有时间限制的物资配送车辆路径问题

有时间限制的物资配送车辆路径问题
有时间限制的物资配送车辆路径问题

有时间限制的物资配送车辆路径问题

摘要:这是一个带有时间约束的车辆路径安排问题,车辆路径问题是指一定数量的各自有不同货物需求的客户,配送中心向客户提供货物,由一个车队负责分送货物,组织适当的行车路线,并能在一定约束条件下,使客户的需求得到满足且达到诸如路程最短,成本最小,耗费时间最少等目的。

根据题中所给的条件,我们建立了一个求最短路径的模型,所用到的算法是遗传算法,遗传算法是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然计划过程搜索最优解的方法。我们暂且考虑车辆都在规定时间内到达客户的情况,这种做法虽有不妥之处却在一定程度上简化了该模型。我们所建立的模型针对该问题,在需求量、接货时间段、各种费用消耗已知的情况下,采用规划模型,引入0-1变量,建立各个约束条件,包括车辆的容量限制、到达每个客户的车辆和离开每个客户的车辆均为1的限制、货物剩余量、时间段限制,目标函数为可行路径长度的最小化。

根据这些约束条件及所建立模型,我们可以编程解决该问题,在本文假设条件下,可得:最短路径为:910公里,发车数量为:3辆,货车行驶路径分别为:0-8-5-7-0,0-3-1-2-0,0-6-4-0

车辆编号所执行的任务

路线到达各点的时间路线长度货运量

1 0-8-5-7-0 0-1.6-3.9-7.7-13.9 80+75+90+160=405 3+1.5+2.5=7

2 0-3-1-2-0 0-1.5-3.3-5.6-8.8 75+40+65+60=240 4.5+2+1.5=8

3 0-6-4-0 0-2-6-10.8 100+75+90=265 4+3=7

但是,由于受到我们假设的约束,这样得出的结果未必为最优解,然后我们可用典型的单源最短路径算法即Dijkstra(迪杰斯特拉)算法进行优化,这种算法用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩散,直到扩散到终点为止。优化后可得最短路为公里885,三条路径分别为分别为:0-8-5-7-2-0,0-3-1-2-0,0-6-4-0。

关键词:遗传算法,迪杰特斯拉算法,时间限制,车辆路径

一、问题重述

物流中心O 有容量为Q 的车辆若干辆,负责对需求量分别为q 的i N 个客户进行货物派送工作,客户i 的货物需求量为q ,且i q Q <,车辆必须在一定的时间范围[],i i a b 内到达,否则会有一定的损失,按照要求求解一下两个问题:

1. 建立送货车辆每天总运行里程最短的一般数学模型,并给出求解方法。

2. 具体求解以下算例,载重量为 Q =8 吨、平均速度为 v =50千米/小时 的送货车辆从物流中心(i =0)出发,为编号是 i =1,2,…,8 的8个客户配送物资。某日,第i 个客户所需物资的重量为i q 吨(i q Q <),在第i 个客户处卸货时间为i s 小时,第i 个客户要求送货车辆到达的时间范围 [],i i a b 由表1给出。物流中心与各客户以及各客户间的公路里程(单位:千米)由表2给出。问当日如何安排送货车辆(包括出动车辆的台数以及每一台车辆的具体行驶路径)才能使总运行里程最短

表1 物资配送任务及其要求

客户

1 2 3 4 5 6 7 8 q (吨) 2 1.5 4.5 3 1.5 4 2.5 3 s (小时)

1

2

1

3

2

2.5

3

0.8

[],i i a b

[1, 4] [4, 6] [1, 2] [4, 7] [3, 5.5] [2, 5] [5, 8] [1.5, 4]

表2 点对之间的公路里程(千米)

1

2

3

4

5

6

7

8

0 0 40 60 75 90 200 100 160 80 1 40 0 65 40 100 50 75 110 100 2 60 65 0 75 100 100 75 75 75 3 75 40 75 0 100 50 90 90 150 4 90 100 100 100 0 100 75 75 100 5 200 50 100 50 100 0 70 90 75 6 100 75 75 90 75 70 0 70 100 7 160 110 75 90 75 90 70 0 100 8 80

100

75

150

100

75

100

100

二、问题分析

本题属于比较常见的车辆路径问题(VRP),不同的是,装货点只有一个。车辆路径问题,即对于多个装货点和卸货点,组织适当的行车线路,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量限制、行驶里程限制、时间限制,即时间窗等)下,达到一定问题的目标(如路程最短、费用最少、时间尽量少、使用车辆数尽量少等)。要在一定的约束条件下,使得派送总费用最小(派送总费用包括运输成本,车辆在客户要求到达时间之前到达产生的等待损失,车辆在客户要求到达时间之后到达所受惩罚等),相应的,总路程也最短。现在就要根据这些约束条件,从而确定最佳派送方案。

题中已给定客户i 的货物需求量i q ,每个客户的接货时间范围[i a ,i b ],卸货时间i s ,和物流中心与各客户之间及客户与客户之间的路程ij d ,货车最大载重量Q ,货车行驶速度v 等,因此,我们便要根据题意,选取若干辆车进行送货,然后考虑每辆车负责哪些客户的送货任务。我们可

以在适当合理的假设下,通过编程,给出满足题中限制条件(各客户时间范围,货车最大载重量,剩余物资等)的很多参考方案,并在不重复的基础上选出使得总路程最小的路径,从而建立最优化模型确定最佳车辆派送方案。

三、模型假设

1、车辆不会出现折线行走,即车辆在经过某个客户点时一定卸货。

2、物流中心有足够的资源以及足够的车辆以供配送。

3、每辆车送货行驶时不会有突发状况影响车辆的送货计划以及车辆速度。

4、每个客户的物资只能由一辆车辆配送。

四、符号定义与说明

物流中心

O

Q车辆的最大送货量

运送车辆的总数

m

[],

a b第i个客户最早到时间为a,第i个客户的最晚到时间i b。

i i

q第i个客户的所需货物数量

d i到j的路程

ij

车辆从i到j的行驶时间

s车辆在i处的卸货(等待)时间

i

x编号为k的车辆从i走到j

ijk

z所有车辆行驶的总路程

y i的货物由编号为k的车辆完成

ik

五、模型建立与求解

1、 模型思路

给出所有路径(穷举法或图的遍历)——限制条件下求解可行路径(遗传算法)——在求出的路径中选择最短路径(优化)——考虑车辆返回物流中心时可走折线路线,用迪杰特斯拉算法求解最短路径(最优化)。 2、模型建立

(1)①建立二维数组,对从物流中心出发的所有客户进行全排列。

或 ②客户与物流中心均看成点,互相连接,标记其之间距离,使其成为图,图的遍历,指的是从图中的任一顶点出发,对图中的所有顶点访问一次且只访问一次。

本题中,我们采用方法①来进行编程。 (2)根据题意,模型所求目标函数为

ij

n i n j m

k ijk

d x

z ∑∑∑====

01

min

v

车辆的平均行驶速度

限制条件为:

1

N

ik i q =∑ik

y Q ≤ (车辆k 的运输总重不超过车辆的最大载重)

i

ij

i i

b v

d s a ≤+

≤ (车辆的到达时间在所规定的[],i i a b 内)

m i=0

1

m

ik k y

=∑ = (每个客户的货物只能由一辆车来配送)

1 i=1,2......N

=N

j ijk

x 0

=

ik y

(保证每个到达i 点的车辆离开i 点)

∑=N

i ijk

x

=

jk

y

(3)遗传算法取可行路径 1.编码

采用自然数编码,即序数编码。货物运输路线可以编成长度为N+m 的染色体11121s 21210,,,,0,,,0,,0,,,)t m m w i ii ii i i (,,其中,k i 表示第k i 项任务。0表示车场,

m 表示完成任务所需的车辆数。 2.出生初始群体

初始群体随机产生,即产生N 项货物运输任务点的全排列,12,,,N

i i i ,如果1

1

s ij j q Q

-=≤∑

1

s

ij j q Q

=>∑

,将s 至N 的数向后移动一位,将0插入第s 位。接着,继续上述操作,直到m 个

0全部插入为止。这样就构成了一条初始染色体。用这种方法构造一个群体的染色体。如:031285764,该编码插零之后变成0312*******。它代表着需要三辆车运输货物。其中,第1辆车行走路线为03120,即从仓库出发到依次到商店再回到仓库。第2辆车行走路线为08570,第3辆车行走路线为0640。 3.适应度函数

适应度函数取

'

k k

b z f z

,其中k f 为染色体k

v

的适应度,b 为常数,'z 为初始种群中最好

的染色体的运输成本,k z 为染色体k

v 对应的运输成本。

4.遗传算子

选取最佳保留的轮盘赌复制法进行染色体的复制。变异算子采用反转变异。交叉算子用最大保留交叉,其操作过程为:

a) 若染色体交叉点处的两个基因都为0,则直接进行顺序交叉运算;

b) 若染色体交叉点处的基因不全为0,则将交叉点左移(右移),直到左右两个交叉处的基因

都为0,再进行顺序交叉运算。 5.算法的实现步骤

a)初始化:设置进化代数计数器t=0,设置最大进化代数T ,随机生成M 个个体作为初始群体P(0). b)个体评价:计算群体P (t)中各个个体的适应度。

c)选择运算:将选择算子作为群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体在遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。 d)交叉运算:将交叉算子作用与群体,所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算子。

e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。 群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t+1)。

f)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。 (4)优化

在可行路径中利用计算机程序进行简单的大小比较,取最小值。 (5)再优化

考虑到车辆返回物流中心时可以经过其他的点回到物流中心,利用迪杰特斯拉算法对优化的结

果进行再优化。

迪杰特斯拉算法(Dijkstra)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解。其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知初始时,S中仅含有源。设u 是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路,

长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。

3.具体模型求解(问题2)

题中所给定的条件为8个客户点,车辆载重Q为8吨,平均行驶速度为50公里每小时,其时间限制和所需货物量由表1表2给出。

(1)全排列,共有8!次排列方,数量过多,具体在此不列举。

(2)遗传算法选取可行路径,并将可行路径设为二维数组,列举限制条件,编程求解,结果为:(3)优化,利用编程来比较繁琐的路径结果,选出最短的0312*******,即路径为03120 ,08570,0640,分别由三辆车来配送,总路程为910公里。

(4)再优化,利用迪杰特斯拉算法求出物流中心与各个仓库之间的最短距离,如表所示:

编号 1 2 3 4 5 6 7 8

最短

距离40 60 75 90 90 100 135 80

根据表格,发现2号车辆返回物流中心的过程可以进行优化,从客户7经由客户2再返回物流中心更近,可节省路程25km,即路程总量为885,配送方案为0312********,三辆车的行驶计划分

别为03120 085720 0640。

六、模型评价与推广

1、模型评价:

由上述所建立的模型,便可得到有时间限制的物流配送车辆路径问题的解决方法。首先我们对此问题进行了合理的假设,并建立相应模型简化了实际中的复杂问题。考虑了主要约束条件对目标函数的影响,相对来说比较符合实际。

当然,假设能在一定程度上简化问题,也会忽略实际中某些条件的影响,多种假设同时发生也许会产生大的影响。例如,我们假设每个客户的需求只能由一辆车配送,但也不排除多辆车配送时耗时更短这种状况,由此所得的最短时间就会小于我们模型中所得结果了。另外,也许会出现在某些客户那里不卸货只是经过的情况,如:从a到b的距离大于从a到c再到b,这时,便可选择由a经过c再到b的路径,但却因为剩余货物量或时间范围等问题在c处不卸货,而我们前面的假设中说,凡是经过的客户都会卸货,所以,由于这个假设,我们得到的时间则可能会偏大,也就是此模型用迪杰特斯拉算法优化后的结果。此外,每辆车行驶的路程都是有最大限制的,因此,这个假设也不甚合理。

2、模型推广:

物资配送问题比较多,这类问题大多可通过以上模板,设立目标函数和约束条件,带入实际数据,由遗传算法可解出总里程最短的车辆行驶路径方案。若已知单位行驶费用及在时间限制之外到达所受到的惩罚费用,运用该模板,对目标函数及约束条件函数稍作修改,则可得总费用最小的行驶方案。考虑到实际行驶问题,可根据迪杰特斯拉算法对结果再进行优化,从而得到更优解。

七、参考文献

[1] 耿国华,数据结构——用C语言描述,高等教育出版社,2011.6.

[2] 赵彤,带时间窗的应急救助物资配送车辆路径优化模型研究,大连海事大学交通运输管理学院,2010.10.

[3] gfkewxm,带时间窗物流配送车辆路径问题,2012.9.

八、附录

附加程序1(求解优化路径):

所用语言:C语言

编译环境:Visual C++ 6.0

#include

#include

char all[40325][15];

int index,need=0,save[40325];

float time,weight,minpath=100000,minpath_1,minpath_1=0;

float s[9]={0,1,2,1,3,2,2.5,3,0.8};

float limit[9][2]={{0,0},{1,4},{4,6},{1,2},{4,7},{3,5.5},{2,5},{5,8},{1.5,4}};

float s_t[9][9]={{0,40,60,75,90,200,100,160,80},

{40,0,65,40,100,50,75,110,100},

{60,65,0,75,100,100,75,75,75},

{75,40,75,0,100,50,90,90,150},

{90,100,100,100,0,100,75,75,100},

{200,50,100,50,100,0,70,90,75},

{100,75,75,90,75,70,0,70,100},

{160,110,75,90,75,90,70,0,100},

{80,100,75,150,100,75,100,100,0}};

float q[9]={0,2,1.5,4.5,3,1.5,4,2.5,3};

//数组全排列

void init(char list[], int k, int m)

int i;

if(k > m)

{

for(i = 0; i <= m; i++)

all[index][i+1]=list[i];

all[index][0]='0';

all[index++][m+2]='\0';

}

else{

for(i = k; i <= m; i++)

{

char swap=list[k];

list[k]=list[i];

list[i]=swap;

init(list, k + 1, m);

swap=list[k];

list[k]=list[i];

list[i]=swap;

}

}

}

float taste(int i,int j)

{

return s_t[i][j]/50;

}

//插入'0'

void insert(int i,int j)

{

int n, len=strlen(all[i]);

for(n=len;n>j;n--)

{

all[i][n]=all[i][n-1];

}

all[i][j]='0';

}

int main()

{

//随机化所有可能性;all的初始,路程时间耗费函数s_t(),卸货耗时s[]; //客户时间限制limit [][];

char list[8]={'1','2','3','4','5','6','7','8'};

int i,j,one,two,t,temp,point=0;

init(list,0,7);

//找出所有可行的路径

for(i=0;i

{

time=0;weight=8;

for(j=0;all[i][j+1]!='\0';j++)

{

one=all[i][j]-'0';

two=all[i][j+1]-'0';

if(time+taste(one,two)>=limit[two][0]&&time+taste(one,two)<=limit[two][1]&& weight>=q[two])

{

time+=s[two]+taste(one,two),weight-=q[two];

}

else if(all[i][j]!='0')

{

insert(i,j+1);

time=0;

weight=8; //一条线路的终止

}

else break;

}

if(all[i][j+1]=='\0')

{

save[need++]=i;

}

}

t=need;

printf("可行路径:\n\n");

while(need--)

{

puts(all[save[need]]);

}

printf("\n\n最短路程是 : ");

//在这些以找出的路径里找路程最近的

need=t;

while(need--)

{

minpath_1=0;

for(i=0;all[save[need]][i]!='\0';i++)

{

if(all[save[need]][i+1]=='\0')

{

minpath_1+=s_t[all[save[need]][i]-'0'][0];

}

else

{

minpath_1+=s_t[all[save[need]][i]-'0'][all[save[need]][i+1]-'0'];

}

}

if(minpath>minpath_1)

{

minpath=minpath_1;

temp=save[need];

}

}

printf("%f \n",minpath);

printf("最短路径为:");

puts(all[temp]);

printf("\n\n");

return 0;

}

附加程序2(迪杰特斯拉算法):

帕斯卡(pascal)语言

编译环境:Turbopascal

type bool=array[1..10]of boolean;

arr=array[0..10]of integer;

var a:array[1..10,1..10]of integer; //存储图的邻接数组,无边为10000 c,d,e:arr; //c为最短路径数值,d为各点前趋,

t:bool; //e:路径,t为辅助数组

inf,outf:text;

procedure init; //不同题目邻接数组建立方式不一样

Begin

assign(inf,'dijkstra.in'); assign(outf,'dijkstra.out');

reset(inf); rewrite(outf);

read(inf,n);

for i:=1 to n do

for j:=1 to n do

begin

read(inf,a[i,j]);

if a[i,j]=0 then a[i,j]:=10000;

End;

End;

procedure dijkstra(qi:integer; t:bool; var c{,d}:arr); //qi起点,{}中为求路径部var i,j,k,min:integer; //分,不需求路径时可以不要

begin //t数组一般在调用前初始

t[qi]:=true; //化成false,也可将部分点

{

for i:=1 to n do d[i]:=qi; d[qi]:=0; } //初始化成true以回避这些点

for i:=1 to n do c[i]:=a[qi,i];

for i:=1 to n-1 do

Begin

min:=maxint; //改为最大量

for j:=1 to n do

if (c[j]

t[k]:=true;

for j:=1 to n do

if (c[k]+a[k,j]

Begin

c[j]:=c[k]+a[k,j]; {d[j]:=k;

}

End;

End;

End;

procedure make(zh:integer; d:arr; var e:arr); //生成路径,e[0]保存路径

var i,j,k:integer; //上的节点个数

Begin

i:=0;

while d[zh]<>0 do

Begin

inc(i);e[i]:=zh;zh:=d[zh];

End;

inc(i);e[i]:=qi; e[0]:=I;

End;

主程序调用:求最短路径长度:初始化t,然后dijkstra(qi,t,c,d) 求路径:make(m,d,e) ,m是终点

家乐福超市物流配送路线优化

学年论文之 家乐福超市物流配送路线优化 专业物流工程 班级 姓名 学号 日期

在物流配送业务中,合理确定配送路径是提商服务质量,降低配送成本,增加经济效益的重要手段。物流配送系统中最优路线的选择问题一直都是配送中心关注的焦点,针对当前家乐福物流配送体系不完善等方面的现状,本文从可持续发展的角度,用系统的观念,来研究家乐福物流配送体系,优化配送路线,使配送体系合理化。 通过对家乐福超市现有物流配送路径的分析研究,发现其中存在的一些问题,并由此提出解决办法,结合背景材料,建立了数学模型,运用遗传算法对家乐福物流配送路线进行优化选择,并得出结果。由此可见,家乐福超市原有的物流配送路线还可以进行再优化,从而达到运输成本最小化的目标。 关键词:物流配送;路径优化;节约里程算法

1.绪论 (1) 1.1选题目的和意义 (1) 1.2国内外物流配送路线优化研究现状 (2) 2. 家乐福超市配送路线现状 (3) 2.1家乐福超市概况 (3) 2.2家乐福超市配送路线作业现状 (4) 2.2.1 配送距离分析 (4) 2.2.2 车辆数分析 (5) 2.2.3 需求量分析 (6) 2.2.4 商品品种分析 (6) 2.3家乐福超市配送现有路线问题分析 (7) 3.配送路线优化建模与求解 (9) 3.1研究对象目标设定 (9) 3.2模型的构建 (11) 3.3节约算法 (12) 3.3.1节约算法的基本原理 (12) 3.3.2节约里程算法主要步骤 (13) 3.3.3基于节约算法的配送路线优化 (13) 3.3.4优化后的配送线 (24) 4.优化结果分析 (25) 4.1优化前结果 (25) 4.2优化后结果 (25) 4.3结论 (26) 5.总结与建议 (27) 参考文献: (28)

物流配送中几种路径优化算法

捕食搜索算法 动物学家在研究动物的捕食行为时发现,尽管由于动物物种的不同而造成 的身体结构的千差万别,但它们的捕食行为却惊人地相似.动物捕食时,在没有 发现猎物和猎物的迹象时在整个捕食空间沿着一定的方向以很快的速度寻找猎物.一旦发现猎物或者发现有猎物的迹象,它们就放慢步伐,在发现猎物或者有 猎物迹象的附近区域进行集中的区域搜索,以找到史多的猎物.在搜寻一段时间 没有找到猎物后,捕食动物将放弃这种集中的区域,而继续在整个捕食空间寻 找猎物。 模拟动物的这种捕食策略,Alexandre于1998提出了一种新的仿生计算方法,即捕食搜索算法(predatory search algorithm, PSA)。基本思想如下:捕食 搜索寻优时,先在整个搜索空间进行全局搜索,直到找到一个较优解;然后在较 优解附近的区域(邻域)进行集中搜索,直到搜索很多次也没有找到史优解,从 而放弃局域搜索;然后再在整个搜索空间进行全局搜索.如此循环,直到找到最优解(或近似最优解)为止,捕食搜索这种策略很好地协调了局部搜索和全局搜索 之间的转换.目前该算法己成功应用于组合优化领域的旅行商问题(traveling salesm an problem )和超大规模集成电路设计问题(very large scale integrated layout)。 捕食搜索算法设计 (1)解的表达 采用顺序编码,将无向图中的,n一1个配送中心和n个顾客一起进行编码.例如,3个配送中心,10个顾客,则编码可为:1一2一3一4一0一5一 6一7一0一8一9一10其中0表示配送中心,上述编码表示配送中心1负 贡顾客1,2,3,4的配送,配送中心2负贡顾客5,6,7的配送,配送中心3负贡顾 客8,9,10的配送.然后对于每个配送中心根据顾客编码中的顺序进行车辆的分配,这里主要考虑车辆的容量约束。依此编码方案,随机产生初始解。 (2)邻域定义 4 仿真结果与比较分析(Simulation results and comparison analysis) 设某B2C电子商务企业在某时段由3个配送中心为17个顾客配送3类商品,配送网络如图2所示。

物流配送管理中路径优化问题分析

摘要:经典的优化理论大多是在已知条件不变的基础上给出最优方案(即最优解),其最优性在条件发生变化时就会失去其最优性。本文提出的局内最短路问题,就是在已知条件不断变化的条件下,如何来快速的计算出此时的最优路径,文章设计了解决该问题的一个逆向标号算法,将它与传统算法进行了比较和分析,并针对实际中的物流配送管理中路径优化问题,按照不同的算法分别进行了详细的阐述与分析。 一、引言 现实生活中的许多论文发表经济现象通常都具有非常强的动态特征,人们对于这些现象一般是先进行数学上的抽象,然后用静态或统计的方法来加以研究和处理。从优化的理论和方法上看,经典的优化理论大多是站在旁观者的立场上看问题,即首先确定已知条件,然后在假设这些已知条件不变的基础上给出最优方案(即最优解)。条件一旦发生变化,这种方法所给出的最优方案就会失去其最优性。在变化的不确定因素对所考虑的问题影响很大的时候,经典的优化方法有:一是将可变化的因素随机化,寻求平均意义上的最优方案,二是考虑可变化因素的最坏情形,寻求最坏情形达到最优的方案。这两种处理方法对变化因素的一个特例都可能给出离实际最优解相距甚远的解,这显然是难以满足实际的要求的。那么是否存在一种方法,它在变化因素的每一个特例中都能给出一个方案,使得这一方案所得到的解离最优方案给出的解总在一定的比例之内呢? 近年来兴起的局内问题与竞争算法的研究结果在一定意义上给如上问题一个肯定的答案。其实本文所提出的逆向标号算法就是对应局内最短路问题的一个竞争算法,从本质上来说它是一种贪婪算法,在不知将来情况的条件下,求出当前状态下的最优解。[1]本文所考虑问题的实际背景是一个物流配送公司对其运输车辆的调度。假设物流公司需要用货车把货物从初始点O(Origin)运送到目的点D(Destination)。从日常来看,物流公司完全可以通过将整个城市交通网络看成一个平面图来进行运算,找到一条从O到D的最短路径以减少运输费用和节省运输时间。现考虑如下一个问题:如果当运输车辆沿着最短路径行驶到最短路径上的一点A,发现前方路径上的B点由于车辆拥塞而不能通过,车辆必须改道行驶,而此时物流配送公司应如何应对来保证其花费最低。问题推展开去,如果不是单个堵塞点,而是一个堵塞点序列,那物流配送公司又将如何来设计其最短路算法来在最短的时间内求出已知条件发生变化后的最优路径,从而有效的调度其运输车。本文首先建立了物流配送公司动态最短路的数学模型,相比较给出了求本文所提出的动态最短路问题的传统算法和作者提出的逆向标号算法,并分析了各自的算法复杂度。 二、数学模型假设城市交通网络是一个平面图,记为G,各个交通路口对应于图G上的各个顶点,令G=(G,V)为一边加权无向图,其中V为顶点的集合,E为边的集合,|G|=n,对于一般平面图上的三点之间,一定满足三角不等式,即任意三角形的两边之和一定不小于另外一边。对于本文要讨论的城市交通网络来说,即,任意三个结点之间的距离一定满足三角不等式。我们用O来表示运输的起始点,D表示运输的目的点。SP表示在没有路口堵塞情况下的最短路径,W(SP)表示沿着最短路径所要花费的运输费用。以下的讨论都是基于如下的基本假设:第一,去掉堵塞点后图G仍是连通的。第二,只有当运输车走到前一点后,才能发现后面的一点发生堵塞而不能通过。 三、算法分析 对于本文的上述问题,有两种算法一(传统算法)和二(逆向标号算法)可以满足要求,但两种算法在求动态最短路的过程中都将会用到Dijkstra算法[2],通过对Dijkstra算法的分析我们知道,Dijkstra算法采用了两个集合这样的数据结构来安排图的顶点,集合S表示已

配送路线优化

石河子大学毕业论文 题目:节约里程法在新疆国美电器物流配 送路线优化中的应用研究 院(系):商学院商务管理系 年级: 2008级 专业:物流管理 班级:物流2008(1)班 学号: 姓名:张露露 指导教师:李霞 完成日期: 2012年03月10日 目录 引言 ................................................................................................................................... 1.物流配送概述 ................................................................................................................. 1.1物流配送的概念 ....................................................................................... 1.2物流配送的功能 (3) 1.3物流配送路线优化的意义 (3) 2.新疆国美电器物流配送中心基本概况 (3) 2.1新疆国美电器简介 (3) 2.2新疆国美电器配送中心运作现状及现有路线分析 (4) 2.2.1现有配送路线概况 (5)

2.2.2现有配送路线中存在的问题分析 (6) 3.节约里程法在新疆国美电器物流配送路线优化中的应用研究 (7) 3.1建立VRP模型 (7) 3.1.1物流配送模型 (7) 3.1.2节约里程法的基本理论 (7) 3.1.3新疆国美电器物流配送中心VRP模型的建立 (9) 3.2模型求解 (9) 3.3配送路线优化 (10) 3.4配送路线优化前后比较分析及思考 (16) 3.4.1优化前后比较分析 (16) 3.4.2节约里程法的思考 (16) 4.新疆国美电器物流配送中心配送路线优化对策分析 (18) 4.1完善物流配送体系,加强物流运作标准化 (18) 4.2构建物流信息系统平台,降低配送成本 (18) 4.3合理安排配送排程,减少不必要的配送路线 (18) 4.4优化配送资源,提高物流配送效率 (19) 结束语 (20) 致谢 (21) 参考文献 (22) 摘要 配送作为物流活动中直接与消费者相连的环节,在企业的物流成本中,配送成本占了相当高的比例。配送线路安排的合理与否对配送速度、成本、效益影响很大,特别是多用户配送线路的确定更为复杂。 正确合理地安排车辆的配送线路,实现合理的线路运输,可以有效地节约运输时间,

物流配送路径优化论文

山西工商学院 毕业设计 题目浅析物流配送路径优化问题 学生姓名杨美玲 学号200822054247 专业物流管理 班级08物流二班 指导教师李桂娥 二零一一年十月二十八日

目录 摘要 (ⅰ) 一、引言(问题的提出) (1) 二、物流配送路径优化问题的数学模型……………………………X 三、物流配送路径优化问题的遗传算法……………………………X (一)遗传算法的基本要素………………………………………X (二)物流配送路径优化问题的遗传算法的构造……………………X 四、实验计算与结果分析…………………………………………X 五、结论…………………………………………………………X 参考文献…………………………………………………………X 致谢………………………………………………………………X

中英文摘要 摘要:论文在建立物流配送路径优化问题的数学模型的基础上,构造了求解该问题的遗传算法,并进行了实验计算。计算结果表明,用遗传算法进行物流配送路径优化,可以方便有效地求得问题的最优解或近似最优解。 关键词:物流配送;遗传算法;优化 Study on the Optimizing of Physical Distribution Routing Problem Based on Genetic Algorithm Abstract:On the basis of establishing the optimizing model on physical distribution routing problem, this paper presents a genetic algorithm for solving this problem, and make some experimental calculations. The experimental calculation results demonstrates that the optimal or nearly optimal solutions to the physical distribution routing problem can be easily obtained by using genetic algorithm. Keywords:physical distributio n;genetic algorith m;optimizing

第二章物流配送车辆路径问题

第二章物流配送车辆路径问题 2.1 问题的描述及各组成部分特点 2.2 车辆路径问题的分类 2.3 车辆路径问题的研究现状和发展趋势 * 2.1 问题的描述及各组成部分特点 配送活动中的配送车辆行驶线路优化确定问题,是近二十多年来国际运筹学界的研究热点之一。 运筹学界将此类问题统称之为车辆路径问题(Vehicle Routing Problem, VRP),或车辆调度问题(Vehicle Scheduling Problem, VSP)。 一般描述是:对一系列给定的客户点,确定配送车辆行驶路线,使其从配送中心出发,有序地对它们进行服务,并在满足一定的约束条件下(如车辆载重量、客户需求量、服务时间限制等),使总运输成本达到最小(如使用车辆数最少、车辆行驶总距离最短等)。 一般把最小化车辆使用数作为第一优化目标,而最小化车辆行驶距离作为第二优化目标。* 车辆路径问题的特点 1. 道路网(road network) 弧表示路段,点表示道路交叉点、配送中心和客户。 弧的权cij表示其距离或行驶时间。 * 2. 客户(customer) 用图上的小圆点表示; 需运送或收取的货物量(需求量)di (或di和pi ); 要求提供服务的时间段,即时间窗(time window) 在客户点所花费的服务时间si; 能用于服务该客户的车辆集合。 3. 配送中心(车场)(distribution center,depot) 用图上的小方点表示; 车辆行驶路线开始并终止于配送中心或某一个客户点; 其特征由所配备的车辆种类和数量、以及所能处理的货物总量来描述。 * 4. 车辆(vehicle) 车辆是自备还是外租,完成任务后是否返回; 车辆的装载能力; 车辆使用费; 可用于进行货物装卸的设备. 5. 驾驶员(driver) 给驾驶员安排取送货任务时,必须符合工作时间方面的有关规定。 6. 路径编排中的限制条件 车辆的当前负载不能超过车辆的装载量; 客户只要求送货、取货、或取送货兼有; 在客户所要求的时间窗和驾驶员的工作时间内提供服务; 访问客户的顺序要求。 *

数学建模供应链网络物流配送与车辆路径问题

配送是指对局域范围内的客户进行多客户、多品种、按时联合送货活动。 配送活动是指根据一定区域范围内各个客户所需要的各个品种要求,对配送中心 的库存物品进行拣选、加工、包装、分割、组配、分装上车,并按一定路线循环 依次送达各个用户的物流活动。物流配送是供应链网络中一个重要的直接与消费 者相连的环节,是货物从物流节点送达收货人的过程。配送是在集货、配货基础上,按货物种类、品种搭配、数量、时间等要求所进行的运送,是“配”和“送”的有机结合。配送的实质是现代送货,是以低成本、优质服务为宗旨,是一种先进 的物流形式。 供应链网络的物流配送过程主要包括:从生产工厂进货并集结的集货作业; 根据各个用户的不同需求,在配送中心将所需要的货物挑选出来的配货作业;考虑配送货物的质量和体积,充分利用车辆的载重和容积的车载货物的配装及路线 的确定。随着供应链管理系统的集约化、一体化的发展,常将配送的各环节综合 起来,核心部分为配送车辆的集货、货物装配及送货过程。进行配送系统优化, 主要是配送车辆优化调度,包括集货线路优化、货物配装及送货线路优化,以及集货、货物配装和送货一体化优化。物流配送车辆优化调度,是供应链系统优化 中关键的一环,也是电子商务活动不可缺少的内容。对配送车辆进行优化调度, 可以提高供应链管理的经济效益、实现供应链管理科学化。

配送车辆优化调度实际上也就是车辆路径问题(V ehicle Routing Problem,简称VRP),是Dantzig和Ramse]80[于1959年提出来的,该问题被提出来之后, 很快就引起了运筹学、应用数学、组合数学、图论、网络分析、物流学、管理学、 以及计算机科学等学科专家和运输计划制订者的极大重视,成为了运筹学和组合 优化领域的前沿和研究热点问题。各学科专家对该问题进行了大量的理论研究及 实验分析,取得了很大的进展。 车辆路径问题是径旅行商问题(Travel Salesman Problem,简称TSP)衍生 而出的多路TSP问题,即为K-TSP。VRP的一般定义为]81[:对一系列送货点和 (或取货点),组织适当的行车路线,使车辆有序地通过它们,在满足一定的约 束条件下(如货物需求量、发送量、交发货时间、车辆容量限制、行驶里程限制、 时间限制等),达到一定的目标(如路程最短、费用最少、使用车辆数最少等)。见图1。

物流配送的车辆路径优化

物流配送的车辆路径优化 专业:[物流管理] 班级:[物流管理2班] 学生姓名:[江东杰] 指导教师:[黄颖] 完成时间:2016年6月30日

背景描述 物流作为“第三利润源泉”对经济活动的影响日益明显,越累越受到人们的重视,成为当前最重要的竞争领域。近年来,现代物流业呈稳步增长态势,欧洲、美国、日本成为当前全球范围内的重要物流基地。中国物流行业起步较晚,随着国民经济的飞速发展,物流业的市场需求持续扩大。特别是进入21世纪以来,在国家宏观调控政策的影响下,中国物流行业保持较快的增长速度,物流体系不断完善,正在实现传统物流业向现代物流业的转变。现代物流业的发展对促进产业结构调整、转变经济增长方式和增强国民经济竞争力等方面都具有重要意义。 配送作为物流系统的核心功能,直接与消费这相关联,配送功能完成质量的好坏及其达到的服务水平直接影响企业物流成本及客户对整个物流服务的满意程度。配送的核心部分是配送车辆的集货、货物分拣及送货过程,其中,车辆配送线路的合理优化对整个物流运输速度、成本、效益影响至关重要。 物流配送的车辆调度发展现状 VRP(车辆调度问题)是指对一系列装货点和卸货点,组织适当的行车线路,使车辆有序的通过,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量等限制)下,达到一定的目标(如路程最短、费用最少、时间最少、使用车辆数最少等)。一般认为,不涉及时间的是路径问题,涉及时间的是调度问题。VRP示意图如下 当然,VRP并不止是这样的一个小范围,而是又更多的客户点与一个仓库链接,从而达

到一整个物流集群。 根据路径规划前调度员对相关信息是否已知,VRP可分为静态VRP和动态VRP,动态VRP 是相对于静态VRP而言的。静态VRP指的是:假设在优化调度指令执行之前,调度中心已经知道所有与优化调度相关的信息,这些信息与时间变化无关。一旦调度开始,便认为这些信息不再改变。 而VRP发展到现在的问题也是非常突出的,例如,只有一单货物,配送成本远高于一单的客户所给的运费,在这种情况下,该如何调度车辆?甚至还有回程运输的空载问题,在这些问题之中,或多或少都涉及到了VRP的身影,那么在这样的配送中怎么有效的解决车辆的路径优化问题就是降低运输和物流成本的关键所在。 解决怎么样的问题? 现如今对于VRP研究现状主要有三种静态VRP的研究、动态VRP的研究以及随机VRP的研究。 而我对于VRP的看法主要有以下几点。 有效解决VRP或者优化车辆调度路径优化问题,那么将非常有效的降低物流环节对于成本的比重,有效的增大利润。 而我想到的方法,就是归类总结法。 建立完善的信息系统机制,将订单归类总结出来,可以按地区划分出来,一个地区一个地方的进行统一配送,这样也有效的降低了物流配送的车辆再使用问题,降低了成本。如下图所示。 仓库 客户 变换前 由上图可以看出来这样的路径,车辆需要来回两次,严重增加了配送成本,也增加了运输成本,使得利润并不能最大化。

物流配送最优路径规划

物流配送最优路径规划

关于交通运输企业物流配送最优路径规划的 研究现状、存在问题及前景展望 摘要:本文综述了在交通运输企业的物流配送领域最优路径规划的主要研究成果、研究存在问题及研究方向。主要研究成果包括运用各种数学模型和算法在运输网中选取最短或最优路径;从而达到路径、时间最优和费用最优;以及物流配送网络优化、车辆系统化统一调度的发展。今后研究的主要方向包括绿色物流,运输系统及时性和准确性研究等。 关键词:物流配送;最优路径;路径规划 Overview of scheme on Shortest Logistics Distribution Route in Transportation Industry Student: Wan Lu Tutor: Chen Qingchun Abstract: This paper reviewed of the optimal path planning about the main research results, problems and direction in the field of transportation enterprise logistics distribution. Main research results include using various mathematical model and algorithm selection or optimal shortest path in the network. So we can achieve the optimal path, the shortest time and minimum cost. At the same time, logistics distribution network optimization, the vehicle systematic development of unified scheduling are the research issues.The main direction of future research include green logistics, transportation system accurately and timely research and so on. Key words: Logics Distribution; Optimal Path; Path Planning 引言 物流业在我国的新兴经济产业中占据了重要了地位,称为促进经济快速增长的“加速器”。而物流配送作为物流系统的重要环节,影响着物流的整个运作过程以及运输企业的发展趋势和前景。采用科学、合理的方法来进行物流配送路径的优化,是物流配送领域的重要研究内容。近年,国内外均有大量的企业机构、学者对物流配送中最优路径选择的问题,进行了大量深入的研究,从早期车辆路径问题研究,到根据约束模型及条件不断变化的车辆最优路径研究,以及随着计算机学科的发展而推出的针对物流配送路径最优化的模型和算法等方面,都取得丰硕的学术成果。但是对于绿色物流配送的研究仍然不足。鉴于物流配送最优路径研究的重大理论意义和实践价值,为对我国物流配送的效率水平有一个系统的理解和把握,有必要对现有成果进行统计和归纳。本文尝试对我国运输企业物流配送最优路径规划进行探讨,以期为今后做更深人和全面的研究提供一定的线索和分析思路。 1 国内外研究现状 1.1 国内研究现状 1.1.1 主要研究的问题

物流系统优化——定位——运输路线安排问题LRP研究评述

——第6届全国青年管理科学与系统科学学术会议论文集 2001年·大连 437 物流系统优化中的定位—运输路线安排问题 (LRP)研究评述* 林岩 胡祥培** (大连理工大学系统工程研究所, 116023) 摘要 本文概述了物流优化问题中的定位—运输路线安排问题 (Location-Routing Problems, LRP )的发展历程,并对LRP 的分类和解决方 法加以评述,最后就这一问题的发展方向进行简单地探讨。 关键词 LRP 物流 系统优化 运筹学 1 引言 新技术的迅速发展,特别是电子商务的风起云涌,为我国经济的快速发展提供了契机。目前我国电子商务得到政府和民众的支持,发展势头强劲,但是,由于它是一套全新的技术,同时还是一种全新的管理理念,所以其发展过程中必然存在一些难题。在电子商务“三流”(信息流、物流、资金流)中,随着网络基础设施建设的成熟、电子商务网站的蓬勃发展以及有效利用网络资源观念的普及,信息流的发展已经比较成熟了;而随着各大银行纷纷开展网上业务,以及支付网关的建立和加密技术的成熟,网上支付已经在许多网站上成为现实;然而,我国传统的物流体系是在计划经济环境下建立、发展起来的,与目前的电子商务环境已经无法相容。现今物流体系的落后现状已经成为我国社会经济快速发展的重要制约因素之 一。所以对物流系统优化的研究将会具有很大的现实意义。 国外许多学者在电子商务出现之前就已经研究物流系统优化的问题了,为各类实际问题构建了优化模型,并形成了许多解决问题的算法。依据实际问题的不同,可以对物流系统优化问题进行分类,比如,运输车辆路线安排问题(VRP )、定位—配给问题(LA )、定位—运输路线安排问题(LRP )等等,其中LRP 更贴近目前的物流系统复杂的实际特征,所以对它的研究是十分有意义的。 本文先从VRP 和LA 的集成来探讨LRP 的由来,然后讨论LRP 的分类,同时探讨LRP 的研究现状,并对LRP 的解决方法进行概述,最后就LRP 的未来发展方向作简要的讨论。 2 从VRP 、LA 到LRP ——物流系统的集成 依据实际问题的不同,可以对物流系统优化问题进行分类,比如确定设施(指的是物品流动的出发点和终到点,如配送中心、仓库、生产工厂、垃圾回收中心等)位置、运输路线 * 国家自然科学基金重点项目(70031020) ** 林岩, 硕士研究生, 1972年出生, 主要研究方向: 电子商务, 信息系统工程。 胡祥培, 1962年出生, 教授,博导, 主要研究方向: 电子商务, 智能运筹学, 信息系统集成。

车辆路径问题

一、车辆路径问题描述和建模 1. 车辆路径问题 车辆路径问题(Vehicle Routing Problem, VRP ),主要研究满足约束条件的最优车辆使用方案以及最优化车辆路径方案。 定义:设G={V,E}是一个完备的无向图,其中V={0,1,2…n}为节点集,其中0表示车场。V ,={1,2,…n}表示顾客点集。A={(i,j),I,j ∈V,i ≠j}为边集。一对具有相同装载能力Q 的车辆从车场点对顾客点进行配送服务。每个顾客点有一个固定的需求q i 和固定的服务时间δi 。每条边(i,j )赋有一个权重,表示旅行距离或者旅行费用c ij 。 标准车辆路径问题的优化目标为:确定一个具有最小车辆数和对应的最小旅行距离或者费用的路线集,其满足下列约束条件: ⑴每一条车辆路线开始于车场点,并且于车场点约束; ⑵每个顾客点仅能被一辆车服务一次 ⑶每一条车辆路线总的顾客点的需求不超过车辆的装载能力Q ⑷每一条车辆路线满足一定的边约束,比如持续时间约束和时间窗约束等。 2.标准车辆路径的数学模型: 对于车辆路径问题定义如下的符号: c ij :表示顾客点或者顾客点和车场之间的旅行费用等 d ij :车辆路径问题中,两个节点间的空间距离。 Q :车辆的最大装载能力 d i :顾客点i 的需求。 δi :顾客点i 的车辆服务时间 m:服务车辆数,标准车辆路径问题中假设所有的车辆都是同型的。 R :车辆集,R={1,2….,m} R i :车辆路线,R i ={0,i 1,…i m ,0},i 1,…i m ?V ,,i ?R 。 一般车辆路径问题具有层次目标函数,最小化车辆数和最小化车辆旅行费用,在文献中一般以车辆数作为首要优化目标函数,在此基础上使得对应的车辆旅行费用最小,下面给出标准车辆路径问题的数学模型。 下面给出标准车辆路径问题的数学模型。 对于每一条弧(I,j ),定义如下变量: x ijv = 1 若车辆v 从顾客i 行驶到顾客点j 0 否则 y iv = 1 顾客点i 的需求由车辆v 来完成0 否则 车辆路径问题的数学模型可以表述为: minF x =M x 0iv m i=1n i=1+ x ijv m v=1n j=0n i=0.c ij (2.1) x ijv n i=0m v=1≥1 ?j ∈V , (2.2)

物流配送路径优化开题报告

海南大学应用科技学院(儋州校区) 毕业设计(论文)开题报告书(学生用表) 一、选题的目的、意义(理论、现实)和国内外研究概况 目的:随着经济全球化的不断发展,作为“第三利润源泉”的物流对经济活动的影响 日益明显,引起了人们越来越多的重视,成为当前“最重要的竞争领域”。配送是现代物流的一个重要环节,随着物流的全球化、信息化及一体化,配送在整个物流系统中的作用变得越来 越重要。物流配送路线的优化,又是物流配送中的一个关键环节。因此,在配送过程中,配送线路合理与否对配送速度、成本、效益影响很大。设计合理、高效的配送路线方案,不仅可以减少配送时间,降低作业成本,提高企业的效益,而且可以更好地为客户服务,提高客户的满意度,维护企业良好的形象 意义:配送合理化与否是配送决策系统的重要内容,配送线路的合理与否又是配送合 理化的关键。选择合的理配送路线,对企业和社会都具有很重要的意义。对企业来说,(1)优 化配送路线,可以减少配送时间和配送里程,提高配送效率,增加车辆利用率,降低配送成本。 (2)可以加快物流速度,能准时、快速地把货物送到客户的手中,提高客户满意度。(3)使配送 作业安排合理化,提高企业作业效率,有利于企业提高竞争力与效益。对社会来说,它可以节省运输车辆,减少车辆空载率,降低了社会物流成本,对其他企业尤其是生产企业具有重要 意义。与此同时,还能缓解交通紧张状况,减少噪声、尾气排放等运输污染,对民生和环境也有不容忽视的作用。 国内外研究概况:物流配送路径优化问题最早是由Dnatzig和Rmaser于1959年首次提出, 自此,很快引起运筹学、应用数学、组合数学、图论与网络分析、物流科学、计算机应用等学 科的专家与运输计划制定者和管理者的极大重视,成为运筹学与组合优化领域的前沿与研究热 点问题。各学科专家对该问题进行了大量的理论研究及实验分析,取得了很大的进展。目前, 对于解决配送路径优化问题主要有两类方法,一类是精确算法,主要有动态规划法、分支定界法、节约算法、邻接算法、扫除算法、禁忌搜索算法等;另一类是启发式算法,主要有人工 神经网络算法、蚁群算法、人工免疫系统算法、粒子群算法、遗传算法等

第三方物流运输方式和配送路径优化研究

第三方物流运输方式和配送路径优化研究 摘要:经典的优化理论大多是在已知条件不变的基础上给出最优方案(即最优解),其最优性在条件发生变化时就会失去其最优性。本文提出的局内最短路问题,就是在已知条件不断变化的条件下,如何来快速的计算出此时的最优路径,文章设计了解决该问题的一个逆向标号算法,将它与传统算法进行了比较和分析,并针对实际中的物流配送管理中路径优化问题,按照不同的算法分别进行了详细的阐述与分析。 一、引言 现实生活中的许多论文发表经济现象通常都具有非常强的动态特征,人们对于这些现象一般是先进行数学上的抽象,然后用静态或统计的方法来加以研究和处理。从优化的理论和方法上看,经典的优化理论大多是站在旁观者的立场上看问题,即首先确定已知条件,然后在假设这些已知条件不变的基础上给出最优方案(即最优解)。条件一旦发生变化,这种方法所给出的最优方案就会失去其最优性。在变化的不确定因素对所考虑的问题影响很大的时候,经典的优化方法有:一是将可变化的因素随机化,寻求平均意义上的最优方案,二是考虑可变化因素的最坏情形,寻求最坏情形达到最优的方案。这两种处理方法对变化因素的一个特例都可能给出离实际最优解相距甚远的解,这显然是难以满足实际的要求的。那么是否存在一种方法,它在变化因素的每一个特例中都能给出一个方案,使得这一方案所得到的解离最优方案给出的解总在一定的比例之内呢? 近年来兴起的局内问题与竞争算法的研究结果在一定意义上给如上问题一个肯定的答案。其实本文所提出的逆向标号算法就是对应局内最短路问题的一个竞争算法,从本质上来说它是一种贪婪算法,在不知将来情况的条件下,求出当前状态下的最优解。[1]本文所考虑问题的实际背景是一个物流配送公司对其运输车辆的调度。假设物流公司需要用货车把货物从初始点O(Origin)运送到目的点D(Destination)。从日常来看,物流公司完全可以通过将整个城市交通网络看成一个平面图来进行运算,找到一条从O到D的最短路径以减少运输费用和节省运输时间。现考虑如下一个问题:如果当运输车辆沿着最短路径行驶到最短路径上的一点A,发现前方路径上的B点由于车辆拥塞而不能通过,车辆必须改道行驶,而此时物流配送公司应如何应对来保证其花费最低。问题推展开去,如果不是单个堵塞点,而是一个堵塞点序列,那物流配送公司又将如何来设计其最短路算法来在最短的时间内求出已知条件发生变化后的最优路径,从而有效的调度其运输车。本文首先建立了物流配送公司动态最短路的数学模型,相比较给出了求本文所提出的动态最短路问题的传统算法和作者提出的逆向标号算法,并分析了各自的算法复杂度。 二、数学模型假设城市交通网络是一个平面图,记为G,各个交通路口对应于图G上的各个顶点,令G=(G,V)为一边加权无向图,其中V为顶点的集合,E为边的集合,|G|=n,对于一般平面图上的三点之间,一定满足三角不等式,即任意三角形的两边之和一定不小于另外一边。对于本文要讨论的城市交通网络来说,即,任意三个结点之间的距离一定满足三角不等式。我们用O来表示运输的起始点,D表示运输的目的点。SP表示在没有路口堵塞情况下的最短路径,W(SP)表示沿着最短路径所要花费的运输费用。以下的讨论都是基于如下的基本假设:第一,去掉堵塞点后图G仍是连通的。第二,只有当运输车走到前一点后,才能发现后面的一点发生堵塞而不能通过。

《物流车辆路径算法的优化与设计》

物流车辆路径算法的优化与设计 【摘要】:随着物流业向全球化、信息化及一体化发展,配送在整个物流系统中的作用变得越来越重要。运输系统是配送系统中最重要的一个子系统,运输费用占整体物流费用的50%左右,所以降低物流成本首先要从降低物流配送的运输成本开始。 一个车辆集合和一个顾客集合,车辆和顾客各有自己的属性,每辆车都有容量,所装载货物不能超过它的容量。起初车辆都在中心点,顾客在空间任意分布,车把货物从车库运送到每一个顾客(或从每个顾客处把货物运到车库),要求满足顾客的需求,车辆最后返回车库,每个顾客只能被服务一次,怎样才能使运输费用最小。而顾客的需求或已知、或随机、或以时间规律变化,这正是本文要研究的课题。 【关键词】:物流配送;路径;车辆路径问题(VRP);MATLAB 1 前言 1.1 课题研究背景 运输线路是否合理直接影响到配送速度、成本和效益,特别是多用户配送线路的确定是一项复杂的系统工程。选取恰当的车辆路径,可以加快对客户需求的响应速度,提高服务质量,增强客户对物流环节的满意度,降低服务商运作成本。因此,自从1959年Danting和Rams er提出车辆路径问题(Vehicle Routing Problem,VRP)以来,VRP便成为近年来物流领域中的研究热点。 VRP一般定义为:对一系列发货点和/或收货点,组织适当的行车路线,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量限制、行驶里程限制、时间限制等)下,达到一定的目标(如路程最短、费用最小、时间尽量少、使用车辆尽量少等)。本文围绕VRP展开了研究,共包括五章内容。首先,本文收集国内外关于

粒子群优化算法车辆路径问题

粒子群优化算法 计算车辆路径问题 摘要 粒子群优化算法中,粒子群由多个粒子组成,每个粒子的位置代表优化问题在D 维搜索空间中潜在的解。根据各自的位置,每个粒子用一个速度来决定其飞行的方向和距离,然后通过优化函数计算出一个适应度函数值(fitness)。粒子是根据如下三条原则来更新自身的状态:(1)在飞行过程中始终保持自身的惯性;(2)按自身的最优位置来改变状态;(3)按群体的最优位置来改变状态。本文主要运用运筹学中粒子群优化算法解决车辆路径问题。车辆路径问题 由Dan tzig 和Ram ser 于1959年首次提出的, 它是指对一系列发货点(或收货点) , 组成适当的行车路径, 使车辆有序地通过它们, 在满足一定约束条件的情况下, 达到一定的目标(诸如路程最短、费用最小, 耗费时间尽量少等) , 属于完全N P 问题, 在运筹、计算机、物流、管理等学科均有重要意义。粒子群算法是最近出现的一种模拟鸟群飞行的仿生算法, 有着个体数目少、计算简单、鲁棒性好等优点, 在各类多维连续空间优化问题上均取得非常好的效果。本文将PSO 应用于车辆路径问题求解中, 取得了很好的效果。 针对本题,一个中心仓库、7个需求点、中心有3辆车,容量均为1,由这三辆车向7个需求点配送货物,出发点和收车点都是中心仓库。 1233,1,7. k q q q l =====货物需求 量12345670.89,0.14,0.28,0.33,0.21,0.41,0.57g g g g g g g =======, 且 m a x i k g q ≤。利用matlab 编程,求出需求点和中心仓库、需求点之间的各 个距离,用ij c 表示。求满足需求的最小的车辆行驶路径,就是求 m i n i j i j k i j k Z c x = ∑∑∑ 。经过初始化粒子群,将初始的适应值作为每个粒子的个

带时间窗物流配送车辆路径问题

带时间窗物流配送车辆路径问题 摘要 本题是一个带有时间窗的车辆路径安排问题(VRPTW 问题)。根据题目条件,本文建立了一个求解最小派送费用的VRPTW 优化模型,采用遗传算法,给出了该模型的求解方法。然后,对一个实际问题进行求解,给出了一个比较好的路线安排方式。 模型一(见,在需求量、接货时间段、各种费用消耗已知的情况下,决定采用规划模型,引入0-1变量,建立各个约束条件,包括车辆的容量限制,到达每个客户的车辆和离开每个客户的车辆均为1的限制,总车辆数的限制,目标函数为费用的最小化,费用包括车辆的行驶费用,车辆早到或晚到造成的损失。 模型一的求解采用遗传算法(见,对题目给出的实际问题进行求解,得到3 首先按照需求期望根据模型一得到一个比较好的方案,然后按照这一方案进行送货,在送货过程中,如果出现需求量过大的情况,允许车辆返回仓库进行补充。 模型一的思路清晰,考虑条件全面。但最优解解决起来困难,遗传算法只是一种相对好的解决方法,可以找出最优解的近似解。模型二的想法比较合理,易于实施,但还有待改进。 关键词:规划 时间窗 物流 车辆路径 遗传算法 一、 问题重述 一个中心仓库,拥有一定数量容量为Q 的车辆,负责对N 个客户进行货物派送工作,客户i 的货物需求量为i q ,且i q Q <,车辆必须在一定的时间范围[],i i a b 内到达,早于i a 到达将产生等待损失,迟于i b 到达将处以一定的惩罚,请解决如下问题: (1)给出使派送费用最小的车辆行驶路径问题的数学模型及其求解算法。并具

体求解以下算例: q(单位:客户总数N=8,每辆车的容量Q=8(吨/辆), 各项任务的货运量 i s(单位:小时)以及要求每项任务开始执行的时间吨)、装货(或卸货)时间 i a b由附录1给出,车场0与各任务点以及各任务点间的距离(单位:公 , 范围[] i i 里)由附件二给出,这里假设车辆的行驶时间与距离成正比,每辆车的平均行驶速度为50公里/小时,问如何安排车辆的行驶路线使总运行距离最短; q为随机参数时的数学模型及处理方(2)进一步请讨论当客户i的货物需求量 i 法。 二、问题分析 本题主要在两种不同情况下,研究使派送费用最小的车辆行驶路径问题。车辆行驶派送的费用主要包括运输成本、车辆在客户要求到达时间之前到达产生的等待损失和车辆在客户要求到达时间之后到达所受惩罚等等。为满足派送费用最小的需求,即要使所选行车路径产生的总费用最小,从而确定出最佳的车辆派送方案。 q固定时,首先,我们根据题意,取若干辆车进行送当客户i的货物需求量 i 货,然后,主要考虑每辆车各负责哪些客户的送货任务,我们可以给出满足题中限制条件的很多参考方案供选用,并考虑以所选行车路径产生的总费用最小为目标的情况下,建立最优化模型确定最佳的车辆派送方案。 q为随机参数时,我们首先可以简化随进一步讨论,当客户i的货物需求量 i 机模型,根据客户i的货物需求量的期望与方差,确定每天应该运送给客户i的q,再根据第一题,确定最佳的车辆派送方案。 货物量,即 i 但考虑到客户的储存能力有限及货物在客户处的储存费用,客户不需要将一天的货物一次性接收完,只要满足缺货的情况出现的概率很低,客户可以让配送中心一天几次送货,这样可以得到很多满足约束的方案,考虑以单位时间的储存费用最小为目标,建立最优化模型,确定配送中心给每位客户每次的配送量、配送周期与最有车辆行驶路径。 三、模型假设 (1)每个客户的需求只能由一辆配送车满足; (2)每辆车送货时行驶的路程不超过它所能行驶的最远路程; (3)中心仓库的车辆总数大于或等于当派送费用最小时所需的车辆数;(4)从配送中心到各个用户、各个用户之间的运输距离已知; (5)配送中心有足够的资源以供配送。 四、符号说明

数学建模供应链网络物流配送与车辆路径问题

供应链网络物流配送与车辆路径问题

配送是指对局域范围内的客户进行多客户、多品种、按时联合送货活动。配送活动是指根据一定区域范围内各个客户所需要的各个品种要求,对配送中心的库存物品进行拣选、加工、包装、分割、组配、分装上车,并按一定路线循环依次送达各个用户的物流活动。物流配送是供应链网络中一个重要的直接与消费者相连的环节,是货物从物流节点送达收货人的过程。配送是在集货、配货基础上,按货物种类、品种搭配、数量、时间等要求所进行的运送,是“配”和“送”的有机结合。配送的实质是现代送货,是以低成本、优质服务为宗旨,是一种先进的物流形式。 供应链网络的物流配送过程主要包括:从生产工厂进货并集结的集货作业;根据各个用户的不同需求,在配送中心将所需要的货物挑选出来的配货作业;考虑配送货物的质量和体积,充分利用车辆的载重和容积的车载货物的配装及路线的确定。随着供应链管理系统的集约化、一体化的发展,常将配送的各环节综合起来,核心部分为配送车辆的集货、货物装配及送货过程。进行配送系统优化,主要是配送车辆优化调度,包括集货线路优化、货物配装及送货线路优化,以及集货、货物配装和送货一体化优化。物流配送车辆优化调度,是供应链系统优化中关键的一环,也是电子商务活动不可缺少的内容。对配送车辆进行优化调度,可以提高供应链管理的经济效益、实现供应链管理科学化。

配送车辆优化调度实际上也就是车辆路径问题(V ehicle Routing Problem ,简称VRP ),是Dantzig 和Ramse ]80[于1959年提出来的,该问题被提出来之后,很快就引起了运筹学、应用数学、组合数学、图论、网络分析、物流学、管理学、以及计算机科学等学科专家和运输计划制订者的极大重视,成为了运筹学和组合优化领域的前沿和研究热点问题。各学科专家对该问题进行了大量的理论研究及实验分析,取得了很大的进展。 车辆路径问题是径旅行商问题(Travel Salesman Problem ,简称TSP )衍生而出的多路TSP 问题,即为K-TSP 。VRP 的一般定义为]81[:对一系列送货点和(或取货点),组织适当的行车路线,使车辆有序地通过它们,在满足一定的约束条件下(如货物需求量、发送量、交发货时间、车辆容量限制、行驶里程限制、时间限制等),达到一定的目标(如路程最短、费用最少、使用车辆数最少等)。见图1。

相关文档
最新文档