中厚板控冷过程的温度应力耦合计算与翘曲分析

中厚板控冷过程的温度应力耦合计算与翘曲分析
中厚板控冷过程的温度应力耦合计算与翘曲分析

某工程的温度应力计算

某工程的温度应力计算 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、温差效应理论 1,局部温差不对整体结构产生影响,只考虑整体温差。 2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。 3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。 二、温差取值 对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2: 1,施工阶段最低或最高温度(T2)选取: A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影响,一般不需要计算)。 B,对地上结构,可以认为完全暴露在室外。可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。 2,施工阶段基准温度(T1)选取: 结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。因此后浇带浇注时的温度作为温差效应里的基准温度T1。

当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月份时候,这里的基准温度可取当季或当月的近十年平均气温。当施工进度无法掌握时,基准温度可取近十年月平均气温值T1= (+++++++++++)/12 =。因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。 只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。 探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。 三、混凝土长期收缩的影响 根据王梦铁的《工程结构裂缝控制》中相关计算公式和表格。 混凝土收缩是一个长期的过程,影响最终收缩量的因素有水泥成分、温度、骨料材质、级配、含泥量、水灰比、水泥浆量、养护时间、环境温度和气流场、构件的尺寸效应、混凝土振捣质量、配筋率、外加剂等。由于竖向构件的约束,水平构件的混凝土收缩会产生拉应变,这种应变可以和混凝土因温度变化产生的应变等效,可用产生等量应变的温度差(当量温差)计入混凝土收缩效应的影响。

大体积混凝土温度应力计算

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h +=(3-1) )1(**)mt c t h e c Q m T --=ρ ((3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取0.97kJ/(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取2.718; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 表3-1 不同品种、强度等级水泥的水化热

表3-2 系数m 根据公式(3-2),配合比取硅酸盐水泥360kg 计算: T h (3)=33.21 T h (7)=51.02 T h (28)=57.99 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T +=(3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃); ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; 表3-3 降温系数ξ

根据公式(3-3),T j 取25℃,ξ(t )取浇筑层厚1.5m 龄期3天6天27天计算, T 1(3)=41.32 T 1(7)=48.47 T 1(28)=27.90 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ=(3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃);

超长建筑结构温度应力分析

超长建筑结构温度应力分析 夏云峰 (上海中交水运设计研究有限公司, 上海 200092) 摘要:以郑州第二长途电信枢纽工程为例,对超长建筑结构进行整体有限元建模。针对7种不同类型温度荷载的特点,利用有限元分析程序ANSYS计算。给出了结构整体变形特点、结构中各种构件(梁、楼板、柱子及剪力墙)的温度内力变化范围以及分布规律。通过比较得出超长建筑在各种温度作用下的最不利工况。可为超长建筑结构考虑温度作用进行设计和施工提供参考。 关键词:建筑 超长建筑物 温度荷载 温度应力 St udy on t he Te mperature Stress of Super-Lengt h Buil di ng X ia Yunfeng (Shanghai Zhongji a oW ater Transportation Design Institute Co.,L t d., Shanghai 200092) Abst ract:T aking the Second Long D istance Te leco mm unication H ub Pro ject of Zhengzhou for an exa m ple,t h is paperm akesm odels of so lid fi n ite e le m ent to super-length building.A ccord- i n g to characteristics o f te mperature l o ad of7different types and usi n g t h e ANSYS fi n ite e le- m ents ana l y sis progra m,it concl u des the characteristics of the integral structura l defor m ation, the scope and distribution o f ther m a l i n ner force o f different co mponents,such as bea m,floor slab,pillar and shear w a l.l A fter contrasti n g,it su m s up the w orse w orking cond ition for super -length bu il d i n g under d ifferent te m peratures,wh ich cou ld prov ide references to the design and constr uction o f super-length bu il d i n g by consi d ering te m perature acti o ns. K ey w ords:constructi o n super-leng t h buil d i n g te m perature load te m perature stress 建筑工程中,混凝土结构的裂缝较为普遍,类型也很多,按成因可归结为由外荷和变形引起的两大类裂缝。其中由混凝土收缩和温度变形引起的收缩裂缝和温度裂缝,以及由这两种变形共同引起的温度收缩裂缝,则是实际工程中最常见的裂缝。随着建筑向大型化和多功能发展,超长(即超过温度伸缩缝间距)高层或大柱网建筑不断出现。对超长结构的温度变形与温度应力,若在结构设计中处理不当,将使结构产生裂损,严重影响建筑结构的正常使用。我国的建筑结构设计规范中不考虑温度作用[1],只做构造处理。因此,温度应力是超长建筑结构设计中的重要研究课题之一。1 超长高层建筑结构温度问题有限元建模研究 结合工程实例,分析建筑结构各个阶段温度作用的特点,完善温度作用和温差取值的计算原则,并选出在工程设计中起控制作用的温差取值,方便设计采用。根据实际情况建立超长建筑结构的有限元分析模型,采用有限元分析程序ANSYS 有限元计算程序,进行结构整体分析。 郑州第二长途电信枢纽工程主体为超长高层建筑结构。主楼地下1层,地上主体19层。19层之上局部突起2层。柱网9.6 12m,主体结构东西长134m。由于功能要求建筑中间不设缝,南 10 港口科技 港口建设

连铸热过程数学模型的建立

连铸热过程数学模型的建立 2.1连铸热过程数学模型的建立 连铸热过程为连铸坯的凝固冷却过程。连铸坯在凝固过程中,凝固传热量不仅影响铸机生产效率和设备寿命,而且对铸坯的表面质量和内部质量都有重要影响。因此薄板坯凝固传热规律的研究,对该工艺的生产和设计,都具有十分重要的意义。板坯凝固冷却过程可分为三个阶段:(1)结晶器冷却。钢液在近结晶器壁处快速冷却,形成薄的坯壳;(2)二冷区冷却。坯壳具有足够厚度时,铸坯从结晶器中拉出,在二冷区受到强烈的喷水冷却,液芯逐渐凝固;(3)空冷区冷却。铸坯在空气中较缓慢地冷却,铸坯断面上温度逐渐趋于均匀。根据板坯的凝固冷却过程,连铸热过程数学模型包括结晶器、二冷区和空冷区这三部分。 结晶器中热传递主要沿水平方向进行。传热过程包括: (1)钢水以对流和导热形式将热量传给坯壳; (2)凝固坯壳的导热; (3)凝固坯壳与结晶器壁的传热; (4)结晶器壁的导热; (5)喷淋水与结晶器壁的强制对流传热。 其中在传热过程(3)中,填充于铸坯壳与结晶器壁气隙中的渣膜控制铸坯壳向结晶器的传热量,在结晶器的传热过程中显得尤为重要。因此,应进一步分析气隙中渣膜特性对传热的影响,建立坯壳与结晶器气隙的传热模型。为全面分析结晶器的传热,将该模型于铸坯凝固和结晶器壁的传热祸合起来,建立统一的结晶器传热数学模型。带有液芯的铸坯进入二冷区达到完全凝固。 在二冷区铸坯向外传热方式主要有:(1)由喷射水滴蒸发带走的热量;(2)铸坯表面与周围环境的辐射换热;(3)铸坯与支撑辊、导辊的接触换热。喷淋水和支撑辊、导辊与铸坯的传热对铸坯内液芯长度的控制十分重要。铸坯进入拉矫机后进入空冷区,铸坯主要以辐射换热方式和自然对流的方式进行冷却。 2.1.1 基本假设 为建立连铸过程温度场数学模型,需对物理模型进行简化,作如下假设:

控轧控冷工艺的技术研究及应用

控轧控冷工艺的技术研究及应用 学校:沈阳工业大学 院系: 专业:材料成型及控制工程 姓名:李文华 学号:

控轧控冷工艺的技术研究及应用 李文华 【摘要】介绍了控轧控冷的机理,控制轧制的优缺点。控制轧制与传统轧制的比较;由于各种钢种以及用户对产品性能的要求越来越高,使得控制轧制应用的必要性逐渐增大。高速线材轧制中应用的主要是控制冷却工艺,该技术的核心是通过对加热温度控制、轧前水冷、精轧机内水冷、精轧机组后水冷、风冷线温控等参数实现控制轧制。由于线材的轧制速度相比其它都较高,在生产中产生的变形热也相对较高,实现控制冷却尤为重要,控制加热温度,在轧制的道次间使用间断冷却,保证产品的综合性能(抗拉强度,硬度等等)。在板带材中应用的控制轧制技术的核心是在轧制过程中通过控制加热温度、轧制过程、冷却条件等工艺参数, 改善钢材的强度、韧性、焊接性能。 【关键词】控轧控冷;机理;特点;必要性;工艺参数;扩展应用高速线材;加热温度;控轧控冷 Abstract:Describes the mechanism of controlled rolling and cooling to control the rolling of the advantages and disadvantages. Controlled rolling compared with the traditional rolling; because of various steel and users are increasingly demanding high performance, making the need for the application of controlled rolling increases. Application of high-speed wire rod rolling is mainly controlled cooling process, the technology is the core temperature control by heating, cooling before rolling and finishing mill in water-cooled, water cooled after finishing mill, cooling line temperature and other parameters to achieve controlled rolling .As compared to the other wire of the rolling speed is high,the deformation generated in the pooduction of heat is relatively high,the cooling is particularly important to achieve control,control heating temperature,the rolling is particularly important to achieve control,control heating temperture,the rolling of the use of intermittent cooling between passes,to ensure that the intergrated product properties (tensile strength, hardness, etc.). In the application of plate and strip rolling technology is the core of the control during rolling by controlling the heating temperature, the rolling process, the cooling conditions, process parameters, to improve the steel's strength, toughness, weldability. Keywords: mechanism,characteristics,necessity,process parameters,extension using the high speed wire rod, heating temperature,controlled rolling and cooling 引言 控制轧制(C-R)和控制冷却(C-C)技术的研究始于1890年二次世界大战的德国,当时科研人员对钢铁产品的加热工条件、材质及显微金相组织之间的关系进行了非系统的零散研究。 1.控制轧制的概述

温度应力计算

第四节 温度应力计算 一、温度对结构的影响 1 温度影响 (1)年温差影响 指气温随季节发生周期性变化时对结构物所引起的作用。 假定温度沿结构截面高度方向以均值变化。则 12t t t -=? 12t t t -=?该温差对结构的影响表现为: 对无水平约束的结构,只引起结构纵向均匀伸缩; 对有水平约束的结构,不仅引起结构纵向均匀伸缩,还将引起结构内温度次内力; (2)局部温差影响 指日照温差或混凝土水化热等影响。 A :混凝土水化热主要在施工过程中发生的。 混凝土水化热处理不好,易导致混凝土早期裂缝。 在大体积混凝土施工时,混凝土水化热的问题很突出,必须采取措施控制过高的温度。如埋入水管散热等。 B :日照温差是在结构运营期间发生的。 日照温差是通过各种不同的传热方式在结构内部形成瞬时的温度场。 桥梁结构为空间结构,所以温度场是三维方向和时间的函数,即: ),,,(t z y x f T i = 该类三维温度场问题较为复杂。在桥梁分析计算中常采用简化近似方法解决。 假定桥梁沿长度方向的温度变化为一致,则简化为二维温度场,即: ),,(t z x f T i = 进一步假定截面沿横向或竖向的温度变化也为一致,则可简化为一维温度场。如只考虑竖向温度变化的一维温度场为: ),(t z f T i = 我国桥梁设计规范对结构沿梁高方向的温度场规定了有如下几种型式:

2 温度梯度f(z,t) (1)线性温度变化 梁截面变形服从平截面假定。 对静定结构,只引起结构变形,不产生温度次内力; 对超静定结构,不但引起结构变形,而且产生温度次内力; (2)非线性温度变化 梁在挠曲变形时,截面上的纵向纤维因温差的伸缩受到约束,从而产 。 生约束温度应力,称为温度自应力σ0 s 对静定结构,只产生截面的温度自应力; 对超静定结构,不但产生截面的温度自应力,而且产生温度次应力; 二、基本结构上温度自应力计算 1 计算简图 2 3 ε 和χ的计算 三、连续梁温度次内力及温度次应力计算 采用结构力学中的力法求解。

连铸教材

8. 连铸机 8.1 CONCAST——SBQ连铸的领先者 Concast 提供的连续铸钢设备比业界中任何别的公司都多。50多年来,Concast公司通过致力于连续铸钢的钢凝固工艺,向用户提供服务。 今天,采用Conc ast公司的设备已经成为电弧炉、二次冶炼设备和连铸的工业性能基准。 Concast公司致力于炼钢过程的开发,不管这种炼钢过程是使用废钢还是用铁矿石。我们为长材产品部门的用户专门研究和开发冶炼、精炼和连铸工艺和技术,这是一个本公司竞争者都不能涉足的工作。 8.2 中间罐设计 CONCAST中间罐设计有助于清除杂质,保证钢水流量稳定,并能使铸流之间的温度场均匀化。 通过模拟钢水流,可以优化中间罐的大小与形状以及挡板和挡墙的设计。 中间罐设计成能提供足够长的钢水停留时间(平均10分钟),这有助于清除杂质,使杂质有时间漂浮在表面,并被覆盖的粉末所吸收。 设计中间罐时考虑到了挡板、挡墙或紊流抑制剂,以使钢水流动分配最佳化,在钢水到达中间罐水口前消除冲击流产生的紊流。这种设计有助于对结晶器钢水液面进行更好的控制,并使所有铸流中的钢水入口温度均匀化。 根据钢种、浇注时间和主要操作条件,针对各个工程项目选择分隔墙或紊流抑制剂的设计。 中间罐设计模型

8.3 浸没式浇铸技术 提供Conc ast 塞棒控制系统,用于浸没式浇铸。 Concast塞棒控制的特点: - 塞棒位置极其精确,控制迅速。 - 电机械系统可靠,维护需求低。 - 铸流启动顺序完成自动化。 使用Conc ast塞棒系统,使得对结晶器内钢水液面控制极佳,这对于有效润滑和实现良好表面质量极其重要。 用耐火材料管子进行浸没式浇铸,将钢水倒进结晶器中。耐火材料管子能防止钢水流与环境(氧气和氮气)接触,并防止重新氧化造成杂质的形成。 在进行浸没式浇铸时,使用两种类型的耐火材料罩: - 浸没式入口水口(SEN) - 浸没式入口长水口(SES) 采用SEN,防止钢流再次氧化的效果更好,因为喷嘴实际上布置做在中间罐的底部。 采用SES,能通过陶瓷密封防止空气渗透进水口和中间罐喷嘴之间的联轴器。总存在某种再氧化的危险,因为如果SES被移动,则密封可能损坏。 选择这些系统中的哪一个,取决于钢的清洁度要求以及现场操作条件。

超长结构温度应力分析与控制措施

超长结构温度应力分析与控制措施 摘要:随着人们对建筑物使用功能的要求越来越高,一些公共建筑正逐渐向大 型化、舒适化发展,大量超长、超宽的大型公共建筑随之涌现。由于季节变化的 影响,超长结构的温度应力问题会导致混凝土楼板产生裂缝,严重影响建筑的使 用功能和结构安全,因此温度作用在设计中必须予以考虑。本文以某钢筋混凝土 框架-剪力墙结构为例,对超长结构的温度应力问题采用有限元分析程序MidasGen进行了计算分析并给出了控制措施。 关键词:超长结构;温度应力;后浇带;有限元分析 1、前言 超长结构,由于季节变化等因素的影响,会让超长结构的混凝土发生变形, 当混凝土的变形受到墙体等构件的约束,楼板内便会产生较大的温度应力,当温 度应力高出混凝土的抗拉强度时,就会导致混凝土楼板会产生裂缝,通常情况下,若在结构中采用低收缩混凝土材料、设置后浇带以及采用预应力钢筋等措施时, 温度应力及收缩应力对结构的影响一般可以忽略。但超长混凝土结构中,如若不 进行合理的温度效应控制,柱、墙等竖向构件将产生显著的温度内力,影响结构 的承载能力;楼板则很有可能开裂并形成有害的贯通裂缝,对建筑防水和结构的 耐久性很不利,影响建筑的正常使用,因此,如何降低温度应力的影响是超长结 构设计的关键问题。 2、工程概况 某五星级酒店主楼部分采用钢筋混凝土框架-剪力墙结构,楼盖采用现浇钢 筋混凝土梁板体系,底部裙楼为两层宴会大厅,并设有斜圆柱形主出入口。框架 柱截面尺寸600mmx600mm~900mmx1200mm,墙截面尺寸200~500mm。 现行GB50010-2010《混凝土结构设计规范》中对房屋建筑工程结构伸缩缝 的最大间距做如下规定:对于现浇式结构,普通砖混结构50m,框架结构55m, 剪力墙结构45m,框架-剪力墙结构根据框架和剪力墙的具体布置情况取45~55m 之间,通常可取50m。该酒店结构不设缝轴线尺寸为167.2m,超过了规范要求。 3、温度工况 (1)温度荷载。假设该建筑从当年7月开始地上部分施工,第1~3层施工分 别需要一个月,从4层开始每层半个月,至次年二月半完工。按照该假定施加的 温度荷载始终为降温作用,为最不利工况。 (2)有限元模型。针对温度应力建立四组模型(M0、M1、M2、M3),均考虑施 工模拟和收缩徐变的作用;其中,部分模型考虑了地下室顶板的转动弹性嵌固, 弹簧刚度计算按照柱所连接的梁柱刚度进行计算,为近似值。模型的具体设计参 数见表1所示。 结构二层的后浇带设置如图1所示,其余各层M0、M1、M2后浇带设置均同;M3与 M2相比,仅在结构第二层增设后浇带c,其余部位后浇带设置均同M0~M2模型。温度有 限元模型为保证结构成立,将一跨内的所有次梁和板均设置为后浇带。 4、温度应力分析 本工程采用有限元分析程序MidasGen对本模型进行温度应力计算分析,分别探讨温度应力对框剪结构中的柱、剪力墙、梁板等主要构件的影响,并给出控制措施及建议。 (1)柱内力。通过对比框架柱主要集中区域的温度应力,其中:①主楼最外侧柱(区域1);

薄板坯连铸连轧过程轧辊温度场及热凸度的研究_郭忠峰

国家自然科学基金仪器专项项目(50527402) 郭忠峰,博士生,zf_guo@https://www.360docs.net/doc/a218795900.html, 薄板坯连铸连轧过程轧辊温度场及热凸度的研究 郭忠峰1, 李长生1, 徐建忠1, 刘相华1, 王国栋1, 刘太斗2 (1. 东北大学轧制技术及连轧自动化国家重点实验室,东北大学; 2. 本钢热连轧厂,本溪) 摘 要:薄板坯连铸连轧生产中,轧辊的热变形是影响带钢板形的重要因素之一,因此研究薄板坯连铸连轧过程中的轧辊热变形对提高板形控制系统精度具有重要的意义。本文提出了一种简化分析轧辊温度及热凸度的方法,依据生产过程中轧辊实际的边界条件建立了轧辊温度场及热凸度模型,考虑了轧制过程瞬态热接触及复杂的边界条件,并借助有限元分析软件ANSYS 模拟了轧辊的瞬态温度场及热凸度,得到了轧辊表面各点的温度变化及轧辊热凸度变化规律。轧辊热凸度有限元模拟结果与实验测量结果吻合较好,表明了采用简化有限元法得到的结果是正确的。 关键词:温度场;热凸度;有限元;轧辊 Analysis of Roll Temperature Field and Thermal Crown in TSCR GUO Zhong-feng 1, LI Chang-sheng 1, XU Jian-zhong 1, LIU Xiang-hua 1, WANG Guo-dong 1, LIU Tai-dou 2 (1. The State Key Laboratory of Rolling and Automation, Northeastern University, China; 2. BenXi Hot Strip Mill, BenXi, China) Abstract: Roll thermal crown variation in thin slab continuous casting and rolling (TSCR) is an important factor which affects strip profile. Prediction of roll thermal crown variation in rolling is a difficulty and weakness for many kinds of heat transfer ways and many physical parameters could not be confirmed well and truly. Setting up roll temperature field model which consider different affection factors is the key to solve the difficult problem. A new simplification method of analyzing roll temperature field is presented. Transient roll temperature field and thermal crown in TSCR are simulated by ANSYS software. Transient thermal contact and complex boundary condition are considered. The prediction results of thermal crown are good agreement with measurement data. Key words: TSCR; roll; temperature field; thermal crown; FEM 1 引言 薄板坯连铸连轧现已在世界范围内取得了很大的发展[1,2]。 准确预报热轧工作辊在轧制过程中的热变形,对提高带材板形质量具有重要的实际意义。热轧生产中工作辊复杂的热交换条件,使得轧辊热凸度在线测量困难。目前对温度场和热凸度变化规律的研究取得了许多重要进展,如国外学者Stevens [3]采用实验方法获得了轧辊温度场的分布, 国内学者[4~7]等采用有限元法分析了轧辊温度场,李俊洪[8]等采用差分法进行了分析。对轧辊温度场进行三维有限元分析可获得任意时刻任意节点的温度分布,但需要耗费大量的时间。而在轧辊温度场的二维分析过程中做了大量简化,结果不甚理想。 采用新的简化方法,借助ANSYS 软件,全面考虑各影响因素对热带轧制过程中轧辊温度场进行了数值模拟,模拟结果与实测结果吻合较好。

控轧控冷技术在无缝钢管生产中的应用

控轧控冷技术在无缝钢管生产中的应用 发表时间:2019-04-04T11:51:51.913Z 来源:《防护工程》2018年第36期作者:任晓锋[导读] 本文首先对控轧控冷技术的特点进行了概述,详细探讨了控轧控冷技术在无缝钢管生产中的应用,旨在促进控轧控冷技术的发展。 天津钢管集团股份有限公司天津 300301 摘要:随着我国经济的发展,控轧控冷技术得到了快速的发展。控轧控冷技术是钢材生产中十分重要的工艺技术,因此,探讨控轧控冷技术在无缝钢管生产中的应用具有重要的作用。本文首先对控轧控冷技术的特点进行了概述,详细探讨了控轧控冷技术在无缝钢管生产中的应用,旨在促进控轧控冷技术的发展。 关键词:控轧控冷技术;无缝钢管生产;应用 Abstract:With the development of China's economy, the technology of controlled rolling and controlled cooling has been rapidly developed. Controlled rolling and controlled cooling technology is an important process technology in steel production. Therefore, it is important to discuss the application of controlled rolling and controlled cooling technology in the production of seamless steel tubes. This paper firstly summarizes the characteristics of controlled rolling and controlled cooling technology, and discusses in detail the application of controlled rolling and controlled cooling technology in the production of seamless steel tubes, aiming to promote the development of controlled rolling and controlled cooling technology. Key words: controlled rolling and controlled cooling technology; seamless steel pipe production; application 随着国家产业发展战略对资源节约和可持续发展要求的提高,以及市场竞争的加剧,无缝钢管生产企业越来越需要高性能、节约能源、成本低的无缝钢管生产技术。因此,控制轧制和控制冷却(简称控轧控冷,英文缩写TMCP)技术在无缝钢管生产中越来越受重视。 1 控轧控冷技术的特点 在研究控轧控冷技术的应用之前,首先要全方位的了解该技术的特点以及其发展由来。该技术分为两个部分,第一个部分是控制轧制,第二个部分是控制冷却。在控轧控冷技术的发展历史上,首先出现的是控制轧制。由于其局限性,科研人员又在控制轧制的技术上研究出了控制冷却的方法。 1.1控制冷却 由于控制轧制在轧制过程中得保持相对的低温,所以控制轧制对钢材性能的提高效果不大。为了进一步提高钢材的韧性与强度,基于控制轧制的工艺上,控制冷却技术应运而生。控制冷却的技术特点是对奥氏体的相变过程进行精确控制,并得到更细的奥氏晶粒。在与控制轧制相结合后,再与微合金元素的一起使用,对于整个轧制过程的控制以及质量有了质的提高。 1.2控制轧制 控制轧制技术原理是使用预先设定好的控制程序来控制一些热轧过程中的可调因素,例如变形温度、变形量、变形间隙等等,在终轧后进行快速冷却,以得到所要求的钢铁形变以及韧性性能。 2 控轧控冷技术在无缝钢管生产中的应用 2.1在线常化工艺 在线常化工艺是一种热处理工艺,通常也被称之为在线正火技术。在线正火工艺是针对无缝钢管生产而产生的一种技术,主要以热轧技术和热处理工序为基础,从而保证节能减耗。在生产过程中,该工艺的核心是两次相变过程。一是奥氏体转化成珠光体和铁素体;二是珠光体与铁素体再一次转化成奥氏体组织。通过整个在线正火工艺,生产出来的无缝钢管组织饱满,韧性较好,强度较高,最终提升无缝钢管的综合性能。随着市场对无缝钢管的需求不断加大,该技术已经得到一定的普及。在线常化工艺相对于传统的无缝钢管生产工艺,还有一个明显的优势就是大大降低了对能源的消耗。 2.2在线淬火工艺 在线淬火工艺也是控轧控冷技术在无缝钢管中生产中的重要应用。具体可以分为两种情况,一种是奥氏体不锈钢钢管在线固溶热处理,另一种是碳钢、低合金钢钢管 在线淬火热处理。 (1)奥氏体不锈钢钢管在线固溶热处理奥氏体不锈钢是一种铬镍合金,通常可以通过添加其他金属元素完成对钢材功能的改变,从而根据市场需求生产出符合要求的产品。奥氏体不锈钢在线固溶热处理本身采用的是一种淬火工艺,通过高温加热,将碳元素固溶在奥氏体组织中,形成单一的奥氏体组织。之后进行冷却处理,通常根据实际情况可以采用水冷、油冷、喷冷以及空冷等方式。为进一步提高冷却效率,目前国内已经开始使用相关的机器设备完成相关操作。 (2)碳钢、低合金钢钢管在线淬火热处理对无缝钢管进行在线淬火热处理指的是利用轧制后的余热进行水淬,接着使用回火热处理完成整个生产过程。在线淬火工艺可以有效节约能源。就目前而言,受到生产设备和生产技术的限制,我国跟国外相比还存在较大的差距。随着市场对无缝钢管需求的增加以及能源紧缺的情况,在线淬火工艺生产无缝钢管对于整个工业发展都具有重要的意义。 2.3在线快速冷却工艺 无缝钢管在线快速冷却工艺是基于超快速冷却技术为核心的新一代控轧控冷技术在无缝钢管生产中的新生产工艺。超快速冷却技术是指在精轧机后利用轧制后余热直接进行热处理的工艺,其控制原理是对轧制后的奥氏体施以强化冷却,使金属在很短时间内迅速冷却到铁素体相变温度附近,从而抑制奥氏体晶粒长大,尽量保持奥氏体的硬化状态。该工艺在板带和钢筋生产中已成功应用。无缝钢管在线快速冷却工艺主要受到无缝钢管沿长度方向冷却均匀性和内外表面性能一致性的限制,国内某些厂家已进行了相关研究。 2.4无缝钢管控轧控冷技术应用提高

工程的温度应力计算

一、温差效应理论 1,局部温差不对整体结构产生影响,只考虑整体温差。 2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。 3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。 二、温差取值 对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2: 1,施工阶段最低或最高温度(T2)选取: A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影响,一般不需要计算)。 B,对地上结构,可以认为完全暴露在室外。可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。 2,施工阶段基准温度(T1)选取: 结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。因此后浇带浇注时的温度作为温差效应里的基准温度T1。 当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月

份时候,这里的基准温度可取当季或当月的近十年平均气温。当施工进度无法掌握时,基准温度可取近十年月平均气温值T1=(0.0+2.4+6.4+11.9+17.0+20.9+24.4+25.2+22.1+16.9+9.2+3.5)/12 =13.3。因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。 只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。 探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。 三、混凝土长期收缩的影响 根据王梦铁的《工程结构裂缝控制》中相关计算公式和表格。 混凝土收缩是一个长期的过程,影响最终收缩量的因素有水泥成分、温度、骨料材质、级配、含泥量、水灰比、水泥浆量、养护时间、环境温度和气流场、构件的尺寸效应、混凝土振捣质量、配筋率、外加剂等。由于竖向构件的约束,水平构件的混凝土收缩会产生拉应变,这种应变可以和混凝土因温度变化产生的应变等效,可用产生等量应变的温度差(当量温差)计入混凝土收缩效应的影响。 参考王梦铁的《工程结构裂缝控制》中的相关计算方法,混凝土收缩应变的形式和发展与混凝土龄期密切相关,任意时间t (天数)时混凝土已完成的收缩应变为:)1(1024.3)1(1024.3)(01.042101.04t n t y e M M M e t -----?≈???-?=ε

温度应力计算

6.1混凝土施工裂缝控制6.1.1混凝土温度的计算 ①混凝土浇筑温度:T j =T c +(T q -T c )×(A 1 +A 2 +A 3 +……+A n ) 式中:T c —混凝土拌合温度(℃),按多次测量资料,在没有冷却措施的条件下,有日照时混凝土拌合温度比当时温度高5-7 ℃,无日照时混凝土拌 合温度比当时温度高2-3 ℃,我们按3 ℃计;、 T q —混凝土浇筑时的室外温度(考虑最夏季最不利情况以30 ℃计); A 1、A 2 、A 3 ……A n —温度损失系数,A 1 —混凝土装、卸,每次A=0.032(装 车、出料二次);A 2 —混凝土运输时,A=θt查文献[5]P 33表3-4得6 m3滚动式搅拌车运输θ=0.0042,运输时 间t约30分钟,A=0.0042×30=0.126;A 3 —浇捣过程中A=0.003t, 浇捣时间t约240min, A=0.003× 240=0.72; T j =33+(T q -T c )×(A 1 +A 2 +A 3 )=33+(30-33)×(0.032×2+0.126+0.72) =33+(-3)×0.91=30.27 ℃ ②混凝土的绝热温升:T(t)=W×Q×(1-e-mt)/(C×r) 式中:T(t)—在t龄期时混凝土的绝热温升(℃); W—每m3混凝土的水泥用量(kg/m3),取350kg/m3; Q—每公斤水泥28天的累计水化热(KJ/kg), 采用425号矿渣水泥Q =335kJ/kg(文献[5] P 14 表2-1); C—混凝土比热0.97 KJ/(kg·K) ; r—混凝土容重2400 kg/m3; e—常数,2.71828; m—与水泥品种、浇筑时温度有关,可查文献[5]P 35 表3-5; t—混凝土龄期(d)。 混凝土最高绝热温升T h =W×Q/(C×r)=350×335/(0.97×2400)=50.37(℃) ③混凝土内部中心温度:T max (t)=T j + T 1 (t) 式中:T max (t)—t龄期混凝土内部中心温度; T j —混凝土浇筑温度(℃);

空调冷负荷法、冷指标(1)

空调房间、空调系统和制冷系统冷负荷的确定 1 空调房间的冷负荷 《规范》规定:空调房间的夏季冷负荷,因按各项逐时冷负荷的最大值确定,即: 1. 分项计算各项得热引起的冷负荷的逐时值,一般取7︰00~20︰00,计算结果宜列表表示。 2. 将同一时刻的各项冷负荷的逐时值列表汇总,逐时相加,取其最大值作为该空调房间的冷负荷。 2 空调系统的冷负荷 1. 空调系统的冷负荷=空调房间的冷负荷+新风冷负荷+风道风机温升及风量渗漏引起的附加冷负荷+其它进入空调系统的热量所形成的冷负荷+某些空调系统因为采用了冷热量抵消的调节手段而得到的热量。 2. 当一个空调系统负担多个空调房间时,空调房间的冷负荷应按下列情况分别确定: (1)当空调系统末端装置不能随负荷变法而手动或自动控制时,应采用同时使

用的所用房间最大冷负荷的累加值。 (2)当空调系统末端装置能随负荷变法而手动或自动控制时,应将同时使用的所用房间各计算时刻的冷负荷逐时列表累加,取其最大值作为该空调系统空调房间的冷负荷。 3 制冷系统的冷负荷 QR=∑QA*Kτ*KF*Kη 式中:QR——制冷系统的冷负荷。 QR——空调系统的冷负荷 ∑QA——制冷系统所负担的各空调系统冷负荷的累加值。 Kτ——同时使用系数,它反映了制冷系统所负担的各空调系统的同时使用率,视建筑物的使用性质、功能、规模、等级及经营管理等因素而定。取值在0.6~1.0之间。 KF——冷负荷附加系数,它反映了制冷系统、制冷装置及冷水系统的冷量损失,视系统的规模、设备类型、管道长短而定。用冷水间接冷却空气的系

统,取值为1.10~1.15;直接蒸发式表冷器系统,取值为1.05~1.10。 Kη——效率降低系数,它反映了设备运行一段时间后出力及传热效率的降低。其值一般可取1.05~1.10,或者采用设备厂家提供的数据。如果厂家给出的设备制冷量已经考虑了出力及传热效率降低的影响,则应取为1.00。 4 空调工程冷负荷概算法 4.1 综合指标 1. 综合指标=中央空调冷源设备的安装容量/整栋建筑物的空调面积单位:W/㎡ 2. 综合指标是用来粗略估算制冷系统的冷负荷,即冷水机组的安装容量。4.2 分类指标 1. 分类指标=空调热湿处理设备的装机容量/空调设备所承担的各空调房间的空调面积之和单位:W/㎡

控轧控冷工艺在盘螺降锰中的应用

控轧控冷工艺在盘螺降锰中的应用 发表时间:2018-05-21T16:52:35.757Z 来源:《基层建设》2018年第4期作者:宣文娟 [导读] 摘要:通过对控轧控冷工艺的应用,能够促进其组织细化和晶粒细化,进而增加盘螺的韧性和强度,保证其抗拉强度和屈服强度较高。 中天钢铁集团有限公司江苏常州 213011 摘要:通过对控轧控冷工艺的应用,能够促进其组织细化和晶粒细化,进而增加盘螺的韧性和强度,保证其抗拉强度和屈服强度较高?通过实际应用可以得出,在盘螺降锰中应用控轧控冷工艺,效果显著,其屈服度和强度的比例能够很好的满足抗震钢筋的需求,有效的减少了资源消耗,且合金使用成本也明显降低,进而企业的经济效益得到明显增加? 关键词:盘螺;控轧控冷;工艺改进 一、控轧控冷工艺概述 控轧控冷工艺属于一种板材生产技术,其技术核心主要就是在板材轧制的过程中,通过对冷却条件?轧制过程中?加热温度等工艺参数进行合理控制,进而改变板材的焊接?韧性以及强度性能?随着科学技术的快速发展,控轧控冷工艺已经逐渐巩固和完善。轧控冷可以简单的理解为控制轧制和冷却过程,在Ti?v?Nb等复合低碳微合金钢中得到良好的应用?控制轧制的基础是对钢材的化学成分进行调节,进而控制变形制度?轧制温度?加热温度等工艺参数,对相变产物组织形式和奥氏体状态进行合理控制,进而有效的提升钢材组织性能;控制冷却指的是对钢材轧制后的冷却条件进行控制,通过控制相变条件?奥氏体组织状态以及碳化物析出行为,来改变其性能?通过对控轧控冷工艺的使用,能够显著的提高钢材的综合性能和强韧性,并降低其中的碳元素含量和合金元素含量,通过对贵重合金元素的节约,生产钢材的成本大大降低?相较于普通生产工艺来说,在应用控轧控冷工艺之后,钢板的屈服强度和抗拉强度大约能提升60Mpa左右,在板形保持?冷却均匀性?合金元素节省?碳元素含量降低等多个方面都具有明显优势? 二、生产螺纹钢盘条的工艺流程 盘螺的生产工艺流程为:第一步热装和冷装连铸钢坯,第二步是在加热炉中进行加热,第三步是出钢机出炉,第四步是通过出炉辊道进行运输,第五步是6架粗轧机组,第六步是切头?事故碎断1群剪,第七步是4架预精轧机组,第八步是预水冷箱,第九步是切头?事故碎断2飞剪,第十步是10架精轧机组,第十一步是3组水冷箱及均温段,第十二步是夹送辊,第十二步是吐丝机,第十三步是延迟型斯太尔摩运输线,第十四步是集卷站集卷,第十五步是P/F钩式悬挂运输机,第十六步是打包,第十七步是称重,第十八步是挂标签,最后是入成品库? 三、在盘螺降锰中对控轧控冷工艺的应用 (一)常规轧制 在相关制作规范中要求,盘螺的抗拉强度需要≥540Mpa,屈服强度需要≥400Mpa,根据实验步骤的不同可以生产出成分不同的两批方坯,主要是坯料中锰成分含量不同?通过常规轧制可以得出,高猛成分盘螺的强度平均是438Mpa,平均锰含量为1.32%;低锰成分盘螺的强度平均是423Mpa,平均锰含量为1.06%? (二)轧后控冷工艺轧制 轧后控冷工艺指的是对钢材轧后的余热进行利用,给予相应的冷却速度,对其相变过程进行合理控制,其中不需要对其进行热处理,在其冷却过程进行控制的目的是为了模拟出铅浴淬火过程,进而保证线材能够具有一定的索氏体组织,该组织的综合机械性能比较好? 对于线材轧后冷却控制来说,可以将其分为空冷段相变冷却和水冷段强制冷却两个阶段?空冷区和水冷区两个部分共同构成控制冷却工艺,经过水冷控制线材达到相应温度之后,就能够进行吐丝,在风冷线上直条线材呈散圈状分布,实现风冷处理?在本次研究过程中,在常规工艺轧制之后,小批量的低锰成分盘螺通过控轧控冷工艺进行试制,通过传统高猛盘螺比较可以得出以下几个结论:(一)控制加热温度 加热炉中的加热时间和加热温度,会在很大程度上对钢坯的性能的组织产生直接影响?虽然终轧温度对钢坯组织性能所产生的影响比较大,但是加热温度的不同会对冷却过程中线材的组织机理转变形成影响?一般来说,根据盘螺性质的独特性,其加热温度需要控制在(1100±5O)℃的范围内,并将开轧温度控制在970~C左右? (二)控制轧制温度 在盘螺塑性变形过程中,精轧是最后一个环节,而对于精轧环节来说,实质上也是奥氏体形成再结晶的重要阶段,而且轧制的温度会直接影响到奥氏体再结晶形核的具体个数,随着轧制温度的升高,再结晶形核的个数就会逐渐减少,但是如果想实现盘螺最终珠光体或组织索氏体出现细化,提高其强度和韧性的话,其再结晶形核的个数则是越多越好,这也就表示应该降低轧制温度?因此,在满足工艺条件的基础上,应该尽可能的降低入精轧的温度,一般可以将其控制在830℃左右? (三)控轧控冷系统 在精轧之前,需要1组预水冷水箱,长度和恢复段长度分别为8m?12m,水箱的降温能力为100℃?在精轧之后,需要3组控冷水箱,每组长度和恢复段长度都是8m,水箱的降温能力为100℃?另外还需要佳灵?风门?保温罩?大风量风机(10台)?斯太尔摩控制冷却线等装置? (四)控制吐丝温度 控制吐丝温度是开始相变温度控制的重要方面?冷却段数量的多少会对吐丝温度的大小产生直接影响,并对奥氏体晶粒的具体尺寸产生间接影响?当轧件在经过精轧处理之后,奥氏体就会逐渐转变为其他相,但是在转变之前,奥氏体还存在着晶粒长大?再结品?恢复等过程,而在这一过程中会受到时间?温度等多种因素的影响,这也就是所谓的吐丝温度控制?在一般情况下,时间越长?温度越高,所形成的奥氏体晶粒也会之间增大?这也就表示,盘螺在出现相变之前,吐丝温度会影响着奥氏体品粒的尺寸大小?在相关调查研究结果中显示,随着逐渐增加的吐丝温度,盘螺的强度指标会增加;随着逐渐降低的吐丝温度,盘螺的塑性指标会增加,最佳的吐丝温度在810℃一850℃范围内? (五)控制冷却速度 对冷却速度进行控制,实质上就是控制辊道和冷却风机的速度,其中辊道速度会在很大程度上受到轧件速度?直径?线还间距等因素的影响,其中最关键的是需要对线还间距进行有效控制,而盘螺直径与线还间距密切相关,这也就表示最终的冷却效果实质上是由线还间距距离决定的?在生产实践中可以得出,当辊道冷却速度使不同盘螺环距离>40mm的话,在快速冷却时候的速度就是获得细珠光体的最佳速

相关文档
最新文档