以煤为原料经甲醇制取低碳烯烃的工艺技术包括煤气化、合成气净化、甲醇合成及甲醇制烯烃四项核心技术。工艺路线为煤在高温高压下通过纯氧部分氧化反应生成主要成份为CO和H2的粗合成气,粗合成气经过部分耐硫变换及净化然后合成甲醇,最后甲醇转化为低碳烯烃。 目前,煤气化、合成气净化和甲醇合成技术均已实现商业化,有多套大规模装置在运,甲醇制烯烃技术已日趋成熟,具备工业化条件。 二、煤气化技术 煤气化技术已有100多年的历史,但煤气化技术的发展由于多种原因开始比较缓慢;直至20世纪70年代世界石油危机的出现,促使西方发达国家投入巨资开展了煤气化技术的研究与应用开发,开发出先进的气流床气化技术并于20世纪80年代开始由应用研究转入大规模商业应用。该技术具有高温、高压、大型化、节能、环保、合成气质量高等特点,产品气可适用于化工合成、制氢和联合循环发电。 目前,世界上最先进的气流床气化工艺技术主要有三种,分别是美国GE水煤浆加压气化(原Texaco技术、荷兰壳牌粉煤加压气化(Shell技术和德国未来能源粉煤加压气化(GSP技术,均实现了大规模工业化生产。与此同时国内经过多年努力研究,也开发出了具有自主知识产权的气流床煤气化技术。这些先进的气流床煤气化技术为现代煤化工产业的发展提供了强有力的技术支撑三、合成气净化技术 目前,世界上大型煤气化装置产生的合成气净化普遍采用低温甲醇洗(Rectisol 技术。该工艺是采用冷甲醇作为溶剂脱除酸性气体的物理吸收方法,是由德国林德公司和鲁奇公司联合开发的一种有效的气体净化工艺,具有技术成熟可靠、能耗较低、气体净化度高等特点,可将C02脱至10μg/L以下,H2S小于0.1μg/L;溶剂价格便宜,吸收能力大,循环量小,操作费用低。目前,国外低温甲醇洗工艺有林德工艺和鲁奇

相关文档
最新文档