相对论的建立和发展

相对论的建立和发展

主讲人:郑勇

一、历史背景

以太假说

著名的以太实验

光行差实验布拉德雷(1728),阿拉果(1810),爱里

(1817)

部分曳引实验斐索(1851),霍克(1868),迈克尔逊--莫雷

(1886),肯定了菲涅尔部分曳引假说偏振面旋转实验法拉第(1945年发现),玛斯卡特(1872),瑞利

(1902),布雷斯(1905),洛仑兹理论顶计有10-4

的效应,实验未得到。

干涉仪实验迈克耳孙(1881),迈克耳孙一莫雷(1887),有利于

斯托克斯完全曳引假说。

以太实验的否定结果。促使人们对以太和绝对坐标系的存在产生了怀疑。19世纪后半叶,光速的精确测定为光速的不变性提供了实验依据。

1890年赫兹把麦克斯韦电磁场方程改

造得更加简洁。他明确指出,电磁波

的波速(即光速)C,与波源的运动速

度无关。可见,从电磁理论出发,光

速的不变性是很自然的结论。然而这

个结论却与力学中的伽利略变换抵触。

海因里希·鲁道夫·赫兹

为了解决这些矛盾,洛仑兹在1892年

一方面提出了长度收缩假说,用以解释

以太漂移的零结果;另一方面发展了动体

的电动力学。他假设以太是绝对静止的,

从他的电磁理论推出了菲涅耳曳引系数。

亨德里克·安东·洛伦兹

随后,又在1895年与1904年先后建立一阶与二阶变换理论,他力图

使电磁场方程适用于不同的惯性坐标系。然而尽管他的理论能够解释一些理象,(例如能解释为什么探测不到地球相对于以太的运动),但

却是在保留以太的前提下,采取修补的办法,人为地引入了大量假设,致使概念繁琐,理论庞杂,缺乏逻辑的完备性和体系的严密性。

法国著名科学家彭加勒(Henri

Poincare )对洛仑兹理论起过积极

作用。他在1895年就对用长度收缩

假说解释以太漂移的零结果表示不

同看法。他提出了相对性原理的概

念,认为物理学的基本规律应该不

随坐标系变化。规律应该不随坐标

系变化。他的批评促使洛仑兹提出

时空变换的方程式。

亨利·庞加莱

1904年彭加勒正式表述了相对性原理。他在一次演说中讲道:“根据

这个原理,无论对于固定的观察者还是对于正在作匀速运动的观察者,物理定律应该是相同的。因此没有任何实验方法可以用来识别我们自身是否处于匀速运动之中。”

然而彭加勒也没有跳出绝对时空观的框

架。他们已经走到了狭义相对论的边缘,

却没有能够创立狭义相对论。历史的重

任只能由没有传统思想抱负而有独立批

判精神的年轻学者爱因斯坦来承担。

爱因斯坦

庞加莱猜想

1904年,庞加莱在一篇论文中提出了一

个看似很简单的拓扑学的猜想:在一个

三维空间中,假如每一条封闭的曲线都

能收缩到一点,那么这个空间一定是一

个三维的圆球。但1905年发现其中的错

误,修改为:“任何与n维球面同伦的n

维封闭流形必定同胚于n维球面。”后

来这个猜想被推广至三维以上空间,被

称为“高维庞加莱猜想”。

庞加莱

二、爱因斯坦创建狭义相对论的经过

爱因斯坦,德国人,有犹太血统,

1900年毕业于瑞士苏黎世工业大学,

1901年入瑞士国籍,大学毕业两年后

才在伯尔尼瑞士专利局找到技术员的

工作。就在专利局工作期间,1905年

头几个月一连发表了四篇重要论文,

分别在辐射理论、分子运动论和力学

与电动力学的基础理论等三个不同的

领域提出了新的见解。

《论动体的电动力学》一文更

具有划时代的意义,文中第一

次提出了崭新的时间空间理论,

一举解决了光速的不变性与速

度合成法则之间的矛盾以及电

磁理论中的不对称等难题。爱

因斯坦把这个理论称为相对性

理论,简称相对论,后来又叫

狭义相对论。

《论动体的电动力学》

狭义相对论是爱因斯坦伟大的一生中取得的第一项重大成果,是他

在前人的基础上经过长期的酝酿和探索才取得的。我们在学习相对

论时,很自然要问,为什么是爱因斯坦而不是别人创建了狭义相对论?爱因斯坦受到过那些启发,抓住了什么关键,找到了什么突破口,才取得如此重大的成果的呢?

根据爱因斯坦1946年写的《自述》

和1922年在日本京都大学的讲演:

《我是怎样创立狭义相对论的?》以

及其它资料,我们可以追溯他走过

的道路。

早在16岁(1895年)时,爱因斯坦就开始思考这样一个问题:“如果我以速度(真空中的光速)追随光线运动,我应当看到这样一条光线就好象一个在空中振荡着而停滞不前的电磁场。可是无论是依据经验,还是按照麦克斯韦方程,看来都不会有这样的事情。”其实这是一个悖论,实际上包含了狭义相对论的萌芽思想。

不久爱因斯坦得知迈克耳孙一莫雷实验的零结果。他由此认识到,地球相对于以太的运动是不能用任何仪器测量的。他继续回忆说:“如果承认迈克耳孙的零结果是事实,那么地球相对于以太运动的想法就是错的,这是引导我走向狭义相对论的第一步。”

后来,爱因斯坦读到了洛仑兹1895年的

论文,对洛仑兹方程发生了兴趣。他很

欣赏洛仑兹方程不但适用于真空中的参

照系,而且适用于运动物体的参照系。

他试图用洛仑兹方程讨论斐索的流水中

光速实验。当时他坚信麦克斯韦和洛仑

兹电动力学方程是正确的。

但是进一步推算,发现要保持这些方程对动体参照系同样有效,必然导致光速不变性的概念,而光速的不变性明显地与力学的速度合成法则相抵触。

为什么这两个概念会相互

矛盾呢?爱因斯坦苦思不得

其解。起初他想修改洛仑

兹的观念,以解决这个矛

盾,结果白白花了一年时

间,没有取得进展。

爱因斯坦回忆:“忽然我领悟到这个问题的症结所在。这个间题的答案来自对时间概念的分析,不可能绝对地确定时间,在时间和信号速度之间有着不可分割的联系。利用这一新概念,我第一次彻底地解决了这个难题。”

1.物理体系的状态据以变化的定律,同描述这些状态变化时所参照的坐标系究竟是两个在互相匀速移动着的坐标系中的那一个并无关系,(相对性原理)。

2.任何光线在静止的坐标系中都是以确定的速度v 运动着,不管这道光线是由静止的还是运动的物体发射出来的,(光速不变原理)。

爱因斯坦明确指出:在他的理论里,以太的概念将是多余

的,因为这里不需要特设的绝对静止参照系。

不出五个星期,(1905年6月),爱因斯坦就写好了那篇历史性文献《论动体的电动力学》,1905年9月发表在著名的德文杂志《物理学年鉴》上。在这篇论文中,爱因斯坦十分果断地把相对性原理和光速不变原理这两条看起来似乎矛盾的设想放在一起作为基本出发点。他称之为两条公设,内容如下:

爱因斯坦之所以能够如此利

落地摒弃旧的一套时空观,

是因为他经过十年的思索,

查考了一系列物理学中的矛

盾,总结了各方面的事实,

充分认识到绝对空间和绝对

时间是人为的,多余的概念。

爱因斯坦追求的目标是普遍性的自然法则。

他在《自述》中写道:“不论是力学还是热力学(除非在极限情况下)都不能要求严格有效。渐渐地我对那种根据已知事实用构造性的努力去发现真实定律的可能性感到绝望了。我努力得愈久,就愈加失望,也就愈加确信,只有发现一个普遍形式的原理,才能使我们得到可靠的结果。我认为热力学就是放在我面前的一个范例。”

哲学的思考也是引导爱因斯坦前进的重要因素。在《自述》中他这样讲道:“只要时间的绝对性或同时性的绝对性这条公理不知不觉地留在潜意识里,任何想要令人满意地澄清这个悖论的尝试都是注定要失败的。清楚地认识到公理以及它的任意性实际上就意味着间题的解决。

爱因斯坦年少时期就对哲学很有兴趣。

康德的《纯粹理性批判》,马赫的

《力学史评》都给了他深刻的影响。

奥林比亚科学院

1902年前后,爱因斯坦和几个年轻朋友组成“奥林比亚科学院”每晚聚在一起,研读斯宾诺莎、休谟、彭加勒等人的科学和哲学著作。斯宾诺莎关于自然界统一的思想,休谟的时空观,马赫对牛顿绝对时空观的批判都引起爱因斯坦极大的兴趣。

三、狭义相对论理论体系的建立

爱因斯坦创建狭义相对论的过程是非常曲折的。

爱因斯坦和洛伦兹不同,他不是人为地拼凑出种种假设,企图解释地球相对于光以太运动的零结果,而是把它当做自由界普遍规律的表现,从中领悟到这正是相对性原理在力学领域和电磁学领域普遍成立的证明;并且因此概括出了光速不变性原理。

爱因斯坦首先讨论了“同时性”的定义。他说“凡是时间在里面起作用的我们的一切判断,总是关于同时的事件的判断。”

爱因斯坦指出,这种用静止在静止坐标系中的钟来定义的时

间只是“静系时间”

爱因斯坦以两个公设为依据来考察长度和时间的相对性。

1.物理体系的状态据以变化的定律,同描述这些状态变化时所参照的坐标系究竟是用两个在互相匀速移动着的坐标系中的哪一个并无关系。(相对性原理)

2.任何光线在'静止的'坐标系中都是以确定的速度V运动着,不管这道光线是由静止的还是运动的物体发出来的。(光速不变性原理)

比较相对论时空观和牛顿经典时空观

比较相对论时空观和牛顿经典时空观,浅谈科学发展中的肯 定与否定 “天地万物之逆旅,光阴者百代之过客”,人类生存于天地之间,漫步于时间长河,对于时间与空间的思考萦绕于一代又一代人的心头。随着人类文明的发展,人们对时空观的认识也在不断变化,在这其中相对论时空观和牛顿经典时空观是公认的科学史上有很大影响力的时空观,下面我就对这二者进行比较,谈一谈人类科学发展中的“肯定”与“否定”。 首先,从理论基础来看这两个时空观。这两个时空观是建立在不同的理论基础之上的。牛顿的经典时空观是以经典力学为基础建立起来的,爱因斯坦提出的相对论时空观是以光速c不变为理论基础。 其次,从内容来看这两个时空观。由于二者理论基础的不同,这也就决定了这两个时空观内容的截然不同。这就像种下两个种类不同的种子,那最后长出来的东西肯定是不同的。这两个时空观对时间和空间与物质的关系看法不同。牛顿经典时空观是绝对时空观,认为时间和空间与物质及其运动无关,时间坐标系和空间坐标系是完全脱离物质而独立存在的,时间间隔和空间间隔在不同的惯性系中保持不变,即时间空间观念与物质运动状态无关。而相对论时空观认为有物质才有时间和空间,时间和空间与物体的运动状态有关。这两个时空观对时间与空间的关系看法也不同。牛顿经典时空观认为时间和空间彼此无关,独立各自。而相对论时空观则恰恰相反,它认为两个时间在不同的惯性系看来,它们的空间关系是相对的,时间关系也会是相

对的,时间和空间不是互相独立的而是彼此不可分解的整体,只有空间和时间联系在一起才有意义,光速c是建立不同惯性系间的时间和空间变换的纽带。 毋庸置疑,事实是唯一的,然而这两个时空观却给出了迥然不同的答案。我们是不是能够肯定一方而否认另一方呢?我认为不能。虽然相对论时空观得到了大多数人的认可,但我们不能否定牛顿经典时空观。它为科学的发展做出了重要的贡献。自十七世纪,牛顿力学不断发展并取得巨大成就,以牛顿力学为基础建立了天体力学和应用力学等等。从地面上的各种物体运动到各种现代化交通工具以及天体的运动,都服从牛顿力学规律,这充分说明了牛顿力学规律的正确性。值得指出的是,牛顿的力学为十八世纪的工业革命及其之后的机器生产准备了科学理论。马克思曾经认为,在十八世纪臻于完善的力学是“大工业的真正科学的基础。”毫无疑问,当时这个“科学的基础”的最主要而且也是最重要的部分是牛顿的力学。牛顿的经典力学体系和他的方法论使物理学在十八、十九世纪期间得以迅速发展,并成为那时理论物理学的纲领或规范。迄至今日,人们关于自然过程的物理认识都可以看作是牛顿思想的一种系统的发展。到十九世纪末,牛顿经典力学在解释新实验事实时遇到了困难。相对论的提出成功的解决了这一问题,揭露了时间和空间某种普遍而新颖的联系,引起了人类时空观的变革,为现代科学技术的发展奠定了牢固的基础。这两个时空观各有其各自的价值,没有谁对谁错,我们不能单纯的肯定与否定。这看似不符合逻辑,但在很多时候我们是不能简单的肯定或否定的,

2、狭义相对论对于哲学发展的影响

2、狭义相对论对于哲学发展的影响 Einstein不仅是一位伟大的科学家,也是一位伟大的哲学探索者,他为后人留下了卷帙浩繁的科学著作和哲学社会学著作,将以伟大的物理学家和当代著名的哲学家而载入史册。赖兴巴赫说:“爱因斯坦的工作比许多哲学家的体系包含着更多的固有哲学。”爱因斯坦认为,现代哲学的基本原理组成了我们所有人生活的世界,这些原理是活生生的,是经过千百年实践检验证明的。爱因斯坦是一个奇迹,他的贡献极大地促进了人类的文明进步。在当今之世,他已经成为人类智慧的化身和道德的典范。他的业绩远远超出诺贝尔奖所给予的标志。未来的时代愈久远,现在与之比肩的名人将逐渐被人淡忘,而爱因斯坦必将越来越成为后世敬仰的楷模。普朗克讲:“要对爱因斯坦的理论作出中肯评价的话,那么可以把他比做20世纪的哥白尼,这也正是我所期望的评价。” 爱因斯坦认为,哲学是科学研究之母,科学生发新的哲学思想,科学和哲学二者在他身上可谓珠联璧合、相得益彰。在常规科学时期,科学家是在范式的指导下解难题的,哲学表面看来对科学似乎不起什么作用,岂不知,哲学成分早已包含在范式之内了。但是当科学面临危机和革命时,科学家单在科学自身之内是找不到足够的破旧立新的思想武器的,他们只好求助哲学批判和哲学分析。而且这样的任务也只能由有哲学头脑的科学家来担当,因为他们“最清楚鞋子究竟是在哪里夹脚的”,富有科学功力和哲学素养的科学家便顺天应时地成为科学革新家。在创立狭义相对论的过程中,科学和哲学在爱因斯坦的思想中是水乳交融、彼此砥砺、相辅相成的。 爱因斯坦“博观而约取,厚积而薄发”。他善于博采众家之长,又不墨守成规或拘泥于一家之言,他既从专业哲学家斯宾诺莎、莱布尼兹、康德、休谟等人那里汲取了丰富的思想营养,又从哲人科学家开普勒、伽利略、牛顿、安培、亥姆霍兹、黎曼、普朗克、马赫、彭加勒、奥斯特瓦尔德、迪昂、皮尔逊等人之处获得了有益的启迪,加之他善于结合科学实践进行思考和创造,从而形成了他的综合实在论思想。这种实在论既在各种不同的乃至对立的哲学流派之间保持了必要的张力,又在传统和革新之间保持了必要的张力,因而成为一种卓有成效的科学研究纲领。霍耳顿教授在60年代末发表的一篇著名论文《马赫、爱因斯坦和对实在的探索》中这样写道:“在我们这个世纪的思想史中,有一章可以题为‘阿尔伯特?爱因斯坦的哲学历程,这是一段从以感觉论和经验论为中心的科学哲学,到以理性论的实在论为基础的哲学历程。”把爱因斯坦科学哲学概括为由温和经验论、基础约定论、意义整体论、科学理性论、纲领实在论构成的独特而绝妙的多元张力哲学,在这个兼容并蓄、和谐共存的哲学统一体中,五种不同的乃至异质的要素相互限定、彼此补充,保持着恰到好处的“必要

相对论资料

资料:相对论是怎样产生的? 1、罗盘鄂华《传》P16引自《自述》 “当我还是一个四五岁的小孩,在父亲给我看一个罗盘的时候,我经历过这种惊奇,这只罗盘以如此确定的方式行动,根本不符合那些在无意识的概念世界中能找到位置的事物的本性。我现在还记得,至少相信我还记得,这种经验给我一个深刻而持久的印象,我想一定有什么东西深深地隐藏在事情后面。 2、几何学鄂华《传》P24-25引自《自述》 “在我12岁时,我经历了另一种性质完全不同的惊奇:这是在一个学年开始时,当我得到一本关于欧几里得平面几何的小书时所经历的,这本书里有许多断言,比如三角形的三个高相交于一点,它们本身虽然不是显而易见的,但是可以很可靠地加以证明,以致任何怀疑似乎都不可能。这种明晰性和可靠性给我造成了一种难以形容的印象,至于不用证明就得承认公理,这件事并没有使我不安,如果我能依据一些其有效性是不容置疑的命题来加以证明,那么我就完全心满意足了”。 爱因斯坦《浅说》P2-3 几何学是从某些象“平面”、“点”和“直线”之类的概念出发的,我们可以有大体上是确定的观念和这些概念相联系;同时,几何学还从一些简单的命题(公理)出发,由于这些观念,我们倾向于把这些简单的命题当作“真理”接受下来,然后,根据我们自己感到不得不认为是正当的一种逻辑推理过程,阐明其余的命题是这些公理的推

论,也就是说这些命题已得到证明。于是,只要一个命题是以公认的方法从公理中推导出来的,这个命题就是正确的(就是“真实的”),这样,各个几何命题是否“真实”的问题就归结为公理是否“真实”的问题。 如果,按照我们的思想习惯,我们现在在欧几里得几何学的命题中补充一个这样的命题,即在一个在实践上可视为刚性的物体上的两个点永远对应于同一距离(直线间隔),而与我们可能使该物体的位置发生的任何变化无关,那么,欧几里得几何学的命题就归结为关于各个在实践上可以视为刚性的物体的所有相对位置的命题,作了这样补充的几何学可以看作物理学的一个分支,现在我们就能够合法地提出经过这样解释的几何命题是否“真理”的问题,因为我们有理由问,对于与我们的几何观念相联系的那些实在的东西来说,这些命题是否被满足,用不大精确的措词来表达,上面这句话可以说成为,我们把此种意义的几何命题的“真实性”理解为这个几何命题对于用圆规和直尺作图的有效性。 王青建《赏析》P1 P11 P10 欧几里得《几何原本》是一本世界名著,在各国流传很广、影响很大,仅次于基督教的《圣经》。该著作开辟了一条数学公理化的正确道路,对整个数学发展的影响超过了历史上任何一部著作。 《几何原本》中的演绎逻辑思想也成为后世数学发展的宗旨,事实上,现代数学的许多结果都不符合直观,它们之所以被人们接受和使用,关键是它们符合演绎逻辑推理,它们是经过严格证明出来的。

_相对论_宇宙与时空_连载_时间的性质_下_

第29卷第2期大 学 物 理Vol.29No.2 2010年2月COLLEGE PHYSI CS Feb.2010《相对论、宇宙与时空》连载  《相对论、宇宙与时空》连载 λψ ———时间的性质(下) 赵 峥 (北京师范大学物理系,北京 100875) 8 时间测量的基础———“约定光速” 相对论诞生之后,人们逐渐认识到不仅时间的测量有问题,空间的测量也存在问题.一根尺在不同的地方,长度是否一样,尺子在移动过程中长度会不会改变,都成了需要深思的问题. 哲学家们在探索“时间本质”上所发挥的激情,使时间测量问题更加混乱.不少哲学家认为时间与空间不同,时间应该属于精神世界.有的哲学家干脆认为时间的度量只能靠“直觉”.然而什么是“直觉”,也很难说清楚,似乎只能意会,不能言传. 哲学家的聪明才智虽然给了科学工作者很多启示,但上述把时间归入“精神世界”,把时间度量归入“直觉”的看法,似乎无助于自然科学工作者对时间性质的研究. 针对上述导致“混乱”的观点,庞加莱在相对论诞生前夜(1900年前后)发表了一些重要看法.庞加莱认为时间的测量分为两个问题,一个是如何确定“异地时钟”的同时,另一个是如何确定“相继时间段”的相等.他认为这两个问题的解决不能靠“直觉”,而应靠“约定”. 他在《时间的测量》一文中猜测,应该把“光速各向同性而且是一个常数”作为一条公理.他讨论了用交换光信号来确定两地时间“同时”的问题[15]. 1905年,他在《科学的价值》一书中再次强调了他对“约定”光的传播性质的观点:“光具有不变的速度,尤其是,光速在所有方向都是相同的.这是一个公设.没有这个公设,便不能试图测量光速”[15]. 科学史的研究表明,在相对论的第一篇论文发表之前很久,爱因斯坦就已认识到“相对性原理”和“麦克斯韦电磁理论”是应该坚持的基本原理.他也已认识到这将导致电磁理论与参考系无关,以及由此引起的光速与参考系无关的结论,即所谓“光速不变性”.也就是说爱因斯坦已经抓住了“相对论”的基础.那么他为什么一直没有建立起“相对论”呢?爱因斯坦1922年在日本京都的一次即兴演讲道出了其中的原委[20].他回忆了大约在1905年5月与朋友贝索的一次讨论,当时爱因斯坦正被一个问题卡住.这个问题就是“光速不变性”似乎与力学中的速度叠加法则相矛盾.这个难题爱因斯坦思考了几乎一年,然而毫无结果.他觉得“这真是个难解之谜”.爱因斯坦在京都演讲中回忆道:“这时,伯尔尼的一个朋友(贝索)意外地帮助了我.那是一个明媚的日子,我去访问他,与他进行了如下的谈话:‘最近我有个难以理解的问题,所以今天我把问题带到这里来想跟你讨论.’我们谈了很多,我突然明白了.第二天我又去看他,开口就说:‘谢谢你,我已经完全解决了这个问题.’我解决的实际上就是时间概念,也就是说,时间不可能被绝对地定义,时间和信号速度之间存在着不可分离的联系.”爱因斯坦曾和他的朋友们一起读过并讨论过庞加莱的文章.看来这次与贝索的谈话使爱因斯坦回忆起了庞加莱关于时间与光速关系的论点,这给了他重要的启示,解决了卡住的问题.几周后爱因斯坦关于相对论的第一篇论文《论运动物体的电动力学》就投给了杂志社,文章后面,爱因斯坦向贝索致谢,“感谢他提出的一些有价值的建议”. 在下一节中,我们将清楚地看到,庞加莱“约定”光速的观点,对爱因斯坦建立相对论的影响. 9 异地时钟的校准———“同时”的定义 “异地时钟的校准”和“相继时间段(绵延)的测量”是时间研究中的重大问题.庞加莱认为这两个问题相互关联,而且只有通过“约定”才能加以解决.他推测通过“约定”真空中光速的各向同性有可能解决上述问题. 爱因斯坦赞同庞加莱对时间度量的约定论,并在他的相对论中用“约定”的方式定义了异地事件的同时.由于物理学是一门实验的科学、测量的科学,有关时间度量的任何约定,都必须使定义在测量上有可操作性.为此,爱因斯坦建议“约定”真空中的光速均匀各向同性,而且是一个常数.爱因斯坦把

浅谈职场制胜相对论

浅谈职场制胜相对论 有这么一个故事,说两个人在森林里面遇到一头熊,A 立即拼命的跑,B就说啦:你这么拼命干啥?你还能跑得过熊?A说:我只要跑得过你就行了。 A凭什么活下来?就凭能比B跑得快一点。在这个故事中,相对论的运用救了A的性命;其实,在我们职场中相对论问题无处不在,熟练掌握相对论你将游刃有余! 这里的新人通指新入职的员工,不管你是菜鸟还是高管,你都会考虑一些问题:我该怎么样活下去?我以什么打动老板?我该怎么工作…… 这里的相对论构成是:老板是狗熊,你的前任是你的对手! 这里有两个问题我们要辩证的认识: 其一,确认前任的短处比继承前任的长处要重要。老板换人一般就是因为前面的人有了他不能忍受的短处,如果你不知道老板对前任有什么不满意,哪怕你把前任的长处全部继承了,你对老板换人来说是没有意义的。 其二,突出自己改善前任缺点的能力比以自我为中心、盲目发挥自己的长处要重要。老板换了一个人后一般最先关注的是能否立竿见影的改善工作,这个时候你优先突出什么能力就显得很重要。 在职场中你有时可能面对一种工作,这个工作你以前没

有做过、公司以前也没有人做过,你该怎么做呢? 这里的相对论构成是:老板是狗熊,老板的底线是你的对手! 首先,你认清楚老板的底线比知道老板的期望要重要;其次,优先计划确保底线达标比力图全面实现要重要。 对一个陌生工作而言,难是难在你没有参考做法,但是,好也就好在你没有参考业绩。只要你能确保实现底线,因为大家也缺乏对业绩的衡量标准,一般还是能接受的。 职场人员时时刻刻面临着竞争,这种竞争来源于自己的同事、来源于行业内的同行,更来源于自我对回报的不断要求,这些都要求你必须不断的做到更好。该如何自我提升呢? 这里的相对论构成是:市场是狗熊,同事/同行/自我是你的对手! 实现自我提升你需要两个习惯: 首先,凡事不管大小一定用自己最大的努力去做,拿出自己最完美的作品。不应该停留在按要求、按部就班的去做,满足于取得一个还过得去的成绩。 其次,面对同事/同行/自我以前的作品,必须强迫自己去找出进一步改善点。改善不在乎大小,勿以善小而不为,关键是只有不断的改善才会有你不断的进步,才能积少成多。 公司与公司也存在永恒的竞争,该学习对手超越对手吗?该埋头完善自我而自然而胜吗?该什么时候该向对手发起

什么是相对论

第一章狭义相对论与洛伦兹变换 据资料显示,狭义相对论是由洛伦兹和庞加莱等人的工作基础上创立的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦以光速不变原理出发,建立了新的时空观。进一步,闵可夫斯基为狭义相对论提供了严格的数学基础,从而将该理论纳入到带有闵可夫斯基度量的四维空间之几何结构中。 此外,在学习中,我还明白了狭义相对论之中的洛伦兹变换与伽利略变换的区别在于精准度的大小;而且,洛伦兹变换是基于光在可测时空中的平均速度不变的实验所证明的规律下建立起来的。 在狭义相对论中指出高速运动情况下,不同的坐标系下会表现出不同的测量结果。如尺缩效应、时间延长等。本文将不在这里讨论以上结论的证明过程。 况且,以上结论只是对一些可能客观存在的现象的描述,真正的原理我们还不能真正的解释清楚。事实上物理学的终点就是解决最初、现在以及将来!最初,说的是宇宙的开端,即时间和空间的开端。现在,也就是现在的宇宙运行规律的背后操纵者的探索。将来,可以说是求解宇宙发展的明天。 可以说相对论只是物理学的一小步,却是近现代物理学的一大步! 第二章迷人的超光速

相对论认为超光速行进是行不通的,对于一个有质量的物体,哪怕是一个质量极小的粒子,其速度接近光速时,质量会变得极大,要想再加速就极困难了,如果其质量无限大,而加速质量无限大的物质时需要无限大的能量,这是不可能的。 这里我就要问了,速度的增加与质量的增加是不是同时,还是有先有后。也许我们只要不断地产生并消耗那一部分质量就可以得到一种高速加速的方式。 我们真的不能超越光速吗,我们姑且不考虑光在可测时空中的平均速度不变的正确性。 如果说我们不是让本身的速度增加,而是让时空推着我们走,让当地的时空坐标产生推移从而看起来比光的传播速度更快。这就是时空泡泡。与之相对应的还有虫洞理论,说的是通过负能量创造弯曲时空,建立一个捷径。但是,我们可以想啊,负能量到底何德何能,它竟然可以创造弯曲时空,还可以维持弯曲的存在!这是科学家们没有给我解答的!毕竟负能量的能力也只是在麦克斯韦方程式中得到的解。 而且,敝人认为,即使造出了弯曲的时空,我们也没有办法超光速!因为那里的时空密度已经改变,用我们平直的时空尺已经没办法测量,我们想要穿越,就一定要进入,一旦进入,我们就要服从那里的规律,必须用到弯曲的时空尺!纵然在平直的时空中观察只有1米,可是弯曲了一光年的长度,于是即使我们以光速行进,还是要一年才能走完!

_相对论_宇宙与时空_连载_恒星演化的归宿_白矮星_中子星和(精)

第 28卷第 6期大学物理 Vol . 28No . 62009年 6月 COLLEGE PHYSI CS June 2009 《相对论、宇宙与时空》连载 《相对论、宇宙与时空》连载⑥ ———恒星演化的归宿 (白矮星、中子星和黑洞 赵峥 (北京师范大学物理系 , 北京 100875 1赫罗图 指向天空的望远镜发现 , 千亿计的恒星各式各样 , 它们不仅光度不同 , 颜色也各异 , 真是千姿百态、绚丽多彩 . 这里的光度 , 是指恒星的绝对光度 . 绝对光度反映 , 之后 , 恒星的真实亮度 , 释放出的光能 . . 恒星的颜色 , . (. Hertzs p rung 和美国天文学家罗素 (Russell 各自独立给出了一张表示恒星光度和表面温度的关系图 , 称为赫罗图 (图 1 . 注意 , 赫罗图反映的不是恒星在天空中的位置分布 , 而是它们的光度和温度之间的关系 . 由于温度是由光的颜色反映出来的 , 他们给每一个温度范围定义了一个光谱型 , 从高温的蓝星到低温的红星 , 依次分为 O 、 B 、 A 、 F 、 G 、 K 和 M 共 7个光谱型 . 我们的太阳属于黄 色的 G 型 , 表面温度约 6000K [1— 5] .

图 1赫罗图 光谱型的名字很难记 , 有人编了一个小故事 :一个年轻的天文学家初次用天文望远镜看星空 , 那五颜 六色的天体让他大为惊讶 , 不禁大喊道:“ Oh, be a fine girl, kiss me ! ” (哦 , 真像一位仙女 , 吻我吧 ! . 这句话的每个单词的第一个字母 , . , . , (红矮 . , 是黄色的恒星 , . 主星序的右上方有低温而巨大的红巨星 , 左下方有小而高温的白 矮星 , 它们属 于恒星演化的不同阶段 . 星际物质在万有引力作用下塌缩变热 , 点燃热核反应 , 成为主序星 , 在这里度过它们 99%的寿命 . 当恒星内部的氢合成氦的反应结束时 , 恒星离开主星序 , 膨胀成红巨星 . 然后再演变成白矮星 . 下面 , 我们将详细地介绍 这一演化过程 .

相对论的发展

第八章 相对论的发展 教学目的与要求:掌握:狭义相对论的内容及建立过程。爱因斯坦是如何得到广义相对论的两个基本假设的;广义相对论的实验验证情况。熟悉:绝对时空观的困难;爱因斯坦的生平。 教学重点,难点:狭义相对论的内容及建立过程。爱因斯坦是如何得到广义相对论的两个基本假设的;广义相对论的实验验证情况。 教学内容: §1.相对论先驱者的思想 一 洛仑兹的收缩假说 迈克尔逊—莫雷实验的“零结果”在最初人们并没有因此否定静止以太的存在,反而认为是实验可能失败了。或力图对实验结果作出种种解释。其中最具代表性的理论假说是荷兰物理学家洛仑兹的收缩假说。 1.洛仑兹(H.A.Lorenzt) 1853年7月生于荷兰。1870年考入莱顿大学,主攻数学、物理学和天文学,1875年12月获得博士学位,1877年被乌得勒支大学聘为数学教授,同年莱顿大学授予他荷兰唯一的理论物理学教授席位(24岁)。1912年洛仑兹辞去莱顿大学教授职务,去政府部门任高等教育部部长。他创立了电子论,首次把以太和普通物质分开,1895年提出著名的洛仑兹力公式。他将经典电磁场理论发展到了最后的高度,为相对论的诞生创造了条件。他因其电子论对塞曼效应进行了定量解释,与塞曼分享了1902年诺贝尔物理学奖。 2.长度收缩假说的提出 1892年11月洛仑兹发表了《论地球对以太的相对运动》,用长度收缩假说解释了迈克尔逊—莫雷实验。他认为运动物体在其运动方向上的收缩,抵消了地球在以太中运行所造成的光程差,所以观察不到预期的条纹移动。他写到:“我终于想出唯一的方法来调和它与菲涅耳的理论:连接一个固体上的两点连线,如果开始平行于地球运动的方向,当它转过90℃后就不能保持原来的长度。如果令后一个位置的长度为L ,则前一个位置的长度为L(1-α)。”其中α=v2/2c2 。1895年洛仑兹给出了更精确的长度收缩系数为 22 1c v ? 洛仑兹一直认为这种收缩是真实的,是由分子运动引起的。这与爱因斯坦提出狭义相对论有本质区别。 3. 一级近似的解释及地方时 洛仑兹的上述收缩假说只涉及到v 2/c 2的这种二级近似。1895年,洛仑兹发表了《运动物体中电磁现象和光现象的理论研究》,提出了地方时概念,他对麦克斯韦方程组施加了一种变换。其中时间t 变为“当地时间” t′=t–(v/c2)x ,电场E 变换为E′=E+v×B/c ,磁场B 变换为B′=B-v×E/c ,结果发现麦克斯韦电磁场方程组的形式不变。由此证明其收缩假说可以准确到v/c 一阶范围。这样就解释了迈克尔逊—莫雷实验。 “当地时间”t’=t–(v/c 2)x ,指在物体上的测得的时间,它与坐标系的平移速度有关。它表明,好象在运动坐标系上的时钟走慢了。洛仑兹认为地方时只不过是一个数学假设,不具有真实的物理意义,而牛顿力学中的绝对时间才是唯一真实的时间。与此相反,爱因斯坦认为不存在所谓的绝对时间,地方时才是唯一真实的时间。 4.实验验证的失败 ①按照洛仑兹的长度收缩假说,物体的密度在不同的方向上会有所不同,这样光通过它

语言相对论的产生及发展

语言相对论的产生及发展 语言相对论往往被称作“萨丕尔-沃尔夫假说”。实际上,美国语言学家、人类学家萨丕尔(Edward Sapir)和美国语言学家沃尔夫(Benjamin Lee Whorf)并没有合著过,也没有明确地为实证研究提出过假说。“萨丕尔-沃尔夫假说”这一说法是萨丕尔的学生,美国语言学家、人类学家哈利?霍衣哲(Harry Hoijer)在1954年提出的(Koerner 2002:2)。 ①后来的学者,如美国心理语言学家罗杰?布朗(Roger Brown)(1976)等,将假说分为两类:强式,语言决定论(Linguistic Determinism),即语言决定思维、信念、态度等;弱式,语言相对论(Linguistic Relativity),语言反映思维、信念、态度等(高一虹,1994:4)。前者认为语言不同的民族,思维方式完全不同,后者认为语言不同的民族,思维方式上有差异。但值得注意的是,萨丕尔和沃尔夫并未作此区分,沃尔夫本人也并不同意极端的语言决定论。 目前,研究者通常使用沃尔夫自己的术语,即语言相对论(Linguistic Relativity)。这个陈述暗示了萨丕尔和沃尔夫并不是最早或唯一对语言和思维的关系进行研究的学者。其他思想流派也有对这个问题的研究。 对语言和思维之间关系的思考可以追溯到古希腊时期。

对语言相对论来说,其思想发展历程大致经过以下几个时期。 古希腊时期 古希腊哲学家柏拉图认为,世界存在于预设的外部理念,语言若要存在下去,就必须尽力正确地反映这些理念。“除了我们把思维准确地称作由心灵与它自身进行的无声 的对话之外,思维和言谈是一回事。”“从心中发出通过嘴唇流出来的声音之流称作言谈。”② 持该种观点的人认为,语言的背后是普遍的理性本质,为天下人共有,至少为所有思想家共有。词语不过是这种深层精华的表达媒介,语言是反映内在思想活动的“标签”,是体验世界的工具,还没有考虑到语言对思想的作用。 德国语言学传统时期 直至18世纪晚期19世纪早期,人们才逐渐认识到不同民族有不同的特征,即民族精神。随着这种认识的发展,逐渐形成了民族主义。 1820年,德国语言学者洪堡德(Wilhelm V on Humboldt)将语言学和民族浪漫主义的研究联系起来,认为正是语言构造了思维。思维由内部对话产生,这个过程使用了语言使用者相同的语法结构。所使用语言的语法被认为反映了这个民族国家的世界观(Weltanschauug)。“语言的多样性不仅仅是符号和声音的多样性,而且是价值观的多样性。”③

浅谈爱因斯坦

从相对论到量子力学 ---浅谈爱因斯坦的研究 摘要: 二十世纪,相对论和量子力学是物理学界最伟大的成就。科学家的视野从牛顿的经典中离开,开始转向更为广袤的天地———高速运动和微观粒子的世界。 爱因斯坦是相对论的创立者,是量子力学的催生者之一。毫无疑问,他是伟大的。 但伟人并不意味着完美。 爱因斯坦始终排斥着玻尔的量子系统的概率论。他说,“上帝不掷骰子。” 但实验是铁证。 玻尔说:“我们不能告诉上帝,该做什么。” 霍金评论道,“上帝不仅掷骰子,而且他总是把骰子扔到我们看不到的地方!” 从相对论到统一场理论,爱因斯坦试图用数学统一整个物理。但是,上帝掷了骰子,他还是失败了。 关键词:相对论,量子力学,爱因斯坦,场理论。 引言:作为二十世纪最伟大的物理学家,爱因斯坦以其天才的头脑,提出了相对论。但,作为二十世纪的另一座里程碑——量子力学,爱因斯坦却没有留下过多的贡献。而倾尽毕生之力的场理论,成为了爱因斯坦的遗憾。 是什么原因造成了这样的状况呢?为什么已经登上巅峰的爱因斯坦终究没能攻下另一座堡垒? 正文:一、爱因斯坦是如何创立相对论的 1、伯尔尼的辉煌记录

1905年,在不到8个星期内,四篇划时代的论文被寄到《物理学杂志》。 这四篇论文分别是《论动体的电动力学》、《关于光的产生和转化的一个启发性的观点》、《热的分子运动论所要求的静液体中悬浮粒子的运动》和《物体的惯性同她所含的能量有关吗?》。相对应的内容是著名的狭义相对论、量子学论文、布朗运动的理论解释和质能转换定律。 就是在远离科学中心的伯尔尼,身为无名小卒的爱因斯坦发表了彻底改变现代物理学和宇宙学的四篇论文,他的1905年的奇迹年(annus mirabilis)总是被庆祝,他如泉水般喷涌的天才引发了令人惊愕的敬意。 2、天才的思考 空间和时间的概念在狭义相对论中扮演着重要的角色,也是最大的突破。因为在牛顿的绝对时空观里,空间和时间是具有绝对的意义的,并且相互独立。 1905年以前的很长一段时间内,爱因斯坦一直思考着一个很困难的问题:麦克斯韦的方程组是正确的,光速是不变的。但光速的不变性又与经典力学的速度相加规则相矛盾。在和朋友的一次谈话之后,这个问题解开了:时间和信号速度之间有着不可分割的联系。 从某个角度来讲,狭义相对论几乎是直接从麦克斯韦的电磁场理论地出来的。麦克斯韦的电磁理论具有一种不对称性。而他认为这种不对称性是值得怀疑的,因为它破坏了物理学中的统一和内在的和谐。而不对称性起源于其理论中少不了的“绝对静止”的以太。方程组推出光速是恒定的,但这是对哪个参考系成立的呢?包括洛伦兹在内的一些物理学家明确承认绝对静止的“以太”的存在。可是所有的以太漂移实验都失败了,经典物理学走入了死胡同。 但爱因斯坦认为,绝对静止的以太是一个错误的概念,这明显破坏了对称性和统一性。爱因斯坦以其惊人的想象力,抛弃了经典力学的速度合成法,肯定了同时性在不同惯性参考系中是相对的,提出了空间和时间的相对性和统一性。不变的不是时间和空间,而是光速。 绝对静止是人类的假想,并不足以成为一个客观规律。自然界的存在和发展并不以人的意志为转移。他认为,好的物理规律是恒定不变的,如果事实无法与方程结合,那么努力让它们统一。用一组方程,用最简洁的表达,阐述真理。 不得不说,爱因斯坦是当之无愧的天才。身体活在低速运动的世界,思想已

物理学发展史

物理学发展史 公元1638年,意大利科学家伽利略的《两种新科学》一书出版,书内载有斜面实验的详细描述。伽利略的动力学研究与1609~1618年间德国科学家开普勒根据天文观测总结所得开 普勒三定律,同为牛顿力学的基础。 公元1643年,意大利科学家托利拆利作大气压实验,发明水银气压计。 公元1646年,法国科学家帕斯卡实验验证大气压的存在。 公元1654年,德国科学家格里开发明抽气泵,获得真空。 公元1662年,英国科学家波义耳实验发现波义耳定律。十四年后,法国科学家马里奥 特也独立的发现此定律。 公元1663年,格里开作马德堡半球实验。 公元1666年,英国科学家牛顿用三棱镜作色散实验。 公元1669年,巴塞林那斯发现光经过方解石有双折射的现象。 公元1675年,牛顿作牛顿环实验,这是一种光的干涉现象,但牛顿仍用光的微粒说解 释。 公元1752年,美国科学家富兰克林作风筝实验,引雷电到地面。 公元1767年,美国科学家普列斯特勒根据富兰克林导体内不存在静电荷的实验,推得 静电力的平方反比定律。 公元1780年,意大利科学家加伐尼发现蛙腿筋肉收缩现象,认为是动物电所致。不过 直到1791年他才发表这方面的论文。 公元1785年,法国科学家库仑用他自己发明的扭秤,从实验得静电力的平方反比定律。在这以前,英国科学家米切尔已有过类似设计,并于1750年提出磁力的平方反比定律。 公元1787年,法国科学家查理发现了气体膨胀的查理-盖·吕萨克定律。盖·吕萨克的研 究发表于1802年。 公元1792年,伏打研究加伐尼现象,认为是两种金属接触所致。 公元1798年,英国科学家卡文迪许用扭秤实验测定万有引力常数G。 公元1798年,美国科学家伦福德发表他的摩擦生热的实验,这些实验事实是反对热质 说的重要依据。

牛顿绝对时空观和爱因斯坦相对论时空观的统一

牛顿绝对时空观和爱因斯坦相对论时空观的统一 殷业 上海师范大学信息与机电工程学院,上海200234 yinye@https://www.360docs.net/doc/9f62983.html, 摘要:时空观是物理理论的基石,也是自然科学的基石,因为存在的一切都发生在一定的时间和空间之中。从亚里士多德、伽利略、牛顿到爱因斯坦,每一个伟大的物理学家都对时间和空间是什么做过回答,但这些答案还不是最终答案。本文分析了历史上存在的各种时空观,从笛卡尔的“物质空间”思想出发重新审视了时间和空间的关系,通过分析说明:不同的“物质空间”中时间是不同的,从而获得了对牛顿绝对时空观和爱因斯坦相对时空观的统一认识。 关键词:虚空;物质空间;绝对时间;相对时间;相对论;牛顿力学 中图分类号:O412 文献标识码:A 0. 引言 时空观是物理理论的基石,也是自然科学的基石,因为存在的一切都发生在一定的时间和空间之中。从亚里士多德、伽利略、牛顿[1]到爱因斯坦[2],每一个伟大的物理学家都对时间和空间是什么做过回答,但他们的答案还不是最终答案。以上四位伟人对时空的答案,有一个共同点,就是时间和空间只有一种,但以笛卡尔的“物质空间”思想[3,4,14]为基础的时空观中,时间和空间可分成两种,一种是“虚空”中的时间和空间,对应“牛顿的绝对时间和空间”,另一种是“物质空间”中的时间和空间,对应“爱因斯坦的相对时间和空间”,前一种时间是空间无关的,后一种时间是空间相关的,所以在“物质空间时空观”中牛顿的绝对时空观和爱因斯坦的相对时空观可以得到了统一,下面我们对这两种不同的时间和空间的有关问题进行讨论。 1. 虚空和物质空间 牛顿在“原理”[1]中阐述的绝对空间是:“绝对空间就其自身特性与一切外在事物无关,处处均匀,永不移动”。牛顿的绝对空间有如下几层含义,(1)绝对空间是真实感知空间的抽象;我们可以设想一个玻璃围成的正方体,假设这个玻璃正方体相对绝对空间静止,将玻

浅谈爱因斯坦相对论感想

浅谈学习爱因斯坦相对论的感想

在学习这们课程前对于相对论只是在书籍或一些科普节目听说过,通过老师深入浅出的讲解后对爱因斯坦的相对论也有了初步的了解。在学习过程中也有了自己一些体会与见解。虽然比较偏面与浅薄但也为自己在学习上打开了又一扇门。 在狭义相对论之前,牛顿继承伽利略等科学家的成果,加上自己的总结归纳以及在数学上创立用微积分解决变加速问题的方法,创立了以牛顿运动力学为核心的经典运动力学(也叫古典运动力学)。但是,在19世纪许多的科学技术革新后,人类对于非运动学的电磁现象有了深入的探索,许多电磁学的物理规律直接违反古典运动力学的定律。在古典运动力学中,光速没有任何理论限制,可以任意大,而且可以是不恒定的,这缺乏实验根据,仅仅是早期科学家的猜测。然而,电磁学精确实验验证:真空光速与真空介磁常数及真空介电常数直接相关,也是一个常数!这些尖锐矛盾导致大家对于缺乏精确实验证据的古典运动力学产生怀疑。 为解决这个矛盾,爱因斯坦创造性地以电磁学理论出发,承认真空光速最大且对于任意观测者恒定,并且遵从电磁学中物理规律对于不同观测者都相同两个原则,成功推导出洛仑兹先生通过精确电磁学实验测定出的轮伦兹变换公式。于是,狭义相对论诞生了,它纠正了古典运动学在电磁

学上的错误,并且涵盖了古典运动学的基本定律,统一了运动力学和电磁力学。 相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说等等.这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言全世界只有两个半人懂相对论".更有甚者将相对论与"通灵术","招魂术"之类相提并论.其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的. 广义相对论就是说由于物质的存在引起了时空的弯曲,通俗理解是:如果一个“空间”中的任意一个“点”最少需要n个线性无关的有序数组(向量)来描述,我们就可以认为这是一个数学上的n维空间。我们的普通空间需要用三个数来描述:长、宽、高。但这样描述的仅仅是一种静态的图像,要想描述物质的运动,还应该引入一个数:时间。这样,如果想描述完整的物质运动,就需要用四个数来描述。 广义相对论预言了引力波的存在,否定了万有引力定律的超距作用.当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。以上便是我对最近学习爱因斯坦相对论的粗浅体会希望在以后的学习中有进一步的提高。

曾育盼_广义相对论与宇宙学学习感想

《广义相对论与宇宙学》学习感想 粒子物理:曾育盼16212299 我导师是研究暗物质理论的张宏浩老师,也是《广义相对论与宇宙学》任课老师。在学这门课前我学过一点广义相对论的皮毛,学完之后感觉受益匪浅,下面我将谈谈我的学习感想。 我们知道广义相对论是狭义相对论的推广,它将狭义相对论从惯性系推广到了非惯性系,从平直空间推广到了弯曲时间。而我也了解到量子场论是狭义相对论与量子力学的结合,老想着统一量子力学与相对论的我某一天学广义相对论时突然想到:度规可以描述时空的弯曲,量子场论中也有度规,那把弯曲时空的度规代入不就得到了弯曲时空的狭义相对论与量子力学了吗?这不就是广义相对论与量子力学的结合吗?虽然挺激动,但是隐隐觉得不会这么简单。在第一节《广义相对论与宇宙学》课后,我向张老师请教这个问题,张老师说:对呀,这就是弯曲时空的量子场论。我说:那这不就是广义相对论与量子力学的结合吗?老师说:但是这是半经典的,引力并没有量子化。一语点醒梦中人。我想起了玻尔的半经典氢原子模型,虽然是半经典的,但是物理发展上也起了重要作用。也许这种半经典的理论也会打开一条新道路。昨天去听施郁老师的讲座,他提了一下弯曲时空的量子场论是半经典。我突然想:广义相对论和量子力学是不可调和,但是似乎人们默认量子力学是正确,广义相对论需要被修改(量子化),也许结果是量子力学需要被“相对化”呢! 除了教书育人,张老师还邀请知名学者梁灿彬与戴自海老师来课

上给我们做讲座。梁老师的讲座涉及黑洞、虫洞、多维时空。其中四维立方体的循序渐进的推演令人印象深刻。还有关于穿越的过程,并不是像我开始想的那样是从虫洞的洞里穿过的,而是沿着洞壁穿过的。我们平常看到虫洞的图,只有那个面(压缩掉一维)才是我们的活动区域。而额外维也是一个神奇的东西。戴老师讲了宇宙的起源。其中的暗能量令我印象深刻。我问他暗能量用什么来描述,老师说就是爱因斯坦的宇宙常数。我震惊于这么复杂的东西原来只是用这么简洁的常数来描写。 之前我也看过爱因斯坦场方程。也知道由它引出了宇宙学这样一门学问。而宇宙看起来这么纷繁复杂,让人觉得宇宙学也必定是一门纷繁复杂的学问。那么由场方程推出宇宙学方程的过程应该也是复杂的。但是看过张老师在《广义相对论与宇宙学》课上的推导,我才发现原来宇宙学并没有那么复杂。宇宙学方程甚至看起来有点简洁优美。 而从场方程推出水星进动、引力波、黑洞等也没有想象中的那么复杂。一个方程可以导出这么多有趣现象,充分说明了广义相对论的强大。 总结:张老师的《广义相对论与宇宙学》课轻松幽默,收获多多:学到了知识,解决了疑惑,还更新了一些观念。当然,由于我个人的懒惰与后期重心放到了量子场论上,对于广义相对论的学习并不是很深入,希望之后的学习可以对广义相对论与宇宙有进一步的了解。

爱因斯坦创建狭义相对论的思想发展

爱因斯坦创建狭义相对论的思想启示 12级物理一班段延波1207020016 在《物理学史》6.2节,我们学习了爱因斯坦创建狭义相对论的经过。而在爱因斯坦创建狭义相对论的过程中,最令我在意的还是爱因斯坦的思想发展,所以,我查阅了文献资料,研究学习了爱因斯坦在创建狭义相对论的过程中的思想,特在此进行简短阐述。 一、善于提问与不畏权威 阿尔伯特爱因斯坦小时候并不写的才华出众,直到五岁话还说不清楚,曾被医生认为发育不正常,不过他很爱思考,总是像大人盘问“为什么?”有强烈的求知欲和好奇心。例如四五岁时就对罗盘发生过浓厚兴趣,“为什么罗盘的指针总是指向南北,这里一定有什么东西深刻的隐藏在事物后面”爱因斯坦后来回忆时这么说。12岁时他对几何定理的神奇也深有触动。例如他曾想到,“三角形的三个高交于一点,虽然不是显而易见,却可以可靠地加以证明,以至于任何怀疑似乎不可能”他说“这种明晰性和可靠性给我造成了一种难以形容的印象。” 正是源于这种对世界和学问的好奇与质疑, 促使爱因斯坦如饥似渴地读书, 天马行空地思考问题。 爱因斯坦不喜欢当年德国的教育制度,中学没有毕业就退学在家自学,16岁通过自学掌握了微积分,在爱因斯坦的学习阶段,15岁的爱因斯坦放弃德国国籍,居家迁居意大利,后只身到瑞典的苏黎世,目的是上那里的联邦工业大学,却因不善记忆而没有录取,后来转学到阿劳(Aaeau)中学补习功课。他在自述中写道,“这所学校以他的自由精神和那些毫不依赖外界权威的教师们的淳朴热情,给我留下了难忘的印象”。 “在阿劳这一年中,我想到这样一个问题:倘若一个人以光速跟着光波跑,那么它就处在一个不随时间而改变的波场,但看来不会有,样的事情!这是从狭义相对论有关的第一个朴素的思想实验。”[ 3] 正是这种对事物的好奇和对人类已有知识的质疑, 造就了爱因斯坦, 成为他不断追求科学创新的内在动力, 引导他提出和解决前人不可能提出和解决的问题。

学习广义相对论宇宙论的心得体会

学习广义相对论心得体会学习广义相对论宇宙论的心得体会 最近看完梁灿斌的微分几何与广义相对论教程中的宇宙论部分,果然比以前的学到的科普知识深了一层,下面就来写一段自己的小结体会。 先谈一下宇宙论的范围,以前总觉得好像研究宇宙中的东西就叫做宇宙论,但现在知道宇宙论研究的就是宇宙本身,如果研究其中恒星、黑洞之类的,还称不上的严格意义上宇宙论。宇宙论有一条基本原理,就是宇宙在大尺度下是均匀与各向同性的,即使是星系(比如我们的银河系)乃至星系团,在浩瀚宇宙中也只是沧海一粟而已。 由宇宙学原理,我们可以选定各向同性参考系,并且知道宇宙的空间几何(三维)是常曲率的,因此只可能有球形、平直或者是双曲型的度规结构。然而,我们还要考虑的宇宙四维时空结构,为此我们需要使用所谓的Robertson-Walker度规。请注意,宇宙的时空并不是一个单纯的容器,而是与物质分布通过Einstein方程G=8πT相联系。Einstein当年并不满意这个方程得到的动态解,特别增加了一项宇宙因子项Λ,通过求解修正的Einstein 方程G+Λg=8πT得到静态宇宙解,但遗憾的是这个解是不稳定的。然而,关于宇宙因子Λ的讨论却是几经周折,当量子场论发现“真空不空”时就解释成了真空的能量密度,1998 年的观测发现宇宙加速膨胀时又以Λ作为了主要原因。 借助于Robertson-Walker度规,可以对Einstein方程做一番复杂的推到,最后得到Friedmann方程,实际上宇宙论的讨论大都是从Friedmann方程出发的。由Friedmann方程,我们可以得到两种极端情况,对于尘埃宇宙的能量密度ρ∝a^(-3),而辐射宇宙(极早期)则有ρ∝a^(-4),其中a是R-W度规中的尺度因子。此外,Friedmann方程还引出了奇点问题,后来Penrose与Hawking断言了在相当宽容的条件下,奇点是不可避免的,这说明广义相对论与经典物理有着不相容的一面。物理学家曾试图用量子力学的方法来消除奇点问题, - 1 -

大学物理期中论文——浅谈狭义相对论

《大学物理》期中论文 ——浅谈狭义相对论 系别: 班级: 姓名: 学号:

【摘要】狭义相对论是由爱因斯坦在洛仑兹和庞加莱等人的工作基础上创立的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦以光速不变原理出发,建立了新的时空观。进一步,闵科夫斯基为了狭义相对论提供了严格的数学基础,从而将该理论纳入到带有闵科夫斯基度量的四维空间之几何结构中。 【关键词】狭义相对论、时空观 一、历史背景 牛顿力学是狭义相对论在低速情况下的近似,伽利略变换与电磁学理论的不自洽。到19世纪末,以麦克斯韦方程组为核心的经典电磁理论的正确性已被大量实验所证实,但麦克斯韦方程狭义相对论基本原理组在经典力学的伽利略变换下不具有协变性,而经典力学中的相对性原理则要求一切物理规律在伽利略变换下都具有协变性。在这样的背景下,才有了狭义相对论。 二、狭义相对论基本思想 1.相对性原理:物理定律在所有惯性系中都具有相同的数学形式。 2.光速不变原理:真空中的光速是与惯性系无关的常数。 3.洛仑兹坐标变换(沿z轴方向): X=γ(x-ut) Y=y Z=z T=γ(t-ux/c^2) 4.速度变换: V(x)=(v(x)-u)/(1-v(x)u/c^2) V(y)=v(y)/(γ(1-v(x)u/c^2)) V(z)=v(z)/(γ(1-v(x)u/c^2)) 5.尺缩效应:△L=△l/γ或dL=dl/γ 6.钟慢效应:△t=γ△τ或dt=dτ/γ 7.光的多普勒效应: ν(a)=sqr((1-β)/(1+β))ν(b)(光源与探测器在一条直线上运动) 8.动量表达式:P=Mv=γmv,即M=γm 9.相对论力学基本方程:F=dP/dt 10.质能方程:E=Mc^2 11.能量动量关系:E^2=(E0)^2+P^2c^2 三、诞生与发展 19世纪末期物理学家汤姆逊在一次国际会议上讲到“物理学大厦已经建成,以后的工作仅仅是内部的装修和粉刷”。但是,他话锋一转又说:“大厦上空还漂浮着两朵‘乌云’,麦克尔逊-莫雷试验结果和黑体辐射的紫外灾难。”正是为了解决上述两问题,物理学发生了一场深刻的革命导致了相对论和量子力学的诞生。 早在电动力学麦克斯韦方程建立之日,人们就发现它没有涉及参照系问题。人们利用经典力学的时空理论讨论电动力学方程,发现在伽利略变换下麦克斯韦方程及其导出的方程(如亥姆霍兹,达朗贝尔等方程)在不同惯性系下形式不同,这一现象应当怎样解释?经过几十年的探索,在1905年终于由爱因斯坦创建了狭义相对论。相对论是一个时空理论,要理解狭义相对论时空理论先要了解经典时空理论的内容。 爱因斯坦于1922年12月有4日,在日本京都大学作的题为《我是怎样创立相对论的?》的演讲中,说明了他关于相对论想法的产生和发展过程。他说:“关

相关文档
最新文档