有损压缩

有损压缩
有损压缩

有损压缩

有损压缩

所谓有损压缩是利用了人类对图像或声波中的某些频率成分不敏感的特性,允许压缩过程中损失一定的信息;虽然不能完全恢复原始数据,但是所损失的部分对理解原始图像的影响缩小,却换来了大得多的压缩比。有损压缩广泛应用于语音,图像和视频数据的压缩。

概述

常见的声音、图像、视频压缩基本都是有损的。

在多媒体应用中,常见的压缩方法有:PCM(脉冲编码调制

有损压缩

),预测编码,变换编码,插值和外推法,统计编码,矢量量化和子带编码等,混合编码是近年来广泛采用的方法。

mp3divX Xvid jpeg rm rmvb wma wmv等都是有损压缩。

有损数据压缩方法是经过压缩、解压的数据与原始数据不同但是非常接近的压缩方法。有损数据压缩又称破坏型压缩,即将次要的信息数据压缩掉,牺牲一些质量来减少数据量,使压缩比提高。这种方法经常用于因特网尤其是流媒体以及电话领域。在这篇文章中经常成为编解码。它是与无损数据压缩对应的压缩方法。根据各种格式设计的不同,有损数据压缩都会有generationloss:压缩与解压文件都会带来渐进的质量下降。

人眼或人耳能够察觉的有损压缩带来的缺陷称为压缩失真(en:compressionartifact)。

类型

有两种基本的有损压缩机制:

一种是有损变换编解码,首先对图像或者声音进行采样、切成小块、变换到一个新的空间、量化,然后对量化值进行熵编码。

另外一种是预测编解码,先前的数据以及随后解码数据用

有损压缩

来预测当前的声音采样或者图像帧,预测数据与实际数据之间的误差以及其它一些重现预测的信息进行量化与编码。

有些系统中同时使用这两种技术,变换编解码用于压缩预测步骤产生的误差信号。优点与不足

有损方法的一个优点就是在有些情况下能够获得比任何已知无损方法小得多的文件大小,同时又能满足系统的需要。当用户得到有损压缩文件的时候,譬如为了节省下载时间,解压文件与原始文件在数据位的层面上看可能会大相径庭,但是对于多数实用目的来说,人耳或者人眼并不能分辨出二者之间的区别。

有损方法经常用于压缩声音、图像以及视频。

有损视频编解码几乎总能达到比音频或者静态图像好得多的压缩率(压缩率是压缩文件与未压缩文件的比值)。

音频能够在没有察觉的质量下降情况下实现10:1的压缩比,视频能够在稍微观察质量下降的情况下实现如300:1这样非常大的压缩比。

有损压缩图像的特点是保持颜色的逐渐变化,删除图像中颜色的突然变化。生物学中的大量实验证明,人类大脑会利用与附近最接近的颜色来填补所丢失的颜色。例如,对于蓝色天空背景上的一朵白云,有损压缩的方法就是删除图像中景物边缘的某些颜色部分。当在·屏幕上看这幅图时,大脑会利用在景物上看到的颜色填补所丢失的颜色部分。利用有损压缩技术,某些数据被有意地删除了,而被取消的数据也不再恢复。

有损静态图像压缩经常如音频那样能够得到原始大小的1/10,但

有损压缩

是无可否认,利用有损压缩技术是会影响图像质量,尤其是在仔细观察的时候,质量下降更加明显,。另外,如果使用了有损压缩的图像仅在屏幕上显示,可能对图像质量影响不太大,至少对于人类眼睛的识别程度来说区别不大,因为人的眼睛对光线比较敏感,光线对景物的作用比颜色的作用更为重要。可是,如果要把一幅经过有损压缩技术处理的图像用高分辨率打印机打印出来,那么图像质量就会有明显的受损痕迹。

一些方法将人体解剖方面的特质考虑进去,例如人眼只能看到一定频率的光线。心理声学模型描述的是声音如何能够在不降低声音感知质量的前提下实现最大的压缩。常见格式

——MP3(MP3PRO\MP3SURROUND)、AAC(*.3gp/*.mp4/*.m4a)、ATRAC3/ATRAC3+(*.aa3)。

先来明白音频压缩的原理:利用人耳听觉的心理声学特性(频谱掩蔽特

有损压缩

性和时间掩蔽特性等)以及人耳对信号幅度、频率、时间的有限分辨能力,编码时凡是人耳感觉不到的频率不编码、不传送,即凡是对人耳辨别声音信号的强度、声调、方位没有贡献的部分(称为不相关部分或无关部分)都不编码和传送。对感觉不到的部分进行编码时,允许有较大的量化失真、并使其处于听阈(即人耳所能听到的最低音量)以下,人耳仍然感觉不到。音频的压缩就是利用这些特点来工作的。

心理声学的几个基本概念

1、等响度曲线

人的听觉的灵敏度随着频率而改变。即通常两个功率一样但频率不同的音调听起来并不一样响。通过等响度曲线,我们可以看出,人耳对4KHz的频率最灵敏,即在4KHz下能被察觉出来的声音压力水平(响度),在其他频率下并不能被察觉。这就给在一些不太灵敏的频率下失真提供了条件。

2、屏蔽

我们上高中物理时学过屏蔽。就是强的声音信号把弱的声音信号覆盖,导致我们无法察觉。而且,当两个声音在时间和频率上很接近时,屏蔽效应就会很强。因此,我们可以在编码时对被屏蔽的部分不编码、不传送。这样,音质依然没有大的损失,人耳也不易察觉。

3、临界频带

对于人类的听觉来说,对声音的感知特性并不是以线形频率为尺度来变化的(人的听觉还没那么好),而是可以用被称为临界频带的一系列有限的频段来表达。简单的说,把整个频带划分成几段,在这每个频段里,人耳的听觉感知是相同的,即心理声学特性都是一样的。

言归正传,编码的精髓就是算法。

主流编码及其算法

1、MP3(MP3PRO\MP3SURROUND)

MP3应该算目前应用最广泛的有损压缩数字音频格式了。它的全称是MPEG (MovingPictureExpertsGroup)AudioLayer-3。1987年德国Fraunhofer研究院研制成功的一种有损压缩数字音频格式,并于1989年取得专利。起初,它并不完善,它更像一个编码标准框架,留待人们去完善。1992年,这一技术并入了MPEG规范,并有了正式名号——MP3。

MP3文件是由帧(frame)构成的,帧是MP3文件最小的组成单位。什么是帧?还记得最初的动画是怎么做的吗?不同的连续画面切换以达到动态效果,每幅画面就是一个“帧”,不同的是MP3里面的帧记录的是音频数据而不是图形数据。MP3的帧速度大概是30帧/秒。

每个帧又由帧头和帧数据组成,帧头记录着该帧的基本信息,包括位率索引和采样率索引(这对理解ABR和VBR编码方式很重要)。帧数据,顾名思义就是记录着主体音频数据。

上面说的都是MP3编码的基础,但事实上,早期的编码器都非常不完善,压缩算法近于粗暴,音质很不理想。MP3的音质达到现在的水平有两次飞跃:人体听觉心理学模型(PerceptualModel)的导入和VBR技术的应用。

PS:VBR是variablebitrate的缩写,意思是可变比率,就是MP3文件压制的时候声音元素较多,比率较高时,将自动减低压缩比特率,在比特率需求比较低时自动升高比特率,这样做的目的是在保证音质基本不被损害的情况下增加文件在线播放时的速度,和减少在本机播放时所占的系统资源……这是Xing发展的算法,他们将一首歌的复杂部分用高Bitrate编码,简单部分用低Bitrate编码。主意虽然不错,可惜

Xing编码器的VBR算法很差,音质与CBR相去甚远。幸运的是,Lame完美地优化了VBR算法,使之成为MP3的最佳编码模式。这是以质量为前提兼顾文件大小的方式,推荐编码模式。

MP3能生存到今天,它的发展仍未止步。2001年6月14日,法国汤姆森与美国RCA两家公司联合推出了一种新的压缩格式:MP3PRO。MP3PRO是基于MP3技术改良而来,它利用了CodingTechnologies公司开发的编解码增强技术,该术称为SBR(SpectralBandReplication)。当制作MP3PRO文件时,编码器将音频分为两部分。一部分是将音频数据中的低频部分分离出来,通过传统的M

有损压缩

P3技术编码得出正常的MP3音频流。此举使MP3编码器专注于低频段信号的压缩从而获得更好的质量,而且使原来的MP3播放器也能播放MP3PRO文件。另一部分则是将分离出来的高频信号进行编码并嵌入MP3流中。传统的MP3播放器会将其忽略掉,而新的MP3PRO播放器会将其还原出来并进行组合,得到高质量的全带宽的声音。通过这项技术,使得MP3PRO64Kbps的编码率便可提供128Kbps的MP3相同的质量,且具有相差无几的音质,而体积只有MP3的一半大小。

PSP就支持MP3PRO,而且支持MP3PRO的格式转换软件也很多,大家可以去网上找找。有兴趣的话可以试试,绝对比mp3强啊。

Thomson在2004年12月初正式宣布世界上最流行的音乐压缩格式MP3迈进多声道时代。MP3SURROUND是由FraunhoferIIS和Agere联合开发的,使用了binauralCueCoding(BCC)技术心理声学编码,可以在实现多声道环绕的同时保证文件的大小。同时加入的AgereSystems公司则主要负责将多声道MP3格式——MP3SURROUND进行推广。MP3SURROUND技术实现了5.1声道环绕的高品质音频,应用范围相当广泛,可以在网络音乐发布、广播系统、PC视听应用、游戏音效、消费电子产品和车载音响等方面发挥作用。尽管集成了多个声道,但是Thomson 表示MP3SURROUND文件相对于普通MP3(采样率相当)并没有太大的增加,相对于其他环绕多声道音频格式就只有它们的一半了。更为重要的,MP3SURROUND 提供了良好的兼容性,可以在现有的MP3软件、MP3播放器上正常使用。

目前网上出现了MP3SURROUND的专门网站,大家从这里可以下载到MP3SURROUND的解码/编码工具以及已经做好的MP3文件,对MP3SURROUND 有兴趣的朋友还可以下载到技术文档。psp2.80支持7.1声道,2.80的玩家不妨体验一

下MP3SURROUND的魅力!

2、AAC(*.3gp/*.mp4/*.m4a)

AAC是高级音频编码(AdvancedAudioCoding)的缩写,它是由Fraunhofer研究院、杜比和AT&T共同研发的。AAC是MPEG-2规范的一部分,它适用于从速率8Kbps的单声道电话音质到160Kbps多声道的超高质量音频范围内的编码。AAC与MP3相比,增加了诸如对立体声的完美再现、码流效果音扫描、多媒体控制、降噪优化等MP3音频格式所没有的特性,使得在音频压缩后仍能完美地再现CD音质。它还同时支持多达48个音轨、15个低频音轨、更多种采样率和比特率、多种语言的兼容性、更高的解码效率。总之,AAC可以在比MP3文件缩小30%的前提下提供更好的音质。

现将其中的几个模块作一些说明:

增益控制(Gaincontrol)增益控制模块用在可变采样率配置中,它由多相正交滤波器PQF(polyphasequadraturefilter)、增益检测器(gaindetector)和增益修正器(gainmodifier)组成。这个模块把输入信号分离到4个相等带宽的频带中。在解码器中也有增益控制模块,通过忽略PQF的高子带信号获得低采样率输出信号。

滤波器组(FilterBank) 滤波器组是把输入信号从时域变换到频域的转换模块,它是MPEG-2AAC系统的基本模块。这个模块采用了改进离散余弦变换MDCT,它是一种线性正交交迭变换,使用了一种称为时域混迭取消TDAC(timedomainaliasingcancellation)技术。MDCT使用KBD(Kaiser-Besselderived)窗口或者使用正弦(sine)窗口,正向MDCT变换可使用下式表示:逆向MDCT 变换可使用下式表示:其中,n=样本号,N=变换块长度,i=块号,以上两个离散余弦变换公式在《离散函数》和《数理方程》中有详细介绍,只为帮助有兴趣的玩家了解,不必深究。

瞬时噪声定形TNS在感知声音编码中,TNS模块是用来控制量化噪声的瞬时形状的一种方法,解决掩蔽阈值和量化噪声的错误匹配问题。这种技术的基本想法是,在时域中的音调声信号在频域中有一个瞬时尖峰,TNS使用这种双重性来扩展已知的预测编码技术,把量化噪声置于实际的信号之下以避免错误匹配。

联合立体声编码联合立体声编码(jointstereocoding)是一种空间编码技术,其目的是为了去掉空间的冗余信息。MPEG-2AAC系统包含两种空间编码技术:M/S 编码(Mid/Sideencoding)和声强/耦合(Intensity/Coupling)。M/S编码使用矩阵运算,因此把M/S编码称为矩阵立体声编码(matrixedstereocoding)。M/S编码不传送左右声道信号,而是使用标称化的“和”信号与“差”信号,前者用于中央M(middl

有损压缩

e)声道,后者用于边S(side)声道,因此M/S编码也叫做“和-差编码(sum-differencecoding)”。声强/耦合编码的名称也很多,有的叫做声强立体声编码(intensitystereocoding),或者叫做声道耦合编码(channelcouplingcoding),它们探索的基本问题是声道间的不相关性(irrelevance)。

预测(Prediction)这是在话音编码系统中普遍使用的一种技术,它主要用来减少平稳(stationary)信号的冗余度。

量化器(Quantizer)使用了非均匀量化器。

无噪声编码(Noiselesscoding)无噪声编码实际上就是霍夫曼编码,它对被量化的谱系数、比例因子和方向信息进行编码。

PS:我个人比较喜欢AAC,所以写的较为详细,大家也不妨试试,绝对比MP3优秀。大家可以使用iTunes6来转换AAC(*.m4a)。iTunes6AAC的操作很简单,你可以直接把AAC(*.3gp\*.mp4\*.m4a)拷贝到[MUSIC]就能播。

可以说,aac是目前最好的有损压缩方式。

最高质量的普较无损看(肉眼)不出区别。

3、ATRAC3/ATRAC3+(*.aa3)

早年玩MD的朋友都知道SONY专为MD量身定做的ATRAC音频格式算法,后来又广泛应用于SONY的NetworkWalkman和其他便携音频设备。“ATRAC3plus”代表“自适应转换声音编码3+”,是一套基于心理声学原理的音频压缩技术,从ATRAC3格式发展而来,到2002年这项技术才日趋完美。这一技术是把MD随身听的体积缩小到很小的理论基础。

要分析ATRAC3/ATRAC3+,我们先要谈谈它的大哥——ATRAC算法。当数字音频数据被压缩时,通常都会把一定数量的量化噪音带入信号。为了不让这些信号被人耳感知,通常的做法是,音频编码把信号分解为一组单元,每组单元都对应着特定的时间频率范围。编码器会依据前文提到的心理声学原理来分析,对重要的单元进行高精度编码,对不敏感的单元可以保留一些量化的噪音但不影响人耳的感知质量。解码时,量化频谱会根据比特分配重新建立,然后合成音频信号。

ATRAC也不例外,但有一些改进。ATRAC还应用了子频带译码和转换译码技术,输入的信号被分配得到不均匀的强调重要低音区的频率分割。另外,ATRAC使用一个可变块长度改变输入的信号,这可以确保在稳定通过时高效的译码,不会在瞬间通

过时影响时间的分辨率。具体说,输入的信号在5.5125KHz和11.025KHz被分为3个频带。子频带的分解使用QMF(QuadratureMirrorFilters积分映射过滤器)来完成;这3个频带被MDCT(ModifiedDiscreteCosineTra nsform变址离散余弦变换——类似于通常的快速傅里叶变换,《高等数学二》和《数理方程》中有相关介绍。)转换成频谱值,MDCT允许块之间有达50%的交迭,使得在维持临界采样时能提高频率解析度。块的长度可以根据信号的种类改变,这就是ATRAC的自适应部分(这一做法主要是为了利用屏蔽掩盖初始量化噪音)。

当ATRAC算法发展了10年,已经满足不了市场的需求,SONY于2002年8月推出了新的算法——ATRAC3/ATRAC3+。其核心算法较ATRAC没有本质的大改变,只是采用了改进的频带分离过滤和MDCT,并使用增益调节、音调成分分离、联合立体声(Joint-Stereo)等技术,使得音频压缩数据的体积进一步缩小。

下面我介绍一下用组棒听ATRAC3音乐的最简方法:

用sonicstageCP(或sonicstage3.4)将CD音轨(或MP3、WMA文件)转换为ATRAC文件,其中包括ATRAC3、ATRAC3plus两种格式。注意:在转换时千万不要选择添加复制保护,否则由于版权保护信息不正确,PSP将不能播放文件。这是关键的操作。生成的ATRAC文件的后缀为.oma,我们只要将后缀改为.aa3即可。然后将ATRAC文件拷贝到[MUSIC]目录(或其子目录)里,这时你的PSP将能够完美播放ATRAC3音乐。

4、AAL(ATRACAdvancedLossless)

AAL是ATRACAdvancedLossless(自适应声学转换高级无损编码)的缩写,是SONY新开发的一个音频压缩格式其特点是无损压缩,不损失一点音频信息,一张CD可以压缩到原来的30%--80%但目前PSP还不支持ATRACAdvancedLossless,但我相信在PSP3.0里极有可能对其支持。目前,其技术资料我还没有见到,所以暂不作分析。

5、Ogg

Ogg全称应该是OGG Vobis(ogg Vorbis) 是一种新的音频压缩格式,类似于MP3等现有的音乐格式。但有一点不同的是,它是完全免费、开放和没有专利限制的。OGG Vobis有一个很出众的特点,就是支持多声道,随着它的流行,以后用随身听来听DTS编码的多声道作品将不会是梦想。

Vorbis 是这种音频压缩机制的名字,而Ogg则是一个计划的名字,该计划意图设计一个完全开放性的多媒体系统。目前该计划只实现了OggVorbis这一部分。

Ogg Vorbis文件的扩展名是.OGG。这种文件的设计格式是非常先进的。现在创建的OGG文件可以在未来的任何播放器上播放,因此,这种文件格式可以不断地进行大小和音质的改良,而不影响旧有的编码器或播放器。

较aac而言,低频方面略有优势,高频方面比aac差。

最高质量的普较无损看(肉眼)不出区别。

最高质量,即Q10,体积比aac使用faac编码最高质量Q500体积大差不多一倍。

编码开源。

结束语

一个音乐文件从录制到播放,有3个重要环节:编码(算法)、解码(硬件解码器)、输出(耳机、耳塞)。这每个环节都对最终我们聆听到的声音音质有着重要的意义,缺一不可。今天,我谈的是基础的编码(算法),希望大家能找到最适合你的编码,我个人的看法是AAC256Kbps和ATRAC3plus256Kbps。AAC的算法是“精致”,ATRAC的算法是“巧妙”。

有损压缩

有损压缩概述 所谓有损压缩是利用了人类对图像或声波中的某些频率成分不敏感的特性,允许压缩过程中损失一定的信息;虽然不能完全回复原始数据,但是所损失的部分对理解原始图像的影响缩小,却换来了大得多的压缩比。有损压缩广泛应用于语音,图像和视频数据的压缩。 常见的声音、图像、视频压缩基本都是有损的。 在多媒体应用中,常见的压缩方法有:PCM(脉冲编码调制),预测编码,变换编码,插值和外推法,统计编码,矢量量化和子带编码等,混合编码是近年来广泛采用的方法。 mp3divX Xvid jpeg rm rmvb wma wmv等都是有损压缩。 有损数据压缩方法是经过压缩、解压的数据与原始数据不同但是非常接近的压缩方法。有损数据压缩又称破坏型压缩,即将次要的信息数据压缩掉,牺牲一些质量来减少数据量,使压缩比提高。这种方法经常用于因特网尤其是流媒体以及电话领域。在这篇文章中经常成为编解码。它是与无损数据压缩对应的压缩方法。根据各种格式设计的不同,有损数据压缩都会有generationloss:压缩与解压文件都会带来渐进的质量下降。 人眼或人耳能够察觉的有损压缩带来的缺陷称为压缩失真(en:compressionartifact)。 有损压缩的类型 有两种基本的有损压缩机制: 一种是有损变换编解码,首先对图像或者声音进行采样、切成小块、变换到一个新的空间、量化,然后对量化值进行熵编码。 另外一种是预测编解码,先前的数据以及随后解码数据用来预测当前的声音采样或者图像帧,预测数据与实际数据之间的误差以及其它一些重现预测的信息进行量化与编码。 有些系统中同时使用这两种技术,变换编解码用于压缩预测步骤产生的误差信号。 有损压缩的优点与不足 有损方法的一个优点就是在有些情况下能够获得比任何已知无损方法小得多的文件大小,同时又能满足系统的需要。当用户得到有损压缩文件的时候,譬如为了节省下载时间,解压文件与原始文件在数据位的层面上看可能会大相径庭,但是对于多数实用目的来说,人耳或者人眼并不能分辨出二者之间的区别。

空调压缩机工作原理

空调压缩机的工作原理 1、空调压缩机是在空调制冷剂回路中起压缩驱动制冷剂的 作用。工作回路中分蒸发区和冷凝区,室内机和室外机分别属于高压或低压区。压缩机一般装在室外中,压缩机把制冷剂从低压区抽取来经压缩机后送到高压区冷却凝结,通过散热片散发出热能到空气中,制冷剂也从气态变成液态,压力升高。制冷剂再从高压区流向低压区,经过毛细管喷射到蒸发器中,压力骤降,液态制冷剂立即变成气态,通过散热片吸收空气中大量的热量。这样,机器不断工作,就不断把低压区一端的热能吸收到制冷剂中再送到高压区散发到空气中,起到调节气温的作用。 2、空调在作制冷运行时,低温低压的制冷剂气体被压缩机吸 入后加压变成高温高压的制冷剂气体,高温高压的制冷剂气体在室外换热气中放热变成中温高压的液体,中温高压的液体再经过节流部件节流降压后变成低温低压的液体,低温低压的液体制冷剂在室内换热气中吸热蒸发后变成低温低压的气体,然后进入压缩机压缩,往复循环。 3、压缩机是制冷系统的心脏,无论是空调、冷库、化工制冷 工艺等等工况都要空压缩机这个重要的环节来做保障! 制冷压缩机种类和形式很多,根据原理可分为容积型和速度型两类,其中容积式是最为普遍的。 那压缩机又是如何压缩空气的呢?

简单而说就是通过改变气体的容积来完成气体的压缩和输送过程!任何动力设备都需要一个动力来做功完成,压缩机也是一样,它需要一个电动机来带动。 容积型压缩机又分为往复活塞式和回转式两种。 往复活塞式是通过活塞在气缸内做往复运动改变气体工作容积;活塞式压缩机历史悠久,生产技术成熟。 回转式压缩机包括刮片旋转式压缩机 螺杆式压缩机,目前国内生产的空调器多采用旋转式压缩机; 蜗杆式压缩机主要用于大型制冷设备,现在一些大型商场办公楼内也有很多采用蜗杆式压缩机。 空调的基本原理是这样的,压缩机将冷冻剂压缩成高压饱和气体,这种气态冷冻剂再经过冷凝器冷凝。 通过节流装置节流之后,通入到蒸发器中,将所需要冷却的媒介冷却换热。例如将蒸发器连接到楼里的各个房间,蒸发器的蛇形管将同空气进行换热,再通过鼓风将冷气吹向空气洞中。 而蒸发器蛇形管内的冷冻剂换热后变成低压蒸气回到压缩机,在被压缩机压缩,这样循环利用就完成了制冷系统。 4、分析空调图

基于MATLAB 的图像压缩处理其实现

基于MATLAB 的图像压缩处理及其实现 一.图像压缩的概念 从实质上来说,图像压缩就是通过一定的规则及方法对数字图像的原始数据进行组合和变换,以达到用最少的数据传输最大的信息。 二.图像压缩的基本原理 图像数据之所以能被压缩,就是因为数据中存在着大量冗余信息,另外还有相当数量的不相干信息,这为数据压缩技术提供了可能。 数据压缩技术就是利用数据固有的冗余性和不相干性,将一个大的数据文件转化成较小的文件,图像技术压缩就是要去掉数据的冗余性。 图像数据的冗余主要表现为:图像中相邻像素间的相关性引起的空间冗余;图像序列中不同帧之间存在相关性引起的时间冗余;不同彩色平面或频谱带的相关性引起的频谱冗余。 由于图像数据量的庞大,在存储、传输、处理时非常困难,因此图像数据的压缩就显得非常重要。

三.图像的编码质量评价 在图像编码中,编码质量是一个非常重要的概念,怎么样以尽可能少的比特数来存储或传输一幅图像,同时又让接收者感到满意,这是图像编码的目标。对于有失真的压缩算法,应该有一个评价准则,用来对压缩后解码图像质量进行评价。常用的评价准则有两种:一种是客观评价准则;另一种是主观评价准则。主观质量评价是指由一批观察者对编码图像进行观察并打分,然后综合所有人的评价结果,给出图像的质量评价。而对于客观质量评价,传统的编码方法是基于最小均方误差(MSE)和峰值信燥比(PSNR)准则的编码方法,其定义如下 MSE= (1) PSNR=101g( (2) 式中:Nx,Nr图像在x方向和Y方向的像素数,f(i,j)——原图像像素的灰度值,f(i,j)--处理后图像像素的灰度值。对于主观质量,客观质量评价能够快速有效地评价编码图像的质量,但符合客观质量评价标准的图像不一定具有较好的主观质量,原因是均方误差只是从总体上反映原始图像和压缩图像的差别,但对图像中的所有像点同等对待,因此并不能反映局部和人眼的视觉特性。对于图像信号,人眼是最终的信号接受者,因此在压缩时不仅要以MSE作为评价标准,还应当考虑到人的主观视觉特性。

图像压缩标准知多少

电子科技 2004年第7期(总第178期) 61 图像压缩标准知多少 徐庆征,镇桂勤 (西安通信学院二系,陕西 西安 710106) 摘 要 介绍了一些典型的静止图像压缩标准和活动图像压缩标准,并分析了各自的技术特点及其应用场合。 关键词 图像压缩;JPEG ;H.26x ;MPEG4 中图分类号 TN919.8 图像通信直观生动,包含极其丰富的信息,是人们传递信息的重要媒介。同时,巨大的数据量也给图像的采集、存储、处理和传输带来了极大的困难,严重影响了图像媒体成为主要媒体,因此,压缩数字图像信号的数码率就成为图像通信和图像信号处理领域的首要任务,受到全世界科技工作者的关注。 20世纪80年代以来,国际标准化组织(ISO)和国际电信联盟(ITU)组织了一批专家,开展了大量细致、全面的工作,陆续制定了一系列有关图像通信方面建议和标准,极大地推动了图像编码技术的发展与应用。这些标准可以归为两种类型:静止图像压缩标准和活动图像压缩标准(包括ITU-T 制定的H.263系列和ISO 制定的MPEG-x 系列)。 1 静止图像压缩编码标准 1.1 JBIG 标准 1988年,ISO 和ITU-T 成立了“联合二值图像专家组”(Joint Binary Image Expert Group ,JBIG), 1991年10月提出了ITU-T T.82标准。这一标准确定了具有逐层、逐层兼容顺序和单层顺序3种模式的编码方法,并提出了获得任意低分辨率图像的方法。 1.2 JPEG 标准 收稿日期: 2004-04-21 1986年底,ISO 和ITU-T 成立了联合图像专家小组(Joint Photographic Experts Group ,JPEG),该小组近年来一直致力于静止图像压缩算法的标准化工作。1991年3月正式提出ISO CD10918号建议草案“连续色调静止图像的数字压缩编码”(通常简称为JPEG 标准),这是第一个适用于连续色调、多级灰度、彩色或黑白静止图像的国际标准。 JPEG 标准提供了一种无损编码的模式和3种有损编码模式(基于DCT 的顺序模式、基于DCT 的渐进模式、层次模式)。所有符合JPEG 的 遍解码器都必须支持基准模式,其他模式可作为选择项根据不同的应用目的来取舍。基准模式编解码框图如图1所示。 尽管JPEG 建议主要是应用于静止图像的编码技术,但是在某些场合也可将它应用于视频编辑系统。此时JPEG 把视频序列中的每一帧当作一幅静止图像来处理,这就是所谓的Motion JPEG 的处理方法。 1.3 JPEG-LS 标准 JPEG 组织从1994年开始征集新的无损/近无损(简称JPEG-LS)算法提案,并于1998年2月作 图1 JPEG 基准模式遍解码框图

有关图像压缩的系列问题

有关图像压缩的系列问题 主要问题: 1、图像为什么需要压缩? 2、图像为什么能够压缩? 3、被压缩后的图像文件,还能恢复吗? 4、有损压缩、无损压缩技术的实现原理是什么? 5、常见的图像文件格式都有哪些? +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 问题详细解释: 1、图像为什么需要压缩? 数字图像如果不进行压缩,数据量是比较大的,例如一幅分辨率为1024×768的24位真彩色图像,其数据量为1024×768×24/8=2,359,296 Bytes(约2.36MB)。这无疑对图像的存储、处理、传送带来很大的困难。 2、图像为什么能够压缩? 在图像各像素之间,无论在行方向还是列方向,都存在一定的相关性(比如相邻像素点的颜色有可能相同,或整个图像上存在具有相同颜色的区域),这种相关性也称为冗余度。静态图像数据的冗余包括:空间冗余、时间冗余、结构冗余、知识冗余和视觉冗余、图像区域的相同性冗余、纹理的统计冗余等。图像压缩编码技术就是利用图像数据固有的冗余性和相干性,设计相关算法,可将一个大的图像数据文件转换为较小的同性质的文件,并以特有的文件格式存在于电脑中。 3、被压缩后的图像文件,还能恢复吗? 根据压缩后文件能否准确恢复原文件,将图像压缩编码技术分为无失真编码技术(又称无损压缩)和有失真编码技术(又称为有损压缩)。只有通过无损压缩技术实现的图像压缩,其可以被准确复原。 4、有损压缩、无损压缩技术的实现原理是什么? (1)有损压缩 有损压缩可以减少图像在内存和磁盘中占用的空间,在屏幕上观看图像时,不会发现它对图像的外观产生太大的不利影响。因为人的眼睛对光线比较敏感,光线对景物的作用比颜色的作用更为重要,这就是有损压缩技术的基本依据。有损压缩的特点是保持颜色的逐渐变化,删除图像中颜色的突然变化。生物学中的大量实验证明,人类大脑会利用与附近最接近的颜色来填补所丢失的颜色。例如,对于蓝色天空背景上的一朵白云,有损压缩的方法就是删除图像中景物边缘的某些颜色部分。当在屏幕上看这幅图时,大脑会利用在景物上看到的颜色填补所丢失的颜色部分。利用有损压缩技术,某些数据被有意地删除了,而被取消的数据也不再恢复。无可否认,利用有损压缩技术可以大大地压缩文件的数据,但是会影响图像质量。如果使用了有损压缩的图像仅在屏幕上显示,可能对图像质量影响不太大,至少对于人类眼睛的识别程度来说区别不大。可是,如果要把一幅经过有损压缩技术处理的图像用高分辨率打印机打印出来,那么图像质量就会有明显的受损痕迹。 (2)无损压缩 无损压缩的基本原理是相同的颜色信息只需保存一次。压缩图像的软件首先会确定图像中哪些区域是相同的,哪些是不同的。包括了重复数据的图像(如蓝天) 就可以被压缩,只有蓝天的起始点和终结点需要被记录下来。但是蓝色可能

最新各种压缩机工作原理及优缺点分析

各种压缩机工作原理及优缺点分析

各种压缩机工作原理及优缺点分析 一、压缩机概念 用来压缩气体借以提高气体压力的机械称为压缩机。提升的压力小于 0.2MPa时,称为鼓风机。提升压力小于0.02MPa时称为通风机。 二、压缩机分类 1.按工作原理分类 容积式压缩机直接对一可变容积中的气体进行压缩,使该部分气体容积缩小、压力提高。其特点是压缩机具有容积可周期变化的工作腔。 离心式压缩机它首先使气体流动速度提高,即增加气体分子的动能;然后使气流速度有序降低,使动能转化为压力能,与此同时气体容积也相应减小。其特点是压缩机具有驱使气体获得流动速度的叶轮。 2.按排气压力分类 3.按压缩级数分类 单级压缩机气体仅通过一次工作腔或叶轮压缩 两级压缩机气体顺次通过两次工作腔或叶轮压缩 多级压缩机气体顺次通过多次工作腔或叶轮压缩,相应通过几次便是几级压缩机

4.容积流量分类 名称容积流量 (m3/min) 微型压缩机 <1 小型压缩机 1~10 中型压缩机 10~100 大型压缩机≥100 5.按结构或工作特征的分类

三、各种压缩机工作原理及优缺点 1.活塞式压缩机的工作原理及优缺点 当活塞式压缩机的曲轴旋转时,通过连杆的传动,活塞便做往复运动,由气缸内壁、气缸盖和活塞顶面所构成的工作容积则会发生周期性变化。活塞式压缩机的活塞从气缸盖处开始运动时,气缸内的工作容积逐渐增大,这时,气体即沿着进气管,推开进气阀而进入气缸,直到工作容积变到最大时为止,进气阀关闭;活塞式压缩机的活塞反向运动时,气缸内工作容积缩小,气体压力升高,当气缸内压力达到并略高于排气压力时,排气阀打开,气体排出气缸,直到活塞运动到极限位置为止,排气阀关闭。当活塞式压缩机的活塞再次反向运动时,上述过程重复出现。总之,活塞式压缩机的曲轴旋转一周,活塞往复一次,气缸内相继实现进气、压缩、排气的过程,即完成一个工作循环。 活塞压缩机的优点: (1) 不论流量大小,都能得到所需要的,排气压力范围广,最高压力可达 320MPa(工业应用),甚至700MPa,(实验室中)。 (2) 单机能力为在500m3/min以下的任意流量。 (3) 在一般的压力范围内,对材料的要求低,多采用普通的钢铁材料,加 工较容易,造价也较低廉。 (4) 热效率较高,一般大、中型机组绝热效率可达0.7~0.85左右。 (5) 气量调节时,适应性强,即排气范围较广,且不受压力高低影响,能 适应较广阔的压力范围和制冷量要求。

压缩文件的基本原理

压缩文件的基本原理是查找文件内的重复字节,并建立一个相同字节的"词典"文件,并用一个代码表示,比如在文件里有几处有一个相同的词"中华人民共和国"用一个代码表示并写入"词典"文件,这样就可以达到缩小文件的目的https://www.360docs.net/doc/a013445363.html, 由于计算机处理的信息是以二进制数的形式表示的,因此压缩软件就是把二进制信息中相同的字符串以特殊字符标记来达到压缩的目的。为了有助于理解文件压缩,请您在脑海里想象一幅蓝天白云的图片。对于成千上万单调重复的蓝色像点而言,与其一个一个定义“蓝、蓝、蓝……”长长的一串颜色,还不如告诉电脑:“从这个位置开始存储1117个蓝色像点”来得简洁,而且还能大大节约存储空间。这是一个非常简单的图像压缩的例子。其实,所有的计算机文件归根结底都是以“1”和“0”的形式存储的,和蓝色像点一样,只要通过合理的数学计算公式,文件的体积都能够被大大压缩以达到“数据无损稠密”的效果。总的来说,压缩可以分为有损和无损压缩两种。如果丢失个别的数据不会造成太大的影响,这时忽略它们是个好主意,这就是有损压缩。有损压缩广泛应用于动画、声音和图像文件中,典型的代表就是影碟文件格式mpeg、音乐文件格式mp3和图像文件格式jpg。但是更多情况下压缩数据必须准确无误,人们便设计出了无损压缩格式,比如常见的zip、rar等。压缩软件(compression software)自然就是利用压缩原理压缩数据的工具,压缩后所生成的文件称为压缩包(archive),体积只有原来的几分之一甚至更小。当然,压缩包已经是另一种文件格式了,如果你想使用其中的数据,首先得用压缩软件把数据还原,这个过程称作解压缩。常见的压缩软件有winzip、winrar等。 有两种形式的重复存在于计算机数据中,zip就是对这两种重复进行了压缩。 一种是短语形式的重复,即三个字节以上的重复,对于这种重复,zip用两个数字:1.重复位置距当前压缩位置的距离;2.重复的长度,来表示这个重复,假设这两个数字各占一个字节,于是数据便得到了压缩,这很容易理解。 一个字节有0 - 255 共256 种可能的取值,三个字节有256 * 256 * 256 共一千六百多万种可能的情况,更长的短语取值的可能情况以指数方式增长,出现重复的概率似乎极低,实则不然,各种类型的数据都有出现重复的倾向,一篇论文中,为数不多的术语倾向于重复出现;一篇小说,人名和地名会重复出现;一张上下渐变的背景图片,水平方向上的像素会重复出现;程序的源文件中,语法关键字会重复出现(我们写程序时,多少次前后copy、paste?),以几十K 为单位的非压缩格式的数据中,倾向于大量出现短语式的重复。经过上面提到的方式进行压缩后,短语式重复的倾向被完全破坏,所以在压缩的结果上进行第二次短语式压缩一般是没有效果的。

空调压缩机工作原理

空调压缩机的工作原理 1、空调压缩机就是在空调制冷剂回路中起压缩驱动制冷剂 的作用。工作回路中分蒸发区与冷凝区,室内机与室外机分别属于高压或低压区。压缩机一般装在室外中,压缩机把制冷剂从低压区抽取来经压缩机后送到高压区冷却凝结,通过散热片散发出热能到空气中,制冷剂也从气态变成液态,压力升高。制冷剂再从高压区流向低压区,经过毛细管喷射到蒸发器中,压力骤降,液态制冷剂立即变成气态,通过散热片吸收空气中大量的热量。这样,机器不断工作,就不断把低压区一端的热能吸收到制冷剂中再送到高压区散发到空气中,起到调节气温的作用。 2、空调在作制冷运行时,低温低压的制冷剂气体被压缩机吸 入后加压变成高温高压的制冷剂气体,高温高压的制冷剂气体在室外换热气中放热变成中温高压的液体,中温高压的液体再经过节流部件节流降压后变成低温低压的液体,低温低压的液体制冷剂在室内换热气中吸热蒸发后变成低温低压的气体,然后进入压缩机压缩,往复循环。 3、压缩机就是制冷系统的心脏,无论就是空调、冷库、化工制 冷工艺等等工况都要空压缩机这个重要的环节来做保障! 制冷压缩机种类与形式很多,根据原理可分为容积型与速度型两类,其中容积式就是最为普遍的。 那压缩机又就是如何压缩空气的呢?

简单而说就就是通过改变气体的容积来完成气体的压缩与输送过程!任何动力设备都需要一个动力来做功完成,压缩机也就是一样,它需要一个电动机来带动。 容积型压缩机又分为往复活塞式与回转式两种。 往复活塞式就是通过活塞在气缸内做往复运动改变气体工作容积;活塞式压缩机历史悠久,生产技术成熟。 回转式压缩机包括刮片旋转式压缩机 螺杆式压缩机,目前国内生产的空调器多采用旋转式压缩机; 蜗杆式压缩机主要用于大型制冷设备,现在一些大型商场办公楼内也有很多采用蜗杆式压缩机。 空调的基本原理就是这样的,压缩机将冷冻剂压缩成高压饱与气体,这种气态冷冻剂再经过冷凝器冷凝。 通过节流装置节流之后,通入到蒸发器中,将所需要冷却的媒介冷却换热。例如将蒸发器连接到楼里的各个房间,蒸发器的蛇形管将同空气进行换热,再通过鼓风将冷气吹向空气洞中。 而蒸发器蛇形管内的冷冻剂换热后变成低压蒸气回到压缩机,在被压缩机压缩,这样循环利用就完成了制冷系统。 4、分析空调图

图像压缩方法综述

图像压缩方法综述 陈清早 (电信科学技术研究院PT1400158) 摘要:图像压缩编码技术就是对要处理的图像数据按一定的规则进行变换和组合,从而达到以尽可能少的数据流(代码)来表示尽可能多的数据信息。由于图像数据量的庞大,在存储、传输、处理时非常困难,因此图像数据的压缩就显得非常重要。图像压缩分为无损图像压缩和有损图像压缩或者分为变换编码、统计编码。在这里,我们简单的介绍几种几种图像压缩编码的方法,如:DCT编码、DWT编码、哈夫曼(Huffman)编码和算术编码。 关键字:图像压缩;DCT压缩编码;DWT压缩编码;哈夫曼编码;算术编码 1引言 在随着计算机与数字通信技术的迅速发展,特别是网络和多媒体技术的兴起,大数据量的图像信息会给存储器的存储容量、通信信道的带宽以及计算机的处理速度增加极大的压力。为了解决这个问题,必须进行压缩处理。图像数据之所以能被压缩,就是因为数据中存在着冗余。图像数据的冗余主要表现为:图像中相邻像素间的相关性引起的空间冗余;图像序列中不同帧之间存在相关性引起的时间冗余;不同彩色平面或频谱带的相关性引起的频谱冗余。数据压缩的目的就是通过去除这些数据冗余来减少表示数据所需的比特数。信息时代带来了“信息爆炸”,使数据量大增,无论传输或存储都需要对数据进行有效的压缩。因此图像数据的压缩就显得非常重要。 在此,我们主要介绍变换编码的DCT编码和DWT编码和统计编码的哈夫曼(Huffman)编码和算术编码。 2变换编码 变换编码是将空域中描述的图像数据经过某种正交变换转换到另一个变换域(频率域)中进行描述,变换后的结果是一批变换系数,然后对这些变换系数进行编码处理,从而达到压缩图像数据的目的。主要的变换编码有DCT编码和DWT编码 1.1DCT编码 DCT编码属于正交变换编码方式,用于去除图像数据的空间冗余。变换编码就是将图像光强矩阵(时域信号)变换到系数空间(频域信号)上进行处理的方法。在空间上具有强相关的信号,反映在频域上是在某些特定的区域内能量常常被集中在一起,或者是系数矩阵的分布具有某些规律。我们可以利用这些规律在频域上减少量化比特数,达到压缩的目的。也就是说,图像变换本身并不能压缩数据,但变换后图像大部分能量集中到了少数几个变换系数上,再采用适当的量化和熵编码便可以有效地压缩图像。量化是对经过DCT变换后的频率系数进行量化,其目的是减小非“0”系数的幅度以及增加“0”值系数的数目,它是图像质量下降的最主要原因。 图像经DCT变换以后,DCT系数之间的相关性就会变小。而且大部分能量集中在少数的系数上,因此,DCT变换在图像压缩中非常有用,是有损图像压缩国际标准JPEG的核心。从原理上讲可以对整幅图像进行DCT变换,但由于图像各部位上细节的丰富程度不同,这种整体处理的方式效果不好。为此,发送者首先将输入图像分解为8*8或16*16块,然后再对每个图像块进行二维DCT变换,接着再对DCT系数进行量化、编码和传输;接收者通过对量化的DCT系数进行解码,并对每个图像块进行的二维DCT反变换。最后将操作完成后所有的块拼接起来构成一幅单一的图像。对于一般的图像而言,大多数DCT系数值都接近于0,所以去掉这些系数不会对重建图像的质量产生较大影响。因此,利用DCT进行图像压缩确实可以节约大量的存储空间。 由于图像可看成二维数据矩阵,所以在图像编码中多采用二维正交变换方式,然而其正交变换的计算量太大,所以在实用中变换编码并不是对整幅图像进行变换和编码,而是将图像分成若

多媒体图像压缩技术

多媒体图像压缩技术 2010级电子信息科学与技术刘小辉2010271022 摘要:随着计算机多媒体技术的不断发展,人们期望更高性能的图像压缩技术的出现。图像压缩是用最少的数据量来表示尽可能多的原图像的信息。多媒体数据压缩技术是现代网络发展的关键性技术之一。由于图像和声音信号中存在各种各样的冗余,为数据压缩提供了可能。数据压缩技术有无损压缩缩和有损压缩两大类,这些压缩技术又各有不同的标准。 Abstract:With the ever-growing multimedia technology, people are looking for ward to new image compression technologies with better performances. Image compression with the least amount of data is represented as much information of original image .Multimedia data compression technology is the modern network development of the key technology of. Because of the image and sound signal in the presence of various kinds of redundancy, compression of data is possible. Data compression technology of lossless and lossy compression two categories, these compression techniques and different standards. 关键字(Keyword):多媒体数据压缩技术(Multimedia data compression technology) 无损压缩和有损压缩(Lossless and lossy compression) 图像和声音信号(The image and sound signal) 最少的数据量(The least amount of data) 随着计算机多媒体技术和通信技术的日益发展,以及网络的迅速普及,图像数据信息以

图像无损压缩与有损压缩

图像无损压缩与有损压缩的比较 摘要:伴随着科技的发展,在多媒体压缩范畴内,人们通过对信源建模表达认识的不断深化,进而使压缩技术得到了更大的发展。图像的编码与压缩的目的就是对图像数据按一定的规则进行变换和组合,从而达到用尽可能少的代码(符号)来表示尽可能多的图像信息。当前,对图像压缩的方法主要有无损压缩与有损压缩两种,而这两种压缩方法又有着不同的特点,通过对不同压缩方法的比较,可以在实践中获得更高的图像水平与工作效率。 关键字:无损压缩;有损压缩;比较; 图像压缩可以是有损压缩也可以是无损压缩。对于如绘制的技术图、图表或者漫画优先使用无损压缩,这是因为有损压缩方法,尤其是在低的位速条件下将会带来压缩失真。如医疗图像或者用于存档的扫描图像等这些有价值的内容的压缩也尽量选择无损压缩方法。有损方法非常适合于自然的图像,或者是想表达某些特定信息的图像。例如一些应用中图像的微小损失是可以接受的(有时甚至是无法感知的),这样就可以大幅度地减小位速,提高工作效率。 一、两种不同的图像压缩方式在精确度上的比较 图像的无损压缩主要利用的是基于统计概率的方法和基于字典的技术。通过霍夫曼编码和游程编码等编码方式进行具体的操作。从而使图像在压缩时损失较少的信息,进而拥有较高的精确度。图像的有损压缩则是运用有损预测编码方法和变换编码方法,通过减少像素之间的联系,进行高密度的压缩。因而对于对图像精确度要求较高的图片应当优先选用无损压缩。比如,在对艺术作品进行压缩传输时,为了保证较高的图片质量,应当使用精确度较高的无损压缩技术。如果使用有损压缩,则会使文件的内容受到影响。但是,对于部分不需要较高精确度或者压缩后并不影响其表达内容的图像,则可以使用有损压缩。 二、不同的压缩方式拥有不同的压缩比率 图像的无损压缩运用适当的编码技术,由于像素之间的联系被几乎完整的保留了下来,所以图像更精确,这样以来压缩比率就比较小,占用空间较大;而有损压缩却以丢失部分图像信息为代价,去除图像中的次要部分,只保留主要部分,从而使图像压缩的更小,使得压缩比率大大提高。比如在互联网中十分流行的JPEG格式图片,就是利用有损压缩的离散余弦变换编码技术进行大比特率压缩,从而在网络数据交换时,同等条件下,拥有更好的传输速率。

制冷压缩机结构和工作原理介绍

制冷压缩机在系统中的作用 为了能连续不断地制冷,需用压缩机将已汽化的低压蒸气从蒸发器中吸出并对其做功,压缩成为高压的过热蒸气,再排入冷凝器中(提高压力是为了使制冷剂蒸气容易在常温下放出热量而冷凝成液体)。在冷凝器中利用冷却水或空气将高压的过热蒸气冷凝成为液体并带走热量,制冷剂液体又从冷凝器底部排出。如此周而复始,实现连续制冷。 概括地说,这种制冷方法是使制冷剂在低温低压的条件下汽化而吸取周围介质的热量,并在常温高压的条件下冷凝液化而放出热量并由冷却水(或空气)带走。欲使制冷剂实现这样的热量转移,必须提供与蒸发温度和液化温度相对应的低压和高压条件,而这一条件正是由压缩机创造的。因此,在蒸气压缩式制冷循环中,只有有了压缩机,制冷机才能将低温物体的热量不断地转移给常温介质,从而达到制冷的目的。 目前各类压缩机的大致应用范围及制冷量大小: 制冷压缩机的种类与分类 制冷压缩机按其工作原理可以分为: 容积型和速度型 1.压缩机的种类 (1)容积型压缩机:用机械的方法使密闭容器的容积变小,使气体压缩而增加其压力的机器。 它有两种结构型式:往复活塞式(简称活塞式)和回转式

(2)速度型压缩机:用机械的方法使流动的气体获得很高的流速,然后在扩张的通道内使气体流速减小,使气体的动能转化为压力能,从而达到提高气体压力的目的,这种机器称为速度型压缩机。属于这一类的有离心式制冷压缩机。 这种压缩机工作时,气体在高速旋转的叶轮推动下,不但获得了很高的速度,并且在离心力的作用下,沿着叶轮半径方向被甩出,然后进入截面积逐渐扩大的扩压,在那里气体的速度逐渐下降而压力则随之提高。 压缩机种类图: 2 .压缩机的分类 (1) 按工作蒸发温度范围分类单级制冷压缩机一般可按其工作蒸发温度的范围分为高温、中温和低温压缩机三种,但在具体蒸发温度区域的划分上并不统一。下面列举一种著名压缩机的大致工作蒸发温度的分类范围。 高温制冷压缩机(-10 ~ 0 )℃ 中温制冷压缩机(-15 ~ 0 )℃ 低温制冷压缩机(- 40 ~ -15 )℃ (2) 按制冷量的大小分类: 大型≥550kW 中型(25~550)kW

3、《压缩技术》选择题

《压缩技术》选择题 ()1.二进制数(1111001)2转换成十六进制数是 (A)F1H (B)79H (C)1FH (D)97H ()2、图像文件“风景.bmp”的属性窗口如图所示: 该图像的存储容量约为 (A)2MB (B)938KB (C)1.6MB (D)5MB ()3、一段图像分辨率为1024×768、32位色彩的视频影像,若该视频以25帧/秒的速度播放,则每秒钟播放的数据量约为 (A)24M字节(B)75M字节(C)600M字节(D)800M字节 ()4、在计算机内部,用来传送、存储、加工处理的数据或指令(命令)都是采用(A)ASCII码(B)GB2312码(C)二进制码(D)GBK码 ()5. 用UltraEdit软件观察字符内码,结果如下图所示, 则其中内码"31 30"表示的字符为 (A)2010 (B)20 (C)10 (D)暑 ()6.用UltraEdit软件观察字符内码,结果如图所示: 则字符"瞧瞧你"的内码为 (A)C7 C6 C7 C6 CE D2 (B)C7 C6 CE D2 C7 C6 (C)C7 C6 C7 C6 C4 E3 (D)C7 C6 C4 E3 C7 C6 ()7.小明和小张在讨论WAVE格式音频可以被压缩成MP3格式音频的原因,各自说出了很多理由: ①数据本身存在可被压缩的冗余因素②数据压缩的容量是无限制的 ③数据压缩是为了让数据文件更大④数据压缩允许有少量的失真 ⑤数据压缩是为了让音频文件音质更好 上述理由正确的是 (A)②⑤(B)①④(C)②③(D)③⑤ ()8.下列属于静态图像编码和压缩标准的是 (A)JPEG (B)MPEG-1 (C)MPEG-2 (D)MPEG-4

压缩机的工作原理

往复式压缩机的工作原理 什么是压缩 往复式压缩机都有气缸、活塞和气阀。压缩气体的工作过程可分成膨胀、吸入、压缩和排气四个过程。 例:单吸式压缩机的气缸,这种压缩机只在气缸的一段有吸入气阀和排除气阀,活塞每往复一次只吸一次气和排一次气。 1 ,膨胀:当活塞向左边移动时,缸的容积增大,压力下降,原先残留在气缸中的余气不断膨胀。 2, 吸入:当压力降到稍小于进气管中的气体压力时,进气管中的气体便推开吸入气阀进入气缸。随着活塞向左移动,气体继续进入缸内,直到活塞移至左边的末端(又称左死点)为止。 3 ,压缩:当活塞调转方向向右移动时,缸的容积逐渐缩小,这样便开始了压缩气体的过程。由于吸入气阀有止逆作用,故缸内气体不能倒回进口管中,而出口管中气体压力又高于气缸内部的气体压力,缸内的气体也无法从排气阀跑到缸外。出口管中的气体因排出气阀有止逆作用,也不能流入缸内。因此缸内的气体数量保持一定,只因活塞继续向右移动,缩小了缸内的容气空间(容积),使气体的压力不断升高。 4 ,排出:随着活塞右移,压缩气体的压力升高到稍大于出口管中的气体压力时,缸内气体便顶开排除气阀的弹簧进入出口管中,并不断排出,直到活塞移至右边的末端(又称右死点为止。然后,活塞右开始向左移动,重复上述动作。活塞在缸内不断的往复运动,使气缸往复循环的吸入和排出气体。活塞的每一次往复成为一个工作循环,活塞每来或回一次所经过的距离叫做冲程。< 什么是压缩气体的三种热过程? 气体在压缩过程中的能量变化与气体状态(即温度、压力、体积等)有关。在压缩气体时产生大量的热,导致压缩后气体温度升高。气体受压缩的程度越大,其受热的程度也越大,温度也就升得越高。压缩气体时所产生的热量,除了大部分留在气体中使气体温度升高外,还有一部分传给气缸,使气缸温度升高,并有少部分热量通过缸壁散失于空气中。 压缩气体所需的压缩功,决定于气体状态的改变。说通缩点,压缩机耗功的大小与除去压缩气体所产生的热量有直接关系。一般来说,压缩气体的过程有以下三种:等温压缩过程:在压缩过程中,把与压缩功相当的热量全部移除,使缸内气体的温度保持不变,这种压缩成为等温压缩。在等温压缩过程中所消耗的压缩功最小。但这一过程是一种理想过程,实际生产中是很难办到的。 绝热压缩过程:在压缩过程中,与外界没有丝毫的热交换,结果使缸内气体的温度升高。这种不向外界散热也不从外界吸热的压缩成为绝热压缩。这种压缩过程的耗功最大,也是一种理想压缩。因为实际生产中,无伦何种情况要想避免热量的散失,是很难做到的。 多变压缩过程:在压缩气体过程中,既不完全等温,也不完全绝热的过程,成为多变压缩过程。这种压缩过程介于等温过程和绝热过程之间。实际生产中气体的压缩过程均属于多变压缩过程。 什么是多级压缩? 所谓多级压缩,即根据所需的压力,将压缩机的气缸分成若干级,逐级提高压力。并在每级压缩之后设立中间冷却器,冷却每级压缩后的高温气体。这样便能降低每级的排气温度。

APE和FLAC压缩原理

1.APE压缩原理 数字音频: 声音简单的说是一种波,而数字化音频是声波的数字化形式。这是通过对大量的模拟信号在每秒钟“采样”很多次而达到的。这个过程在概念上可以理解为在每秒钟内对声波波形的最高点进行多次记录。现在市面上的音乐CD储存的就是对声音的每秒钟进行44100次的采样。自从CD都以立体声方式来压制时,对声音的采样也变为每秒钟同时对左右声道采样44100次,采样得到的数值用16位的二进制整数来表示。基本上,一个WAV(波形)文件都有一个文件头,后面跟随一系列的右(声道信号),左(声道信号),右,左......而当每个采样数值占用32位二进制数位(16位左声道,16位右声道),每秒钟44100的采样频率时,记录一秒钟的声音就要使用1,411,200个二进制位,或者说是176,400字节(176.4KB)。 无损压缩: 1)转化至X,Y 无损压缩的第一步就是更有效的将左右声道的模型化为X,Y值。通常在左右声道之间存在着大量的相关性,可以通过好几种方式来处理,最常用的是通过使用“中/ 边值编码”。在这种情况下,编码时采用的是一个中点值(X)和一个边值(Y),而不是左右声道数值。中点值(X)是左右声道数值的中间值,边值(Y)是两声道数值的差值。这可由以下的公式得到: X = (L + R) / 2 Y = (L - R) 2)预测器 下一步,X和Y数据流经一个预测器来去除冗余。基本上,这一步的目的是使得X Y序列中包含尽可能小的可解压的数值。从这一步里,一个压缩进程和另一个压缩进程相互隔开。实际上,有无数种方法可以实现这一步。这里举一个使用简单线形代数的例子: PX和PY是预测的X,Y值;X1是最初的X值,X2是经过二次预测的返回值; PX = 2 * X1 - X2 PY = 2 * Y1 - Y2 例如:当X = (2,8,24,?);PX = (2 * X1) - X2 = (2 * 24) - 8 = 40 那样,将预测值和实际值相减,差值(错误)被传送到下一步编码。 多数好的预测器都是具有适应性的,它们能调整到处理当前数据所需的“可预测”程度。举个例子,当我们使用一个在0到1024之间的数m作为因子(0是无法预测,1024是全预测),每次预测后,m 会根据预测是否有用来向上或者向下调整。这样,在前面的例子中,留给预测器的是:

空气压缩机工作原理及使用

空气压缩机工作原理及使用 第一章空气压缩机工作原理及使用 第一节工作原理 驱动机启动后,经三角胶带,带动压缩机曲轴旋转,通过曲柄杆机构转化为活塞在气缸内作往复运动。当活塞由盖侧向轴运动时,气缸容积增大,缸内压力低于大气压力,外界空气经滤清器,吸气阀进入气缸;到达下止点后,活塞由轴侧向盖侧运动,吸气阀关闭,气缸容积逐渐变小,缸内空气被压缩,压力升高,当压力达到一定值时,排气阀被顶开,压缩空气经管路进入储气罐内,如此压缩机周而复始地工作不断地向储气罐内输送压缩空气,使罐内压力逐渐增大,从而获得所需的压缩空气。 第二节空压机的安装、起动、运转和停车 (一)机器的安放 空压机应安放在空气流通、光线充足、四周平坦的地方,以便操作管理和保证风冷效果。 (二)开机前的检查和准备 1、检查机器各部位是否处于正常状态,紧固件有否松动等。 2、加注润滑油:空压机冬季用13号、夏季用19号压缩机油,加油至视油窗2/3处为宜。注意:在气温较低地区,应防止润滑油凝结。 3、用手盘动空压机风扇2-3转,检查有无障碍感或异常声响。 4、打开储气罐上的输气闸阀,使其处于全开状态。 5、对电动空压机,由电工决定起动方式,接线后先作点起动,检查曲轴旋转方向是否如安全罩上的箭头所示;对柴动空压机,还要按柴油机说明书对柴油机进行检查、准备。 (三)起动 (1)起动电动机,并注意电动机的转向是否正确; (2)待电动机运转正常后勤工作,逐渐打开减荷阀,使空压机投入正常运转。 (四)运转中注意事项 (1)注意各部声响和震动情况; (2)注意检查注油器油室的油量是否足够,机身油池内的油面是否在油标尺规定的范围内,各部供油情况是否良好; (3)注意检查电气仪表的读数和电动机的温度; (4)空压机每工作两小时,将中间冷却器、后冷却器内的油水排放一次;每班将风包内的油水排放一次。 (5)注意检查各部温度和压力表的读数; ①润滑油压力在(1.47~2.45)×105N/m2, 但不低于0.981×105N/m2; ②冷却水最高排水温度不超过40℃;

浅谈无损压缩算法

龙源期刊网 https://www.360docs.net/doc/a013445363.html, 浅谈无损压缩算法 作者:孔凡龙,程思远,关迅 来源:《电脑知识与技术》2011年第22期 摘要:该文介绍了经典的Huffman编码和目前压缩比最高的PAQ系列压缩算法,包括Huffman编码的原型,改进后的自适应Huffman编码及他们各自的实现方法和优缺点,PAQ系列压缩算法是如何进行上下文建模,预测和编码的。 关键词:无损压缩;Huffman;PAQ 中图分类号:TP311文献标识码:A文章编号:1009-3044(2011)22-5466-02 在信息高速发展的今天,人们进行交流沟通的数据量相当的庞大,如何更好,更快的传输和存储数据已成为一个重大的问题,单纯地提高存储容量,并不能从根本解决问题,而数据的压缩是解决这一问题的重要方法。从无损音乐格式ape到文档的存储,数据的无损压缩已广泛应用于各个领域。 1 无损压缩概述 数据压缩是按照特定的编码机制用比未经编码少的数据位(或者其它信息相关的单位)表示信息的过程。无损压缩是利用数据的统计冗余进行压缩,可完全回复原始数据而不引起任何失真,但压缩率是受到数据统计冗余度的理论限制,一般为20%到50%。这类方法广泛用于 文本数据,程序和特殊应用场合的图像数据的压缩。 2 无损压缩算法Huffman和PAQ 2.1 基于Huffman编码的压缩 2.1.1 静态Huffman和动态Huffman编码 Huffman编码使用变长编码表对源符号进行编码,其中变长编码表是通过一种评估来源符号出现机率的方法得到的,出现次数多的符号使用较短的编码,出现次数少的则使用较长的编码,这便使编码之后的符号串的平均长度降低,从而达到无损压缩数据的目的。Huffman编码是通过构建最优二叉树即带权路径长度最小的二叉树,来实现对数据的编码。Huffman编码的过程: (1)对数据中的源符号的种类和数量进行统计,共有n个源符号,其出现的频率分别为w1,w2...wn;

三种无损压缩原理介绍

三种无损压缩原理介绍 1.前言 现代社会是信息社会,我们无时无刻都在跟信息打交道,如上网查阅图文资料,浏览最新的新闻,QQ聊天或者传送文件等。人类对信息的要求越来越丰富,希望无论何时何地都能够方便、快捷、灵活地通过文字、语音、图像以及视频等多媒体进行通信。在早期的通信领域中,能够处理和传输的主要是文字和声音,因此,早期的计算机和通信设备的处理能力跟人类的需求有相当大的差距。随着通信信道及计算机容量和速度的提高,如今图像信息已成为通信和计算机系统的一种处理对象,成为通信领域市场的热点之一。可是,大数据量的图像信息会给存储器的存储容量、通信干线信道的带宽以及计算机的处理速度增加极大的压力。单纯依靠增加存储器容量、提高通信网络带宽和计算机处理速度来解决问题,在技术和经济上都不太现实。显然,在信道带宽、通信链路容量一定的前提下,采用编码压缩技术,减少传输数据量,是提高通信速度的重要手段。 2.正文 2.1图像压缩编码的现状和发展趋势 1948年提出电视数字化后,就开始对图像压缩编码技术的研究工作,至今已有50多年的历史。图像压缩的基本理论起源于20世纪40年代末香农的信息理论。香农的编码定理告诉我们,在不产生任何失真的前提下,通过合理的编码,对于每一个信源符号分配不等长的码字,平均码长可以任意接近于信源的熵。在五十年代和六十年代,图像压缩技术由于受到电路技术等的制约,仅仅停留在预测编码、亚采样以及内插复原等技术的研究,还很不成熟。1969年在美国召开的第一届“图像编码会议”标志着图像编码作为一门独立的学科诞生了。到了70年代和80年代,图像压缩技术的主要成果体现在变换编码技术上,矢量量化编码技术也有较大发展,有关于图像编码技术的科技成果和科技论文与日俱增,图像编码技术开始走向繁荣。自80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,人们开始突破传统的信源编码理论,例如不再假设图像是平稳的随机场。图像压缩编码向着更高的压缩比和更好

相关文档
最新文档