飞机基本构造作用及飞行原理

飞机基本构造作用及飞行原理
飞机基本构造作用及飞行原理

飞机原理与构造简答题答案

1、以双梁式直机翼为例,说明气动载荷是如何传递的。(18分) (1)蒙皮把气动载荷分别传给长桁和翼肋:蒙皮受气动吸力时,桁条和翼肋通过铆钉受拉对蒙皮提供支反力;蒙皮受气动压力时,蒙皮直接压在桁条和翼肋上,根据作用力与反作用力的原理,蒙皮把外载传递给了翼肋和长桁。 (2)长桁把自身承受的初始气动载荷传给翼肋 桁条与翼肋直接用角片(或间接通过蒙皮)相连,此时载荷方向垂直于长桁轴线,翼肋向长桁提供支持。此时,桁条可以看成支持在翼肋上的多点连续梁,长桁把气动载荷传递给了翼肋。至此,作用在蒙皮上的气动载荷直接或由长桁间接地全部传给了翼肋。 (3)翼肋把气动载荷转换成了垂直载荷和力矩,并相应的传到了梁腹板和组成封闭翼盒的各元件上 (4)翼梁将剪流往根部传递 由于梁腹板的抗弯能力比梁的缘条小的多,可略去其承弯能力,因而腹板以平板受剪的形式平衡,并将剪流往根部传递。最后在根部有机翼—机身对接接头提供垂直方向的支反力来平衡。 (5)蒙皮、腹板承受扭矩。机翼的第三个总体内力扭矩以蒙皮和腹板受剪的形式,向根部传递,总扭矩到机翼根部应通过加强肋将一圈剪流转换成适合于机翼—机身对接接头承受的一对集中力,再通过接头传给机身。 2、说明双梁式直机翼的普通翼肋的作用。(10分) (1)用以承受蒙皮传来的局部气动载荷 (2)把局部气动载荷转换成适合于主受力盒段各组成元件受力特性的载荷形式 (3)然后把它们传到这些主要元件上,向机翼根部传递,并进而通过对接接头传给机身 3、比较分析机翼各典型受力型式的结构受力特点。(20分) (1)梁式机翼:翼梁是主要受力构件,梁式机翼便于开口而不致破坏原来的主要传力路线;机翼、机身通过几个集中接头连接,所以连接简单、方便;主要依靠翼梁承受弯矩(2)单块式机翼:上、下壁板为主要受力构件。这种机翼比梁式机翼的刚度特性好。同时,由于结构分散受力,能更好的利用剖面高度,在某些情况下材料利用率较高,重量可能较轻,缺点是不便于大开口。 (3)多腹板式机翼:主要由上、下蒙皮承受弯矩,与梁式、单块式机翼相比,材料分散性更大。一般来说,多腹板式机翼的刚度大,材料利用率也更好些,然而也存在类似单块式机翼的缺点 4、以桁条式机身后段上的一个垂直集中力Pz为例,分析说明载荷是如何传给机身结构,又是如何在机身结构中传递的?(10分) 桁条式机身的一个加强隔框和水平尾翼的接头相连接,该加强隔框受到由接头传来的P z力,该框受到P z力后,要有向上移动的趋势,对此桁条起不了直接的限制作用,而由蒙皮通过沿框缘的连接铆钉给隔框以支反剪流q。q的分布与机身的受力型式,更明确地说,是和该框平面处机身壳体上受正应力面积的分布有关。对桁条式机身,假设只有桁条承受正应力,而蒙皮只受剪切时,剪流沿周缘按阶梯形分布。若蒙皮也受正应力,则在两桁条间的剪流值将不是等值,而成曲线分布。又因为蒙皮与桁条连接,蒙皮因剪流q受剪时将由桁条提供轴向支反剪流平衡,也即蒙皮上的剪流q将在桁条上产生拉、压的轴向力。 作用在框平面内的集中力:(1)由加强框承受该集中载荷(2)加强框将集中力扩散,以剪流的形式传给蒙皮。(3)剪流在蒙皮中向机身中段传递时,其剪切内力通过蒙皮连续向前传递;而弯曲内力则通过桁条的轴向拉、压力向前传递。 5、阐述飞机起落架减震机构中油气式减震器工作原理。(12分)

《飞机构造基础》课程教学大纲

《飞机构造基础》课程教学大纲 课程名称:飞机构造基础计划学时:48 计划学分:2.5 先修课程:工程力学、飞行技术基础课程性质:专业课 课程类型:必修课适用专业:飞机机电维修专业 编制单位:广州民航职业技术学院机务工程系编制时间:2001年11月 一、课程的性质和任务 本课程是飞机机电专业的一门重要专业课,其主要任务是使学生初步了解飞机的结构及飞机各系统的基本知识,为进行实际维护工作及故障诊断打下基础。本课程也是后续课程《飞机系统与附件》的基础课程 二、课程特色 本课程突出技能和能力培养,配合双证书制,使学生在校期间即可获得岗位资格证书。 本课程可利用现有737飞机附件,飞行操纵摸拟器及飞机电源系统示教板,采用现场教学方法使学生加深对飞机各系统的理解. 三、知识能力培养目标 (一)基本知识 飞机结构、载重与平衡、飞行操纵系统、液压系统、起落架系统、座舱环境控制系统、防冰排雨系统、飞机燃油系统、飞机防火系统、飞机电子系统等。 (二)应用能力 通过本课程的学习,使学生了解飞机组成、结构形式及受力特点,飞机载重与平衡的基本知识,掌握飞机飞行操纵系统、液压系统、起落架系统、座舱环境控制系统、飞机燃油系统的基本组成及工作原理;了解防冰排雨系统、飞机防火系统、飞机电子系统的基本知识。 (三)自学能力 培养学生具有对飞机构造及各系统的总的认识,为以后的飞机维护和排故工作打下基础。 四、课程内容和要求 见附表 五、考核方法和成绩评定 (一)考核方法 本课程的考核以平时作业、平时测验和期末笔试为主,平时占总成绩的40%,期34

末占总成绩的60%。 (二)成绩评定 1.基本知识,应知考核(书面、闭卷)成绩 2.上课的出勤率,学习态度 3.平时实践操作情况 六、教学参考书 ⑥《飞机构造基础》宋静波·王洪涛主编,广州民航职业技术学院出版 ⑥《航空电气》盛乐山主编 ⑥《民用航空器维修人员指南》(机体部分) 七、说明与建议 1.本大纲的总学时为48学时,学习本门课,应具有《飞行技术基础》、《工程力学》的基本知识。 2.本大纲由机务工程系宋静波老师编写。 附表: 35

专题飞机飞行的力学原理

专题 飞机飞行的力学原理 ? 飞机用途 民用(运输、勘探、农用、消防、拯救等) 军用(歼击、轰炸、侦察、反潜、运输等) ? 飞机动力 螺桨式(活塞螺桨、涡轮螺桨、涡轮轴) 喷气式(涡轮喷气、涡轮风扇、、冲压、火箭等) ? 机翼类型 固定翼(双翼、单翼、矩形翼、后掠翼、前掠翼、三角翼、双三角翼、鸭翼、可变后掠翼等) 旋翼(单旋翼、双旋翼、可倾转旋翼等) ? 举例 歼10飞机:军用歼击机,采用涡轮风扇发动机,机翼类型为鸭翼。 飞机的机翼在飞行中产生升力和阻力 机翼的升力: 2 21Sv C F Y Y ρ= 机翼的阻力: 2 21Sv C F X X ρ= 升力系数C Y 和阻力系数C X :

C Y和C X都与气流方向和机翼运动方向(航向)的夹角有关,这一角度称为迎角。 一般来说,迎角越大,升力和升力系数越大,阻力和阻力系数也越大。当迎角大于某一角度时,升力和升力系数会急剧下降。这一角度称为失速角。 飞机飞行的受力分析:质点情况 ?考虑飞机为一质点,其受力情况为: 升力F Y 阻力F X 重力mg 发动机的推力(或拉力)F ?若飞机在水平方向进行匀速直线运动,则: F = F X F Y = mg 若飞机进行滑翔飞行,其受力情况为:

升力 F Y 阻力 F X 重力 mg 很明显,在理想情况下,升力、阻力、重力三者矢量和为零,滑翔飞机做匀速直线运动。即: R F F mg Y X =+= 2 2 一点奥秘 ?由于:221Sv C F Y Y ρ= 2 21Sv C F X X ρ= 在稳定飞行时:F Y = mg F = F X ?结论: ? 高速飞行器的翼面积较小,低速飞机的翼面积较大。 ? 重型飞机的翼面积较大,轻型飞机的翼面积较小。 ? 高速飞行器阻力系数较小,升力系数也不大。 ? 低速飞行器升力系数较大,阻力系数也较大。 速度和升阻比的测量和计算

各种飞机发动机原理

一、活塞式发动机 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机工作时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9 个、14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关闭。 二、涡轮喷气发动机 在第二次世界大战以前,所有的飞机都采用活塞式发动机作为飞机的动力,这种发动机本身并不能产生向前的动力,而是需要驱动一副螺旋桨,使螺旋桨在空气中旋转,以此推动飞机前进。这种活塞式发动机+螺旋桨的组合一直是飞机固定的推进模式,很少有人提出过质疑。到了三十年代末,尤其是在二战中,由于战争的需要,飞机的性能得到了迅猛的发展,飞行速度达到700-800公里每小时,高度达到了10000米以上,但人们突然发现,螺旋桨飞机似乎达到了极限,尽管工程师们将发动机的功率越提越高,从1000千瓦,到2000千瓦甚至3000千瓦,但飞机的速度仍没有明显的提高,发动机明显感到“有劲使不上”。问题就出在螺旋桨上,当飞机的速度达到800公里每小时,由于螺旋桨始终在高速旋转,桨尖部分实际上已接近了音速,这种跨音速流场的直接后果就是螺旋桨的效率急剧下降,推力下降,同时,由于螺旋桨的迎风面积较大,带来的阻力也较大,而且,随着飞行高度的上升,大气变稀薄,活塞式发动机的功率也会急剧下降。这几个因素合在一起,决定了活塞式发动机+螺旋桨的推进模式已经走到了尽头,要想进一步提高飞行性能,必须采用全新的推进模式,喷气发动机应运而生。 喷气推进的原理大家并不陌生,根据牛顿第三定律,作用在物体上的力都有大小相等方向相反的反作用力。喷气发动机在工作时,从前端吸入大量的空气,燃烧后高速喷出,在此过程中,发动机向气体施加力,使之向后加速,气体也给发动机一个反作用力,推动飞机前进。事实上,这一原理很早就被应用于实践中,我们玩过的爆竹,就是依*尾部喷出火药气体的反作用力飞上天空的。早在1913年,法国工程师雷恩.洛兰就获得了一项喷气发动机的专利,但这是一种冲压式喷气发动机,在当时的低速下根本无法工作,而且也缺乏所需的高温耐热材料。1930年,弗兰克.惠特尔取得了他使用燃气涡轮发动机的第一个专利,但直到11年后,他的发动机在完成其首次飞行,惠特尔的这种发动机形成了现代涡轮喷气发动机的基础。现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是

飞机飞行的原理图解

飞机飞行的原理图解 飞机是指具有一具或多具发动机的动力装置产生前进的推力或拉力,由机身的固定机翼产生升力,在大气层内飞行的重于空气的航空器。 飞机飞行原理: 1、飞机上升是根据伯努利原理,即流体(包括炝骱退流)的流速越大,其压强越小;流速越小,其压强越大。 2、飞机的机翼做成的形状就可以使通过它机翼下方的流速低于上方的流速,从而产生了机翼上、下方的压强差(即下方的压强大于上方的压强),因此就有了一个升力,这个压强差(或者说是升力的大小)与飞机的前进速度有关。 3、当飞机前进的速度越大,这个压强差,即升力也就越大。所以飞机起飞时必须高速前行,这样就可以让飞机升上天空。当飞机需要下降时,它只要减小前行的速度,其升力自然会变小,小于飞机的重量,它就会下降着陆了。

飞机的组成: 大多数飞机都是由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成。 机翼:主要功用是为飞机提供升力,以支持飞机在空中飞行,也起一定的稳定和操纵作用。在机翼上一般安装有副翼和襟翼。操纵副翼可使飞机滚,放下襟翼能使机翼升力系数增大。另外,机翼上还可安装发动机、起落架和油箱等。 1.机身:主要功用是装载乘员、旅客、武器、货物和各种设备,还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。

2.尾翼:包括水平尾翼(平尾)和垂直尾翼(垂尾)。水平尾翼由固定的水平安定面和可动的升降沧槌伞4怪蔽惨碓虬括固定的垂直安定面和可动的方向舵。尾翼的主要功用是用来操纵飞机俯仰和偏转,以及保证飞机能平稳地飞行。 3.起落装置:飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 4.动力装置:主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。

飞机各个系统的组成及原理

一、外部机身机翼结构系统 二、液压系统 三、起落架系统 四、飞机飞行操纵系统 五、座舱环境控制系统 六、飞机燃油系统 七、飞机防火系统 一、外部机身机翼结构系统 1、外部机身机翼结构系统组成:机身机翼尾翼 2、它们各自的特点和工作原理 1)机身 机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。 2)机翼 机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。 机翼通常有平直翼、后掠翼、三角翼等。机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。 即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。襟翼平时处于收上位置,起飞着陆时放下。 3)尾翼 尾翼分垂直尾翼和水平尾翼两部分。 1.垂直尾翼 垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。 通常垂直尾翼后缘设有方向舵。飞行员利用方向舵进行方向操纵。当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。同样,蹬左舵时,方向舵左偏,机头左偏。某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。 2.水平尾翼 水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生

纸飞机飞行原理

For personal use only in study and research; not for commercial use 纸飞机飞行原理 纸飞机要飞得远、飞得快,有几点要注意:? 1)要尽量折得两边对称,如果不对称得话,飞机容易转弯,就飞不远了;? 2)翅膀和机身的比例要恰当。机身小翅膀大,飞机升力是够了,但重心上抬,投出去的飞机容易发飘;机身大翅膀小,重心过于下移,飞机就像飞镖一样,惯性十足,但却失去了飞行滑翔的行程,仿佛是扔出去的纸团。正确合理的翅膀和机身比例要根据纸飞机的形状和纸张的质地决定,多试几次就能找到最佳比例;? 3)注意前后的平衡。机头太重,飞机容易一头扎在地上;机头太轻,又容易造成机头上翘,导致失速。通过调整纸飞机的外形,或用纸条或胶带进行适当的加载(如果允许的话)可以调节飞机的平衡;? 4)最后说一点,纸飞机的投掷也很有讲究:不要侧风投飞,不然容易被刮偏;顺风投掷也没有足够的动力;最好是迎着不太强的正面逆风投掷,投出的角度稍大于水平角度,约15度左右,飞机要平稳向前送出,到最后一刻才自然脱手,那样飞得最远。 纸飞机的原理 2、机头不能太重,否则一下就载下去了;? 3、机头不宜太尖。阻力小,速度快,在空中停留的时间自然就短;? 4、机翼适当大一些,这与空气中的浮力成正比;? 5、后翼两侧向上折一下,但注意适度;如果迎面有微风吹来,有时还能向上飞;? 6、折时两边尽量对称,如果是开阔地,可以适当将左或右侧重一点点,使飞机在空中盘旋,可以一定程度上增加飞机在空中的滞留时间。? 7、折完后将两侧机翼向上,形成一定度数的v字夹角,注意不要太向上,稍有一点就行了。之后检查机翼两侧是否对称;? 8、先试飞,观察飞行情况做调整。(比如:飞起来机头向前一点一点的,说明机头轻了)?

模型飞机飞行原理

第一章空气动力学基本知识 空气动力学是一门专门研究物体与空气作相对运动时作用在物体上的力的一门科学。随着航空科学事业的发展,飞机的飞行速度、高度不断提高,空气动力学研究的问题越来越广泛了。航模爱好者在制作和放飞模型飞机的同时,必须学习一些空气动力学基本知识,弄清楚作用在模型飞机上的空气动力的来龙去脉。这将有助于设计、制作、放飞和调整模型飞机,并提高模型飞机的性能。 第一节什么是空气动力 当任何物体在空气中运动,或者物体不动,空气在物体外面流过时(例如风吹过建筑物),空气对物体都会有作用力。由于空气对物体作相对运动,在物体上产生的这种作用力,就称为空气动力。 空气动力作用在物体上时,不是只作用在物体上的一个点或一个部分,而是作用在物体的整个表面上。空气动力表现出来的形式有两种,一种是作用在物体表面上的空气压力,压力是垂直于物体表面上的。另一种虽然也作用在物体表面上,可是却与物体表面相切,称为空气与物体的摩擦力。物体在空气中运动时所受到的空气作用力就是这两种力的总和。 作用在物体上的空气压力也可以分两种,一种是比物体前面的空气压力大的压力,其作用方向是从外面指向物体表面(图1-1),这种压力称为正压力。另一种作用在物体表面的压力,比物体迎面而来的空气压力小,压力方向是从物体表面指向外面的,这种压力称为负压力,或吸力(图1-1)。空气对物体的摩擦力与物体对空气之间相对运动的方向相反。这些力量作用在物体上总是使物体向气流流动的方向走。如果是空气不动,物体在空气中运动,那么空气 摩擦力便是与物体运动的方向相反,阻止物体向 前运动。 很明显,空气动力中由于粘性产生的空气摩 擦力对模型飞机飞行是有害的。可是空气作用在 模型上的压力又怎样呢?总的看来,空气压力对模 型的飞行应该说是有利的。事实上模型飞机或真 飞机之所以能够克服本身的重量飞起来,就是因图1-1作用在机翼上的压强分布 为机翼上表面产生很强的负压力,下表面产生正压力,由于机翼上、下表面压力差,就使模型或真飞机飞起来。可是作用在物体上的压力也并不是完全有利的。一般物体前面的压力大,后面的压力小,由于物体前后压力差便会阻碍物体前进,产生很多困难。只有物体的形状适当才可以获得最大的上、下压力差和最小的前后压力差,也就是通常所说的最大的升力和最小的阻力。所以空气压力对于物体的运动有

直升飞机构造及飞行原理

直升飞机构造及飞行原理构造简图

直升机的前飞 直升机的前飞,特别是平飞,是其最基本的一种飞行状态。直升机作为一种运输工具,主要依靠前飞来完成其作业任务。为了更好地了解有关直升机前飞时的飞行特点,从无侧滑的等速直线平飞人手,有关上升率Vy不为零的前飞(上升和下降)留在下一节介绍。直升机的水平直线飞行简称平飞。平飞是直升机使用最多的飞行状态,旋翼的许多特点在乎飞时表现得更为明显。直升机平飞的许多性能决定于旋翼的空气动力特性,因此需要首先说明这种飞行状态下直升机的力和旋翼的需用功率。 平飞时力的平衡 相对于速度轴系平飞时,作用在直升机上的力主要有旋空拉力T,全机重力G,机体的废阻力X身及尾桨推力T尾。前飞时速度轴系选取的原则是:X铀指向飞行速度V方向;Y轴垂直于X轴向上为正,2轴按右手法则确定。保持直升机等速直线平飞的力的平衡条件为(参见图2.1—43) 。 平飞时力的平衡 X轴:T2=X身 Y轴:T1=G

Z轴:T3约等于T尾 其中Tl,T2,T3分别为旋翼拉力在X,Y,Z三个方向的分量。对于单旋翼带尾桨直升机,由于尾桨轴线通常不在旋翼的旋转平面内,为保持侧向力矩平衡,直升机稍带坡度角r,故尾桨推力与水平面之间的夹角为y,T尾与T3方向不完全一致,因为y角很小,即cosr约等于1,故Z向力采用近似等号。 平飞需用功率及其随速度的变化 平飞时,飞行速度垂直分量Vv=0,旋翼在重力方向和Z方向均无位移,在这两个方向的分力不做功,此时旋翼的需用功率由三部分组成:型阻功率——P型;诱导功率——P 诱;废阻功率——P废。其中第三项是旋翼拉力克服机身阻力所消耗的功率。 从上图可以看出,旋翼拉力的第二分力T2可平衡机身阻力X身。对旋翼而言,其分力T2在X轴方向以速度V作位移。显然旋翼必须做功,P =T2V或P废=X身V,而机身废阻X身在机身相对水平面姿态变化不大的情况下,其值近似与V的平方成正比,这样废阻功 平飞需用功率随速度的变化 率P废就可以近似认为与平飞速度的三次方成正比,如上图中的点划线③所示。 平飞时,诱导功率为P诱=TV,其中T为旋翼拉力,vl为诱导速度。当飞行重量不变时,近似认为旋翼拉力不变,诱导速度271随平飞速度V的增大而减小,因此平飞诱导功率P诱随平飞速度V的变化如上图中细实线②所示。 平飞型阻功率尸型则与桨叶平均迎角有关。随平飞速度的增加其平均迎角变化不大。所以P型随乎飞速度V的变化不大,如图中虚线①所示。 图中的实线④为上述三项之和,即总的平飞需用功率P平需随平飞速度的变化而变化。它是一条马鞍形的曲线:小速度平飞时,废阻功率很小,但这时诱导功率很大,所以总的乎飞需用功率仍然很大。但比悬停时要小些。在一定速度范围内,随着平飞速度的增加,由于诱导功率急剧下降,而废阻功率的增量不大,因此总的平飞需用功率随乎飞速度的增加呈下降趋势,但这种下降趋势随V的增加逐渐减缓。速度继续增加则由于废阻功率随平飞速度增加急剧增加。平飞需用功率随V的增加在达到平飞需用功率的最低点后增加;总的平飞需用功率随V的变化则呈上升趋势,而且变得愈来愈明显。 直升机的后飞

飞行原理论文

飞行原理论文 ——张兴鹏 要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。这些问题将分成几个部分简要讲解。 一、飞行的主要组成部分及功用 到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成: 1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。 2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。 3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。 4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。 飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。 二、飞机的升力和阻力 飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理: 流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。

飞机结构与工艺及历史发展浅述

https://www.360docs.net/doc/a111038505.html, 飞机结构与工艺及历史发展浅述 机翼 1.机翼的基本结构元件及受力机翼的基本结构元件是由纵向骨架、横向骨架以及蒙皮和接头等组成,现将各个结构元件的作用及受力分述如下: 1.纵向骨架——沿翼展方向安置的构件,包括梁、纵樯和桁条。 (1)梁——最强有力的纵向构件。它承受着全部或大部分的弯矩和剪力。梁的椽条承受由弯矩而产生的正应力;腹板承受剪力。梁的数量一般为一根或两根,也有两根以上的。机翼结构只有一根梁者称为单梁机翼;有两根者称为双梁机翼;两根以上者称为多梁机翼;没有翼梁称为单块式机翼。 翼梁的位置:在双翼及有支撑的机翼上,根据统计,前梁在12~18%翼弦处;后梁在55~70%翼弦处。在悬臂式单翼机上,单梁机翼的梁位于25~40%翼弦处。双梁机翼的前梁在20~30%翼弦处;后梁在50~70%翼弦处。 (2)纵樯——承受由弯矩和扭转而产生的剪力。与梁的区别是椽条较弱,椽条不与机身相连。其长度与翼展相等或仅为翼展的一部分。纵樯通常放置在机翼的前缘或后缘,与机翼上下蒙皮相连,形成一封闭的盒段以承受扭矩。 (3)桁条——承受局部空气力载荷;支持和加强蒙皮;并将翼肋互相连系起来。而且还可以承受由弯曲而产生的正应力。有的机翼为了更加强蒙皮,桁条需要很密,因而导致使用波纹板来代替桁条,或者把桁条与蒙皮作成一体,形成整体壁钣。 2.横向骨架——沿翼弦方向安置的构件。主要包括普通翼肋和加强翼

肋。 (1)普通翼肋——将纵向骨架和蒙皮连成一个整体;把由蒙皮传来的空气动力载荷传给翼梁;并保证翼剖面之形状。参与一部分机翼结构的受力。 (2)加强翼肋——除了起普通翼肋作用外,还承受集中载荷。 3.蒙皮——它固定在横向和纵向骨架上而形成光滑的表面。 布质蒙皮主要是承受局部空气动力载荷,并把它传给骨架。硬质蒙皮除了上述作用外,还参与结构整体受力。视具体结构的不同,蒙皮可能承受剪应力,也可能还承受正应力。 4.接头——把载荷从一个构件传到另一个构件上去的构件。如机翼与机身的连接、副翼与机翼连接等,均需用接头。机翼接头的形式很多,常见的有耳片式接头,套管式接头、对孔式接头,垫板式和角条式接头等多种。机翼构造的发展在机翼构造的发展过程中,最主要的变化就是维形件和受力件的逐渐合并。 在飞机发展的初期,为了减小重量,完全根据受力件和维形件分开,并且分段地承受载荷的原理来安排机翼的构造。这种构造形式的受力骨架是一个由翼梁、张线及横支柱(或翼肋)所组成的空间桁架系统。它承受所有的弯矩、扭矩和剪力。机翼的表面和机翼的形状是用亚麻的蒙皮和翼肋形成的。所以这种机翼可以叫作构架式机翼。 随着飞机速度的增大,翼载荷的增大,出现了蒙皮承受剪力和部分正应力的梁式机翼。这种机翼构造型式的特点是有强有力的梁,以及光滑的硬质蒙皮,这种机翼的蒙皮是金属铆接结构,为现在飞机所广泛采用。它的翼梁腹板承受剪力,蒙皮和腹板组成的盒段承受扭矩,蒙皮也参与翼梁椽条的承受弯矩的作用。但是梁式机翼的蒙皮较薄,桁条也较少,有的机翼的桁条还是分段断开的,有的甚至没有桁条。因此梁式机翼蒙皮承受由弯矩引起的拉压作用不大。 飞机场速度进一步增大,为保持机翼有足够的局部刚度和抗扭刚度,需要加厚蒙皮和增多桁条。这样,由厚蒙皮和桁条组成的壁钣已经能够承担大部分弯矩,因而梁的椽条可以减弱,直至变为纵樯,于是就发展成为

飞行器原理与构造复习要点

1.连续性定理和伯努利定律仅适用于低速情况。 2.飞机的主要组成部分:机翼、机身、尾翼、起落架、操纵系统、动力装置、 机载设备。 3.航空发动机分类:活塞式航空发动机、燃气涡轮发动机、冲压发动机。 4.航空器的大气飞行环境是对流层和平流层。 5.对流层中温度随高度增加而降低,集中了几乎全部水汽,有水平风和垂直风 (对飞行不利),集中了大气3/4的质量。 6.平流层起初随高度增加气温变化不大,后气温升高较快,只有水平风,无垂 直风。 7.低速,定常流动的气体,流过的截面积大的地方,速度小,压强大;而面积 小的地方,流速大,压强小。 8.确定翼型的主要几何参数:弦长、相对厚度、最大厚度位置、相对弯度。 9.总的空气动力与翼弦的交点叫做压力中心。 10.外形相似时,迎风面积越大,压差阻力也越大。 11.机翼可分为四类:矩形机翼、梯形机翼、后掠机翼、三角机翼。 12.机翼平面形状的主要参数有:机翼面积、翼展、展弦比、梯形比、和后掠角。 13.在同样的迎角下,实际机翼的升力系数就比翼型的升力系数小。 14.展弦比越小,升力曲线的斜率越小,诱导阻力越大。 15.椭圆形机翼诱导阻力最小。 16.机翼的摩擦阻力和压差阻力统称为翼型阻力(型阻)。 17.最大升阻比状态的机翼的气动效率最高。 18.诱导阻力是低速飞行的主要阻力。

19.介质越难压缩,音速越高。 20.马赫数是空气密度变化程度或压缩性大小的衡量标志。 21.马赫数越大,空气密度的变化以及压缩性的影响也越大。 22.低速中,只要迎角相同,机翼压力分布和飞机气动特性(升力系数、阻力系 数)都是一样的。 23.激波中的空气压强突然增高,密度温度随之升高,但气流的速度却大为降低。 24.激波阻力实质是一种压差阻力。 25.气流通过正激波,压力、密度、温度都突然上升,流速由超音速降为亚音速, 气流方向不变。(通过斜激波时,只是流速可能是亚音速也可能仍是超音速)。 26.斜激波波阻小于正激波,正激波斜激波统称为平面激波。 27.圆锥激波的强度比平面激波若,其波阻比比平面激波小。 28.翼型处于亚音速状态是指整个翼型上每点的流速都小于对应的音速。飞行速 度超过临界马赫数后,会出现局部激波,此时飞机阻力开始急剧增加。 29.超音速飞机外形特点:采用尖前缘的机翼和尖机头;采用相对厚度小的机翼 和小展弦比;采用后掠机翼;采用细长机身。 30.评定发动机的主要指标有:推力、耗油率、推重比。 31.决定飞机的飞行性能最重要的气动特性有:最大升阻比、升力系数岁迎角的 变化关系、最大升力系数。 32.常用过载来评定飞机的机动性。 33.飞机重心和飞机焦点之间的相互位置,决定了飞机是否具有纵向静稳定性, 飞机重心位于焦点之前,则飞机是静稳定的。 34.水平尾翼重要作用之一是保证飞机具有纵向静稳定性。

飞机的飞行原理

飞机的飞行原理 升力原理: 飞机是比空气重的飞行器,因此需要消耗自身动力来获得升力。而升力的来源是飞行中空气对机翼的作用。 在下面这幅图里,有一个机翼的剖面示意图。机翼的上表面是弯曲的,下表面是平坦的,因此在机翼与空气相对运动时,流过上表面的空气在同一时间(T)内走过的路程(S1)比流过下表面 的空气的路程(S2)远,所以在上表面的空气的相对速度比下表面的空气快(V1=S1/T >V2=S2/T1)。根据伯奴利定理——“流体对周围的物质产生的压力与流体的相对速度成反比。”,因此上表面的空气施加给机翼的压力F1小于下表面的F2。F1、F2的合力必然向上,这就产生了升力。 动力原理: 涡轮喷气发动机;涡轮风扇发动机;冲压喷气发动机;涡轮轴发动机 从机翼的原理,我们也就可以理解螺旋桨的工作原理。螺旋桨就好像一个竖放的机翼,凸起面向前,平滑面向后。旋转时压力的合力向前,推动螺旋桨向前,从而带动飞机向前。当然螺旋桨并不是简单的凸起平滑,而有着复杂的曲面结构。老式螺旋桨是固定的外形,而后期设计则采用了可以改变的相对角度等设计,改善螺旋桨性能。

飞行需要动力,使飞机前进,更重要的是使飞机获得升力。早期飞机通常使用活塞发动机作为动力,又以四冲程活塞发动机为主。这类发动机的原理如图,主要为吸入空气,与燃油混合后点燃膨胀,驱动活塞往复运动,再转化为驱动轴的旋转输出: 单单一个活塞发动机发出的功率非常有限,因此人 们将多个活塞发动机并联在一起,组成星型或V型活塞 发动机。下图为典型的星型活塞发动机。

现代高速飞机多数使用喷气式发动机,原理是将空气吸入,与燃油混合,点火,爆炸膨胀后的空气向后喷出,其反作用力则推动飞机向前。下图的发动机剖面图里,一个个压气风扇从进气口中吸入空气,并且一级一级的压缩空气,使空气更好的参与燃烧。风扇后面橙红色的空腔是燃烧室,空气和油料的混和气体在这里被点燃,燃烧膨胀向后喷出,推动最后两个风扇旋转,最后排出发动机外。而最后两个风扇和前面的压气风扇安装在同一条中轴上,因此会带动压气风扇继续吸入空气,从而完成了一个工作循环。

飞行学院《航空发动机原理与构造》复习

飞行学院《航空发动机原理与构造》复习资料 第一部分:航空发动机构造 一、单项选择题(每题2分) 1.涡喷?涡扇?涡桨?涡轴发动机中,耗油率或当量耗油率的关系是(A)? A.sfc涡喷>sfc涡扇>sfc涡桨>sfc涡轴B.sfc涡扇>sfc涡桨>sfc涡轴>sfc涡喷 C.sfc涡桨>sfc涡轴>sfc涡喷>sfc涡扇D.sfc涡轴>sfc涡喷>sfc涡扇>sfc涡桨 2.发动机转子卸荷措施的目的是(B)。 A.减少发动机转子负荷,降低了发动机推力,以提高发动机运行可靠性B.减少发动机转子轴向力,减少止推轴承数量,提高转子工作可靠性 C.减少发动机转子负荷,提高发动机推力 D.减少发动机转子负荷,降低转子应力水平,提高转子结构强度 3.涡扇发动机中,忽略附件传动功率,涡轮转子与压气机转子扭矩之间的关系 是(D)。 A.M涡轮>-M压气机B.M涡轮<-M压气机 C.M涡轮=M压气机D.M涡轮=-M压气机 4.压气机转子结构中,加强盘式转子是为了(B)。 A.加强转子强度,提高转子可靠性 B.加强转子刚度,提高转子运行稳定性 C.加强转子冷却效果,降低温度应力 D.加强转子流通能力,提高压气机效率 5.压气机转子结构中(B)。 A.鼓式转子的强度>盘式转子的强度 B.鼓式转子的强度<盘式转子的强度 C.鼓式转子的强度=盘式转子的强度 D.鼓式转子与盘式转子强度比较关系不确定 6.压气机转子结构中的刚度(A) A.盘鼓混合式转子>盘式转子 B.盘鼓混合式转子<盘式转子 C.盘鼓混合式转子=盘式转子 D.盘鼓混合式与盘式转子刚度大小关系不确定 7.压气机静子机匣上放气机构的放气窗口通常位于(A) A.静子叶片处B.转子叶片处 C.静子叶片与转子叶片之间D.转子叶片与静子叶片之间 8.压气机转子工作叶片的榫头结构承载能力(D) A.燕尾形>枞树形>销钉式B.燕尾形>销钉式>枞树形

直升机飞行原理

直升机飞行原理
1.绪论 本文的内容主要着重于飞行原理的介绍。首先介绍简单的旋翼切面原理,其次则为动量 理论(momentum theory)及旋翼元素理论(blade element theory)。于翼切面原理 中介绍翼切面如何产生升力,以及相对的阻力及翻转力矩;而动量理论介绍旋旋翼的简 单物理数学模式,及其相关的理论基础;最后旋翼元素理论则较详细的解释翼片如何产 生升力、阻力及所消耗的功率。了解直旋翼如何产生飞行时所需的推力及所消耗的功率 后,将有助于更深入的了解下一章对于直升机飞行的功能与操控的介绍。 2 旋翼切面原理 当一个人乘坐于前进中的车子里,把手伸出窗外,手掌张开且向上倾斜时,手臂将感受 到有往后和往上移动的倾向,而且其倾向大小又与手掌倾斜的角度大小成正比,另外当 手掌倾角大于某一角度时,往上移动的倾向急速地消失且往后移动的倾向遽然升高。此 种现象可作如下的解释,当一物体相对于空气有前进的速度时,空气作用于此物体上的 力量可分为两个分量:一为垂直于自由流(free stream)方向的分量,另一为沿着自由 流方向的分量,前者为升力而后者则为阻力。而手掌的仰角高于某一特定的角度时,升 力会急速的随着仰角的增加而下降,且阻力遽然地上升,而此一特定的角度亦则随着物 体形状的不同改变。 对于旋翼切面亦然,当旋翼切面相对于空气移动时,其升力及阻力的大小与物体相对于 自由流的动压力和旋翼片面积的乘积成正比,其升力和阻力的比例系数称为升力系数 (lift coefficient, )及阻力系数(drag coefficient, ),此二系数随着物体形状的

飞机原理与构造 作业

作业一:分组大作业 从莱特兄弟的第一架飞机1903年12月升空至今已经过去了100多年。100多年来,飞机从最早的多翼/双翼、直机翼,逐步发展到单翼、后掠翼、三角翼等,从原来的方形截面机身到今天的流线型机身,从亚音速飞机的升降舵到超音速飞机的全动平尾,……,飞机外形的变化五彩缤纷。 请说明一百多年来飞机外形的发展变化,并分析为什么飞机外形和会发生如此变化,或者说飞机外形发展变化的主要原因是什么。 4~6人组成一个小组,针对上述问题,通过查阅、收集和分析相关文献资料,小组讨论等,完成一份3000~5000字的技术报告,并择机进行交流。 需要注意的是: 1. 技术报告以叙述、说明主题为目标,并为自己的分析提供论据(文字、图表等进行合理的搭配)。要求结构合理、图表规范。关于格式可以参考任何一本正式出版的教材。 2. 拷贝过多的问题:拷贝要有选择性,不要出现不管是否有意义、随意拷贝来凑字数的现象。如果仅仅是简单的拷贝就失去了锻炼自己分析问题能力的意义了。希望大家能有所收获。 3. 错别字问题:网上许多资料存在大量的错别字,不要带到我们的技术报告中。我们不是人云亦云的传递机器,要有自己的主观判断。技术报告是一种科学思想的表达,需要认真对待,这也是为将来的工作积累一些理念和能力的机会。

作业二 1. 一般要求两架飞行中的飞机之间必须有一定的距离,为什么? 2. 零升阻力D 0随飞行速度的增加而增加,诱导阻力D i 随飞行速度的增加而减小,其原因是什么?(近似认为飞机重量不变,诱导阻 力因子K 不随飞行速度变化;200L D D i D D C K C C C C ?+=+=, S v C L L ??=221ρ,S v C D D ??=22 1ρ,i D D D +=0。) 3. 一架飞机以M0.5作定直平飞,现欲水平直线加速至M0.8,飞行员应如何操纵,为什么? 4. 当变后掠机翼的后掠角由小变大时,飞机的纵向稳定性和纵向操纵性有何变化,为什么(近似认为飞行速度不变;机翼的压力中心和焦点相对于机翼本身的几何位置不变)? 作业三 1. 图1为一平面板杆结构,分析P 力的传递过程,画出各元件的受力平衡图,标出各力及剪流的大小。 2. 对于教材图6-14的集中力扩散结构,杆ef 一般要做成左端截面积大右端截面积小的变截面杆,为什么? 3. 对图2所示的封闭空间板杆(薄壁)结构,在扭矩M t 作用下,

飞行原理

键入文档标题] 關十言 2013/8/11

1)流体力学基础 对于亚音速气流,若流管面积减小,则流速增大,而超音速则刚好相反。流体的伯努利原理表明,不管是超音速还是亚音速气流,只要流速增加,则压强就会减小。由于飞机的翼型上表面向上弯曲的稍多一些,因此从整体上来说飞机下表面的流管截面积要大于上表面,使得亚音速飞机的下表面气流流动比上表面慢,压强则比上表面大,从而产生升力。 音速是微弱扰动的传播速度,与气体的种类和温度有关,随温度的升高而增加。飞机的飞行马赫数是飞机真空速大小与飞行高度上音速之比,飞机的临界马赫数是当机翼上翼面低压力点的局部速度达到音速时的来流马赫数。 超音速气流流过外折角,则会在折点处形成膨胀波,使得气流经过膨胀波后的速度增加、压强减小;流过一个折角很小的二维内折翼面,会在折点处形成斜激波,如果折角比较大,则会形成曲面激波或者正激波。超音速气流经过激波后压强、温度和密度会突然增大,速度会突然减小。从飞机阻力增加的程度来讲,三种激波的影响从大到小依次是正激波、曲面激波和斜激波。 静止的流体中不会产生摩擦力(粘性力),只有运动的实际流体才会产生粘性力。物体在流体中运动时所受的惯性力与粘性力之比就是雷诺数,雷诺数越大,说明粘性对飞机的影响就越小。机翼表面受粘性影响比较大的区域叫做附面层,在附面层边界上,粘性使得该处的局部速度受到1%的影响,在附面层内需要考虑粘性的影响,之外则可以不考虑。 2)飞机的升阻力特性 飞机的定常飞行中,升力等于重力,推力等于阻力。飞机的升力与速度、大气密度、机翼面积、升力系数等有关。升力系数随着飞机迎角的增大,起初会线性增加,达到斗振升力后,开始曲线增加,一直到最大升力系数(临界迎角),然后开始减小。在其他条件一定时,飞机的升力系数随粘性增大而减小,随后掠角增大而减小。 临界迎角对应飞机的失速速度。飞机在转弯时,升力的垂直分量需要平衡重力,使得飞机的升力随转弯坡度增加而增加,因此大坡度转弯时飞机的升力系数(迎角)较大,可能会引起飞机的抖动。

飞行必备知识:详解飞机机翼原理与功能图文

机翼各翼面的位置图图片说明:上图为机翼各翼面的位置图,民航飞机的机翼各翼面位置一般类似。机翼上各操纵面是左右对称分布,部分由于图片受限未标出 机翼的基本概念 机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。 相关名词解释: 翼型:飞机机翼具有独特的剖面,其横断面(横向剖面)的形状称为翼型,称为翼型 前缘:翼型最前面的一点。后缘:翼型最后面的一点。翼弦:前缘与后缘的连线。弦长:前后缘的距离称为弦长。如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长 迎角(Angleofattack):机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。 翼展:飞机机翼左右翼尖间的直线距离。 展弦比:机翼的翼展与弦长之比值。用以表现机翼相对的展张程度。 上(下)反角:机翼装在机身上的角度,即机翼与水平面所成的角度。从机头沿飞机纵轴向后看,两侧机翼翼尖向上翘的角度。同理,向下垂时的角度就叫下反角。 上(中、下)单翼:目前大型民航飞机都是单翼机,根据机翼安装在机身上的部位把飞机分为上(中、下)单翼飞机也有称作高、中、低单翼。机翼安装在机身上部(背部)为上单翼;机翼安装在机身中部的为中单翼,机翼安装在机身下部(腹部)为下单翼。 上单翼的飞机一般为运输机与水上飞机,由于高度问题,此时起落架等装置一般就不安装在机翼上,而改在机身上,使用上单翼的飞机一般采用下反角的安装。中单翼因翼梁与机身难以协调,几乎只存在理论上;下单翼的飞机是目前民航飞机常见的类型,由于离地面近,便于安装起落架,进行维护工作,使用下单翼的飞机一般采用上反角的安装。 机翼在使飞机升空飞行中的重要作用 飞机在飞行过程中受到四种作用力: 升力----由机翼产生的向上作用力重力----与升力相反的向下作用力,由飞机及其运载的人员、货物、设备的重量产生推力----由发动机产生的向前作用力阻力----由空气阻力产生的向后作用力,能使飞机减速。 由此可见,机翼的主要功用就是产生升力,以支持飞机在空中飞行。它为什么能产生升力呢?首先要从飞机机翼具有独特的剖面说起,前面名词解释已提到,机翼横断面(横向剖面)的形状称为翼型,机翼剖面的集合特性与机翼的空气动力有密切的关系。从侧面看,机翼顶部弯曲,而底部相对较平。机翼在空气中穿过将气流分隔开来。一部分空气从机翼上方流过,另一部分从下方流过。 空气的流动在日常生活中是看不见的,但低速气流的流动却与水流有较大的相似性。日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。流过机翼的气流与河床中的流水类似,由于机翼一般是不对称的,上表面比较凸,而下表面比较平,流过机翼上表面的气流就类似于较窄地方的流水,流速较快,而流过机翼下表面的气流正好相反,类似于较宽地方的流水,流速较上表面的气流慢。根据流体力学的基本原理,流动慢的大气压强较大,而流动快的大气压强较小,这样机翼下表面的压强就比上表面的压强高,换一句话说,就是大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了飞机的升力。

相关文档
最新文档