含绝对值不等式优秀教案

含绝对值不等式优秀教案
含绝对值不等式优秀教案

【课题】含绝对值的不等式

【教学目标】

知识目标:

(1)理解含绝对值不等式x a或x a的解法;

(2)了解ax b c或ax b c的解法.

能力目标:培养学生观察、分析、归纳、概括的能力,以及逻辑推理能力,考察学生思维的积极性和全面性,领悟分类讨论、化归和数形结合的数学思想方法,培养数学理解力,化归能力及运算能力,初步学会用数学思想指导数学思维。

情感目标:激发学生学习兴趣,鼓励学生大胆探索,向学生渗透“具体-抽象-具体”

“未知一已知一未知”的辩证唯物主义的认识论观点,使学生形成良好的个性品质和学习习

惯。

【教学重点】

(1)不等式x a或x a的解法.

(2)利用变量替换解不等式ax b c或ax b c.

【教学难点】

利用变量替换解不等式ax b c或ax b c.

教学方法:主要采取启导式教学,通过对初中不等式知识及绝对值的含义和几何意义等相关知识的学习引入,在教师指导下由实例引出解绝对值不等式的实际意义,导出解决含绝对值不等式的解法这一研究主题。

【教学设计】

(1)从数形结合的认识绝对值入手,有助于学生对知识的理解;

(2)观察图形得到不等式|x a或x a的解集;

(3)运用变量替换,化繁为简,培养学生的思维能力;

(4)加强解题实践,讨论、探究,培养学生分析与解决问题的能力,培养团队精神.

【教学备品】

教学课件.

【课时安排】

1-2课时.(80分钟)

【安全教育:清点人数】

*揭示课题

含绝对值的不等式*回顾思考复习导入问题

解决拓展任意实数的绝对值是如何定义的其几何意义是什么

对任意实数x,有

x, x

0, x

X,

x

0,

0,

.

其几何意义是:数轴上表示实数X的点到原点的距离

教师

行为

介绍

提问

总结

引导

分析

学生教学

行为意图

了解复习

思考相关

回答

观察

领会

知识

点为

步学

习做

准备

充分

借助

图像

进行不等式X 2的解集在数轴上如何表示

根据绝对值的意义可知,方程2的解是x

分析2,不等式x 2的解集是(

集是2,2)(如图(1)所示);不

等式x 2的解集是(,2) U (2,

集是)(如图(2)所示).

*动脑思考明确新知

,般地,不等

等式x

-1 0

(1)

(2) a

( a 的解集是

试一试:写出不等式*巩固知识典型例题

解下列各不等

式:

(1) 3x 1 0 ;

分析: 将不等式化成

(1 )由不等式3x

总结理解强调15

的解集是

a U a,

x|, a 与x|…a ( a

(2) 2x?6 .

a, a ;不

0 )的解

集.

a的形式后求解.

1,所以原不等式的

3

强化记忆特点

含绝对值的不等式

含绝对值的不等式 [学习要求] (1)理解并掌握解含绝对值的不等式的基本思路是化去绝对值符号,转化为不含绝对值符号的不等式(或不等式组)来解。 (2)弄懂去绝对值符号的理论依据,掌握去绝对值符号的主要方法,会解简单的含有绝对值的不等式。 [重点难点] 1.实数绝对值的定义: |a|= 这是去掉绝对值符号的依据,是解含绝对值符号的不等式的基础。 2.最简单的含绝对值符号的不等式的解。 若a>0时,则 |x|a x<-a或x>a。

注:这里利用实数绝对值的几何意义是很容易理解上式的,即|x|可看作是数轴上的动点P(x)到原点的距离。 3.常用的同解变形 |f(x)|g(x) f(x)<-g(x)或f(x)>g(x); |f(x)|<|g(x)| f2(x)

评注:绝对值的概念是分类定义的,因此,在解决这类问题时,必须要分类讨论。 例2:型如:|x|a,(其中a>0)不等式的解法。 探路:利用不等式的乘方法则或绝对值意义均可。 解:当a>0时, |x|a x2>a2x>a或x<-a;其几何意义为 评注: 解:型如|x|0)和|x|>a,(a>0)的不等式,可以利用平方法化为关于x的二次不等式来解;也可以利用定义法来解,均可求得它们的解集。今后,要熟记|x|0)的解集为-aa,(a>0)的解集为x>a或x<-a是十分重要的。 例3:由定理-“|a|-|b|≤|a+b|≤|a|+|b|”导出定理:“|a|-|b|≤|a-b|≤ |a|+|b|” 探路:利用“代换法” 证明:由定理一可知,|a|-|-b|≤|a+(-b)|≤|a|+|-b|,即|a|-|b|≤|a-b|≤ |a|+|b|

绝对值不等式(经典题型)

1.若a >0,且|x |>a ,则____________;若a >0,且|x |c (c >0)型不等式的解法: 3.解下列不等式. (1)|2x +5|<7. (2)|2x +5|>7+x . (3)|x 2-3x +1|<5. (4)|2x -1|<2-3x . (5)1<|2-x |≤7. (6)1<|x -2|≤3 4.集合A ={x ||2-x |<5},B ={x ||x +a |≥3},且A ∪B =R ,求a 的取值范围 |x -a |+|x -b |≥c |x -a |+|x -b |≤c 5.解不等式 (1)|x -1|+|x -2|>2. (2)|x +2|-|x -1|<2 |(3)x +2|-|x -1|<2x 6.恒成立问题 (1)对任意x ∈R ,若|x -3|+|x +2|>a 恒成立,则实数a 的取值范围 . (2)关于x 的不等式a >|x -3|+|x +2|的解集非空,则实数a 的取值范围 . (3)关于x 的不等式a >|x -3|+|x +2|在R 上无解,则实数a 的取值范围 . (4)若不等式|x +3|-|x -5|x -2x 的解集是________. 10..已知函数f (x )=|x +2|-|x -1|,则f (x )的值域是________. 11. 对于x ∈R ,不等式||x +10-||x -2≥8的解集为______ 12.设函数f(x)=|3x -1|+x +2. (1)解不等式f(x)≤3; (2)若不等式f(x)>a 的解集为R ,求a 的取值范围.

含参不等式的专题练习教学设计 .doc

例2 解不等式135 x <-< 课后练习: 一.选择题(共2小题) 1.(2015春?石城县月考)已知m为整数,则解集可以为﹣1<x<1的不等式组是() A .B . C . D . 2.(2002?徐州)已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p 的取值范围是() A .p>﹣1 B . p<1 C . p<﹣1 D . p>1 二.填空题(共7小题) 3.(2012?谷城县校级模拟)若不等式组恰有两个整数解.则实数a的取值范围 是. 4.(2010?江津区)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1 <<3,则x+y的值是. 5.若不等式组的解集是﹣1<x<1,则(a+b)2009=. 6.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是. 7.不等式组的解是0<x<2,那么a+b的值等于. 8.已知不等式组的解集1≤x<2,则a=. 9.若关于x的不等式的解集为x<2,则k的取值范围是. 三.解答题(共4小题)

10.(1)解方程组: (2)求不等式组的整数解. 11.(2013?乐山)已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值. 12.(2011?铜仁地区)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元. (1)篮球和排球的单价分别是多少元? (2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案? 13.(2011?邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人. 规则二:合唱队的队员中,九年级学生占合唱团总人数的,八年级学生占合唱团总人数的,余下的为七年 级学生. 请求出该合唱团中七年级学生的人数.

高考数学经典专题:绝对值不等式含参数成立问题(含详解答案)

高考数学经典专题:绝对值不等式中含参数成立问题 1.已知函数()|1||2|f x x x m m =-+-∈R ,. (1)当3m =时,解不等式()3f x ≥; (2)证明:当0m <时,总存在0x 使00()21f x x <-+成立 2.已知函数()32f x x =-. (1)若不等式213f x t ? ?+≥- ???的解集为11,,33????-∞-?+∞ ??????? ,求实数t 的值; (2)若不等式()3133y y f x x m -≤+++?对任意x ,y 恒成立,求实数m 的取值范 围. 3.已知函数()2f x x a =-,()|1|g x a x =-,a R ∈. (Ⅰ)若1a =,求满足()(1)1g x g x +->的实数x 的取值范围; (Ⅱ)设()()()h x f x g x =+,若存在12,[2,2]x x ∈-,使得()()216h x h x -≥成立,试求实数a 的取值范围. 4.已知()|3|f x ax =-,不等式()6f x …的解集是{|13}x x -剟 . (1)求a 的值; (2)若()()3 f x f x k +-<存在实数解,求实数k 的取值范围. 5.已知函数f (x )=|2x ﹣a |+|x ﹣a +1|. (1)当a =4时,求解不等式f (x )≥8; (2)已知关于x 的不等式f (x )2 2 a ≥在R 上恒成立,求参数a 的取值范围. 6.已知定义在R 上的函数2 ()|24|f x x a x a =-+-. (1)当1a =时,解不等式()5f x ≥; (2)若2()4f x a -≥对任意x ∈R 恒成立,求a 的取值范围. 7.已知,a b 均为实数,且3410a b += . (Ⅰ)求22a b +的最小值; (Ⅱ)若2232x x a b +--≤+对任意的,a b ∈R 恒成立,求实数x 的取值范围.

含有绝对值的不等式·典型例题分析

含有绝对值的不等式·典型例题分析 例1 求下列函数的定义域和值域: 分析利用绝对值的基本概念. 解 (1)x+|x|≠0,即|x|≠-x.∴x>0. ∴定义域为(0,+∞),值域为(0,+∞). (2)|x|≥x,x∈R.|x|-x≥0,∴y∈[0,+∞). (3)x+|x|>0,x∈R+.y∈R. 画出函数图象如图5-17所示.不难看出,x∈R,y∈[-1,1]. 说明本例中前三个易错,第四个要分析写出函数表达式,并画出函数图象,此法在求值域时常用. 例2 解不等式|x+1|>|2x-3|-2.

将不等式中的绝对值符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. (1)当x≤-1时原不等式化为-(x+1)>-(2x-3)-2. ∴x>2与条件矛盾,无解. 综上,原不等式的解为{x|0<x<6}. 注意找零点去绝对值符号最好画数轴,零点分段,然后从左向右逐段讨论,这样做条理分明、不重不漏. 例3 解不等式|x2-4|<x+2. 分析解此题的关键是去绝对值符号,而去绝对值符号有两种方法:

二是根据绝对值的性质:|x|<a?-a<x<a,|x|>a?x>a或x<-a,因此本题有如下两种解法. ∴2≤x<3或1<x<2 故原不等式的解集为{x|1<x<3}. 解法二原不等式等价于-(x+2)<x2-4<x+2 例4 求使不等式|x-4|+|x-3|<a有解的a的取值范围. 分析此题若用讨论法,可以求解,但过程较繁;用绝对值的几何意义去求解十分简便. 解法一将数轴分为(-∞,3],[3,4],(4,+∞)三个区间 当3≤x≤4 时,得(4-x)+(x-3)<a,即a>1;

含绝对值的不等式解法练习题及答案

含绝对值的不等式解法练习题及答案 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

例1 不等式|8-3x|>0的解集是 [ ]答选C. 例2 绝对值大于2且不大于5的最小整数是 [ ] A.3 B.2 C.-2 D.-5 分析列出不等式. 解根据题意得2<|x|≤5. 从而-5≤x<-2或2<x≤5,其中最小整数为-5, 答选D. 例3不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4<|3x-1|≤7,即4<3x-1≤7或-7例4已知集合A={x|2<|6-2x|<5,x∈N},求A. 分析转化为解绝对值不等式. 解∵2<|6-2x|<5可化为 2<|2x-6|<5 因为x∈N,所以A={0,1,5}. 说明:注意元素的限制条件.

例5 实数a,b满足ab<0,那么 [ ] A.|a-b|<|a|+|b| B.|a+b|>|a-b| C.|a+b|<|a-b| D.|a-b|<||a|+|b|| 分析根据符号法则及绝对值的意义. 解∵a、b异号, ∴ |a+b|<|a-b|. 答选C. 例6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b 的值为 [ ] A.a=1,b=3 B.a=-1,b=3 C.a=-1,b=-3 分析解不等式后比较区间的端点. 解由题意知,b>0,原不等式的解集为{x|a-b<x<a+b},由于解集又为{x|-1<x<2}所以比较可得. 答选D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例7 解关于x的不等式|2x-1|<2m-1(m∈R)

含绝对值的不等式解法·典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 }...≠.? 83 分析∵->,∴-≠,即≠. |83x|083x 0x 83 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-, 52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 211212 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=1232 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.???1232 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12 x <m .

绝对值不等式中的含参问题(原创)

绝对值不等式中的含参问题 在高中数学中,绝对值不等式的求解及含参问题是高考中不等式选讲部分重要的考点,面对诸多的含参问题,我们来对这些类型的题目作以梳理。绝对值不等式的核心是去掉绝对值符号,将它转化为一般不等式加以解决。 一、绝对值的最值问题 1、当绝对值中x的系数相同时。 运用三角不等式:a?b≤a±b≤a+b 例1:求函数f x=x?3+x?4的最值 解:x?3+x?4≥x?3?x?4=1,函数f x的最小值为1。 例2:求函数f x=2x?1?2x?3的最值 解:2x?1?2x?3≤2x?1?2x?3=2,即得到?2≤2x?1?2x?3≤2,函数f x的最小值为?2,最大值为2。 2、当绝对值中x的系数不相同时。 ①零点分段,②写出分段函数,③画草图(或直接由直线的上升与下降判断最高或最低处),在分界点处求最值。 例:求函数f x=2x?2+x+2的最值 解:当 x≤?2 ?x+2?(2x?2)即 x≤?2 ?3x, 当 ?2

则有f x= ?3x, x≤?2 ?x+4, ?2f x恒成立,则a>f max(x) 例1:x?3+x?4>a对一切x∈R恒成立,求a的取值范围。 析:先求函数f x=x?3+x?4的最小值,再a f max(x)二次不等式。 解:由于x∈0,1,则f x=2x?1?x?2, 当 0≤x≤1 2 ?2x?1?x?2 即 0≤x≤1 2 ?3x?1 当 1 2

高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x ,

所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与 c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{ } c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略) (二)、定义法:即利用(0),0(0),(0).a a a a a a >??==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于 2 x x +<0?x(x+2)<0?-2<x <0。

含绝对值不等式的题型

含绝对值不等式题型 一、单绝对值问题 1.解下列不等式: (1).4321x x ->+; (2).|2||1|x x -<+; (3).4|23|7x <-≤: (4).|23|3x x ->; (5). 2x x +≥ 2. 不等式1|1|3x <+<的解集为( ). .A (0,2) .B (2,0)(2,4)- .C (4,0)- .D (4,2)(0,2)-- 3. 已知全集{12345}U =,,,,,集合{} 32A x Z x =∈-<,则U C A = ( ) .A {1234},,, .B {234},, .C {15}, .D {5} 4. 设集合{}22,A x x x R =-≤∈,{}2,12B y x x ==--≤≤,则()R C A B 等于 ( ) .A R .B {},0x x R x ∈≠ .C {}0 .D ? 5. 不等式2103x x -≤的解集为( ) .A {|2x x ≤≤ .B {}|25x x -≤≤ .C {}|25x x ≤≤ .D {}5x x ≤ 6. 若x R ∈,则()()110x x -+>的解集是 ( ) .A {} 01x x ≤< .B {0x x <且1}x ≠- .C {}11x x -<< .D {1x x <且1}x ≠- 7. 不等式()120x x ->的解集是( ) .A ()1 2,-∞ .B ()()1 2,00,-∞ .C ()12,+∞ .D ()120, 8. 不等式3529x ≤-<的解集是 ( ) .A ()(),27,-∞-+∞ .B []1,4 .C [][]2,14,7- .D (][)2,14,7- 9. 不等式211x x --<的解集是_______________. 10. 方程223x x x ++223x x x ++=的解集为___________,不等式22||x x x x -->的解集是_______

含参数不等式及绝对值不等式的解法

含参数不等式及绝对值不等式的解法 例1解关于x 的不等式:2(1)0x x a a ---> 0)(3 22<++-a x a a x 01)1(2<++-x a ax 02)12(2>++-x a ax 22+≥+ a x ax 11 +>-a x x 11<-x ax ()()02 21>----x a x a 0)2(≥--x x a x 01 2≥--x ax x a x x <- 0)2)(1(1≥----x x k kx 例2: 关于x 的不等式01)1(2 <-+-+a x a ax 对于R x ∈恒成立,求a 的取值范围。

例3:若不等式210x ax ≥++对于一切1(0,)2 x ∈成立,则a 的取值范围. 例4:若对于任意a (]1,1-∈,函数()()a x a x x f 2442-+-+=的值恒大于0,求x 的 取值范围。 例5:已知19≤≤-a ,关于x 的不等式: 0452 <+-x ax 恒成立,求x 的范围。 例 6: 对于∈x (0,3)上的一切实数x,不等式()122-<-x m x 恒成立,求实数m 的 取值范围。 例7:2212<--+x x 1332+<-x x 321+<+x x x x 332≥- 例8、 若不等式a x x >-+-34,对一切实数x 恒成立,求a 的取值范围 若不等式a x x >---34,对一切实数x 恒成立,求a 的取值范围 若不等式a x x <---34有解,求a 的取值范围 若不等式a x x <---34的解集为空集,求a 的取值范围 若不等式a x x <---34解集为R ,求a 的取值范围

专题一、含绝对值不等式的解法(含答案)

第三讲 含绝对值不等式与一元二次不等式 一、知识点回顾 1、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =) ()()()?? ? ??<-=>=0,0,00,a a a a a a 2、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号) (1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <); (4)图象法或数形结合法; (5)不等式同解变形原理:即 ()a x a a a x <<-?><0 ()a x a x a a x -<>?>>或0 ()c b ax c c c b ax <+<-?><+0 ()c b ax c b ax c c b ax -<+>+?>>+或0 ()()()()()x g x f x g x g x f <<-?< ()()()()()()x g x f x g x f x g x f <>?>或 ()()()()a x f b b x f a a b b x f a -<<-<><<或0 3、不等式的解集都要用集合形式表示,不要使用不等式的形式。 4、二次函数、一元二次方程、一元两次不等式的联系。(见P8) 5、利用二次函数图象的直观性来研究一元二次方程根的性质和一元二次不等式解集及变化,以及含字母的有关问题的讨论,渗透数形结合思想。 6、解一元二次不等式的步骤: (1)将不等式化为标准形式()002≥>++c bx ax 或()002≤<++c bx ax (2)解方程02=++c bx ax (3)据二次函数c bx ax y ++=2的图象写出二次不等式的解集。 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。

含绝对值的不等式解法练习题及答案

学习好资料欢迎下载 例 1不等式|8-3x|>0的解集是 [] A. B . R C. {x|x ≠88 }D.{ } 33 8 分析∵ |8-3x|>0,∴ 8-3x≠ 0,即x≠. 答选 C. 例 2绝对值大于 2 且不大于 5 的最小整数是 [] A . 3 B. 2 C.- 2 D.- 5 分析列出不等式. 解根据题意得2<|x|≤ 5. 从而- 5≤x<- 2 或 2< x≤ 5,其中最小整数为-5, 答选 D. 例 3 不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4< |3x- 1|≤ 7,即 4<3x- 1≤7 或- 7 ≤ 3x- 1<- 4解之得5 < x≤ 8 或- 2≤ x<- 1,即所求不等式解集为33 58 . {x| - 2≤ x<- 1或< x≤} 33 例 4已知集合 A = {x|2 < |6- 2x|< 5,x∈ N} ,求 A .分析转化为解绝对值不等式. 解∵ 2<|6- 2x|< 5 可化为 2< |2x- 6|<5 -5< 2x- 6< 5, 即 2x - 6> 2或 2x - 6<- 2, 1< 2x <11, 即 2x > 8或 2x< 4, 解之得 4< x<11 或 1 < x< 2.22 因为 x∈ N,所以 A = {0 ,1, 5} . 说明:注意元素的限制条件. 例 5实数a,b满足ab<0,那么 []

A . |a-b|< |a|+ |b| B. |a+ b|> |a- b| C. |a+ b|< |a- b| D. |a-b|< ||a|+ |b|| 分析根据符号法则及绝对值的意义. 解∵ a、b 异号, ∴|a+ b|< |a-b|. 答选C. 例 6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b的值为 [] A . a=1, b= 3 B. a=- 1, b= 3 C. a=- 1, b=- 3 1 3 D . a=2, b=2 分析解不等式后比较区间的端点. 解由题意知, b> 0,原不等式的解集为{x|a - b< x< a+ b} ,由于解集又为{x| - 1<x< 2} 所以比较可得. a- b=- 11 , b=3. ,解之得 a= a+ b= 222 答选 D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例 7 解关于x的不等式|2x-1|<2m-1(m∈R) 分析分类讨论. 解若 2m- 1≤ 0即m≤1 ,则 |2x- 1|< 2m- 1恒不成立,此时原不等 2式的解集为; 若 2m- 1> 0即 m>1 ,则- (2m- 1) < 2x- 1< 2m- 1,所以 1- m< 2 x< m. 综上所述得:当m≤1 时原不等式解集为;2 当 m>1 时,原不等式的解集为2 {x|1 - m< x<m} . 说明:分类讨论时要预先确定分类的标准. 例 8 解不等式3-|x| ≥ 1 .|x|+ 2 2 分析一般地说,可以移项后变形求解,但注意到分母是正数,所以能直接去分母.

含绝对值的不等式解法(北师版)

1.4 含绝对值的不等式解法 1.不等式|x-2|>1的解集是(D ) A .}31|{<--x ,∴1x . 2.不等式1|31|<-x 的解集为(C ) A .,0|{x B .,3 2 |{-x C .}3 20|{<3 |1|11 ||x x B .? ??-<>-3212x x C .?? ?≤->3 1 x x D .? ? ?≤->3|1|1 ||x x 提示:逐一求解不等式组,或直接判断可知A 中不等式组是恒成立的不等式组. 4.已知集合M={x||x-1|<2}与集合P={x||x-1|>1},则M ∩P=(C ) A .{x|-13} 提示:M=}31|{<<-x x ,P=0|{x . 5.已知不等式|x-a|

C .3、9 D .-3、6 提示:必有0>b ,∴b a x b <-<-,即不等式的解为b a x b a +<<-,令3-=-b a ,9=+b a 解得. 6.已知不等式|x+3|≥|x-5|成立,则实数x 的取值范围是(B ) A .{x|x>1} B .{x|x ≥1} C .{x|x<1} D .{x|x ≤1} 提示:即0)5()3(22≥--+x x ,∴0)53)(53(≥+-+-++x x x x . 7.已知a 2=9,则不等式x 2-|a|≥0的解集是(B ) A .{x|x ≤3-,或x ≥3} B .{x|x ≤3-,或x ≥3} C .{x|3-≤x ≤3} D .{x|3-≤x ≤3} 提示:即32 ≥x . 8.不等式|21||3|x x ->+的解集是(A ) A .2 {|3 x x <- ,或4}x > B .{|3x x <-,或4}x > C .{|34}x x -<< D .2 {|4}3 x x - << 提示:原不等式即22(21)(3)x x ->+,∴(213)(213)0x x x x -++--->,即(32)(4)0x x +->,∴2 3 x <-,或4x >,故选A . 9.设集合M={2|||<-a x x },P={x | 12 1 2<+-x x },若M ?P ,则实数a 的取值范围是(A ) A .{a |0≤≤a 1} B .{a |0<>的解集是)2()2(∞+--∞,, ,则不等式3|3 |-≤-a a x 的解集是(C ) A .)1[]1(∞+--∞,, B .R C .Ф D .]11[, - 提示:由已知得a=2,则不等式3|3 | -≤-a a x 即为1||-

求绝对值不等式中参数的取值范围资料

求绝对值不等式中参数的取值范围

求绝对值不等式中参数的值 例1 已知关于x 的不等式x a b +<的解集为{}15x x <<,求实数,a b 的值。 变式 已知关于x 的不等式2x a b +<的解集为1322x x ??-<,分别求出以下情况中m 的取值范围 (1)若不等式有解;

(2)若不等式解集为R ; (3)若不等式解集为?。 规律总结:问题(1)是存在性问题,只要求存在满足条件的x 即可;不等式解集为R 或为空集时,不等式为绝对不等式或矛盾不等式,属于恒成立问题,恒成立问题f (x )a 恒成立?f (x )min >a . 变式1 把本例中的“>”改成“<”,即|x +2|-|x +3|m 时,分别求出m 的取值范围. (2016沈阳一模)设函数()214f x x x =+--. (1) 解不等式)(0f x >. (2) 若()34f x x m +->对一切实数x 均成立,求出m 的取值范围.

含绝对值的不等式解法练习题及答案

含绝对值的不等式解法 练习题及答案 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 } ...≠.?8 3 分析∵->,∴-≠,即≠. |83x|083x 0x 8 3 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为 -≤<-或<≤. 3x 14x 2x 1{x|2x 1x }538 3 538 3 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-,52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4??? 解之得<< 或<<.4x x 21121 2 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ]

A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=123 2 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.?? ?123 2 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 11 2 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 1 2 x <m . 综上所述得:当≤时原不等式解集为; 当>时,原不等式的解集为 m m 1 2 1 2 ? {x|1-m <x <m}. 说明:分类讨论时要预先确定分类的标准. 例解不等式 -+≥.8 321 2 ||||x x

含参不等式的解法(教师版)

不等式(3)----含参不等式的解法 当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。解参数不等式一直是高考所考查的重点内容。 (一)几类常见的含参数不等式 一、含参数的一元二次不等式的解法: 例1:解关于的x 不等式2(1)410()m x x m R +-+≤∈ 分析:当m+1=0时,它是一个关于x 的一元一次不等式;当m+1≠1时,还需对m+1>0及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论:⑴当m<-1时,⊿=4(3-m )>0,图象开口向下,与x 轴有两个不同交点,不等式的解集取两边。⑵当-10, 图象开口向上,与x 轴有两个不同交点,不等式的解集取中间。⑶当m=3时,⊿=4(3-m )=0,图象开口向上,与x 轴只有一个公共点,不等式的解为方程24410x x -+=的根。⑷当m>3时,⊿=4(3-m )<0,图象开口向上全部在x 轴的上方,不等式的解集为?。 解:11,|;4m x x ? ?=-≥???? 当时原不等式的解集为 ???? ??+-+≤≤+--<<-? ?????+-+≤+--≥-3时, 原不等式的解集为?。 小结:⑴解含参数的一元二次不等式可先分解因式再讨论求解,若不易分解,也可对判别式分类讨论。⑵利用函数图象必须明确:①图象开口方向,②判别式确定解的存在范围,③两根大小。⑶二次项的取值(如取0、取正值、取负值)对不等式实际解的影响。 牛刀小试:解关于x 的不等式)0(,04)1(22>>++-a x a ax 思路点拨:先将左边分解因式,找出两根,然后就两根的大小关系写出解集。具体解答请同学们自己完成。 二、含参数的分式不等式的解法: 例2:解关于x 的不等式02 12>---x x ax 分析:解此分式不等式先要等价转化为整式不等式,再对ax -1中的a 进行分类讨论求解,还需用到序轴标根法。 解:原不等式等价于0)1)(2)(1(>+--x x ax 当a =0时,原不等式等价于0)1)(2(<+-x x 解得21<<-x ,此时原不等式得解集为{x|21<<-x };

含绝对值不等式解法要点归纳

含绝对值不等式解法要点归纳 解含绝对值符号的不等式的基本思想是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法就与一般不等式相同.因此,掌握去掉绝对值符号的方法和途径是解题关键. 一、含有绝对值不等式的几种去掉绝对值符号的常用方法 去掉绝对值符号的方法有很多,其中常用的方法有: 1.定义法去掉绝对值符号 根据实数绝对的意义,即| x | = (0) (0) x x x x ≥ ? ? -< ? ,有: | x |<c? (0) (0) c x c c c φ -<<> ? ? ≤ ? ;| x |>c? (0) 0(0) (0) x c x c c x c x R c <->> ? ? ≠= ? ?∈< ? 或 ; 2.利用不等式的性质去掉绝对值符号 利用不等式的性质转化为| x |<c或| x |>c (c>0)来解.不等式|ax+b|>c (c>0)可化为ax+b>c或ax+b<-c,再由此求出原不等式的解集;不等式|ax+b|<c (c>0)可化为-c<ax+b<c,再由此求出原不等式的解集,对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a≤| x |≤b?a≤x≤b或-b≤x≤-a求解.这是一中典型的转化与化归的数学思想方法.3.平方法去掉绝对值符号. 对于两边都含有“单项”绝对值的不等式,利用| x |2= x2可在两边脱去绝对值符号求解,这样解题要比按绝对值定义,讨论脱去绝对值符号解题简捷.解题时还要注意不等式两边变量与参变量的取值围,如果没有明确不等式两边均为非负数,需要分类讨论,只有不等式两边均为非负数,(式)时,才可以直接两边平方,去掉绝对值符号,尤其是解含参数不等式更必须注意的一点.

相关文档
最新文档