移相全桥拓扑工作图解

移相全桥拓扑工作图解
移相全桥拓扑工作图解

(一)移相全桥工作图解

移相全桥

移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高 开关频率。如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见 下文详解。 主电路分析 这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A.采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实 现ZCS.电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后 臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T为主变压器,副边由 VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。 图1 1.2kw软开关直流电源电路结构简图 其基本工作原理如下: 当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开 关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断 VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其 值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电 压关断。 由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时 开通VT2,则VT2即是零电压开通。

移相全桥ZVZCSDCDC变换器综述

移相全桥ZVZCSDC/DC变换器综述 河北秦皇岛燕山大学朱艳萍电源技术应用 摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。 关键词:移相控制;零电压零电流开关;全桥变换器 1概述 所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。即当原边电流减小到零后,不允许其继续反方向增长。原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件; 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。 2 电路拓扑 根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC 拓扑结构,以供大家参考。 1)NhoE.C.电路如图1所示[1]。该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。该电路可以工作在电流临界连续状态,但必须采用频率控制,不利于滤波器的优化设计。

网络拓扑图

络网拓扑图 编辑词条 网络拓扑结构是指用传输媒体互连各种设备的物理布局。媒体互连在一起有多种方法,实际上只有几种方式能适合LAN的工作。 目录 1 基本介绍 2 主要分类 3 典型结构 1 基本介绍 2 主要分类 3 典型结构 1 基本介绍编辑本段 网络拓扑结构是指用传输媒体互连各种设备的物理布局,就是用什么方式把网络中的计算机等设备连接起来。拓扑图给出网络服务器、工作站的网络配置和相互间的连接,它的结构主要有星型结构、环型结构、总线结构、分布式结构、树型结构、网状结构、蜂窝状结构等。

2 主要分类编辑本段 星型拓扑结构 星型结构是最古老的一种连接方式,大家每天都使用的电话属于这种结构。星型结构是指各工作站以星型方式连接成网。网络有中央节点,其他节点(工作站、服务器)都与中央节点直接相连,这种结构以中央节点为中心,因此又称为集中式网络。 这种结构便于集中控制,因为端用户之间的通信必须经过中心站。由于这一特点,也带来了易于维护和安全等优点。端用户设备因为故障而停机时也不会影响其它端用户间的通信。同时它的网络延迟时间较小,传输误差较低。但这种结构非常不利的一点是,中心系统必须具有极高的可靠性,因为中心系统一旦损坏,整个系统便趋于瘫痪。对此中心系统通常采用双机热备份,以提高系统的可靠性。 环型网络拓扑结构 环型结构在LAN中使用较多。这种结构中的传输媒体从一个端用户到另一个端用户,直到将所有的端用户连成环型。数据在环路中沿着一个方向在各个节点间传输,信息从一个节点传到另一个节点。这种结构显而易见消除了端用户通信时对中心系统的依赖性。 环行结构的特点是:每个端用户都与两个相临的端用户相连,因而存在着点到点链路,但总是以单向方式操作,于是便有上游端用户和下游端用户之称;信息流在网中是沿着固定方向流动的,两个节点仅有一条道路,故简化了路径选择的控制;环路上各节点都是自举控制,故控制软件简单;由于信息源在环路中是串行地穿过各个节点,当环中节点过多时,势必影响信息传输速率,使网络的响应时间延长;环路是封闭的,不便于扩充;可靠性低,一个节点故障,将会造成全网瘫痪;维护难,对分支节点故障定位较难。 总线拓扑结构 总线结构是使用同一媒体或电缆连接所有端用户的一种方式,也就是说,连接端用户的物理媒体由所有设备共享,各工作站地位平等,无中心节点控制,公用总线上的信息多以基带形式串行传递,其传递方向总是从发送信息的节点开始向两端扩散,如同广播电台发射的信息一样,因此又称广播式计算机网络。各节点在接受信息时都进行地址检查,看是否与自己的工作站地址相符,相符则接收网上的信息。 使用这种结构必须解决的一个问题是确保端用户使用媒体发送数据时不能出现冲突。在点到点链路配置时,这是相当简单的。如果这条链路是半双工操作,只需使用很简单的机制便可保证两个端用户轮流工作。在一点到多点方式中,对线路的访问依靠控制端的探询来确定。然而,在LAN环境下,由于所有数据站都是平等的,不能采取上述机制。对此,研究了一种在总线共享型网络使用的媒体访问方法:带有碰撞检测的载波侦听多路访问,英文缩写成CSMA/CD。 这种结构具有费用低、数据端用户入网灵活、站点或某个端用户失效不影响其它站点或端用户通信的优点。缺点是一次仅能一个端用户发送数据,其它端用户必须等待到获得发送权;媒体访问获取机制较复杂;维护难,分支节点故障查找难。尽管有上述一些缺点,但由于布线要求简单,扩充容易,端用户失效、增删不影响全网工作,所以是LAN技术中使用最普遍的一种。 分布式拓扑结构

移相全桥ZVZCS主电路综述

移相全桥ZVZCS DC/DC变换器综述 [导读]移相全桥ZVZCS DC/DC变换器综述摘要:概述了9种移相全桥ZVZCSDC/DC 变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺 关键词:变换器 移相全桥ZVZCS DC/DC变换器综述 摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。 关键词:移相控制;零电压零电流开关;全桥变换器 1 概述 所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。即当原边电流减小到零后,不允许其继续反方向增长。原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件; 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。 2 电路拓扑 根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCS PWM DC/DC拓扑结构,以供大家参考。 1)Nho E.C.电路如图1所示[1]。该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。这种拓扑结构的缺陷是L1k要折衷选择,L1k 太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了i L1k的变化速度,从而限制了变换器开关频率的提高。变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,

网络拓扑图中常用的图标1

网络拓扑图中常用的图标 1.交换机类图标 2.路由器类图标 固化汇聚交换机 模块化汇聚交换机 核心交换机 二层堆叠交换机 三层堆叠交换机 接入交换机 SOHO 多业务路由器 IPv6多业务路由器 高端路由器 中低端路由器 VOICE 多业务路由器

附录A 网络拓扑图中常用的图标 ·425· 3.无线网络设备类图标 4.网络安全设备类图标 5.服务器类图标 IPS 入侵检测系统 VPN 网关 视频服务器 IDS 入侵检测系统 防火墙-02 数据库服务器 通用服务器 -02 Web 服务器 单路AP 双路AP 室外天线 天线网桥-01 天线网桥-02 天线交换机 天线网卡-01 天线网卡 -02 笔记本+天线网卡 加密隧道 -02 加密隧道 -01 防火墙-01 加密锁 USB Key VPN 客户端软件 SAM 服务器 通用服务器-01 文件服务器 SAS 服务器 CA 服务器 打印服务器

计算机网络工程实用教程 ·426· 6.PC 机与笔记本类图标 7.用户/办公设备类图标 台式机 笔记本-01 笔记本-02 液晶显示器 电视机 用户-男 用户-女 用户群 办公 会议 黑客-01 黑客-02 黑客-03 打印机 多功能一体机 电话 可视电话 IP 电话 PDA 手机 通用服务器 -03 SMP 服务器 TMS 服务器 LIMP 服务器 Strar View 服务器 认证客户端 服务器群-01 服务器群-02

附录A 网络拓扑图中常用的图标·427·8.建筑环境类图标 9.网络/线路类图标制造业 商业中心 小区企业住宅办公楼 酒店-01 酒店-02 教育-01 教育-02 金融 政府医疗公检法邮政

LLC移相全桥

移相全桥学习笔记 在早期的大功率电源(输出功率大于1KW)应用中,硬开关全桥(Full-Bridge)拓扑是应用最为广泛的一种,其特点是开关频率固定,开关管承受的电压与电流应力小,便于控制,特别是适合于低压大电流,以及输出电压与电流变化较大的场合。但受制于开关器件的损耗,无法将开关频率提升以获得更高的功率密度。例如:一个5KW的电源,采用硬开关全桥,即使效率做到92%,那么依然还有400W的损耗,那么每提升一个点的效率,就可以减少50W的损耗,特别在多台并机以及长时间运行的系统中,其经济效益相当可观。 随后,人们在硬开关全桥的基础上,开发出了一种软开关的全桥拓扑——移相全桥(Phase-Shifting Full-Bridge Converter,简称PS FB),利用功率器件的结电容与变压器的漏感作为谐振元件,使全桥电源的4个开关管依次在零电压下导通(Zero voltage Switching,简称ZVS),来实现恒频软开关,提升电源的整体效率与EMI性能,当然还可以提高电源的功率密度。 上图是移相全桥的拓扑图,各个元件的意义如下: Vin:输入的直流电源 T1-T4:4个主开关管,一般是MOSFET或IGBT T1,T2称为超前臂开关管,T3,T4称为滞后臂开关管 C1-C4:4个开关管的寄生电容或外加谐振电容 D1-D4:4个开关管的寄生二极管或外加续流二极管 VD1,VD2:电源次级高频整流二极管 TR:移相全桥电源变压器 Lp:变压器原边绕组电感量 Ls1,Ls2:变压器副边电感量 Lr:变压器原边漏感或原边漏感与外加电感的和 Lf:移相全桥电源次级输出续流电感 Cf: 移相全桥电源次级输出电容 R L: 移相全桥电源次级负载

常用网络拓扑图图标

常用网络拓扑图图标 1.交换机类图标 2.路由器类图标 3.无线网络设备类图标 4.网络安全设备类图标 接入交换机 核心交换机 模块化汇聚交换机 固化汇聚交换机 三层堆叠交换机 二层堆叠交换机 高端路由器 中低端路由器 VOICE 多业务路由器 SOHO 多业务路由器 IPv6多业务路由器 单路AP 双路AP 室外天线 天线网桥-01 天线网桥-02 天线交换机 天线网卡-01 天线网卡-02 笔记本+天线网卡 防火墙-01 防火墙-02 IDS 入侵检测系统 IPS 入侵检测系统 VPN 网关 VPN 客户端软件 USB Key 加密锁 加密隧道-01 加密隧道 -02

5.服务器类图标 6.PC 机与笔记本类图标 7.用户/办公设备类图标 通用服务器-03 SMP 服务器 TMS 服务器 LIMP 服务器 Strar View 服务器 认证客户端 服务器群-01 服务器群-02 通用服务器-01 通用服务器-02 Web 服务器 数据库服务器 视频服务器 文件服务器 打印服务器 CA 服务器 SAM 服务器 SAS 服务器 台式机 笔记本-01 笔记本-02 液晶显示器 电视机 PDA 手机 用户-男 用户-女 用户群 办公 会议 黑客-01 黑客-02 黑客-03 打印机 多功能一体机 电话 可视电话 IP 电话

计算机网络工程实用教程 ·442· 8.建筑环境类图标 9.网络/线路类图标 制造业 商业中心 小区 企业 住宅 办公楼 酒店-01 酒店-02 教育-01 教育-02 金融 政府 医疗 公检法 邮政

移相全桥ZVS及ZVZCS拓扑结构分析

移相全桥ZVS及ZVZCS拓扑结构分析 鲁雄飞 河海大学电气工程学院,南京(210098) E-mail:luxiongfei@https://www.360docs.net/doc/a211831651.html, 摘要:总结了基于零电压及零电压零电流全桥PWM技术的各种典型拓扑,比较分析了其拓扑结构及各自的特点。在不同的应用场合,我们应该根据其特点选择合适的拓扑结构。关键词:变换器;PWM;零电压开关;零电压零电流开关; 中图分类号:TTP 1.引言 移相控制方式是控制型软开关技术在全开关PWM拓扑的两态开关模式(通态和断态)通过控制方法变为三态开关工作模式(通态断态和续流态),在续流态中实现开关管的软开关。全桥移相ZVS-PWM DC/DC变换拓扑自出现以来,得到了广泛应用,其有如下优点:○1充分利用电路中的寄生参数(开关管的输出寄生电容和高频变压器的漏感,实现有源开关器件的零电压开关) ○2功率拓扑结构简单 ○3功率半导体器体的低电压应力和电流应力 ○4频率固定 ○5移相控制电路简单 全桥移相电路具有以上优点,但也依然存在如下缺点: ○1占空比丢失 ○2变压器原边串联电感和副边整流二极管寄生电容振荡 ○3拓扑只能在轻载到满载的负载范围内,实现零电压软开关 目前该拓扑的研究及成果主要集中在以下方面 ○1减小副边二极管上的电压振荡 ○2减少拓扑占空比丢失 ○3增大拓扑零电压软开关的负载适应范围[1] ○4循环电流的减小和系统通态损耗的降低[2] 2.典型的zvs电路拓扑 2.1原边串联电感电路 为了实现滞后桥臂的零电压,一般在原边串联电感(如图1所示)。增大变压器漏感,以增加用来对开关输出电容放电能量。该电路具有较大的循环能量,变换器的导通损耗较大,且增大了占空比的丢失。

网络拓扑图中常用的图标

附录A 网络拓扑图中常用的图标 1.交换机类图标 2.路由器类图标 固化汇聚交换机 模块化汇聚交换机 核心交换机 二层堆叠交换机 三层堆叠交换机 接入交换机 SOHO 多业务路由器 IPv6多业务路由器 高端路由器 中低端路由器 VOICE 多业务路由器

. 3.无线网络设备类图标 4.网络安全设备类图标 5.服务器类图标 IPS 入侵检测系统 VPN 网关 视频服务器 IDS 入侵检测系统 防火墙-02 数据库服务器 通用服务器 -02 Web 服务器 单路AP 双路AP 室外天线 天线网桥-01 天线网桥-02 天线交换机 天线网卡-01 天线网卡 -02 笔记本+天线网卡 加密隧道 -02 加密隧道 -01 防火墙-01 加密锁 USB Key VPN 客户端软件 SAM 服务器 通用服务器-01 文件服务器 SAS 服务器 CA 服务器 打印服务器

. 6.PC 机与笔记本类图标 7.用户/办公设备类图标 台式机 笔记本-01 笔记本-02 液晶显示器 电视机 用户-男 用户-女 用户群 办公 会议 黑客-01 黑客-02 黑客-03 打印机 多功能一体机 电话 可视电话 IP 电话 PDA 手机 通用服务器 -03 SMP 服务器 TMS 服务器 LIMP 服务器 Strar View 服务器 认证客户端 服务器群-01 服务器群-02

. 8.建筑环境类图标 9.网络/线路类图标制造业 商业中心 小区企业住宅办公楼 酒店-01 酒店-02 教育-01 教育-02 金融 政府医疗公检法邮政

移相全桥为主电路的软开关电源设计详解

移相全桥为主电路的软开关电源设计详解 2014-09-11 11:10 来源:电源网作者:铃铛 移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高开关频率。如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见下文详解。 主电路分析 这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A。采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS。电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T 为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。 图1 1.2kw软开关直流电源电路结构简图 其基本工作原理如下: 当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。 由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。 当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb 充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、

做流程图或架构图的软件

流程图制造软件是一款用于制造各种流程图,同时兼具跨渠道,云贮存,分享功能的专业流程图制造软件。操作简略,功能强大,非常简略完成可视化、分析和沟通杂乱信息。软件内置海量精美的流程图模板与图库,帮助你轻松制造项目办理流程图,程序流程图,作业流程图,进程流程图等。 无需绘图技巧 使用这个功能丰富的流程图软件,您就不必在如何才能创建视觉上很有吸引力的流程图问题很专业了。您只需输入您的数据,剩下就交给亿图就行了,亿图会自动为您排列所有形状,为获得专业设计应用专业设计主题等。这个软件让任何层次的用户都能用更短的时间创建更好的流程图。此外,亿图为您节省更多资金,免费为您进行科技支持和升级。 智能地创建视觉流程图

亿图也可以帮助您将文本和图表中的复杂信息翻译成为视觉图表。用这种方式用户就能够识别 瓶颈和低效现象,这些也是过程需要精简的地方。亿图提供智能连接线和高级的文本设计和矢量符号,通过显示浮动对话框告诉你该怎么做。 几分钟获得一个专业的流程图 亿图赋予您能力,简简单单,有效地使用特殊工具,免费的模板和精简的工作流示例就能够创 建出有专业水准的流程图,帮助您快速建立新的流程图、工作流程图、NS图、BPMN图、跨职能 流程图、数据流图和高光流程图等。所有这些图形的绘制仅需短短几分钟即可。 轻松创建交互流程图 插入超链接和插画功能同样包括在内。您可以将图表和基础数据连接起来展示更多地细节信息,这样能够增强效率、影响和交流。为了更加具体一些,你可以通过增加链接到网站、插入附件、添 加注释或者链接到亿图其他视图工具等方式把任何图表转换成信息关口。它们是交互图形,任何人 都可以轻松使用亿图轻松创建。 无缝地分享与合作

全桥电路基础的拓扑结构

全桥电路基础的拓扑结构 这里整理一下移相全桥电路的基础,基础的拓扑结构为: 其控制方法在《脉宽调制DC/DC全桥变换器的软开关技术》划分为9类,不过可综合成下面四种组态: 1.两臂固定导通时间 Ton=D×Ts/2;

2.Q1&Q3向前导通 Ton=(D×Ts/2+Tadd)~Ts/2,可调节; 【可细分为Ton=Ts/2和Ton

1. +1状态: Q1, Q4同时导通,或d1,d4同时导通。a, b两点间电压Vab = + Vin。 2. -1状态: Q3,Q2同时导通,或d3, d2同时导通。a, b两点间电压Vab = - Vin。 3. 0状态: (Q1,Q4)&(d1,d4)不同时导通,并且(Q3,Q2)&(d3, d2)不同时导通。a, b两点间电压Vab = 0。 三种切换方式 1. +1 => -1 ^ -1 => +1 分析过程:

初始时刻:Q1、Q4导通,向副边传输能量。 下一时刻,Q1、Q4同时关断。因为有C1,C4,Q1,Q4电压缓升,是零电压关断。 在变压器原边漏感Lt的影响下,原边电流方向不变,该电流给C1,C4充电,C2,C3放电。 C1,C4充电至vin,C2,C3放电至0后,二极管D2,D3导通(Vab = -Vin)。以上是暂态过程,实际持续的时间很短,但是由于存在一段时间(Doff),因此此时随着Ip的下降至零,开关管及其反并二极管都在关断状态,电容和漏感发生谐振,导致C2,C3在Q2,Q3开通的时候电压并不为零,因此电容的能量完全消耗在开关管上,这样无法实现软开关。因此+1=>-1时是无法实现软开关的。 2.+1 => 0 ^ -1 => 0

常见的几种网络拓扑图绘制方法

常见的几种网络拓扑图绘制方法 导语: 常见的网络拓扑图绘制方法有哪些?其实网络图的画法主要是分为软件绘图和手工绘图。对于新手而言,更推荐使用电脑软件绘图,只需要安装一个思维导图软件,就可以利用模板或者软件工具进行绘图,具体的请往下阅读。 免费获取网络拓扑图软件:https://www.360docs.net/doc/a211831651.html,/network/ 常见的几种网络拓扑图绘制方法? 亿图网络图绘制作软件是由亿图软件公司推出的一款专门用来绘制电脑网络图的软件。软件功能强大,容易上手,几乎包含所有网络图的绘制,例如基本网络图、网络拓扑图、Cisco网络图、机架图、网络通信图、3D网络图、AWS图等等,可以完美替代Visio。软件采用拖拽的绘图方式,界面简单明了,操作方便,用户即看机即会,无需花费多少时间学习。 为了更大程度方便专业人士的使用,软件不仅提供各种专业图库,还提供海

量模板,这点是其他软件无法比拟的。强大的定制功能使得用户不仅可以自定义图形的填充和线条颜色,也可以自行绘制图库里的形状。一键导出到PDF,Word, Visio, Png 等17种文件格式,无障碍与他人分享。新版本不仅实现了跨平台,而且还支持云存储,使得团队协作更加容易。亿图网络图绘制软件是您绘制网络图的不二选择。 亿图图示绘制“思科网络图”的特点 1.专业的教程:亿图图示的软件为用户制作了使用教程的pdf以及视 频。 2.可导出多种格式:导出的文件Html,PDF,SVG,Microsoft Word, PowerPoint,Excel等多种格式。 3.支持多系统:支持Windows,Mac 和Linux的电脑系统,版本同步 更新。 4.软件特色:智能排版布局,拖曳式操作,兼容Office。 5.云存储技术:可以保存在云端,不用担心重要的数据图表丢失。 6.丰富的图形符号库助你轻松设计思科网络图

移相全桥ZVZCSDCDC变换器综述.

移相全桥ZVZCSDC/DC变换器综述 摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。关键词:移相控制;零电压零电流开关;全桥变换器 1概述所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。图1 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。即当原边电流减小到零后,不允许其继续反方向增长。原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件;图2 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。图3 2 电路拓扑根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC拓扑结构,以供大家参考。图4 1)NhoE.C. 电路如图1所示[1]。该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。该电路可以工作在电流临界连续状态,但必须采用频率控制,不利于滤波器的优化设计。图5 2)ChenK. 电路如图2 所示[2][3]。该电路超前桥臂并联有串联的电感和电容。电感L1和L2很小,不影响开关管的ZVS,但有两个好处:一是限制振荡的电流峰值;二是在负载很小,开关管不能实现ZVS时,限制开关管的开通电流尖峰。该拓扑结构利用IGBT的反向击穿特性,解决了滞后桥臂IGBT关断时的电流拖尾问题,可以提高IGBT的开关频率,而且在负载很小时也能实现零电流开关。但是,这个电路也付出了代价,漏感L1k中的能量L1kip2/2和ip反向时漏感L1k中的能量全部消耗在反向击穿的IGBT中。图6 3)原边加隔直电容和饱和电感的FB-ZVZCS-PWM变换器如图3[4]所示。它在基本的移相全桥变换器的基础上增加了一个饱和电感Ls,并在主电路上增加了一个阻挡电容Cb,阻挡电容Cb与饱和电感Ls适当配合,能使滞后桥臂上的主开关管实现零电流开关。在原边电压过零阶段,饱和电感工作在线性状态,阻止原边电流ip反向流动,在原边电压为Vin或-Vin时,它工作在饱和状态。尽管它有许多明显的优势,但也有不足之处,如最大占空比范围仍受到很多限制,特别是饱和电感上有很大的损耗,饱和电感磁芯的散热问题是一个必须解决的问题。 4)副边采用有源箝位开关的FB-ZVZCS-PWM变换器如图4所示[5]。这种电路没有使用耗能元件,在副边增加有源箝位开关S,并通过对有源箝位开关的适当控制,为滞后桥臂创造零电流开关条件。超前桥臂在零电压导通与关断的过程中,输出滤波电感Lf参与了谐振过程,而输出滤波电感通常具有很大的值,超前桥臂开关管可以在很大的

大型网络实施经典案例拓扑图及详细配置

中型企业网络构建案例配置文档 设置VTP Sw_6509_1#conf t Sw_6509_1(config)#vtp domain cisco Sw_6509_1(config)#vtp mode server Sw_6509_2#conf t Sw_6509_2(config)#vtp domain cisco Sw_6509_2(config)#vtp mode client Sw_2950_fi1_1#conf t Sw_2950_fi1_1(config)#vtp domain cisco Sw_2950_fi1_1(config)#vtp mode client Sw_2950_fi3_1#conf t Sw_2950_fi3_1(config)#vtp domain cisco Sw_2950_fi3_1(config)#vtp mode client Sw_2950_fi5_1#conf t Sw_2950_fi5_1(config)#vtp domain cisco Sw_2950_fi5_1(config)#vtp mode client Sw_2950_fi7_1#conf t Sw_2950_fi7_1(config)#vtp domain cisco Sw_2950_fi7_1(config)#vtp mode client 配置中继 Sw_6509_1(config)#int g3/1 Sw_6509_1(config-if)#switchport Sw_6509_1(config-if)#switchport mode trunk Sw_6509_1(config-if)#switchport trunk encapsulation dot1q Sw_6509_1(config)#int g3/2 Sw_6509_1(config-if)#switchport Sw_6509_1(config-if)#switchport mode trunk Sw_6509_1(config-if)#switchport trunk encapsulation dot1q Sw_6509_1(config)#int g3/3 Sw_6509_1(config-if)#switchport Sw_6509_1(config-if)#switchport mode trunk Sw_6509_1(config-if)#switchport trunk encapsulation dot1q Sw_6509_1(config)#int g3/4 Sw_6509_1(config-if)#switchport Sw_6509_1(config-if)#switchport mode trunk Sw_6509_1(config-if)#switchport trunk encapsulation dot1q Sw_6509_1(config)#int g3/5 Sw_6509_1(config-if)#switchport Sw_6509_1(config-if)#switchport mode trunk Sw_6509_1(config-if)#switchport trunk encapsulation dot1q Sw_6509_2(config)#int g3/1 Sw_6509_2(config-if)#switchport Sw_6509_2(config-if)#switchport mode trunk Sw_6509_2(config-if)#switchport trunk encapsulation dot1q Sw_6509_2(config)#int g3/2

中小型企业网络拓扑结构概述

中小型企业网络拓扑结构概述 我们首先应该明确一个概念,即在这里对企业大、中、小的划分只是象征性的,仅指大致的网络规模和应用情况,并不代表企业的实力。企业的网络规模和网络应用,应该完全根据企业的实际情况而定。 中小型企业网络拓扑图 当知识经济的步伐越来越要求中小企业提高自身竞争力的时候,当PC服务器、工作站、网络设备、软件产品和Internet(专线)收费大幅度降价以后,市场已经允许中小企业在面向Internet

& Intranet的电子商务时与大型集团化企业有可能站在相近的起 跑线上。而上述的网络方式对中小企业也变得逐渐适用了。 ?中小企业对网络的认识程度在加深 以往的中小企业网络应用大多集中在文档共享和打印共享方面,而现在中小企业越来越多地把数据库、销售流程、业务流程、生产流程、效率、竞争力、崭新的形象、网上宣传、跨地区、跨国、电子贸易等做为连网的主要目的。 ?中小型企业构筑Internet & Intranet的典型应用 (1)满足企业的内部需要 * 明显提高办公效率,降低企业的日常业务开销 如果一个简单的网络能因办公效率提高而使销售额大增、使我们每月节省成千上万张复印纸并明显减少电话、传真方面的通信费用,这种对技术的热情就能迅速为企业所接受。 尤其对于已经有了几个分支机构或办事处的中小企业,企业总部连接Internet以及建立局域网的成本不高。就企业内部之间的联络而言,比传统的纸张通信、电话/传真通信更为高效。尤其当企业不断发展壮大时,这种对企业管理成本的降低幅度就更为明显。 * 安全、准确、高效的企业管理,提高企业的竞争力 如果只是把网络建设仅仅理解为无纸办公、降低通信费用而达到节省企业运营成本,那未免有些片面。网络建设能使企业的管理更加安全、准确和高效,能够充分适应激烈的市场竞争需要。 1.通过网络,企业的领导人可以随时了解各部门、各分公司的经营汇总全貌,运筹帷幄。并迅速把有关指示和工作安排下发到下属各部门、各分公司。 2.各部门、分支机构/办事处每天的经营情况,包括财务、物资报表等(例如出库单、入库单)通过Internet或Windows RAS系统准确、自动地汇总到总公司的数据库中,实现企业内部数据汇总的自动化。 3.各部门、分支机构/办事处也可通过Internet或远程拨号随时查询总公司的相应数据库(例如了解产品的生产、库存等情况),而无需另外通过

移相全桥基础

移相全桥基础 这里整理一下移相全桥电路的基础,基础的拓扑结构为: 其控制方法在《脉宽调制DC/DC全桥变换器的软开关技术》划分为9类,不过可综合成下面四种组态: 1.两臂固定导通时间 Ton=D×Ts/2; 2.Q1&Q3向前导通 Ton=(D×Ts/2+Tadd)~Ts/2,可调节;

【可细分为Ton=Ts/2和Ton

1. +1状态: Q1, Q4同时导通,或d1,d4同时导通。a, b两点间电压Vab = + Vin。 2. -1状态: Q3,Q2同时导通,或d3, d2同时导通。a, b两点间电压Vab = - Vin。 3. 0状态: (Q1,Q4)&(d1,d4)不同时导通,并且(Q3,Q2)&(d3, d2)不同时导通。a, b两点间电压Vab = 0。三种切换方式 1. +1 => -1 ^ -1 => +1 分析过程:

初始时刻:Q1、Q4导通,向副边传输能量。 下一时刻,Q1、Q4同时关断。因为有C1,C4,Q1,Q4电压缓升,是零电压关断。 在变压器原边漏感Lt的影响下,原边电流方向不变,该电流给C1,C4充电,C2,C3放电。 C1,C4充电至vin,C2,C3放电至0后,二极管D2,D3导通(Vab = -Vin)。以上是暂态过程,实际持续的时间很短,但是由于存在一段时间(Doff),因此此时随着Ip的下降至零,开关管及其反并二极管都在关断状态,电容和漏感发生谐振,导致C2,C3在Q2,Q3开通的时候电压并不为零,因此电容的能量完全消耗在开关管上,这样无法实现软开关。 因此+1=>-1时是无法实现软开关的。 2.+1 => 0 ^ -1 => 0

网络组建拓扑图流程图模板分享

网络组建拓扑图流程图模板分享 拓扑学(TOPOLOGY)是一种研究与大小、距离无关的几何图形特性的方法。网络拓扑是由网络节点设备和通信介质构成的网络结构图。在选择拓扑结构时,主要考虑的因素有:安装的相对难易程度、重新配置的难易程度、维护的相对难易程度、通信介质发生故障时,受到影响的设备的情况。下面要分享的就是网络组建拓扑图流程图模板,需要了解的伙伴可以跟着小编继续操作。 网络组建拓扑图流程图模板 模板简介: 这个网络拓扑组建流程图是由多个服务器与电脑相连接组成网络组建拓扑图。在绘制与展示中都做了比较好的图片模板,达到最真实的体验,操作方法如下所示。 操作方法介绍:

1.首先需要做的是对模板进行下载使用,在迅捷流程图中找到该模板点击在线编辑使用按钮可以进入在线编辑面板。 2.这时完整的模板就展示在面板中,选择需要的操作将模板进行二次编辑使用,在左面栏目里面添加新的流程图图形。

3.双击文本框可以对新添加的内容进行修改,这时在右面会出现一个工具栏可以对字体,字样以及排列方式进行设计使用。 4.在上面栏目里面“插入”选项中有链接图片等操作,这些都是可以在流程图里面添加的,这样可以更加丰富流程图的内容。

5.这时可以对流程图的背景颜色进行修改,在编辑面板里面有一个小油漆桶,可以对颜色进行设置。 6.上面几步都完成之后选择文件选项中的导出栏目,之后选择导

出格式就可以将制作完成的模板导出桌面进行使用。 这就是小编分享的网络组建拓扑流程图模板以及利用迅捷流程图在线编辑网站编辑流程图模板的操作方法,需要使用该模板的朋友可以参考上述步骤进行操作使用。

UCC28950移相全桥设计指南

UCC28950移相全桥设计指南 一,拓扑结构及工作原理 (1) 主电路拓扑 本设计采用ZVZCS PWM移相全桥变换器,采用增加辅助电路的方法复位变压器原边电流,实现了超前桥臂的零电压开关(ZVS)和滞后桥臂的零电流开关(ZCS)。电路拓扑如图3.6所示。 图3.6 全桥ZVZCS电路拓扑 当1S、4S导通时,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端钳位电容Cc充电。当关断1S时,电源对1C C通过变压器初级绕组放电。由于1C的存在,1S为零电压关断,此时变压器漏感k L和输出滤波电感o L串联,共同提供能量,由于充电,2 Cc的存在使得变压器副边电压下降速度比原边慢,导致电位差并产生感应电动势作用于k L,加速了2C的放电,为2S的零电压开通提供条件。当Cc放电完全后,整流二极管全部导通续流,在续流期间原边电流已复位,此时关段4S,开通3S,由于漏感k L两边电流不能突变, S为零电流关断,3S为零电流开通。 所以4 (2) 主电路工作过程分析[7] 半个周期内将全桥变换器的工作状态分为8种模式。 ①模式1 图1 模式1主电路简化图及等效电路图 ②模式2 图2 模式2简化电路图 ③模式3

图3模式3简化电路图 ④模式4 图4模式4主电路简化图及等效电路图⑤模式5 图5模式5 主电路简化图及等效电路图⑥模式6 图6 模式6主电路简化图及等效电路图⑦模式7

图7模式7主电路简化电路图 ⑧模式8 图8 模式8主电路简化电路图 二,关键问题 1:滞后臂较难实现ZVS 原因:滞后臂谐振的时候,次级绕组短路被钳位,所以副边电感无法反射到原边参加谐振,导致谐振的能量只能由谐振电感提供,如果能量不够,就会出现无法将滞后臂管子并联的谐振电容电压谐振到0V. 解决方法: ①、增大励磁电流。但会增大器件与变压器损耗。 ②、增大谐振电感。但会造成副边占空比丢失更严重。 ③、增加辅助谐振网络。但会增加成本与体积。 2,副边占空比的丢失 原因:移相全桥的原边电流存在着一个剧烈的换流过程,此时原边电流不足以提供副边的负载电流,因此副边电感就会导通另一个二极管续流,即副边处于近似短路状态; Dloss与谐振电感量大小以及负载RL大小成正比,与输入电压大小成反比。 解决方法: ①、减少原副边的匝比。但会造成次级整流管的耐压增大的后果。

移相全桥软开关工作原理解析

ZVZCS移相全桥软开关工作原理 (1) 主电路拓扑 本设计采用ZVZCS PWM移相全桥变换器,采用增加辅助电路的方法复位变压器原边电流,实现了超前桥臂的零电压开关(ZVS)和滞后桥臂的零电流开关(ZCS)。电路拓扑如图3.6所示。 图3.6 全桥ZVZCS电路拓扑 当1S、4S导通时,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端钳位电容Cc充电。当关断1S时,电源对1C充电,2C通过变压器初级绕组放电。由于1C的存在,1S为零电压关断,此时变压器漏感k L和输出滤波电感o L串联,共同提供能量,由于Cc的存在使得变压器副边电压下降速度比原边慢,导致电位差并产生感应电动势作用于k L,加速了2 C的放电,为2S的零电压开通提供条件。当Cc放电完全后,整流二极管全部导通续流,在续流期间原边电流已复位,此时关段4S,开通3S,由于漏感k L两边电流不能突变,所以4S为零电流关断,3S为零电流开通。 (2) 主电路工作过程分析[7] 半个周期内将全桥变换器的工作状态分为8种模式。 ①模式1 S、4S导通,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端箝1 位电容Cc充电。输出滤波电感o L与漏感k L相比较大,视为恒流源,主电路简化图及等效电路图如图3.7所示。

图3.7 模式1主电路简化图及等效电路图 由上图可以得到如下方程: p Cc o s k dI V V V L n n dt = ++ (3-3) p c o I nI nI += (3-4) Cc c c dV I C dt =- (3-5) 由(3-3)式得: 2p Cc k d I dV nL dt dt =- (3-6) 将(3-6)式代入(3-5)式得: 22 p c c k d I I nC L dt = (3-7) 将(3-7)式代入(3-4)式得: 22 2 p p c k o d I I n C L nI dt += (3-8) 解微分方程: 22 2p p o c k c k d I I I nC L dt n C L + = (3-9) 其初始条件为: (0)0Cc t V ==;(0)0c t I == (3-10) 代入方程解得: ()sin s o p o k V V n I t t nI L ωω -= + (3-11) ()sin p s o c o k I V V n I t I t n nL ωω -=- =- (3-12)

相关文档
最新文档