鱼类抗菌肽的研究进展

鱼类抗菌肽的研究进展
鱼类抗菌肽的研究进展

抗菌肽

抗菌肽(antimicrobial peptide):抗菌肽原指昆虫体内经诱导而产生的一类具有抗菌活性的碱性多肽物质,分子量在2000~7000左右,由20~60个氨基酸残基组成。这类活性多肽多数具有强碱性、热稳定性以及广谱抗菌等特点。 1分类:结构分为5类:(1)单链无半胱氨酸残基的α-螺旋,或由无规卷曲连接的两段α-螺旋组成 的肽;(2)富含某些氨基酸残基但不含半胱氨酸残基的抗菌肽;(3)含1个二硫键的抗菌多肽;(4)有2个或2个以上二硫键、具有β-折叠结构的抗菌肽;(5)由其它已知功能的较大的多肽衍生而来的具有抗菌活性的肽。 来源分类可将其分为6类:(1)昆虫抗菌肽(2)哺乳动物抗菌肽(3)两栖动物抗菌肽(4)鱼类、软体动物、甲壳类动物来源的抗菌肽(5)植物抗菌肽(6)细菌抗菌 2效应:抗菌肽具有广谱抗菌活性,对细菌有很强的杀伤作用。 3作用机制:一般认为抗菌肽杀菌机理主要是作用于细菌的细胞膜,破坏其完整性并产生穿孔现象, 造成细胞内容物溢出胞外而死亡。首先由静电吸引而附于细菌膜表面,疏水性的C端插入膜内疏水区并改变膜的构象,多个抗菌肽在膜上形成离子通道而导致某些离子的逸出而死亡。亦有学者认为抗菌肽作用于膜蛋白引起凝聚、失活及离子通道,引起膜渗透性改变而导致死亡,不同类别的抗菌肽的作用机理可能不一样。 4.抗菌肽对细菌的杀伤作用 抗菌肽对革兰氏阴性及阳性细菌均有高效广谱的杀伤作用。国内外已报道至少有113种以上的不同细菌均能被抗菌肽所杀灭。 5.预防败血症:天然抗菌肽具有选择性免疫激活和调节功能,对败血症有良好的预防和保护作用。败血症是由细菌感染引起的,伴随有全身性炎症反应综合症状的一种危重疾病。病原微生物感染诱导促炎症因子大量释放,导致多种重要器官衰竭,具有较高死亡率。 6.总结:抗菌肽要成为药物,还需要解决一些问题。首先是来源问题。由于昆虫抗菌肽的天然资源 有限,化学合成和基因工程便成为获取抗菌肽的主要手段。化学合成肽类,成本较高。而通过基因工程,在微生物中直接表达抗菌肽基因,可能造成宿主微生物自杀而不能获得表达产物。以融合蛋白的形式表达抗菌肽基因,虽然可以克服这一缺点,但仍有表达产物少的问题。因此,如何提高抗菌肽的生产效率,降低成本,是应用抗菌肽必须解决的问题。其次,与传统抗生素相比,昆虫抗菌肽的抗菌活性还不够理想。改造已有抗菌肽和设计新抗菌肽分子是创造高活力抗菌肽的有效途径。这就需要进一步研究抗菌肽结构与活性的关系和作用机理,为抗菌肽分子的改造和设计提供足够的理论依据

生物活性肽的研究及其进展汇总

生物活性肽的研究及其进展 摘要:生物活性肽作为一种来源广泛、种类繁多、功能性良好的生命因子,目前已成为全球范围内的研究热点。研究表明这些肽除具有常规的生物活性,如增加矿物质吸收、调节血压、抗菌、抗氧化、降胆固醇、免疫调节之外还对人类营养有调节作用,因而受到广泛关注。本文综述了生物活性肽的种类、生理功能、吸收、制备研究进展,以期为生物活性肽的进一步研究和应用提供参考。 关键词:生物活性肽,生理活性,吸收 Research and progress of biological active peptide Abstract:Bioactive peptides as one rich sources, wide variety, good functional life factors have been a global research hot spot. Studies have shown that these peptides have some conventional biological activities, such as increase mineral absorption, adjust blood pressure, antibacterial, antioxidant, decrease cholesterol, regulate immune. What’s more, they also have a regulating effect on human nutrition, so they have attracted widely attention. The kinds of bioactive peptides was reviewed in this paper, preparation research progress of physiological function, absorption and biological active peptide in order to provide reference for further research and application. Key words:Biological active peptide, Physiological activity, Absorb 1.功能肽的简介 肽(peptides)是分子结构介于氨基酸和蛋白质之间的一类化合物,是蛋白质的结构与功能片段,并使蛋白质具有数以千万计的生理功能。肽本身也具有很强的生物活性。是由蛋白质中20种天然氨基酸以不同的组合和排列的方式构成的,从二肽到复杂的线性或者环状的多肽的总成。一般说来,肽链上氨基酸数目在10个以内的叫寡肽,10~50个的叫多肽,50个以上的叫蛋白质。人们习惯上也把寡肽中的二、三肽称为小肽。由于构成肽的氨基酸种类、数目与排列顺序的不同,决定了肽纷繁复杂的结构与功能。 生物活性肽( biologically active peptide/ bioactive peptide/ biopeptide) 是指对生物机体的生命活动有益或具有生理作用的肽类化合物,又称功能肽(functional peptide)[1]。肽由氨基酸组成,人体存在20 种氨基酸,由不同的氨基酸的种类排列,加上数量排列形成,再加上还可能有的二级、三级结构,其种类是十分庞大的[2,3]。每一种活性肽都具有独特的组成结构,不同活性肽的组成结构决定了其功能。此外活性肽在生物体内的含量是很微量的,但却具有显著的生理活性。据研究,有些多肽在10 - 7mol/ L 的浓度时仍具有生理活性,就是说1 mL 的多肽用60 倍水稀释后,仍然具有生理功能。功能肽是源于蛋白质的多功能化合物,是多样化且来源充足的食品原料,具有多种人体代谢和生理调节功能,如易消化吸收、促进免疫、激素调节、抗菌、抗病毒、降血压、降血脂等[4] 现代营养学研究发现,人体摄入蛋白质经消化道中的酶作用后,大部分是以寡肽的形式

抗菌肽的研究进展

抗菌肽的研究进展 摘要:抗菌肽是生物界中广泛存在的一类生物活性肽。它具有抗细菌、真菌、病毒和原虫作用,甚至对癌细胞也具有杀伤作用。本文就抗菌肽的来源、作用机理、研究进展做一简要的综述。 关键词:抗菌肽;活性肽;作用机理;研究进展 The progress of Antimicrobial Peptides research Abstract:Antibiotic peptides are a kind of bioactive peptides that exist in organism and biosphere widely. They possess the activities of anti-bacteria, anti-fungi,anti-virus and anti-plasmodium. This paper reviewed the source,mechanism and the progress of the antimicrobial peptides research. Key words:antimicrobial peptides;bioactive peptides;mechanism;research progress 抗菌肽( antibacterial peptides) 又称抗微生物肽( antimicrobial peptides,AMPs) ,是生物体在抵抗病原微生物的防御反应过程中产生的一类具有抗微生物活性的小分子多肽。抗菌肽是机体天然免疫系统的重要组成部分,一般由20 -60 个氨基酸组成,分子量在 1 -7 kD 左右,具有广谱的抗微生物活性,对革兰氏阳性菌、革兰氏阴性菌、真菌、原生生物、某些病毒和肿瘤均表现出较强的抑制作用,其独特的抗菌机制可较好地解决病原微生物对抗生素不断增强的抗性问题[1]。 20 世纪80 年代,由瑞典科学家Boman 研究小组用蜡状芽孢杆菌( Bacillus cereus) 诱导惜古比天蚕( Hyalophora cecropia) 后产生了抗菌多肽类物质,随后发现了第一个抗菌肽——天蚕素( cecropins)[2]。人们最初把这类具有抗菌活性的多肽称为“antibacterial peptides”,原意为“抗细菌肽”;后来发现其有抗真菌等微生物的作用,便改称为“antimicrobial peptides”,意为“抗微生物肽” [3]。抗菌肽是由基因编码在核糖体内合成的多肽,不同种类的抗菌肽通常有共同的特点:短肽( 30 ~60 个氨基酸) ,强阳离子性( 等电点范围为8.9 ~10.7 ) ,热稳定性好( 100 ℃,15 min),分子质量约为 4 ku,无药物屏蔽且不影响真核细

植物源活性肽研究进展

植物源生物活性肽的研究进展 多肽是由天然氨基酸以不同组成和排列方式构成的从二肽到复杂的线性、环形结构的不同肽类的总称,其中可调节生物体生理功能的多肽称为生物活性肽。与蛋白质相比,活性肽不仅有比蛋白质更好的消化吸收性能,还具有促进免疫、调节激素、抗菌、抗病毒、降血压和降血脂等生理机能。此外活性肽还有较好的酸、热稳定性,水溶性及粘度随浓度变化迟钝等优点,易于作为功能因子添加到各种食品中。我国农作物种类品种繁多,利用这些廉价的植物蛋白开发具有高附加值的生物活性肽产品,越来越受到重视。本文重点综述了降血压肽、抗氧化钛、降胆固醇肽这3类生物活性肽的研究进展,将其结构特征与生理功能的关系进行了归纳,同时归纳了活性肽的生理功能,并指出其发展应用前景。 1. 生物活性肽的生理功能 1.1 抗菌活性 抗菌活性肽通常由细菌、真菌产生,或从动植物体中分离。它们尽管在结构上千差万别,但几乎所有的抗菌肽都是阳离子型的,两亲结构是它们的共同特征[1]。国内外研究成果表明,抗菌肽对部分细菌、真菌、原虫、病毒及癌细胞等均具有强大的杀伤作用。临床试验也表明,抗菌肽能够增强机体抵抗病原微生物的能力,而且在体内还不容易产生耐药性。 1.2 免疫活性[2] 免疫活性肽能够刺激机体淋巴细胞的增殖,增强巨噬细胞的吞噬功能,提高机体抵御外界病原体感染的能力,降低机体发病率。从人乳和牛乳的酪蛋白中已检测到具有免疫刺激活性的肽片段,这些肽具有刺激巨噬细胞吞噬能力的作用。另外,乳蛋白、大豆蛋白和大米蛋白等通过适当酶解处理也可产生具有免疫 活性的肽类物质。 1.3 抗高血压活性 血压是在血管紧张素转换酶(angiotensin-convertion enzyme,ACE)的作用下进行调节的,血管紧张素Ⅰ在A C E的作用下可转化为有活性的血管紧张素Ⅱ,使血管平滑肌收缩,引起血压升高。降血压肽是具有抑制ACE活性的肽类, 来源广泛,ACE 抑制肽的主要来源是乳制品和鱼蛋白(沙丁鱼、金枪鱼、

鱼类抗菌肽的研究进展

万方数据

万方数据

万方数据

鱼类抗菌肽的研究进展 作者:江丽娜, 赵瑞利, 雷连成, 王教玉, 韩文瑜 作者单位:江丽娜,赵瑞利,雷连成,韩文瑜(吉林大学畜牧兽医学院), 王教玉(吉林省水产技术推广总站) 刊名: 中国水产 英文刊名:CHINA FISHERIES 年,卷(期):2008(5) 本文读者也读过(8条) 1.张书剑.Zhang Shujian几种鱼类抗菌肽的研究进展[期刊论文]-饲料研究2007(12) 2.李华.杨桂文.温武军鱼类抗菌肽研究概况[期刊论文]-科技信息2010(2) 3.黄平.章怀云.HUANG Ping.ZHANG Huai-yun鱼类抗菌肽研究进展[期刊论文]-中南林业科技大学学报2009,29(2) 4.杨学明.江林源.蒋和生.YANG Xue-ming.JIANG Lin-yuan.JIANG He-sheng水生动物抗菌肽及其基因工程研究[期刊论文]-生物技术通讯2006,17(1) 5.王克坚.林志勇.杨明.任洪林.黄文树.周红玲.邓尚龙.陈君慧.蔡灵.蔡晶晶海水养殖鱼类抗菌肽hepcidin基因的研究进展[会议论文]-2005 6.王小玲.尹建文.Wang Xiaolin.Yin Jianwen鱼类的先天性抗菌和抗病毒机制[期刊论文]-现代渔业信息2006,21(7) 7.叶星.白俊杰抗菌肽的研究及其在水产上的应用前景[期刊论文]-大连水产学院学报2000,15(4) 8.单晓枫.郭伟生.张洪波.钱爱东鱼类体液中的几种抗菌因子研究进展[期刊论文]-河南农业科学2010(5) 本文链接:https://www.360docs.net/doc/a114901563.html,/Periodical_zhongguosc200805040.aspx

I型细胞因子及其受体研究进展

I型细胞因子及其受体研究进展 细胞因子一般分子量较小、生物活性高,主要由免疫细胞或非免疫细胞(如血管内皮细胞,表皮细胞和成纤维细胞等)经刺激而产生。细胞因子间可以相互作用形成网络,进而参与免疫应答和炎症反应过程或促进细胞增殖生长。但是细胞因子需要与相应的受体结合才能发挥效应。细胞因子及其受体会对机体免疫应答进行调控,在细胞及分子水平上揭示细胞因子与疾病之间的关系,尤其是对某些自身免疫性疾病、肿瘤、免疫缺陷疾病的发病机理的研究,为临床治疗和诊断提供指导下依据。现在已有近几十个细胞因子及其受体的药物批准上市。 细胞因子受体命名规则比较简单,基本是在相应的细胞因子名称后面加Receptor(R)表示,如IL-2的受体就写成IL-2R。细胞因子受体一般分成四个类型:Ⅰ型细胞因子受体(Type ⅠCytokine Receptor)、Ⅱ型细胞因子受体家族(Type ⅡCytokine Receptor)、TNF超家族受体以及趋化因子受体。 在本文,将主要介绍Ⅰ型细胞因子及其受体的研究进展及其应用。 细胞因子受体(Type ⅠCytokine Receptor),也称红细胞生成素受体家族(hematopoietin receptor family)。这类受体的结构特点:胞外区含有同源区(大概有200个氨基酸构成),膜外区近氨基端有二个保守的半胱氨酸残基(C),其羧基端存在Trp-Ser-X-Trp-Ser(WSXWS,X代表任一氨基酸)残基序列。按照细胞因子家族可以分为如下类型:Ⅰ型白介素(IL-2,IL-3,IL-4,IL-5,IL-7,IL-9)受体,粒细胞巨噬细胞集落刺激因子(GM-CSF)受体,粒细胞集落刺激因子(G-CSF)受体,促红细胞生成素(EPO)受体,生长激素(GH)受体,催乳素(PRL)受体,抑癌蛋白M(OSM)受体,白血病抑制因子(LIF)受体等。 Ⅰ型细胞因子受体大多数由多个亚单位构成,其中有属于结合细胞因子的亚单位或用来进行信号转导的亚单位。信号转导亚单位可以有多种细胞因子受体共用,比如人的IL-3R,IL-5R和CSF2R均由α和β亚单位组成,其中α亚单位就属于细胞因子结合单位,β亚单位就由三种细胞因子共用来转导信号,这也使得IL-3,IL-5和GM-CSF在功能上有很多相似之处,如三者都可以刺激嗜酸性粒细胞增殖和嗜碱性粒细胞脱颗粒,还有IL-3和GM-CSF 均可作用于造血干细胞。还有一种共用信号亚单位——γ亚单位,主要由IL-2,IL-4,IL-7,IL-9和IL-15的受体共用。在X-性连锁中正联合免疫缺陷病患者中,正是由于这五个细因子受体介导的信号转导发生严重障碍造成的,使得细胞和体液免疫缺陷。

抗菌肽研究及进展

一、抗菌肽概念 抗菌肽是生物体内存在的一种具有抗菌活性的小分子蛋白,氨基酸数目小于100,常带正电荷,并具广谱抗菌性的一类小肽,是生物体免疫防御系统产生的一类对抗外源性病原体致病作用的防御性多肽活性物质,是生物体先天免疫的重要组成成分,与干扰素、补体等组成了宿主的免疫防御系统,这类生物活性小分子是非专一性的免疫应答产物,具有广谱抗菌作用,它对革兰阳性菌、革兰阴性菌、真菌均有抑杀作用,还可以抗原虫、病毒,杀伤动物体内的肿瘤细胞,却不破坏动物体内的正常细胞。抗菌肽抗菌时一般没有特殊受体,直接通过物理作用造成细胞膜的穿孔而达到广谱抗菌的效果,因而不会诱导抗药株的产生,它属于小分子多肽,在动物体内容易降解,并且无毒副作用及药物残留问题,因而是绿色环保型药物。抗菌肽具有广谱的抗菌性,包括抗革兰氏阴性菌(G -)和阳性菌(G +)、抗真菌、抗病毒、抗肿瘤等尤其对耐药性细菌有杀灭作用。 二、抗菌肽分类 抗菌肽在自然界分布广泛,来源不一,种类繁多,分类也多种多样。抗菌肽除了具有广谱抗菌、抗真菌、抗病毒功能外,还具有抑制一些肿 瘤细胞生长的作用。(一)根据抗菌肽的结构分类 根据抗菌肽的结构可将其分为五 类:(1)单链无半胱氨酸残基的α-螺旋,或由无规卷曲连接的两段α-螺旋组成的肽。(2)富含某些氨基酸残基但不含半胱氨酸残基的抗菌肽。(3)含1个二硫键的抗菌多肽。(4)有2个或2个以上二硫键、具有β-折叠结构的抗菌肽。(5)由其它已知功能的较大的多肽衍生而来的具有抗菌活性的肽。 (二)根据抗菌肽的来源分 类 根据来源分类可分为4类: (1)昆虫抗菌肽包括天蚕素类和昆虫防御素。天蚕素是从美洲天蚕的蛹中分离到的抗菌多肽。此后,人们相继从家蚕、柞蚕、果蝇、麻蝇中分离到了此类多肽抗生素。第1种昆虫防御素(M-asturyama)于1988年在一种双翅目昆虫肉蝇中发现,至今昆虫纲中已有15大类30多种防御素被报道。杀菌肽类对革兰氏阳性菌和革兰氏阴性菌都具有很强的杀伤力,而对真菌和真核细胞没有毒性。(2)植物源抗菌肽是植物自身合成的能够防御环境中微生物侵害的一类小分子多肽。包括硫素、 植物防御素、脂转移蛋白、橡胶蛋白类、打结素类、凤仙花素、蜕皮素等。(3)鱼类抗菌肽是鱼体天然免疫的重要组成部分,是一类小分子蛋白质,其结构与组成复杂多样。鱼类抗菌肤的分布范围相对比较广,在鱼类体表黏液、皮肤、鳃、血液、血清、小肠和肝脏组织等均有过分离得到抗菌肽的报道。成熟肽具有很强的抑菌活性,其最小抑制浓度多在毫摩尔水平。(4)哺乳动物中,抗菌肽在吞噬细胞和黏膜上皮细胞表达。主要有3类,分别是防御素、cathelicidins 和histatins。 三、抗菌肽作用机制 抗菌肽的结构影响其生物学活性,因为抗菌肽存在着多种结构所以其生物学活性也多种多样。 (一)抗菌肽的抗菌作用 抗 菌肽对革兰氏阴性及阳性细菌均有高效广谱的杀伤作用。对大肠杆菌、沙门氏菌、金黄色葡萄球菌、链球菌等常见细菌都有很强的杀灭作用。 国内外已报道至少有113种以上的不同细菌能被抗菌肽所杀灭。目前对于其作用机制并不是很清晰,国内外学者对此研究很多,但在认 抗菌肽研究及进展 王 涛,常维山 (山东农业大学动物科技学院预防兽医系,山东泰安 271018) 胺一类药物时, 以间隔8 h 为佳。 2.中毒时注意停药和补充饮水。出现中毒时,应立即停药,并给予充足的饮水,在饮水中加0.50%~1.00%的碳酸氢钠或5%的葡萄糖液。中毒严重的鸡可肌注V B121~2μg 或叶酸50~100μg。 3.产蛋鸡禁用。蛋鸡如果用了此类药物,此药物就会与碳酸酐酶 结合,使其降低活性,从而使碳酸盐的形成和分泌物减少,使鸡产软蛋和薄壳蛋。从而影响产蛋量。 4.配伍禁忌。磺胺类药物忌与酸性药物(如维生素C、氯化钙等) 配伍,用药期间,禁用普鲁卡因等含对氨苯甲酸的制剂。不能与拉沙菌素、莫能菌素、盐霉素配伍 5.肾受损伤及3周龄以内的雏 鸡应慎用。磺胺类药物体内代谢主要在肝脏中进行, 而出壳不久的雏鸡肝脏中的代谢酶系统不健全, 解毒功能低,容易发生中毒。 6.勿在免疫接种时使用。畜禽在接种活菌疫苗时,不能同时使用磺胺类药物,否则会导致免疫效果差甚至失效。■

抗菌肽的研究进展

抗菌肽的研究进展 青霉素的发现使人们对由病原微生物感染而引发的各类疾病不再束手无策,并由此发展了大量的β-内酰胺类抗生素,对保护人类健康作出了巨大贡献。但随着上述“传统抗生素”的广泛使用,不断产生出诸多新问题。如β-内酰胺类抗生素的过敏反应以及长期使用导致抗药菌株的产生。于是人们开始寻找新一代抗菌剂。近期的研究发现,某些阳离子型多肽具有广谱的抗菌活性,同时具有“传统抗生素”无法比拟的优越性:不会诱导抗药菌株的产生,有希望成为新一代抗菌剂[1]。抗菌肽(antimicrobial peptides)是具有抗菌活性短肽的总称。1975年瑞典科学家G.Boman等人[2]等从惜古比天蚕(Hyatophoracecropia)蛹中诱导分离得到一种杀菌肽,并将其命名为cecropin。此后,许多抗菌肽相继被分离、纯化。一些抗菌肽的氨基酸一级结构和基因序列得到确定。80年代,有关抗菌肽的研究主要集中在大型的经济昆虫。90年代以来,在继续对大型经济昆虫进行研究的同时,又扩展到一些小型昆虫和其它无脊椎及脊椎动物,抗菌肽已成为免疫学和分子生物学研究的热点。研究的内容包括:抗菌肽的分离与纯化,氨基酸序列的分析,蛋白质构型与功能的关系,抗菌肽的作用机理[3,4],应用基因工程克隆与表达抗菌肽基因,改造合成抗菌肽基因以及动植物的转抗菌肽基因工程等,其中昆虫抗菌肽基因工程研究最受重视[5,6]。目前已发现抗菌肽或类似抗菌肽的小分子肽类广泛存在于生物界,包括细菌、动植物和人类。这种内源性的抗菌肽经诱导而合成,在机体抵抗病原的入侵方面起着重要的作用,更被认为是缺乏特异性免疫功能生物的重要防御成分。抗菌肽具有广谱杀菌作用,大多数对革兰氏阳性菌有较强的杀灭作用,有些则对革兰氏阴性菌和革兰氏阳性菌均起作用。对某些真菌、原生动物,尤其对耐药性细菌有杀灭作用,并能选择杀伤肿瘤细胞,抑制乙型肝炎病毒的复制。 1. 抗菌肽的分类迄今为止从不同生物体内诱导的抗菌肽已不下200种,仅从昆虫体内分离获得的就多达170余种。根据抗菌肽的结构,可将其分为5类:(1)单链无半胱氨酸(Cys)的抗菌肽,或由无规则卷曲连接的两段а-螺旋组成的肽。该类包括天蚕素Cecropins, Magainins等。Magainins最初是从非洲爪蟾的皮肤中发现的,它是爪蟾的皮肤在一定的环境压力下分泌出的抗感染和促进伤口愈合的成分,由两个紧密相连的肽链组成,每一个肽链有23个氨基酸,低浓度便可抑制许多细菌和真菌生长[7]。(2)富含某些氨基酸残基但不含Cys的抗菌肽。如富含脯氨酸(Pro)或甘氨酸(Gly)残基的抗菌肽。如从猪肠内分离的抗菌肽PR39中Pro含量占49%[6]。鞘翅肽Coleoptericin和半翅肽Hemiptericin的全序中富含Gly[8]。(3)含一个二硫键的抗菌肽,该二硫键的位置通常在肽链C端。如爪蟾皮肤细胞中产生的Brevinins[9]。(4)有两个或两个以上二硫键,具有β 折叠结构的抗菌肽。如绿蝇防御素(Phormindefensin),分子内有6个Cys形成3个分子内二硫键,肽链C末段是带有拟β 转角的反向平行的β片层[10]。实验证明,分子中的二硫键在其抗菌作用中至关重要。(5)由其他已知功能较大的多肽衍生而来的具有抗菌活力的肽。 2. 抗菌肽的作用及机理 2.1抗菌肽的抗菌作用及其机理抗菌肽分子可以在细菌细胞质膜上穿孔而形成离子孔道,造成细菌细胞膜结构破坏,引起胞内水溶性物质大量渗出,而最终导致细菌死亡。抗菌肽分子首先结合在质膜上,接着其分子中的疏水段和两亲性α-螺旋也插入到质膜中,最终通过膜内分子间的相互位移,抗菌肽分子聚集形成离子性通道,使细菌失去了膜势而死亡[10-14]。但是,Gazit[15]等得出

细胞因子的免疫应用及研究进展

细胞因子的免疫应用及研究进展 摘要:细胞因子( cytokine) 是一类由各种免疫细胞和非免疫细胞产生的具有生物活性的多肽或糖蛋白。通常所说的细胞因子包括淋巴细胞因子、单核细胞因子及其他细胞产生的细胞因子。细胞因子具有强大的免疫调节和免疫激活作用,有关细胞因子方面的研究已成为当今基础免疫学和临床免疫学研究中十分活跃的领域,并取得了令人瞩目的成绩,特别是近年来由于分子生物学技术的发展,使得细胞因子的研究和应用进入了一个全新的阶段。本文主要对其应用做一个综述。 关键词:细胞因子、免疫、应用 1.细胞因子的特性 尽管细胞因子种类繁多,功能复杂广泛,但其也有一些共同的特点,主要表现为: ①多为糖蛋白,分子质量一般为10~25ku,有的为8~10ku。②通过与受体的特异性结合而发挥其相应的生物学效应。这类结合的细胞因子亲和力较高,在极低浓度下亦显示出生物学活性。③一般在局部发挥效应,这种效应既可针对产生该细胞因子并且具有受体的细胞———即自分泌(autocrine)作用,也可针对邻近的细胞———即旁分泌(paracrine)作用。④分泌期短,一般仅为数天,且其半衰期也很短。⑤一种细胞因子可作用于多种靶细胞,并显示出多种生物学功能,即具有多效性;同时多种细胞因子也可作用于同一种细胞发挥相似的生物学作用。⑥细胞因子之间通过合成分泌的相互调节、受体表达的相互调控、生物学效应的相互影响而组成一个相互协同又相互制约的复杂的免疫反应协调网络,共同维持机体免疫系统的平衡。⑦细胞因子具有强大的免疫调节作用,是机体发挥免疫功能不可缺少的成分。 2.细胞因子的应用 大多数细胞因子是机体免疫应答的产物,对机体免疫系统具有强大的调节作用,是机体发挥免疫功能,清除病原体不可缺少的成分,与疾病的发生、发展有着密切的关系;另一方面,体内分泌的细胞因子过多,亦可引起病理性反应。因此,细胞因子在疾病的诊断、治疗和预防等方面有着极为广阔的应用前景。进入20世纪80年代以来,细胞因子的临床应用已成为医学研究和产品开发的重要领域,进入临床应用的细胞因子逐年增多,它们在人类和动物疾病的诊断、治疗和预防等方面发挥着越来越重要的作用。 2.1在诊断和治疗方面的应用 细胞因子一方面可以治疗某些疾病,如免疫缺陷性疾病、病毒性疾病、细菌性疾病及肿瘤等,另一方面可以导致和/ 或促进某些疾病的发生和发展,如自身免疫性疾病、移植排斥反应等。因此,细胞因子在疾病的诊断和治疗方面发挥着独特作用并取得了较为明显的效果。支气管哮喘患者体内的IL24、IL25、IL210及IL213等Th2型细胞因子浓度显著升高,在其作用下IgE合成增多,IgE与嗜碱性粒细胞和肥大细胞上的高亲和力受体结合,从而引起本病的发生。应用IFN2γ和抗IL24抗体或IL24R可减少Th2型细胞因子产生,从而抑制过敏反应,达到治疗的目的。在多发性硬化症患者的病灶中IL22和IFN2γ产生明显增加,而在恢复

鱼类染色体研究进展

鱼类染色体研究进展 X 高 文(宁德师范高等专科学校生物系,福建宁德 352100) 摘要:综述了鱼类染色体在核型和显带技术研究及多倍体技术研究方面的概况和新进展. 关键词:鱼类;染色体核型;染色体显带;多倍体技术 中图分类号:Q 959 文献标识码:A 文章编号:1004-2911(2005)01-0015-03 全世界现存鱼类有22000多种,是脊椎动物中分布最广、种类最多的类群,体现多种多样的生物学特性,具有重大的经济价值.在脊椎动物中,鱼类的染色体较小,数目偏多,研究工作难度较大,进展较为缓慢,但鱼类与人类生产、生活休戚相关.保护鱼类资源,进一步开发鱼类资源,发展鱼类养殖业造福人类,对其染色体的研究必将越来越重要.本文对国内外在鱼类染色体核型、带型及染色体组多倍体研究方面成果及新进展做一概述. 1 核型研究 早期对鱼类染色体的研究,由于方法上的限制,进展缓慢.椐不完全统计,截至1980年,报道染色体核型的鱼类有1076种,到1985年已增加到1600余种[1].人们对鱼类染色体的研究,近些年发展较快, 仍偏重于核型分析.到目前为止,已报道染色体核型的鱼类有2100种左右,约占总数的10%[1~ 9].这些有染色体记载的鱼类主要集中在鲤形目和鲈形目,每个目都有150种以上,且大多数为淡水鱼类. 2 显带技术研究染色体的显带技术可以揭示染色体的精细结构,从而检测出同型染色体之间的细微结构区别,是染色体研究必不可少的手段.染色体显带技术运用于鱼类染色体结构分析,推进了人们对鱼类遗传物质的深化研究,并且取得了一系列重大成果. 2.1 Ag-NORs 硝酸银特异地染色与NORs 结合的酸性蛋白,使该区域呈黑色.Ag-NORs 法应用于鱼类染色体研究中获得可靠的结果,成为研究鱼类物种间的亲缘关系以及染色体进化的一个指标[2~8].多态性是动物染色体Ag-NORs 的一个重要特征.鱼类的Ag-NORs 一般只呈现数目多态和形态多态等2种表现形式,有些研究认为鱼类的这两种多态现象无个体特异性.因此关于Ag-NORs 的多态性一度被认为是rDNA 转录活性差异的反映,即有转录活性的NORs 方能被银染,失活的NORs 则不能被银染[9].然而,近几年有些研究表明,某些动物种内Ag-NORs 多态性的表现可能是遗传变异的产物,例如不同地理位置的红点鲑交配群的Ag-NORs 数目及分布多态的检测以及某些动物中Ag-NORs 数目及形态的个体特异性研究等文献都证实,Ag-NORs 多态性是可以遗传的[8]. 任修海等[8,10]对黄鳝进行了Ag-NORs 多态性及荧光显带的研究,发现黄鳝染色体Ag-NORs 具有明显的个体特异性的数目多态、分布多态和形态多态现象.已证实黄鳝Ag-NORs 位置变化实质上是由于NORs 分布多态性,而不是Ag-NORs 的失活所致.Ag-NORs 多态性可以作为核型进化的指标来探讨近缘物种间或物种内不同地理居群间的关系.王蕊芳等[11]通过对不同地理区域鲫鱼染色体银染核仁组织者的比较,认为在鱼类进化中,随着NORs 增大和数目的增加,DNA 和rDNA 数量也随之增 第17卷第1期 宁德师专学报(自然科学版) 2005年2月 Journal of Ningde Teachers College(Natural Science)Vol 117 No 11 F eb.2005 X 收稿日期:2004-12-03作者简介:高 文(1966-),女,讲师,福建福鼎人,现从事高校生物教学及研究.

抗菌肽的研究进展

抗菌肽的研究进展 摘要:由于细菌对抗生素耐药性不断出现, 研发新型抗菌物质已迫在眉睫。而抗菌肽是广泛存在于自然界生物中的具有广谱抗菌、抗病毒、抑制杀伤肿瘤细胞等作用的多肽。本文介绍了抗菌肽的结构,抗菌肽的生物学活性,抗菌肽的作用机理和作用机制,以及抗菌肽的应用和前景。 关键词:耐药性,抗菌肽;作用机理;前景 抗菌肽,简称ABP,是由宿主产生的一类能够抵抗外界病原体感染的小分子多肽。广泛存在于各种生物体内。1980 年,瑞典科学家Boman 等从天蚕蛹的血淋巴中分离得到天蚕素( cecropin ) 抗菌肽,使人们对抗菌肽的作用机理和应用有了一个崭新的认识。目前世界上已知的抗菌肽共有1 700余种。由于热稳定性强,且对较高离子强度环境有较强的适应性,不仅有广谱抗细菌能力, 而且有的对真菌、病毒及癌细胞也有一定的抑杀作用,最重要的是可以杀伤动物体内的肿瘤细胞,却又极少破坏动物体内的正常细胞,因此,抗菌肽的开发和应用研究已成为国内外昆虫学、生理学、药理学研究热点,在动植物转基因工程及药物开发领域及农业、食品等领域具有广阔的应用前景。 1 .抗菌肽的结构 1 .1 一级结构 据报道,已分离并测定其氨基酸序列一级结构的抗菌肽达几十种,且一级结构都比较相似,具有以下典型的特征:由20~70多个氨基酸残基组成的肽链,其N 端富含赖氨酸和精氨酸等阳离子型氨基酸,C 端富含丙氨酸、缬氨酸、甘氨酸等非极性氨基酸,中间部分则富含脯氨酸,且在许多特定位置都有一些较保守的氨基酸残基,这些高度保守的氨基酸残基是一些抗菌肽分子具有抗菌活性所不可缺少的, 1. 2 二级结构 通过圆二色性分析、二维核磁共振谱法及脂质体模拟实验研究抗菌肽的二级结构特征,结果表明,抗菌肽在一定条件下形成a-螺旋和β-折叠结构。a-螺旋是一个近乎完美的水脂两亲结构,即圆柱形分子的纵轴一边为带正电-的亲水区,而对称面为疏水区。这种两亲性结构是抗菌肽杀菌的关键,改变a-螺 旋的螺旋度会影响抗菌肽的活性。抗菌肽有许多保守序列,在N端易形成a-螺旋,中间部分易形成β-折叠或铰链。a-螺旋肽主要包括天蚕素、爪蟾抗菌肽ma g a i n i n 、c a t h e l i n d i a 等,β-折叠肽主要包括哺乳动物防御素、植物防御素、昆虫防御素和富含脯氨酸的抗菌肽等。 2 抗菌肽的来源 2.1微生物抗菌肽

(推荐)II型细胞因子及其受体研究进展

II型细胞因子及其受体研究进展 目前已经发现的细胞因子有200多种,随着基因测序技术的快速发展,相信会有更多的因子被发现,并且随着细胞工程技术和蛋白重组技术的发展,一定会有更多的细胞因子重组蛋白被纯化制备。细胞因子功能多样,不同因子间可以相互作用,同一因子可以有不同的功能,因此,细胞因子构成了一个复杂的网络功能图。而细胞因子想要发挥作用,必须与相应的受体结合行。细胞因子与其受体结合后,会对细胞产生作用,可以刺激细胞生长增殖分化,调控机体免疫应答,为在细胞及分子水平研究某些自身免疫性疾病、肿瘤、免疫缺陷疾病的发病机理提供数据,为临床治疗和诊断提供指导依据。 细胞因子受体一般分成四个类型:Ⅰ型细胞因子受体(Type ⅠCytokine Receptor)、Ⅱ型细胞因子受体家族(Type ⅡCytokine Receptor)、TNF超家族受体以及趋化因子受体。在本文,将主要介绍Ⅱ型细胞因子及其受体的研究进展及其应用。 Ⅱ型细胞因子受体家族(Type ⅡCytokine Receptor ),也称干扰素受体家族(Interferon receptors family)。主要包含Ⅱ型白介素(IL-10,IL-19,IL-20,IL-22等)受体,Ⅰ型干扰素(IFNA,IFNB)受体和Ⅱ型干扰素(IFNG)受体。此类受体的结构特点治是在膜外区近氨基端含有四个保守半胱氨酸残基细无Trp-Ser-X-Trp-Ser序列,一般为具有高亲和力的异二聚体或多聚体。II型细胞因子受体的细胞外结构域由串联Ig样结构域组成,细胞内结构域通常与属于Janus激酶(JAK)家族的酪氨酸激酶相关。

抗菌肽作为水产饲料添加剂的应用前景

近年来,随着水产养殖业的快速发展、高密度集约化程度的增大,养殖病害问题逐年增加,抗生素等药物滥用情况严重,致使部分水产品中的药物残留量增加或严重超标,不仅威胁到食品安全,也影响了水产品的出口,给我国的水产养殖业造成了巨大的经济损失。由于目前水产养殖中抗生素耐药菌株的出现速度已经远远超过了抗生素研发速度,并且现有的抗生素开发策略多局限于既有的抗生素类别,难以有实质上的突破,一种新的抗生素出现不久很快就会有病菌产生耐药。抗感染形势的严峻性迫切需要寻找与现有抗生素抗菌机理完全不同的新型抗菌物质。 抗菌肽是广泛存在于细菌、植物、软体动物、两栖动物、鱼类、鸟类和哺乳动物体内的一类小分子多肽,由20~60个氨基酸残基组成,具有广谱杀菌作用。同抗生素的单一作用位点不同,抗菌肽是作用于细菌的整个细胞膜,使膜去极化或者形成“孔洞”,造成细胞内含物外流或者肽分子进入细胞内部与DNA、RNA等靶标作用,进而杀死细菌。除高效杀菌作用外,抗菌肽还具有明显的杀伤真菌、病毒和原虫的作用,并能选择性杀伤肿瘤细胞而不破坏正常细胞,因此是生物体天然免疫防御系统的重要组成部分。由于抗菌肽本身是来源于养殖动物自身的一种小蛋白,动物对其的排异反应很低,而且杀菌作用发挥到一定的程度之后,动物体内的很多蛋白酶就把抗菌肽降解了,检测不到残留物质,对环境没有任何污染,是一种无毒、无害、绿色环保的产品。同时,抗菌肽还具有不易出现耐药性突变、分子量小、热稳定性好、水溶性好、作用迅速等特点。它在水产养殖业中的推广应用,对提高鱼体的抗病力,减少甚至杜绝抗生素类药物的使用,维持鱼类健康,实现水产养殖业的可持续发展具有重要的现实意义。 一般而言,抗菌肽可通过以下3种途径获得:①从生物体内直接提取纯化;②化学人工合成;③采用基因工程技术构建抗菌肽基因工程菌株。但由于抗菌肽为体内诱导合成,生物体中含量较低,因此从生物体内直接提取的难度大,对技术和成本的要求高,难以规模化生产。而化学合成的方法同样存在成本较高的问题。一般小于10个氨基酸残基的多肽的合成较为经济,10个残基以上多肽的合成则很昂贵,限制了应用。因此利用基因工程的方法来生产抗菌肽是降低成本的一条有效途径。有关抗菌肽基因的表达研究最初是在原核表达系统中进行的,但由于抗菌肽对原核细胞有一定的毒性,因此抗菌肽基因只能以融合蛋白形式在大肠杆菌中进行表达。近年来,以啤酒酵母、毕赤酵母、昆虫等为基因工程宿主,进行表达分离纯化及应用的研究引起人们的重视,为抗菌肽的开发与应用奠定了良好的基础。 现在越来越多的鱼类抗菌肽被克隆出来,品种涉及鲶鱼、鲑鱼、罗非鱼、比目鱼、斑马鱼等多种鱼类,从已报道的序列来分析,它们的结构与组成复杂多样,并没有很高的同源性,但存在一些共同特征,如含有较多精氨酸或赖氨酸而使分子带正电;含有较多疏水氨基酸,可使分子折叠成疏水或双亲性α螺旋结构等。体外研究表明,许多抗菌肽对鱼类特异的甚至其他动物的病原微生物都具有杀伤活性,其最小抑菌浓度(MIC)多在毫摩尔水平,如鲶鱼和泥鳅抗菌肽对革兰氏阳性菌、革兰氏阴性菌和真菌的MIC为0.5~2毫摩尔/升之间;鲈鱼抗菌肽对杀鲑气单胞菌、嗜水气单胞菌等鱼类致病菌的MIC甚至低达1.2毫摩尔/升;此外,虹鳟和鲈鱼的抗菌肽对某些寄生虫也具有致死效力,但其杀伤作用需要较高的浓度,而且其活性主要针对滋养体时期。 目前,国内作为添加剂生产应用的抗菌肽主要是蚕抗菌肽AD-酵母制剂,大多数试验也是围绕这种抗菌肽进行的。黄永彤等发现抗菌肽对肉鸡有促进生长和提高免疫力的作用,与中草药、抗生素相比,在出栏率、平均个体重量及饲料利用率等方面均无显著差异,在出栏前3天停喂,抽检无残留。王广军等(2005)研究了抗菌蛋白在南美白对虾养殖中的应用效果,结果表明,在饲料中添加抗菌蛋白,无论是在日生长速度、相对增重率、饲料系数及成活率,还是抗病力方面均有显著的提高。此外,抗菌肽能有效杀灭霉腐微生物,在机体内还可以被蛋白酶降解,双重安全的保证使得抗菌肽还可以在饲料工业中作为饲料防腐剂使用。 由于抗菌肽代替抗生素作为饲料添加剂的研究最近几年才发展起来,虽然取得了一些进展,但还处于探索阶段,距离形成成熟的技术、大规模地应用到动物生产中还有很多问题需要解决:①抗菌肽的种类很多,哪些种类作为饲料添加剂效果较好而且又比较经济;不同种类的抗菌肽之间是否有相互作用,有待于进一步研究; ②抗菌肽在动物体内含量少,天然资源缺乏;化学合成的生产成本昂贵,目前还无法投入大规模的生产;用基因工程的方法大规模地生产抗菌肽,或者通过日粮因素调控抗菌肽基因的表达还需进一步研究;③抗菌肽在体内容易被蛋白酶水解,需要用脂质包被或对其进行化学

鱼类必需脂肪酸营养研究现状

鱼类必需脂肪酸营养研究现状 摘要:从必需脂肪酸种类、对鱼类的影响、必需脂肪酸需要量、必需脂肪酸缺乏症等几个方面综述了近年来鱼类必需脂肪酸营养的研究状况,以期为脂肪研究和合理饲料配方提供参考。 关键词:必需脂肪酸种类必需脂肪酸需要量必需脂肪酸缺乏症 脂类不仅是生物的能量储存库,而且是构成生物膜的重要物质,与细胞识别和组织免疫有密切关系;此外,脂类物质参与激素和维生素代谢,在机体内具有重要的生物学作用和生理学调控功能。鱼体中含有丰富的脂肪酸,有的脂肪酸鱼体本身可以生物合成,有的则不能或合成量很少,远不能满足鱼类生长发育各阶段的需要,必须由外源供给补充。那些为鱼类生长发育所必需,但鱼体本身不能合成,必须由饲料直接提供的脂肪酸称为必需脂肪酸 (EFA),如亚油酸、亚麻酸、EPA、DHA等。通常认为,必需脂肪酸必须符合下列特定的分子构型:1)在脂肪酸分子结构中的二乙烯基甲烷链结构中,至少有2个或2个以上双键;2)双键必须是顺式构型;3)距离羧基最远的双键,应在由末端-CH3数起的第六与第七碳原子之间。必需脂肪酸对于维持正常的细胞功能是必不可少的,而且大多不能由动物自己合成或合成很少必须由饲料中提供。鱼虾不能合成必需脂肪酸,必须从饲料中吸收,但鱼虾具有将亚油酸和亚麻酸转化为同系列更长链不饱和脂肪酸的能力。 1.鱼类必需脂肪酸的种类 大多动物体内能够合成饱和脂肪酸和单不饱和脂肪酸,但不能合成亚油酸(C18:2)和亚麻酸 (C18:3)。一般鱼体本身只能合成n-7、n-9系列不饱和脂肪酸,而不能合成n-3、n-6系列不饱和脂肪酸,因此,n-3、n-6系列不饱和脂肪酸被认为是鱼类的必需脂肪酸。鱼类生存和生长需要的必需脂肪酸因种类而异。不同脂肪酸对鱼类生长的影响很大程度上与不饱和脂肪酸,尤其与高度不饱和脂肪酸的差异有关。温水性鱼类对必需脂肪酸需求与冷水性鱼类差别很大,冷水性鱼类需要的n-3序列数量>n-6序列的数量。虹鳟饵料中添加C18:3n-6或C18:3n-3,会有明显的促生长效果。而且同时使用这两种脂肪酸比单独使用促生长效果更好。鲤鱼对这两种脂肪酸的需求量均为饲料的1%。鳗鲡与虹鳟和鲤鱼一样需要必需脂肪酸。鳗鱼丽添加C18:3n-3后生长显著改善,这与虹鳟相似。添加C18:3n-6和C18:3n-3有相加效果,这与鲤鱼相似。对这两种脂肪酸的需求量,均为饵料的5%左右[1]。德国柏林淡水生态和内陆渔业研究所[1]对虹鳟幼鱼投喂富含十八碳三烯酸 (1 8:3n-3 )、十八碳四烯酸主要是廿二碳六烯酸 (22:6n-3 )的商品饲料,证实廿二碳六烯酸是虹鳟生长发育必需的脂肪酸。 刘玮等[2]认为团头鲂必需脂肪酸除n-3HUFA之外,还应包括18:2n-6和8:3n-3;团头鲂的18:2n-6的需要量比18:3n-3的量要大;在18:2n-6和 18:3n-3之间还可能存在复杂的相互作用。 2.必需脂肪酸对鱼类生长发育的影响 鱼类不同的生发育阶段,对脂肪酸的需要不同。真鲷等海产鱼仔、稚鱼必须直接摄取含有高度不饱和脂肪酸的饵料才能生长发育[3]。刘镜恪[4]等发现n-3不饱和脂肪酸对黑鲷仔鱼和稚鱼的生长和存活都有重要影响。高淳仁[5]等认为,n-3 HUFA为海水鱼类的必需脂肪酸,而其中 EPA和 DHA对海水鱼类生长、存活、发育的影响尤为重要;同时不同种类的海水鱼类对 n-3 HUFA的需求量略有不同,而饵料中 EPA与 DHA的比例也是影响海水仔、稚、幼鱼生长和存活的重要因素;海水鱼类对不同脂型的脂类的吸收和同化作用不同。在鱼类繁殖期间,鱼类需要n-3系列不饱和脂肪酸数量大于n-6系列的数量,尤其是雌鱼。 3.鱼类对必需脂肪酸的需要量 鱼类对必须脂肪酸的需要量依鱼的种类而不同。温水性的鲤鱼,对必需脂肪酸的需求比冷水性鱼类低,但

动物分子育种及其在鱼类育种中的应用

收稿日期:2009-02-27 基金项目:国家科技支撑计划(2006BAD01A1204);黑龙江水产研究所基金科研专项(2008HSYZX-SJ-07); 农业部鱼类生物育种实验室(2008NYBZS-07). 作者简介:池喜峰(1982-),男,硕士研究生,主要从事鱼类育种研究.通讯作者:石连玉(1961-),男,研究员,主要从事鱼类遗传育种研究. 鱼类传统育种从1865年孟德尔提出其遗传规 律至今已有143年的历史,传统育种技术在我国创造了举世瞩目的成就,然而随着科技的发展却出现了技术上的滞后,超长的育种年限已经造成育种行业的许多瓶颈问题,然而问题的出现总伴随着该行业相关技术的革新,一门新型学科———动物分子育种技术正在悄然兴起,并展现出极大的活力与应用前景。动物分子育种(Animal molecular breeding )是依据分子遗传学和分子数量遗传学理论,利用DNA 重组技术,从分子水平上来改良动物品种的新型学 科。狭义的分子育种仅指DNA 改组(DNAshuffling )[1] ;广义的分子育种则包括DNA 改组、DNA 改良和基因改组新技术等内容[2]。分子育种技术包括以分子 标记为主的基因组育种技术(Genome breeding )和基 因转移育种技术(Transgenic breeding),两者具有很强的互补性,分子标记辅助选择技术不能创造变异,也不能在不同种间进行优良基因的传递,但转基因技术却能达到这个目标。两者的结合使得分子育种技术较传统的育种方法更能按照人的意愿快速进行物种改良,最近还开发了通过计算机技术进行分子设计,以实现分子育种的最佳方法。本文就分子育种技术及其在鱼类育种中的应用作以综述。 1基因组育种 人及相关模式动物基因组研究的快速发展使 人们看到了基因组研究在基础和应用研究中的巨 动物分子育种及其在鱼类育种中的应用 池喜峰1,2,贾智英1,李池陶1,石连玉1 (1.中国水产科学研究院黑龙江水产研究所,黑龙江哈尔滨150070; 2.上海海洋大学水产与生命学院,上海,201306) 摘 要:随着生物技术的迅速发展,动物的育种技术也在更新换代,新型的分子育种正在越来越广泛地被应用 于各种动植物育种中,但在鱼类中起步较晚,然而发展却迅速,如目前已在遗传图谱构建、QTL 定位、分子标记辅助育种等方面广泛应用。本文综述了分子育种的研究内容并结合当前科研动态介绍了其在鱼类育种中的应用现状。 关键词:分子育种;基因组育种;转基因育种;鱼类中图分类号:S963 文献标识吗:A Animal molecular breeding and its application in fish breeding CHI Xi-feng 1,2,JIA Zhi-ying 1,LI Chi-tao 1,SHI Lian-yu 1 (1.Heilongjiang River Fishery Research Institute,Chinese Academy of Fishery Sciences,Harbin 150070,China; 2.College of Fisheries and Life Science,Shanghai Ocean University,Shanghai,201306,China) Abstract:With the rapid development of biotechnology ,animal breeding technology has also been renewed.New types of molecular breeding technology are increasingly used in animal and plant breeding programs.But it's late in the fish,however,showed a rapid development speed.For example,in genetic map construction,QTL localization and molecular marker assisted breeding.This review showed the research contents of molecular breeding and introduced its application based on the current situation in fish.Key words:molecular breeding;genome breeding;transgenic breeding;fish 文章编号:1005-3832(2009)02-0056-06 第22卷第2期2009年6月 Vol.22,No.2Jun.2009 水产学杂志 CHINESE JOURNAL FISHERIES

相关文档
最新文档