数学模型论文

数学模型论文
数学模型论文

数学建模习题

影院座位设计

摘要

本文研究了电影院的座位设计问题,根据观众对座位的满意程度主要取决于视角α与仰角β这一前提条件,建立了满意程度最大的相关模型,并进行求解。

问题一,首先建立在满足仰角条件情况下的优化模型,接着通过主观臆断分别对视角和仰角赋权重,对座位进行离散分析,并引入满意度函数建立了离散加权模型,最后运用Matlab软件求解出当地板线的倾角为

10时,最佳位置距屏幕的水平距离为6.8635米。

问题二,根据问题一中的离散加权模型,将座位看作离散的点,建立满意度函数平均值模型,再利用Matlab软件解得当地板线的倾角为

0543

15时,所有观众的平均满意

.

程度最大。

问题三,在问题二的基础上,为进一步提高观众的满意程度,将地板线设计成折线形状,即相邻两排座位所在的点构成一条直线,且每排座位所在地板线的倾角以 5.2变化,增加到

20后保持不变,第一排抬高2.1米。

本文所建立的模型通俗易懂,求解简单明了,对模型进行验证发现与现实生活中的实际情况十分吻合,因此具有很强的实用性和推广意义。

关键词:离散加权平均满意度优化模型

一、问题重述

影院座位的满意程度主要取决于视角α和仰角β,视角是观众眼睛到屏幕上下边缘的视线的夹角,越大越好;仰角是观众眼睛到屏幕上边缘视线与水平线的夹角,太大使人的头部过分上仰,引起不适,一般要求仰角β不超过0

30;记影院的屏幕高为h,上边缘距离地面高为H,影院的地板线通常与水平线有一个倾角θ,第一排和最后一排与屏幕水平距离分别为,d D,观众的平均座高为c(指眼睛到地面的距离),已知参数h=1.8. H=5, 4.5,19

==,c=1.1(单位m)。

d D

求解以下问题:

θ时,求最佳座位的所在位置。

(1) 地板线的倾角0

10

=

(2) 地板线的倾角θ一般不超过0

20,求使所有观众的平均满意程度最大时的地板线倾角。

(3) 地板线设计成什么形状,可以进一步提高观众的满意程度。

二、问题的分析

电影院座位的设计应满足什么要求,是一个非常现实的问题。根据题意观众对座位的满意程度主要取决于观看时的视角α和仰角β,α越大越好,而β越小越好,最佳位置就是要在这两者之间找到一个契合点,使观众对两者的综合满意程度达到最大。

本文通过对水平视角α和仰角β取权重,建立适当的坐标系,从而建立一个线形型满意度函数。

针对问题一,已知地板线倾角,求最佳座位所在,即将问题转化求综合满意度函数的最大值,建立离散加权的函数模型并利用Matlab数学软件运算求解;

针对问题二,将所有观众视为离散的点,要使所有观众的平均满意程度达到最大,即将问题转化求满意度函数平均值的最大值。对此利用问题一所建立的满意度函数,将自变量转化为地板线倾角;

针对问题三,即在问题二的基础上对地板线形状进行优化设计,使观众的平均满意程度可以进一步提高。

本文在满意度呈线性的基础上来建立模型的,为使模型简化,更好地说明问题,文中将作以下假设。

三、模型假设

1.忽略因视力或其他方面因素影响观众的满意度;

2.观众对座位的仰角的满意程度呈线性;

3.观众对座位的水平视角的满意程度呈线性;

4.最后排座位的最高点不超过屏幕的上边缘;

5.相邻两排座位间的间距相等,取为0.8m;

6.对于同一排座位,观众的满意程度相同;

7.所有观众的座位等高为平均座高;

8.影院的的地板成阶梯状。

四、符号说明

α 水平视角

δ 视高差,即从眼睛到头顶的竖直距离 β 仰角

αS

观众对水平视角为α的满意程度 θ 地板线与水平线的倾角

βS 观众对仰角为β的满意程度 d 第一排离屏幕水平距离 S

平均满意程度

D 最后一排离屏幕水平距离

βαc c , 视角α、仰角β在综合满意度i S 中的权重

h 屏幕的高度 l

相邻两排座位间沿地板线方向的间距 H

屏幕上边缘离地面的高度

五、模型的建立与求解

5.1 问题一

每一个到影院看电影的观众都想坐在最佳位置,而对座位的满意程度主要取决于两个因素:水平视角α和仰角β,且视角是观众眼睛到屏幕上下边缘的视线的夹角,越大越好,仰角是观众眼睛到屏幕上边缘视线与水平线的夹角,太大使人的头部过分上仰,引起不适,要求不超过030。

5.1.1 模型Ⅰ的建立:仰角在满足条件的范围内,观众满意度只取决于视角

以第一排观众的眼睛为原点,建立平面直角坐标系,如图1所示:

其中,AB 为屏幕,MS 为地板线,OE 为所有的观众的眼睛所在的直线。则由图可设视觉线OE 上任意一点P 的坐标为)tan ,(θx x ,屏幕上下点的坐标分别为),(c H d A --,

),(c h H d B ---,AP 的斜率记为AP k ,BP 的斜率记为BP k 。

由斜率公式得:

)(tan tan d x c H x k AP --+-=

-=θβ,)

(tan )tan(d x c

h H x k BP --++-=--=θαβ (1.1)

则直线AP 和BP 的斜率与夹角α满足如下关系:

)

tan )(tan ()()

(1tan 2

c h H x c H x

d x d x h k k k k AP BP AP BP ++-+-+++=+-=

θθα (1.2) 仰角满足条件:]30,0[ ∈β 所以:33)

(tan 033tan 0≤--+--

≤?≤≤d x c

H x θβ

θ

θ

tan tan 3333c

H x d c H -≤

≤+-- (1.3) 由公式(1.1) (1.2)得到模型为:

)tan )(tan ()()

(arctan

max 2c h H x c H x d x d x h ++-+-+++=θθα ??

?

??-≤≤+---≤≤θθtan tan 33330..c H x d c H d D x t s

5.1.2 模型Ⅰ的求解

当 10=θ时,用Matlab 软件运算求解(程序见附录1),得最大视角为 9522.13=α,

仰角为 30=β,7274.1=x 米。即P 点的坐标为)3046.0,7274

.1(为最佳位置。离屏幕的水平距离为米2274

.67274.15.4=+。 5.1.3 模型Ⅱ的建立:离散加权模型

在地板线上的座位可视为是离散的点,设两排座位在地板线方向上的前后间距为l (查阅相关资料间距一般取0.8米),则在水平方向的间距为θcos l ,考虑仰角和视角对观众的满意度为主要因素。

对模型Ⅰ进行修正,将座位连续情况进行离散化可以得到:

)

(cos )1(tan cos )1()(tan tan d l k c

H l k d x c H x ---+---=--+--

=θθθθβ (2.1)

)

tan cos )1)((tan cos )1(()cos )1(()

cos )1((tan 2c h H l k c H l k d l k d l k h ++--+--++-+-=

θθθθθθα

(2.2)

其中,n k ,,3,2,1 =,n 为地板线上的座位的总排数,且191]cos 5

.14[

=+=θ

l n 。 一般说来,人们的心理变化是一个模糊的概念。本文中观众对某个座位是否满意的

看法就是一个典型的模糊概念。由模糊数学隶属度的概念和心理学的相关知识,根据题意,在假设条件下,对于第k 排座位,建立观众对视角α、仰角β的满意度函数]1[如下:

min

max min

tan tan tan tan ααααα--=

k k S (2.3)

min

max min

tan tan tan tan 1βββββ---

=k k S (2.4)

式中k k βα,为第k 排座位上观众视角和仰角,max max ,βα表示在θ给定的情况下最优满意度,min min ,βα表示在θ给定的情况下最差满意度。

视角α、仰角β在综合满意度k S 中的权重分别为βαc c ,,建立第k 排座位综合满意度函数如下:

β

αββααc c S c S c S k

k k ++=

(2.5)

根据地板线倾角?=10θ,通过计算可以得出 8975.154210.5≤≤α,

9149.400451.4≤≤β,主观给定权重4.0,6.0==βαC C ,根据模型的建立,可以得出:

1357.0tan 5025.0tan 1596.34

.06.04.06.0+-=++=

++=

k k k

k k

k k S S c c S c S c S βαβαβ

αββαα (2.6)

将式(2.1)和式(2.2)带入公式(2.6)得到优化模型为:

1357

.0)(cos )1(tan cos )1(5025.0)tan cos )1)((tan cos )1(()cos )1(()

cos )1((*1596.3max 2+---+--+++--+--++-+-=

d l k c

H l k c h H l k c H l k d l k d l k h S k θθθθθθθθθ 19,,3,2,1,cos )1(tan tan 33330.. =???

??

??-=-≤≤+---≤≤k l k x c H x d

c H

d D x t s θθθ

5.1.4 模型Ⅱ的求解

用Matlab 软件运算求解(程序见附录2)可得:3635.2=x 米,4=k 排,最大满意度为6176.04=S ,最大视角为 1282.13=α,仰角为 9084.26=β,最佳位置离屏幕的水平

距离为米8635

.63635.25.4=+。 5.2 问题二

5.2.1 模型Ⅲ的建立

要使所有观众的平均满意程度达到最大,即需求S 的最大值。由模型Ⅱ可知,第k 排观众的满意度为S ,则观众平均满意程度函数为:n S S n

k k ∑

==1

,平均满意度S 的大小由每一排的满意度所决定,而又是由仰角β和视角α所决定。所以,要使观众的满意程度达到最大,取决于两个方面:(1) 仰角不超过条件的座位所占的比例越大,观众的平均满意程度就越大;(2) 所有座位的视角的均值越大,观众的平均满意程度就越大。

由式(1.1)可知,地板线倾角θ的改变将同时使所有座位的仰角和视角的大小发生

改变,且在某一座位(即x 取某一定值),在θ逐渐增大的过程中仰角逐渐减小,视角逐渐增大,见图2所示。仰角不超过条件的区域扩大,即地板线倾角θ越大,仰角不超过条件的座位所占的比例越大。

θ角变化α角变化

θ角变化β角变化

图2 视角α和仰角β随θ变化的变化曲线

第一排观众的仰角为

9149.40=β,不满足仰角的条件,由模型Ⅱ可知第k 排座位所对应的仰角的正切值:

n k d l k c

H l k k ,,3,2,1,)

(cos )1(tan cos )1(tan =---+---

=θθθβ

其中n 为地板线上的座位的总排数:1]cos 5

.14[

+=θ

l n ,随着地板线倾角θ的变化,相邻两排座位间的间距l 不变,但相邻两排座位间的水平间距会发生改变。由于地板线倾

角θ不超过 20,所以2019≤≤n ,并限制最后一排观众的视高不要超过屏幕的上边缘,

0543.15≤θ。

由模型Ⅰ可求出第k 排座位所对应的水平视角的正切值为:

)

tan cos )1)((tan cos )1(()cos )1(()

cos )1((tan 2

c h H l k c H l k

d l k d l k h ++--+--++-+-=

θθθθθθα 5.2.2 模型Ⅲ的求解

让地板线倾角θ在]20,0[ 内逐一取值,步长为 01.0;让x 在]5.14,0[内逐一取值,步长为0.01。

对一个取定的θ,判断x 所在的位置仰角是否超过 30,若超过,则该座位的综合满意度必须同时考虑仰角β和视角α的取值;否则,只需要考虑视角α的取值,把所有座位的综合满意度相加,并求出观众的平均综合满意度,判断此时的平均满意度是否最大,最后一排的高度是否超过屏幕的上边缘,并记下最大值时θ的取值。

当取地板线倾角为θ变化时,通过计算可以得出

8975.151143

.5≤≤α, 9149.400≤≤β。

由模型Ⅱ的(2.5)式得:=++=

++=

4

.06.04.06.0k

k k

k k S S c c S c S c S βαβ

αββαα

(3.1)

所以,将式(2.1)和式(2.2)带入公式(3.1)得到平均满意度的优化模型为:

n

S

S n

k k

∑==

1

max

取整数其中n n k l k x d D x n t s ,,2,1,cos )1(00543.1502019. =???????-=-≤≤≤≤≤≤θ

θ 用Matlab 软件计算(程序见附录3)可得:最大平均满意度为6572.0=S ,对应地

板线的倾角为

0543.15=θ。 5.3 问题三

5.3.1 模型的建立与求解

由上两问可知,观众的满意程度与仰角,视角和地板线倾角θ都有关,而每一座位到屏幕的水平距离基本固定不变,考虑观众的满意度,就要考虑仰角,视角随着θ的变化情况。

引理 地板线不管设计成什么形状,各排的间距不变,区别在于各排的高度差如何变化,若竖直方向上的两定点,在与它们相距一定水平距离的竖直方向上有一动点,当该动点位于两定点的垂直平分线上时,动点与两定点形成的视角最大。动点距两定点的垂直平分线越近,动点与两定点形成的视角越大。

要使每一个座位所对应的视角取最大值,对应的y 值应在直线上.设计地板线应考虑以下几个方面:(1)第k 排座位所在的位置应高于第1-k 排座位所在的高度;(2)前一排的观众不会挡住后一排观众的视线;(3)视角尽可能大,即眼睛的位置应尽可能分布在垂直平分线的附近;(4)仰角的座位所占的比例尽可能大。

假设每排座位所在的点构成一条折线,任意相邻两排座位水平间距为l ,第k 排座位地板线倾角为k θ,第k 排座位与第1-k 排座位地板线倾角变化为θ?。从而可得:θθ?-+=)1(0k k ,故:

)

()1(])1tan[()()1(tan )1(tan 1

1d l k c

H k l d l k c

H l k n

k n

k k

k ---+-?-=

---+---=∑∑==θθ

β

同理可得:

)

])1tan[(cos )(])1tan[(cos ()cos )1(()

cos )1(()

tan cos )1)((tan cos )1(()cos )1(()

cos )1((tan 1

1

2

2c h H k l l c H k l l d l k d l k h c h H l k c H l k d l k d l k h n

k n

k ++-?-+-?-++-+-=

++--+--++-+-=∑∑==θθθθθθθθθθθθα

观众平均满意程度函数为:n S S n

k k ∑==1

可算出地板线上的座位的总排数为:1]cos 5.14[

+=θ

l n ,则可计算得当?

=?5.2θ时,6692.0max =S 。

但此时??=?-=455.2)119(θ,根据一般习惯,要求地板线倾角?≤20θ,但此时求得最后一排座位的地板线倾角为?=45θ,这大大超过观众的心理范围,因此文中将对此进一步的修改。当?>?-20)1(θi 时,令?=?-20)1(θi 。当?=20θ时,即将问题转化为问题二中所建立的模型。由于?=?5.2θ,则地板线倾角增加到第8排到达?20,然后保持不变。

对于这两种情况,分别代入不同的函数,利用matlab 数学软件求得:满意度函数的最大值6572.06643.0max >=S 。

可以通过利用Matlab 软件来描点,如图3所示:

图3

从上图可以看出,报告厅座位的前8排呈折线状,以?=?5.2θ递增,当倾角增加到?=20θ时保持不变,且第一排应抬高2.1米。

六、模型的评价与推广

6.1 模型的评价 6.1.1 模型的优点:

模型抓住影响观众满意程度的主要因素(仰角和视角),合理构造满意度函数,过程清晰明了,结果科学合理。

模型具有较好的通用性,实用性强,对现实有很强的指导意义。 6.1.2 模型的不足以及需要改进的地方:

模型主观假设同一排座位观众的满意程度相同,实际情况并非如此,这就使得我们的模型对解决实际问题时有一定的局限性。

模型建立的过程中,以观众眼睛所在的点为坐高点,没有考虑前排观众额部对后排观众的遮挡,需要进一步的考虑在内。 6.2 模型的推广

本文中所建立模型的方法和思想对其他类似的问题也很适用,所建立的模型可用于大型场所的座位的设计与安排,以及彩民对中奖率的满意程度等问题上。同时对于已知剖面来分析物体的形状这一类型问题的处理有很好的参考价值.例如:运用该模型去解决会议厅、报告厅的布局,灯塔高度的设计等相关的问题。因此具有很强的实用性和推广性。

七、参考文献

[1] 金炜东,线性型满意度及其组合运算,铁道学报,第19卷第5期:50页到54页,

1997年10月

[2] 李祖苑,影院座位设计,,中国科技论文在线,(访问

时间:2009年8月8日)

[3] 刘学智,影院座位的安排,,中国科技论文在线,(访

问时间:2009年8月9日)

[4] 龚坚,计算机视觉,北京:科学技术出版社,1998年,37页到76页

[5] ,赛才网,(访问时间:2009年8月7日)

八、附录:

附录一

clear

clc

H=5;

h=1.8;

D=19;

d=4.5;

c=1.1;

l=0.8;

pi=3.1415926;

f=10;

for Q=0:0.1:20

for l=1:floor(14.5/cos(Q/180*pi)+1)

x=(l-1)*cos(Q/180*pi);

T=tan(Q/180*pi);

A=(d+x)*h/((d+x)^2+(H-c-T*x)*(H-h-c-T*x)); if f>A

f=A;

end

end

end

for Q=0:0.1:20

for l=1:floor(14.5/cos(Q/180*pi)+1)

x=(l-1)*cos(Q/180*pi);

T=tan(Q/180*pi);

A=(d+x)*h/((d+x)^2+(H-c-T*x)*(H-h-c-T*x)); if f==A

fprintf('Q is:%d\n',Q);

fprintf('k is:%d\n',l);

end

end

end

f

附录二

clear

clc

H=5;

h=1.8;

D=19;

d=4.5;

c=1.1;

l=0.8;

pi=3.1415926;

t=10;

for Q=0:0.1:20

for l=1:floor(14.5/cos(Q/180*pi)+1)

x=(l-1)*cos(Q/180*pi);

T=tan(Q/180*pi);

B=(H-c-T*x)/(d+x);

if t>B

t=B;

end

end

end

for Q=0:0.1:20

for l=1:floor(14.5/cos(Q/180*pi)+1)

x=(l-1)*cos(Q/180*pi);

T=tan(Q/180*pi);

B=(H-c-T*x)/(d+x);

if t==B

fprintf('Q is:%d\n',Q);

fprintf('k is:%d\n',l);

end

end

end

t

附录三

clear;

%clc;

H=5;

h=1.8;

D=19;

d=4.5;

c=1.1;

Q=0.1763; %tan(10/180*pi);

s=0;

for x=[2.3635 3.1514 3.9392 4.7271 5.5149 6.3028 7.0906 7.8785 8.6663 9.4542 10.2420 11.0298 11.8177 12.6055 13.3934 14.1812]

t=3.1596*(h*(x+d)/((x+d)^2+(x*Q-H+c)*(x*Q-H+h+c)))-0.5025*(-(x*Q-H+c)/(x+d)

)+0.1357;

if s

s=t;

end

end

for x=[2.3635 3.1514 3.9392 4.7271 5.5149 6.3028 7.0906 7.8785 8.6663 9.4542 10.2420 11.0298 11.8177 12.6055 13.3934 14.1812]

t=3.1596*(h*(x+d)/((x+d)^2+(x*Q-H+c)*(x*Q-H+h+c)))-0.5025*(-(x*Q-H+c)/(x+d)

)+0.1357;

if s==t

fprintf('\nX is:%d',x);

fprintf('\nk is:%d',x/(0.8*cos(10/180*pi))+1);

fprintf('\na

is:%d',(atan(h*(x+d)/((x+d)^2+(x*Q-H+c)*(x*Q-H+h+c))))/pi*180);

fprintf('\nb is:%d\n',(atan(-(x*Q-H+c)/(x+d)))/pi*180);

end

end

s

附录四

clear;

clc;

H=5;

h=1.8;

D=19;

d=4.5;

c=1.1;

l=0.8;

pi=3.1415926;

t=0;

for k=1:20

for Q=0:0.01:20

z=h*((k-1)*l*cos(Q/180*pi)+d)/(((k-1)*l*cos(Q/180*pi))^2+((k-1)*l*cos(Q/180

*pi)*tan(Q*pi/180)-H+c)*((k-1)*l*cos(Q*pi/180)*tan(Q/180*pi)-H+h+c));

if t

t=z;

end

end

end

for k=1:20

for Q=0:0.01:20

z=h*((k-1)*l*cos(Q/180*pi)+d)/(((k-1)*l*cos(Q/180*pi))^2+((k-1)*l*cos(Q/180

*pi)*tan(Q*pi/180)-H+c)*((k-1)*l*cos(Q*pi/180)*tan(Q/180*pi)-H+h+c));

if t==z

fprintf('Q 为:%d\n',Q);

fprintf('k 为:%d\n',k);

end

end

end

t

附录五

clear;

clc;

H=5;

h=1.8;

D=19;

d=4.5;

c=1.1;

l=0.8;

pi=3.1415926;

t=0;

for k=1:20

for Q=0:0.01:20

z=h*((k-1)*l*cos(Q/180*pi)+d)/(((k-1)*l*cos(Q/180*pi))^2+((k-1)*l*cos(Q/180 *pi)*tan(Q*pi/180)-H+c)*((k-1)*l*cos(Q*pi/180)*tan(Q/180*pi)-H+h+c));

if t

t=z;

end

end

end

for k=1:20

for Q=0:0.01:20

z=h*((k-1)*l*cos(Q/180*pi)+d)/(((k-1)*l*cos(Q/180*pi))^2+((k-1)*l*cos(Q/180 *pi)*tan(Q*pi/180)-H+c)*((k-1)*l*cos(Q*pi/180)*tan(Q/180*pi)-H+h+c));

if t==z

fprintf('Q 为:%d\n',Q);

fprintf('k 为:%d\n',k);

end

end

end

附录六

%A题模型三程序

%求满意度S(双变量)

clear;

clc;

H=5;

h=1.8;

D=19;

d=4.5;

c=1.1;

l=0.8;

pi=3.1415926;

t=0;

ST=0;

for Q=0:0.01:20

sum=0;

for k=1:floor(14.5/cos(Q/180*pi)+1)

x=(k-1)*l*cos(Q/180*pi);

T=tan(Q/180*pi);

b=(H-c-T*x)/(d+x); %-(A*T-H+c)/(A+d);

a=(d+x)*h/((d+x)^2+(H-c-T*x)*(H-h-c-T*x));%h*(A+d)/((A+d)^2+(A*T-H+c)*(A*T-H+h+c));

%if b>=0

s=3.1579*a-0.4259*b+0.0724; %3.0722*a-0.4274*b+0.0955;

%end

sum=sum+s;

end

if ST

ST=sum;

end

end

for Q=0:0.01:20

sum=0;

for k=1:floor(14.5/cos(Q/180*pi)+1)

x=(k-1)*l*cos(Q/180*pi);

T=tan(Q/180*pi);

b=(H-c-T*x)/(d+x); %-(A*T-H+c)/(A+d);

a=(d+x)*h/((d+x)^2+(H-c-T*x)*(H-h-c-T*x));%h*(A+d)/((A+d)^2+(A*T-H+c)*(A*T-H+h+c));

%if b>=0

s=3.1579*a-0.4259*b+0.0724; %3.0722*a-0.4274*b+0.0955;

%end

sum=sum+s;

end

if ST==sum

fprintf('\nQ is:%d\n',Q); end

end

ST/20

2011数学建模A题优秀论文

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

基于系统综合评价的城市表层土壤重金属污染分析 摘要 本文针对城市表层土壤重金属污染问题,首先对各重金属元素进行分析,然后对各种重金属元素的基本数据进行统计分析及无量纲化处理,再对各金属元素进行相关性分析,最后针对各个问题建立模型并求解。 针对问题一,我们首先利用EXCEL 和 SPSS 统计软件对各金属元素的数据进行处理,再利用Matlab 软件绘制出该城区内8种重金属元素的空间分布图最后通过内梅罗污染 模型:2 /12 max 22?? ? ? ??+=P P P 平均综,其中平均P 为所有单项污染指数的平均值,max P 为土壤环境中 针对问题二,我们首先利用EXCELL 软件画出8种元素在各个区内相对含量的柱状图,由图可以明显地看出各个区内各种元素的污染情况,然后再根据重金属元素污染来源及传播特征进行分析,可以得出工业区及生活区重金属的堆积和迁移是造成污染的主要原因,Cu 、Hg 、Zn 主要在工业区和交通区如公路、铁路等交通设施的两侧富集,随时间的推移,工业区、交通区的土壤重金属具有很强的叠加性,受人类活动的影响较大。同时城市人口密度,土地利用率,机动车密度也是造成重金属污染的原因。 针对问题三,我们从两个方面考虑建模即以点为传染源和以线为传染源。针对以点为传染源我们建立了两个模型:无约束优化模型()[]()[]() 22y i y x i x m D -+-=,得到污染源的位置坐标()6782,5567;有衰减的扩散过程模型得位置坐标(8500,5500),模型为: u k z u c y u b x u a h u 222 2222222-??+??+??=??, 针对以线为传染源我们建立了l c be u Y ?-+=0模型,并通过线性拟合分析线性污染源的位置。 针对问题四,我们在已有信息的基础上,还应收集不同时间内的样点对应的浓度以及各污染源重金属的产生率。根据高斯浓度模型建立高斯修正模型,得到浓度关于时间和空间的表达式ut e C C -?=0。 在本题求解过程中,我们所建立的模型与实际紧密联系,有很好的通用性和推广性。但在求点污染源时,我们假设只有一个污染源,而实际上可能有多个点污染源,从而使得误差增大,或者使污染源的位置够不准确。 关键词 内梅罗污染模型 无量纲化 相关性 回归模型 高斯浓度模型

数学建模优秀论文范文

数学建模优秀论文范文 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须

依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的 发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题审题题设条件代入数学模型求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对 应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需 进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干 个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模 型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过 程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解 题质量,同时也体现一个学生的综合能力。 3(1提高分析、理解、阅读能力。

2013学年数学建模课程论文题目

嘉兴学院2012-2013年度第2学期 数学建模课程论文题目 要求:按照数学建模论文格式撰写论文,以A4纸打印,务必于2013年5月31日前纸质交到8号楼214室,电子版发邮箱:pzh@https://www.360docs.net/doc/a115682057.html,。并且每组至少推荐1人在课堂上做20分钟讲解。 题目1、产销问题 某企业主要生产一种手工产品,在现有的营销策略下,年初对上半年6个月的产品需求预测如表1所示。 班时间不得超过10个小时。1月初的库存量为200台。产品的销售价格为240元/件。该产品的销售特点是,如果当月的需求不能得到满足,顾客愿意等待该需求在后续的某个月内得到满足,但公司需要对产品的价格进行打折,可以用缺货损失来表示。6月末的库存为0(不允许缺货)。各种成本费用如表2所示。 (1)若你是公司决策人员,请建立数学模型并制定出一个成本最低、利润最大的最优产销方案; (2)公司销售部门预测:在计划期内的某个月进行降价促销,当产品价格下降为220元/件时,则接下来的两个月中6%的需求会提前到促销月发生。试就一月份(淡季)促销和四月份(旺季)促销两种方案以及不促销最优方案(1)进行对比分析,进而选取最优的产销规

题目2、汽车保险 某保险公司只提供一年期的综合车险保单业务,这一年内,若客户没有要求赔偿,则给予额外补助,所有参保人被迫分为0,1,2,3四类,类别越高,从保险费中得到的折扣越多。在计算保险费时,新客户属于0类。在客户延续其保险单时,若在上一年没有要求赔偿,则可提高一个类别;若客户在上一年要求过赔偿,如果可能则降低两个类别,否则为0类。客户退出保险,则不论是自然的还是事故死亡引起的,将退还其保险金的适当部分。 现在政府准备在下一年开始实施安全带法规,如果实施了该法规,虽然每年的事故数量不会减少,但事故中受伤司机和乘员数肯定会减少,从而医药费将有所下降,这是政府预计会出现的结果,从而期望减少保险费的数额。这样的结果真会出现吗?这是该保险公司目前最关心的问题。根据采用这种法规的国家的统计资料可以知道,死亡的司机会减少40%,遗憾的是医疗费的下降不容易确定下来,有人认为,医疗费会减少20%到40%,假设当前年度该保险公司的统计报表如下表1和表2。 保险公司希望你能给出一个模型,来解决上述问题,并以表1和2的数据为例,验证你的方法,并给出在医疗费下降20%和40%的情况下,公司今后5年每年每份保险费应收多少才比较合理?给出你的建议。 基本保险费:775元 类别没有索赔时补贴 比例(%) 续保人数新投保人数注销人数总投保人数 0 0 384620 18264 1 25 1 28240 2 40 0 13857 3 50 0 324114 总收入:6182百万元,偿还退回:70百万元,净收入:6112百万元; 支出:149百万元;索赔支出:6093百万元,超支:130百万元。 表1 本年度发放的保险单数 类别索赔人数死亡司机人数平均修理费 (元) 平均医疗费 (元) 平均赔偿费 (元) 0 582756 11652 1020 1526 3195 1 582463 23315 1223 1231 3886 2 115857 2292 947 82 3 2941 3 700872 7013 805 81 4 2321 总修理费:1981(百万元),总医疗费:2218(百万元); 总死亡赔偿费:1894(百万元),总索赔费6093(百万元)。 题目3、工件的安装和排序问题 某设备由24个工件组成,安装时需要按工艺要求重新排序。 Ⅰ.设备的24个工件均匀分布在等分成六个扇形区域的一圆盘的边缘上,放在每个扇形区域的4个工件总重量和相邻区域的4个工件总重量之差不允许超过一定值(如4g)。 Ⅱ.工件的排序不仅要对重量差有一定的要求,还要满足体积的要求,即两相邻工件的

数学建模国家一等奖优秀论文

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写):B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3.

指导教师或指导教师组负责人(打印并签名): ?(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014 年 9 月15日 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

小学数学建模论文

小学数学建模论文 一、充分发挥学生主观能动性并对问题进行简化、假设 学生的想象力是非常丰富的,这对数学建模来说是很有利的。所以教学时要充分发挥学生的想象力,让学生通过小组合作来进一步加深对问题的理解。我们要求的是两车相遇的时间,那么我们可以通过设一个未知数来代替它。根据速度×时间=路程,可以假设时间为x小时,根据题意列出方程:65x+55x=270 二、学生对简化的问题进行求解 第三步,就是要给刚才列出的方程,进行变形处理,变成学生熟悉的,易于解答的算式,如上题可以通过乘法分配律将等式写成120x=270,利用乘法算式各部分间的关系,积÷一个因数=另一个因数,得x=2.25。有的方程并不是通过一步就能解决,这时就显示了简化的重要性,需对方程进行一定的变形、转化。 三、展示和验证数学模型 当问题解决后,就要对建立的模型进行检验,看看得到的模型是否符合题意,是否符合实际生活。如上题检验需将x=2.25带入原式。左边=65×2.25+55×2.25=270,右边=270。左边=右边,

所以等式成立。在这个过程中,可以体现出学生的数学思维过程与其建模的逻辑过程。教师对于学生的这方面应进行重点肯定,并鼓励学生对同学间的数学模式进行点评。一般而言,在点评时要求学生把相互间的模式优点与不足都要尽量说出来,这是一种提高学生对数学语言运用能力与表达能力的训练,也能让学生在相互探讨的过程中,得以开启思路,博采众长。 四、数学模型的应用 来自于生活实际的数学模式其建模的目的是为了解决实际问题。所以立足于此,建模的实际意义应在于其应用价值。模型应具有普遍适应性,不能是一个模型只能解决一个实际问题,这样的模型是不符合要求的。所以在建模时需要考虑要建的模型是否有实用价值,是否改变一下,还能通过怎样的方法进行解题,如果数学模型只适合一题,不适合相关题,就没有建立模型的必要。如给出这样的题目:两地之间的路程是420千米,一列客车和一列货车同时从两个城市相对开出,客车每小时行55千米,火车的速度是客车的1011,两车开出后几小时相遇?我们就可以通过刚才的模型来解题。设两车开出后x小时相遇。55x+55×1011x=420解得x=4将x=4代到方程的左边=55×4+55×1011×4=420,右边=420,左边=右边,所以x=4是方程的解,符合题意。这样,完整的数学模型就建立了。为以后相似类型的题建立了一

数学建模论文范文[1]

利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题审题题设条件代入数学模型求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。

数学建模练习小论文1

中国省、自治区城市规模结构分类 一、省、自治区的规模结构综合评价分类: (1)建立综合评价指标体系 省、自治区的综合城市规模结构是取决于多个相关因数综合评估的,综合因数特征主要体现在的相关方面.遵循可比性原则,从省、自治区的城市的多方面中选取5项评价指标,具体如图1. 图一、城市规模结构特征数据 (2)数据资料 指标的原始数据取自《中国统计年鉴,1999》到五项指标值见表1.其中:1x 为城市规模;2x 为城市首位度;3x 为城市指数;4x 为基尼系数;5x 为城市规模中位值 . (3)R 型聚类分析 定性考察反映省、自治区城市规模结构五项评价指标,可以看出,某些指标之间

可能存在较强的相关性.比如城市首位度与城市指数,城市规模和城市规模中位值.为了验证这种想法,运用MATLAB 软件计算五个指标之间的相关系数,相关系数矩阵如表3所示. 计算的MATLAB 程序如下: load gi.txt %把原始数据保存在纯文本文件gi.txt 中 r=corrcoef(gi)%计算相关系数矩阵 d=1-r; %进行数据变换,把相关系数转化为距离 d=tril(d); %取出矩阵d 的下三角元素 d=nonzeros(d); %取出非零元素 d=d'; %化成行向量 z=linkage(d,'average'); %按类平均法聚类 dendrogram(z); %画聚类图 T=cluster(z,'maxclust',4) %把变量划分成4类 for i=1:4 tm=find(T==i); %求第i 类的对象 tm=reshape(tm,1,length(tm)); %变成行向量 fprintf('第%d 类的有%s\n',i,int2str(tm)); %显示分类结果 end 2 3 4 1 5 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 图二 指标聚类树型图 图三 相关系数矩阵 1x 2x 3x 4x 5x 1x 1.0000 0.0239 0.3398 0.3654 0.4037 2x 0.0329 0.7038 1.0000 0.2127 -0.2261

数学建模论文标准格式

数学建模论文标准格式 为了适应数学发展的潮流和未来社会人才培养的需要,美国、德国、日本等发达国家普遍都十分重视数学建模教学。以下是小编整理的数学建模论文标准格式,欢迎阅读。 1.数学建模简介 1985年,数学建模竞赛首先在美国举办,并在高等院校广泛开设相关课程。我国在1992年成功举办了首届大学生数学竞赛,并从1994年起,国家教委正式将其列为全国大学生的四项竞赛之一。数学建模是分为国内和国外竞赛两种,每年举行一次。三人为一队,成员各司其职:一个有扎实的数学功底,再者精于算法的实践,最后一个是拥有较好的文采。数学建模是运用数学的语言和工具,对实际问题的相关信息(现象、数据等)加以翻译、归纳的产物。数学模型经过演绎、求解和推断,运用数学知识去分析、预测、控制,再通过翻译和解释,返回到实际问题中[1]。数学建模培养了学生运用所学知识处理实际问题的能力,竞赛期间,对指导教师的综合能力提出了更高的要求。 2.数学建模科技论文撰写对学生个人能力成长的帮助 2.1.提供给学生主动学习的空间 在当今知识经济时代,知识的传播和更新速度飞快,推行素质教育是根本目标,授人与鱼不如授人与渔。学生掌握自学能力,能有效的弥补在课堂上学得的有限知识的不足。数学建模所涉及到的知识面广,除问题相关领域知识外,还要求学生掌握如数理统计、最优化、

图论、微分方程、计算方法、神经网络、层次分析法、模糊数学、数学软件包的使用等。多元的学科领域、灵活多变的技能方法是学生从未接触过的,并且也不可能在短时间内由老师一一的讲解清楚,势必会促使学生通过自学、探讨的方式来将其研懂。给出问题,让学生针对问题去广泛搜集资料,并将其中与问题有关的信息加以消化,化为己用,解决问题。这样的能力将对学生在今后的工作和科研受益匪浅[2]。 在培训期间,大部分学生会以为老师将把数学建模比赛所涉及到的知识全部传授给学生,学生只要在那里坐着听老师讲就能参加比赛拿到名次了。但是当得知竞赛主要由学生自学完成,老师只是起引导作用时,有部分学生选择了放弃。坚持下来的学生,他们感谢学校给与他们这样能够培养个人能力的机会,对他们今后受用匪浅! 2.2.体验撰写综合运用知识和方法解决实际问题这一系列论文的过程 学生在撰写数学建模科技论文的时候,不光要求学生具备一定的数学功底、有良好的计算机应用能力、还要求学生具备相关领域知识,从实际问题中提炼出关键信息,并运用所学知识对这些关键信息加以抽象、建立模型。这也是教师一直倡导学生对所学知识不光要记住,而且要会运用。千万不要读死书,死读书,读书死。 2.3.培养了学生的创新意识和实践能力 在撰写过程中潜移默化的培养了学生获取新知识、新技术、新方法的能力,并在解决实际问题的过程中培养学生的创新意识和实践能

2018数学建模课程论文以及课程实验题目

2017-2018学年第二学期数学建模课程论文题目 请大家在三个题目中选择二个来完成,完成的二个题目装订为一个文档。打印从封面开始,页码从摘要开始编。 交论文时间:12周三下午3:30-5:50;至善楼217 A题食品加工 一项食品加工,为将几种粗油精炼,然后加以混合成为成品油。原料油有两大类,共5种:植物油2种,分别记作V1和V2;非植物油3种,记为O1、O2和O3。各种原料油均从市场采购。现在(一月份)和未来半年中,市场价格(元/吨)如下表所示: 月份油V1 V2 O1 O2 O3 一1100 1200 1300 1100 1150 二1300 1300 1100 900 1150 三1100 1400 1300 1000 950 四1200 1100 1200 1200 1250 五1000 1200 1500 1100 1050 六900 1000 1400 800 1350 成品油售价1500元/吨。植物油和非植物油要在不同的生产线精炼。每个月最多可精炼植物油200吨,非植物油250吨。假设精炼过程中没有重量损失。精炼费用可以忽略。每种原料油最多可存贮1000吨备用。存贮费为每吨每月50元。成品油和经过精炼的原料油不能存贮。对成品油限定其硬度在3至6单位之间。各种原料油的硬度如下表所示: 油V1 V2 O1 O2 O3 硬度8.8 6.1 2.0 4.2 5.0 假设硬度是线性地合成的。 另加条件:现存有5种原料油每种500吨。要求在6月底仍然有这样多的存货;每个月最多使用3种原料油;如果某月使用了原料油V1和V2,则必须使用O3。 (1)为使公司获得最大利润,应取什么样的采购和加工方案。 (2)分析总利润同采购和加工方案适应不同的未来市场价格应如何变化。考虑如下的价格变化方式:2月份植物油价上升x%,非植物油价上升2x%;3月份植物油价上升2x%,非植物油价上升4x%;其余月份保持这种线性上升势头。对不同的x值(直到2),就方案的必要的变化以及对总利润的影响,作出计划。

数学建模优秀论文模板(全国一等奖模板)

Haozl觉得数学建模论文格式这么样设置 版权归郝竹林所有,材料仅学习参考 版权:郝竹林 备注☆ ※§等等字符都可以作为问题重述左边的。。。。。一级标题 所有段落一级标题设置成段落前后间距13磅 图和表的标题采用插入题注方式题注样式在样式表中设置居中五号字体 Excel中画出的折线表字体采用默认格式宋体正文10号 图标题在图上方段落间距前0.25行后0行 表标题在表下方段落间距前0行后0.25行 行距均使用单倍行距 所有段落均把4个勾去掉 注意Excel表格插入到word的方式在Excel中复制后,粘贴,word2010粘贴选用使用目标主题嵌入当前 Dsffaf 所有软件名字第一个字母大写比如E xcel 所有公式和字母均使用MathType编写 公式编号采用MathType编号格式自己定义

农业化肥公司的生产与销售优化方案 摘 要 要求总分总 本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab 软件编程得出合理的结论,最终对模型的结果做出了误差分析。 针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。我们作图分析出实验储油罐出现纵向倾斜 14.时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB 软件推导出了所测油位高度与实际罐容量的关系式。并且给出了罐体倾斜变位后油位高度间隔为1cm 的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为4103878.2-?,这充分说明残差波动不大。我们得出结论:罐体倾斜变位后,在同一油位条件下倾斜变位后罐容量比变位前罐容量少L 243。 表 1.1 针对问题二要求对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。我们根据实际储油罐的特殊构造将实际储油罐分为三部分,左、右球冠状体与中间的圆柱体。运用积分的知识,按照实际储油罐的纵向变位后油位的三种不同情况。利用MATLAB 编程进行两次积分求得仅纵向变位时油量与油位、倾斜角α的容积表达式。然后我们通过作图分析油罐体的变位情况,将双向变位后的油位h 与仅纵向变位时的油位0h 建立关系表达式01.5(1.5)cos h h β=--,从而得到双向变位油量与油位、倾斜角α、偏转角β的容积表达式。利用附件二的数据,采用最小二乘法来确定倾斜角α、偏转角β的值,用matlab 软件求出03.3=α、04=β α=3.30,β=时总的平均相对误差达到最小,其最小值为0.0594。由此得到双向变位后油量与油位的容积表达式V ,从而确定了双向变位后的罐容表(见表2)。 本文主要应用MATLAB 软件对相关的模型进行编程求解,计算方便、快捷、准确,整篇文章采取图文并茂的效果。文章最后根据所建立的模型用附件2中的实际检测数据进行了误差分析,结果可靠,使得模型具有现实意义。 关键词:罐容表标定;积分求解;最小二乘法;MATLAB ;误差分

数学建模小论文

阶梯电价的设置 摘要 本文讨论的阶梯电价的设置问题,在解决过程中,需要将实际问题进行合理化的假设,从而简化。 本文在问题一处理的过程中利用matlab中,分别统计出两个小区居民用电量处于第一档和第二档的百分比,并进行比较,从而得出A,B两个小区用电量均属于第一档水平,为基本用电水平。然后,可以利用excel进行排序,然后根据第一档80%,第二档95%的百分比进行划线,从而确定两个小区各自的阶梯电价实施标准。 本文在问题二处理的过程中,可以根据A,B两个小区居民用水、电量的统计表,利用excel处理,绘制出A、B两个小区每个季度关于用水量-用电量关系的散点图,拟合出用水量与用电量之间存在基本的线性关系。 本文在问题三处理的过程中,结合问题一,二的结论,建立模型,考虑并比较该节水设备节省下的水费和设备花费的开销总和。 关键词:excel matlab

一.问题重述 由于历史的原因,我国长期实行工业电价补贴居民电价的交叉补贴制度。从我国居民电力消费结构看,5%的高收入家庭消费了约24%的电量,这就意味着低电价政策的福利更多地由高收入群体享受。这既不利于社会公平,无形中也助长了电力资源的浪费。 2012年7月1日“阶梯电价”在全国范围内实施。阶梯式电价是阶梯式递增电价或阶梯式累进电价的简称,也称为阶梯电价,是指把户均用电量设置为若干个阶梯分段或分档次定价计算费用。 根据此前发改委公布的方案征求意见稿,阶梯电价拟分为三档,把居民每个月的用电分成基本用电、正常用电、高质量用电三档。在落实用电量层面,第一档基本用电,电量按照覆盖80%居民的用电量来确定,第二档正常用电量则按照覆盖至95%的居民用电量。通过划分一、二、三档电量,较大幅提高第三档电量电价水平,在促进社会公平的同时,也可以培养全民节约资源、保护环境的意识,逐步养成节能减排的习惯。 阶梯电费收取方法为: 1、当实际用电量在第一级电量基数范围内时,阶梯电费=基本电价×实际用电量; 2、当实际用电量在第二级电量基数范围之间时,阶梯电费=基本电价×第一级电量+二档电价×(实际用电量-第二级电量基数下限); 3、当实际用电量超过第二级电量基数上限时,阶梯电费=基本电价×第一级电量+二档电价×第二级电量基数区间范围+三档电价×(实际用电量-第二级电量基数上限)。 例如: 山东省阶梯电价标准如下: 第一档:电量每户每月210度及以下,执行现行电价,每度0.5469元; 第二档:电量每户每月210-400度之间,在现行电价基础上,每度加价0.05元,即每度0.5969元; 第三档:电量每户每月400度以上,在现行电价基础上,每度加价0.3元,即每度0.8469元。 附件1中是济南市两个小区居民用水、电量的统计表,请分析数据并建模回答下列问题: 问题一针对现行的阶梯电价标准,判断该小区用电量属于何种水平。从该小区用电量水平出发,请制定合适的阶梯电价实施标准。 问题二试分析居民用水与用电量之间是否有关系。 问题三现有一家用节水设备,能达到节水10%的目的。请从设备的安装成本、耗电量、维护费用及使用寿命几个角度出发,结合居民用水电量数据, 建立数学模型,给出该设备是否能够降低居民水电费的判别方法。

大学数学建模论文(期末考试)

重庆工贸职业技术学院 数 学 建 模 论 文 论文题目:生产计划问题

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导老师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): C 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):重庆工贸职业技术学院 参赛队员(打印并签名):1. 李旭 2. 秦飞 3. 刘霖 指导教师或指导教师负责人(打印并签名):邹友东 日期:2015年6月12日赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

生产计划问题 摘要 本文中我们通过对农作物的种植计划以及种植农作物的投资的合理设置进行研究,通过对题目的分析可以看出本题是关于线性规划的问题,解决此类问题要找出决策变量,目标函数,约束条件等,由于涉及的未知量较多,并没有使用常规的图解法,而是通过建立基于目标函数与约束条件的线性规划模型,和Mathematica软件的运作求解,寻求农作物的种植和总投资的最优化方案,得到种植农作物的总产量最高, 而总投资最少的计划。 关键词 合理分配投资农作物种植分配线性规划Mathematica软件 LINDO软件

数学建模论文题目

2011-2012年度第二学期数学模型考查试题 要求: 在第19周的星期一下午将数学建模论文和实验报告交上来,论文大体包括:中文摘要,问题重述,模型假设,模型建立,模型求解,结果分析,模型改进,模型评价,参考文献,附录等。 引用别人的成果或其它公开的资料(包括网上查阅的资料)必须按照规定的参考文献的标示方式在正文引用处和参考文献中均明确列出。正文引用处用方括号表示参考文献的编号,如([1]、[3])等;引用书籍还必须指出页码。附录里有一篇作为示范的论文。 题目: 在如下8道题目中任选一题作为考试内容,或者历年来的高教社杯数学建模竞赛的A或B题中任选一题作为考试内容。 1、如何更合理的利用学生打分评价教师的教学效果 在中学,学校常拿学生的考试成绩评价教师的教学水平,虽存在一定的合理性,但这与素质教育相悖。在高校不存在以学生考试乘积评价教师教学水平的条件。很多高校让每一位学生给每一位授课教师教学效果打一个分,来评价教师的教学效果,这样能全面体现教师教学效果。现某高校要从甲、乙、丙三位教师中选一位优秀教师,他们在A、B、C、D班的得分如下: 方案一:取每位教师的最高得分作为最后得分,则应选丙。 方案二:取每位教师的最低得分作为最后得分,则应选乙。 方案三:取每位教师的平均得分作为最后得分,则应选乙。 但大家都会感觉甲应该当选,显然上述三种方案都有不合理的地方。 如何利用全校同学的打分给每一位教师整体教学效果一个更合理、更公平的评价,对提高教师和同学的积极性,提高学校的教学氛围有促进作应。问:

1)、请根据你们班的具体情况进行分析,对某位教师的得分统计建立一个合理 的教学效果评价模型。 2)、已知数学学院的所有同学给信息系教师的打分,建立一个模型给出各位教 师更合理、更公平的教学效果得分,并根据你的模型给出后面某高校(其中数据认定为根据你在问题1中方法得出)各位教师一个得分,见附件一。 3)若学校采用了你的模型,请给全校同学写一封信给教师打分应注意哪些事 项,让你的模型更合理、更公平。 附件一: 在洪水肆虐时,从全局出发有必要采取破堤泄洪,但从何处破堤分洪要考虑破堤的最小损失。现在选定在河岸一边完全封闭的某一区域破堤泄洪,根据区域内地形以及当前地面财产总数的不同,可将该区域分成17个小区域,各个相邻小区之间有相对高度为1.2米的小堤互相间隔。如下图所示: ----------------河----------------------------流----------------------------

数学建模论文题目

《数学建模》2014-2015第二学期期末论文答辩要求 答辩要求: 1.制作ppt,powerpoint2007版本; 2.一人主讲,两人回答提问; 3.陈述者做到: ●清晰地描述生活现象 ●提出问题 ●给出目标 ●建立数学模型 ●用数学方法解决模型 ●解释结果 4.每个小组陈述时间10min,提问3min; 5.准备期间可以与同学老师讨论,小组为核心力量进行筹备; 6.本次课业分值较重,也将成为选拔的依据之一,希望大家认真准备。 注意: 1.撰写论文的过程中,务必做到尊重版权,只要论文中有引用别人的想法或整段文字,一定要在论文中明确,摘要部 分写清哪些是自己做的创新部分,哪些是借用别人现成的结果!在答辩过程这将成为提问的要点! 2.纸质版论文初稿于2015年6月9日之前送交820办公室,次日到办公室取修改建议,未交初稿者不得参加答辩! 3.答辩时间:2014年6月16日13:10-16:20,错过机会成绩为零。 4.答辩当天将修改版论文电子版提交,同时纸质版上交。 《数学建模》2014-2015第二学期期末论文参考题目 1.结合本专业内容,自己设计题目,清楚地交代背景,阐明问题,利用数学建模方法给出问题的求解过程,对结果有 合理独到的分析,并对模型进行评价。 2.生活中现象或经历,题目自拟,清楚地交代背景,阐明问题,利用数学建模方法给出问题的求解过程,对结果有合 理独到的分析,并对模型进行评价。 3.期中作业的延伸,用更好的方法,更合理的思路进一步探索,并按照规范的数学建模论文撰写规则,提交改进版模 型。 4.课堂作业的扩充,将一份小作业添加合理的生活或专业背景叙述,使之成为生活中的案例,建模解决问题。 5.参考课题:学生素质评价模型(对学生的评价都应该包括哪些部分?学生之间横向比较还是学生自己不同时间的纵 向比较更合理?如何比较?如果不同的老师给学生打分,如果避免主观因素造成的分差影响,拟用一个班的学生作为例子,给出数据的处理过程和结果) 以下课题仅供参考(题目的难度系数不同,请大家根据能力选择一题): 1.学校食堂菜价调查分析(要求搜集数据——进行分析——给出结论) 2.14级学生消费状态调查分析 3.家庭消费结构调查分析 4.某种产品销售调查 5.银行存款计算 6.银行贷款月供探析 7.北京市朝阳区宾馆价格分析 8.交通路口红绿灯设置 9.某学科学生成绩分析 10.公交站发车时间调查(估计行驶时间,策划安排一天的运营发车时间) 11.某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5 千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱. 问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划.

数学模型论文

东北大学 研究生考试试卷 考试科目:数学模型 课程编号: 阅卷人: 考试日期:2011.12 姓名:王艳超2班 学号:1170380 注意事项 1.考前研究生将上述项目填写清楚 2.字迹要清楚,保持卷面清洁 3.交卷时请将本试卷和题签一起上交 东北大学研究生院

数学模型在人口预测中的应用 绪论 随着社会的发展和科技的进步,数学愈来愈向其它科技领域渗透,数学模型的研究愈来愈广泛和深入.物理和力学是数学应用的传统领域,其中有许多著名的数学模型.然而,以前数学在化学、生物等自然学科中应用的很少.近年来,情况发生了变化. 最近几个世纪以来世界的人口增加的很快,数学模型的方法在研究人口的预测的领域得到了越来越广泛的重视.有人预计到21世界的中叶,人类将超过100亿.地球上可供人类利用的资源是十分有限的,世界人口的迅速膨胀,特别是发展中国家过高的人孔增长率成为一个十分严峻的问题.另一方面,当前许多国家人口的年龄结构不合理,出现人口老龄化的趋势,产生了一系列新的社会问题. 面临这样的形势,人类必须进行自我控制,既要抑制人口增长的过快形势又要使人口的年龄结构有一个合理的分布.要实现此目标必须建立人口的预测和控制的数学模型,为正确的的人口政策提供科学的依据.

一 人口预测模型综述 人口预测是指以人口现状为基础,对未来人口的发展趋势提出合理的控制要求和假定条件即参数条件,来获得对未来人口数据提出预报的技术或方法.未来人口规模是土地利用规划中确定各类土地需求量控制性指标、调整土地利用结构,实现土地供需平衡,解决人地矛盾的重要依据.因此,探讨人口预测方法在土地利用规划中的合理应用,对土地利用规划和土地可持续发展有着十分重要的意义. 常用人口预测方法有人口自然增长法、线性回归法、移动平均法、指数平滑法、灰色预测法、系统动力学方法、人工神经网络预测法、马尔萨斯(Malthus )模型、Logistic 人口预测模型、Leslie 人口预测模型预测、宋健人口预测模型、王广州系统仿真结构功能模型等. 除以上方法外,一些学者还利用SPSS 统计软件、资源环境容量、土地承载力、生命表法、Berta lanffy 模型、数学期望等对人口预测进行了一些研究.另外,由于预测方法种类繁多,运用组合预测的的方法也有研究.下面分别叙述之. (一)人口自然增长法 自然增长法是土地利用规划中人口预测最常用的方法.自然增长法是以现有人口为基数,根据人口的年平均增长率,自然增长率和人口机械增长数来确定规划目标年的总人口数.常采用的公式有两种,即: )1(R n N P += (1) G N P r n +=+)1( (2) 式中:P 为规划目标年的总人口数;N 为规划基础年的总人口数;R 为规划期人口年平均增长率;r 为规划期人口自然增长率;n 为规划年限;G 为人口机械增长数(迁入与迁出之间的差数).利用以上两个公式预测时,关键是要指定各个参数的值,在以上参数值准确的前提下,自然增长法具有普遍的适用性. (二)线性回归法 1.一元线性回归.用一元线性回归法预测的基本思想是::按照两个变量X 、Y 的现有数据,把X 、Y 作为已知数,根据回归方程寻求合理的a 、b ,确定回归曲线.再把a 、b 作为已知数,去确定X 、Y 的未来演变.一元线性回归方程为:

简单的数学建模小论文七年级

简单的数学建模小论文 七年级 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

合理分配 ---------数学建模论文 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情,生活中有许多地方都要用到数学来解决问题。“合理分配”系列的问题更是值得思考又有趣。合理分配包括:合理分配时间、钱及市场上购买不同种类如何分配等。我们现在来讨论一下这种问题,举些例子。 假如你是一名医生,你有三个病人甲乙丙。甲打针需要十分钟,乙配药要五分钟,丙要包扎纱布有需要八分钟,而这时,医务室里只有你这么一个医生,你该如何安排他们的治病次序,才能使三人留在医务室的时间总和最短?这个问题相对简单。 可以想象,最后一位病人用的时间一定是10+8+5=23分钟。如果要让时间尽可能短,就要把治疗用时较长的病人排在后面治,让较大数出现的次数尽量少,也就是让甲排在最后。以此类推,第二个是丙,需要5+8=13分钟;第一个是乙,用五分钟。最后算出的便是最短时间:41分钟。 再举一个复杂写的合理分配的例子。 假设你又是一个超市的老板,你的超市准备用一万元来买甲、乙鲜奶,甲为16元一箱,乙为20元一箱。有假设购进甲x箱、乙y箱。据市场调查,甲乙鲜奶保质期内销售量不能超过280箱,超市有多种进货方案。然后你又计划将甲乙分别加价百分之二十和百分之二十五销售,那么哪种进货方案可获最大利润。

首先用含x的代数式表示一下y:16x+20y=10000,y=(10000-16x)/20,y 就等于。那么x大于等于275.而后写出所有进货方案,因为x、y都为整数,所以: 当x=275时,y=280; 当x=276时,y=279; 当x=277时,y=278; 当x=278时,y=277; 1 当x=279时,y=276; 当x=280时,y=275. 而提价后,甲卖每箱元,乙卖每箱25元。甲每箱赚元,乙每箱赚5元。乙赚得较多,因此乙买的最多的方案就有最大利润,即乙买280箱,甲买275箱。这个时候有的同学会把所有方案的所得利润都算出来,在比较。 但其实没有这个必要,只要看谁赚得多,就多买谁就行了。 这个问题就比较复杂了,不运用数学知识解决不了。当然,生活中还有更多更复杂的合理分配等实际问题。由此可见,数学可以解决生活中各种各样的实际问题,帮助我们。因此我们要好好学习数学,并把学到的知识用到实际生活当中。

相关文档
最新文档