氯化钠含盐量与电导率对照表

水中的电导和水中盐的关系,准确的脱盐率要通过对产水和进水进行化学分析,测定相应的TDS含量才能计算出来的,但是这样会比较麻烦,一般采用电导率转换为TDS来计算脱盐率。转换公式如下:TDS=K*EC25 ,其中TDS单位是ppm,EC25是经温度校正到25度的电导率,单位为微西/厘米,EC25所有盐类均当成氯化钠且不考虑CO2的影响。

水中的电导和水中盐的关系,电导率与含盐量的换算关系表格如下:

电导率与含盐量换算关系表

TDS和电导率及含盐量的关系(可速查)

电导率与含盐量的关系 1、水的导电能力的强弱程度,就称为电导度S(或称电导)。电导度反映了水中含盐量的多少,是水的纯净程度的一个重要指标。水越纯净,含盐量越少,电阻越大,电导度越小。超纯水几乎不能导电。电导的大小等于电阻值的倒数。即S=1/R,S=(1/ρ)·(F/L)。1/ρ就称为电导率,其国际制单位为西·米-1(S·m-1) 电导率与盐含量成线性关系,这跟离子的电荷数和盐的离子常数有关。 2、一般对于同一种水源,以温度25℃为基准,其电导率与含盐量大致成正比关系,其比例为:1μS/cm=0.55~0.75mg/l含盐量,在其它温度下,则需加以校正,即温度每变化1℃,其含盐量大约变化1.5-2%。温度高于25℃时用负值, 温度低于25℃时用正值。 确切的说水中含盐量的大小是影响水的电导率的一个重要因素,但是各种离子的种类不同,它们的导电能力也不同。所以电导率或电阻率和含盐量之间不能进行直接的数学换算。只有在离子组分大体相同时,才能根据实验测定绘制出电导率(或电阻率)和含盐量之间关系的换算图,在运行现场使用。或者当知道是某一类型的水时,可以根据已知相似类型水的换算图来粗略估算。 3、汇通源泉公司RO产品技术手册中在计算脱盐率时提及: 准确的脱盐率要通过对产水和进水进行化学分析,测定相应的TDS含量才能计算出来,但是这样会比较麻烦,一般采用电导率转换为TDS来计算脱盐率。转 换公式如下: TDS=K * EC25 其中TDS单位是ppm EC25是经温度校正到25度的电导率,单位为微西/厘米,EC25所有盐类 均当成氯化钠且不考虑CO2的影响 附电导率与含盐量的换算关系表格 溶液电导率EC25K 产水0--3000.50 苦咸水300--40000.55 苦咸水4000--200000.67 海水40000--60000 0.70 浓水 60000--850000.75

电导率与含盐量地关系

*** *** 1、水的导电能力的强弱程度,就称为电导度 S (或称电导)。电导度反映了水中含盐 量的多少,是水的纯净程度的一个重要指标。水越纯净,含盐量越少,电阻越大,电导度越 小。超纯水几乎不能导电。电导的大小等于电阻值的倒数。即 S=1/R , S=(1/ ρ) ·(F/L)。1/ ρ就 称为电导率,其国际制单位为西 ·米 -1(S ·m-1) 电导率与盐含量成线性关系,这跟离子的电荷数和盐的离子常数有关。 2、一般对于同一种水源, 以温度 25℃为基准, 其电导率与含盐量大致成正比关系, 其 比例为:1μS/cm=0.55~ 0.75mg/l 含盐量,在其它温度下, 则需加以校正, 即温度每变化 1℃,其含盐量大约变化 1.5-2%。温度高于 25℃时用负值,温度低于 25℃时用正值。 确切的说水中含盐量的大小是影响水的电导率的一个重要因素,但是各种离子的种类 不同,它们的导电能力也不同。 所以电导率或电阻率和含盐量之间不能进行直接的数学换算。 只有在离子组分大体相同时, 才能根据实验测定绘制出电导率 (或电阻率) 和含盐量之间关系的换算图, 在运行现场使用。 或者当知道是某一类型的水时, 可以根据已知相似类型水的换算图来粗略估算。 准确的脱盐率要通过对出水和进水进行化学分析, 测定相应的 TDS 含量才能计算出来, 但是这样会比较麻烦,一般采用电导率转换为 TDS 来计算脱盐率。转换公式如下: TDS=K ×EC25 其中 TDS 单位是 ppm EC25 是经温度校正到 钠且不考虑 CO2 的影响 25 度的电导率,单位为微西 /厘米, EC25 所有盐类均当成氯化 附 电导率与含盐量的换算关系表格 溶液 电导率 EC25 K 产水 0--300 0.50 苦咸水 300--4000 0.55 苦咸水 4000--20000 0.67 海水 40000--60000 0.70 浓水 60000--85000 0.75

1509全盐量和电导率对照关系

全盐量和电导率比例关系 1、水的导电能力的强弱程度,就称为电导度S(或称电导)。电导度反映了水中含盐量的多少,是水的纯净程度的一个重要指标。水越纯净,含盐量越少,电阻越大,电导度越小。超纯水几乎不能导电。电导的大小等于电阻值的倒数。即S=1/R,S=(1/ρ)·(F/L)。1/ρ就称为电导率,其国际制单位为西·米-1(S·m-1) 电导率与盐含量成线性关系,这跟离子的电荷数和盐的离子常数有关。 2、一般对于同一种水源,以温度25℃为基准,其电导率与含盐量大致成正比关系,其比例为:1μS/cm=0.55~0.75mg/l含盐量,在其它温度下,则需加以校正,即温度每变化1℃,其含盐量大约变化1.5-2%。温度高于25℃时用负值,温度低于25℃时用正值。 确切的说水中含盐量的大小是影响水的电导率的一个重要因素,但是各种离子的种类不同,它们的导电能力也不同。所以电导率或电阻率和含盐量之间不能进行直接的数学换算。只有在离子组分大体相同时,才能根据实验测定绘制出电导率(或电阻率)和含盐量之间关系的换算图,在运行现场使用。或者当知道是某一类型的水时,可以根据已知相似类型水的换算图来粗略估算。 准确的脱盐率要通过对出水和进水进行化学分析,测定相应的TDS含量才能计算出来,但是这样会比较麻烦,一般采用电导率转换为TDS来计算脱盐率。转换公式如下: TDS=K×EC25 其中TDS单位是ppm EC25是经温度校正到25度的电导率,单位为微西/厘米,EC25所有盐类均当成氯化钠且不考虑CO2的影响附电导率与含盐量的换算关系表格 溶液电导率EC25 K 产水0--300 0.50 苦咸水 300--4000 0.55 苦咸水4000--20000 0.67 海水40000--60000 0.70 浓水60000--85000 0.75 - 1 -

电导率与TDS数据对比

电导率与TDS的关系 2017-11-11 在纯水设备销售过程中,经常会和电导率、TDS值打交道,那么这两个数据具体代表什么,有什么关系呢我结合网上信息,稍微做了总结: 电导率与TDS的关系是:电导率约是TDS的2倍,对照关系如下表: 3、电导率与TDS TDS(溶解性总固体)用来衡量水中所有离子的总含量,通常以ppm 表示。在纯水制造业,电导率也可用来间接表征TDS。 溶液的电导率等于溶液中各种离子电导率之和,比如:纯食盐溶液: Cond=Cond(purewater)+Cond(NaCl) 电导率和TDS的关系并不呈线性,但在有限的浓度区段内,可采用线性公式表示,例如:100uS/(asNaCl)=50ppmTDS(uS微西门子)。 从上面两个公式可以知道:纯水的电导率为:兆欧),食盐的TDS与电导率换算系数为。所以,经验公式是:将以微西门子为单位的电

导率折半约等于TDS(ppm)。有时TDS也用其它盐类表示,如CaO3(系数则为。TDS与电导率的换算系数可以在~之间调节,以对应不同种类的电解质溶液。 4、电导率与水的硬度 水溶液的电导率直接和溶解性总固体浓度成正比,而且固体量浓度越高,电导率越大。利用电导率仪或总固体溶解量计可以间接得到水的总硬度值,如前述,为了近似换算方便,1μs/cm电导率=硬度。但是需要注意: (1)以电导率间接测算水的硬度,其理论误差约20-30ppm。(2)溶液的电导率大小决定分子的运动,温度影响分子的运动,为了比较测量结果,测试温度一般定为20℃或25℃。 (3)采用试剂检测可以获取比较准确的水的硬度值。 电导率和TDS,离子总量,氯离子的关系 发布时间:2017-11-11作者: 电导率和TDS(矿化度)——的关系 首先说明这个值本身并不是具体的、精确的值。它不能代表某一具体的江、河、湖、海的电导率和TDS的换算关系。因此它只是个平均值。因为任何一处的水域都有自己的独特的溶解物。例如,一种水质中溶解的是氯化钙,而另一种溶解的是氯化钠,如果两种水质拥有共同的电导率值,那么他们的矿化度肯定不同,也就是说两者电导率和矿化度的关系系数肯定也不同。但是,各种水质平均起来是这个系数。 如果这个系数带来的误差是不可忽略的,那么可以对样品先进行电导率测量,在用重量法对同一样品进行矿化度的测量。通过得出的测量值然建立两者的关系。这样得出的系数就是准确的。 那么电导率和矿化度究竟有什么内在的关系呢为什么一个系数就能将二者联系起来又是什么造成了二者的差异我们知道电导率测量的是水中离子的导电

电导率与S之间对应参数表

电导率与T D S之间对应参数表

TDS定义 ---TDS是英文totaldissolvedsolids的缩写,中文译名为溶解性总固体,测量单位为毫克/升(mg/L),它表明1升水中溶有多少毫克溶解性总固体。在物理意义上来说,水中溶解物越多,水的TDS 值就越大,水的导电性也越好,其电导率值也越大。 电导率的定义: ---电导率是物质传送电流的能力,是电阻率的倒数。在液体中常以电阻的倒数,即电导来衡量其导电能力的大小。水的电导是衡量水质的一个很重要的指标,它能反映出水中存在的电解质的程度。根据水溶液中电解质的浓度不同,则溶液导电的程度也不同 电导率与TDS的关系 水溶液的电导率直接和TDS成正比,而且TDS值越高,电导率越大。 电导率和溶解固体量浓度的关系近似表示为: 1.4μS/cm=1ppm或2μS/cm=1ppm 其中,1ppm等于1mg/l,为TDS单位 TDS用来衡量水中所有离子的总含量,?通常以ppm表示,电导率也可用来间接表征TDS. 溶液的电导率等于溶液中各种离子电导率之和,比如:纯食盐溶液: Cond.=Cond(purec?water)?+?Cond(NaCl)?或者 Cond.=?0.055?+?Cond(NaCl) 电导率和TDS的关系并不呈线性,但在有限的浓度区段内,可用采用线性公式表示:?例 如.?100uS/cm?x?0.5?(as?NaCl)?=?50?ppm?TDS(uS:微西门子)? 食盐的TDS-电导率换算系数为0.5.? 所以:经验公式是:将以微西门子为单位的电导率折半约等于TDS(ppm)? 有时TDS?也用其它盐类表示,如CaO3(系数则为0.66) TDS与电导率的换算系数可以在0.3-1.0之间调节,以对应不同种类的电解质溶液? 那么换算系数0.3-1.0之间各自对应哪些种类的电解质溶液 如0.5-NaCl 0.66-CaO3 0.50-KCl 电导率的测量原理电极 引起离子在被测溶液中运动的电场是由与溶液直接接触的二个电极产生的。此对测量电极必须由抗化学腐蚀的材料制成。实际中经常用到的材料有钛等。由二个电极组成的测量电极被称为尔劳施(Kohlrausch)电极。

电导率与含盐量的关系

电导率与含盐量的关系(总1 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

1、水的导电能力的强弱程度,就称为电导度S(或称电导)。电导度反映了水中含盐量的多少,是水的纯净程度的一个重要指标。水越纯净,含盐量越少,电阻越大,电导度越小。超纯水几乎不能导电。电导的大小等于电阻值的倒数。即S=1/R,S=(1/ρ)·(F/L)。1/ρ就称为电导率,其国际制单位为西·米-1(S·m-1) 电导率与盐含量成线性关系,这跟离子的电荷数和盐的离子常数有关。 2、一般对于同一种水源,以温度25℃为基准,其电导率与含盐量大致成正比关系,其比例为: 1μS/cm=0.55~0.75mg/l含盐量,在其它温度下,则需加以校正,即温度每变化1℃,其含盐量大约变化1.5-2%。温度高于25℃时用负值,温度低于25℃时用正值。 确切的说水中含盐量的大小是影响水的电导率的一个重要因素,但是各种离子的种类不同,它们的导电能力也不同。所以电导率或电阻率和含盐量之间不能进行直接的数学换算。只有在离子组分大体相同时,才能根据实验测定绘制出电导率(或电阻率)和含盐量之间关系的换算图,在运行现场使用。或者当知道是某一类型的水时,可以根据已知相似类型水的换算图来粗略估算。 准确的脱盐率要通过对出水和进水进行化学分析,测定相应的TDS含量才能计算出来,但是这样会比较麻烦,一般采用电导率转换为TDS来计算脱盐率。转换公式如下: TDS=K×EC25 其中TDS单位是ppm EC25是经温度校正到25度的电导率,单位为微西/厘米,EC25所有盐类均当成氯化钠且不考虑CO2的影响 附电导率与含盐量的换算关系表格 溶液电导率EC25 K 产水 0--300 0.50 苦咸水 300--4000 0.55 苦咸水 4000--20000 0.67 海水 40000--60000 0.70 浓水 60000--85000 0.75 2

各种物质电导率表

各种物质电导率表 表1 水溶液电导率 -1液体名称质量分数/% 温度/? 电导率/S?cm -2硝酸银AgNO 5 18 2.56×103-2 21.01×10 60 -2氯化钡BaCl 3(89×10 5 18 2-2 15.34×10 24 -2硝酸钡Ba(NO) 2(09×10 4.2 18 32-7乙醇CHOH 2.6×10 95 25 25-4醋酸CHCOOH 3.18×10 0.3 18 3-4 16.05×10 20 -4 2.35×10 70 -8 4×10 99.7 -9 1.2×10 100(纯) 25 -4丙酸CHCOOH 4.79×10 1.00 18 25-4 10.42×10 20.02 -7 8.5×10 69.99 -8 7×10 100.00 -9 <10 100(纯) 25 -4丁酸CHCOOH 4.55×10 1.00 18 37-4 2.96×10 50.04 -7 5.6×10 70.01 -8 6×10100 -2草酸(COOH)5.08×10 3.5 18 2-2氯化钙CaCl6.43×10 5.0 18 2-2 25.0 17.81×10 -2 13.66×1035.0 -2硝酸钙CaNO 4.91×10 6.25 18 3-2 10.48×10 25.0 -2 4.49×10 50 -4溴化镉CdBr 2.31×10 0.0324 18 2-4 35.70×10 1 -3 27.30×10 30

-4氯化镉CdCl 4.95×10 0.0503 18 2-4 55.10×10 1 -329.90×10 20 -3 50 13.70×10 -4碘化镉CdI 1 18 21.20×10 2-2碘化镉CdI 25.40×10 20 18 2-2 31.04×10 45 -4硝酸镉Cd(NO)69.40×10 1 18 32 -3 75.50×10 48 -4硫酸镉CdSO 0.0289 18 2.47×10 4-4 0.495 23.93×10 -3 5 14.60×10 -3 36 42.10×10 -3氯化铜CuCl 18.70×10 1(35 18 2-3 69.90×10 35.2 -3硝酸铜Cu(NO) 36.50×10 5 15 32-3 85.80×10 15 -2 10.62×10 35 -3硫酸铜C uSO4 10.90×10 2.5 18 -3 45.80×10 17.5 -2氢溴酸HBr 19.08×10 5 15 -2 49.40×10 15 8×10-3 100(纯) -4甲酸,蚁酸HCOOH 55.00×10 4.94 18 -4 98.40×10 39.95 -4 2.80×10 100 5.6×10-3 100(纯) -2盐酸HCl 5 15 39.48×10 -7 51.52×1040 -4氢氟酸HF 2.50×10 0.004 18 -4 21.00×100.121 -3 4.80 59.30×10 -2 34.11×10 29.8 -2氢碘酸HI 13.32×10 5 15 -2硝酸HNO 31.23×10 6.2 18 3-2 78.19×10 31.0 -2 49.04×10 62.0

相关文档
最新文档