正交多项式拟合数据的方法和程序设计

正交多项式拟合数据的方法和程序设计
正交多项式拟合数据的方法和程序设计

正交多项式最小二乘法拟合.doc

《MATLAB 程序设计实践》课程考核 一、编程实现以下科学计算算法,并举一例应用之。(参考书籍《精通MALAB科学计算》,王正林等著,电子工业出版社,2009年) “正交多项式最小二乘法拟合” 正交多项式最小二乘法拟合原理 正交多项式做最小二乘法拟合: 不要求拟合函数y=f(x)经过所有点(x i ,y i ),而只要求在给定点x i 上残差δi=f(x i )-y i 按照某种标准达到最小,通常采用欧式范数||δ||2作为衡量标准。这就是最小二 乘法拟合。 根据作为给定节点x 0,x 1,…x m 及权函数ρ(x)>0,造出带权函数正交的多项式{P n (x )}。注意n ≤m,用递推公式表示P k (x ),即 ()()()()()()()01101 111,, (1,2,,1)k k k k k P x P x x P x P x P x P x k n ααβ++-=??=-??=--=...-? 这里的P k (x)是首项系数为1的k 次多项式,根据P k (x)的正交性,得 ()()()()()()()()()()()()()()()()()()()()2i 012i 02i 0211i 10x ,,x ,0,1,1,x ,0,1,1,x m i k i k k i k m k k k i i k k m k k k i k k i k m k k k i i x P x xP x P x a P x P x P x xP P k n P P P x P P k n P P P x ρρρβρ=+==---=???==???==???-???===???-????∑∑∑∑ 根据公式(1)和(2)逐步求P k (x )的同时,相应计算系数 ()()()020()(),(0,1,n (,)() m i j i k i k i k m k k i k i i x x x f P a k P P x x ρ??ρ?=====???,∑∑) 并逐步把*k a P k (x )累加到S (x )中去,最后就可得到所求的拟合函数曲线 ***0011n n y=S x =a P x +a P x ++a P x ???()()()(). 流程图 M 文件 function [p] = mypolyfit(x,y,n) %定义mypolyfit 为最小二乘拟合函数 %P = POLYFIT(X,Y,N)以计算以下多项式系数 %P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + P(N+1). if ~isequal(size(x),size(y)) (2) (1)

正交多项式拟合在解决实际问题的应用

正交多项式拟合在解决实际问题的应用为了避免正规矩阵的“病态”问题,提出了正交多项式拟合方法。尤其是实际工作中的误差是不可避免的,而正交多项式拟合能够更好的考虑到自变量和因变量的误差,拟合出来的曲线更合理,也更便于计算机实现。 正交多项式拟合的实用性和一般性使得它在工程项目,机械制造,甚至人工智能等领域应用广泛,先简要介绍其中的几个方面。 1、边缘识别是利用数字图像法检测结构变形的一种方法,其中一种是需要多项式拟合,且拟合的精度决定了识别的精度,为提高拟合精度,就需要高次多项式,但又会产生“病态”,因此采用正交多项式拟合方法就十分必要了。将基于正交多项式拟合的边缘识别应用到梁变形检测中,拟合程度高,检测效果好。 2、提高零炮检距地震道的拟合精度是保幅地震资料处理的关键环节之一。相对于常规地震叠加技术,二阶多项式拟合技术能够提高零炮检距地震道的拟合精度。但是不同时刻地层反射信号的A VO特性是变化的,仅仅利用二阶多项式来实现零炮检距地震道拟合是达不到精度要求的。采用正交多项式描述CMP道集上不同时刻地层反射信号的A VO特性,建立正交多项式系数谱;并根据SVD估计有效波的能量,自适应地确定不同时刻拟合零炮检距地震道信号所需的阶次,实现高精度的零炮检距地震道拟合。合成记录和实际数据的处理表明该方法能够有效地减小零炮检距地震道拟合误差,提高拟合精度。 3、水泵性能曲线一般是用图表或曲线图给出,但在水泵选型或泵站经济运行中,常常有必要知道水泵性能曲线的函数表达式。对此,可以根据试验数据或性能图上的数据进行拟合。目前,在水泵性能曲线拟合中较常用的一般多项式的最小二乘拟合,需要求解一非线性方程组,增加了数据存贮量,而且在多项式次数较高时方程容易出现病态。如果采用正交多项式,则对n组数据,可以一直拟合到n-1次多项式而结果仍然稳定,因此提出对离心泵性能曲线的等流量间距的正交多项式回归法。 采用Forsythe递推法生成正交多项式,根据显著性检验来确定拟合的多项式次数,并在计算中佐以作图程序来进行直观分析。并证明了这种方法的实用性。 采用正交多项式并最终转化为一般多项式来拟合水泵性能曲线,避免了解联立方程组的繁琐和不稳定性,并根据数据分析来确定多项式的次数m,使m的取值不受人为经验限制。另外,各正交多项式之间互相正交,增减(最高)项次时,低次项的拟合系数并不改变,这就避免了重复计算。

matlab多项式拟合

matlab_最小二乘法数据拟合 (2012-10-21 12:19:27) 转载▼ 标签: matlab 最小二乘 数据拟合 定义: 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最 小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可 以简便地求得未知的数据,并使得这些求得的数据与实际数据之 间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一 些优化问题也可通过最小化能量或最大化熵用最小二 乘法来表 达。 最小二乘法原理: 在我们研究两个变量(x,y)之间的相互关系时,通 常可以得到一系列成对的数据(x1,y1.x2,y2... xm,ym);

将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。 Yj= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 1.多项式曲线拟合:polyfit 1.1常见拟合曲线: 直线:y=a0X+a1 多项式: 一般次数不易过高2 3 双曲线:y=a0/x+a1 指数曲线:y=a*e^b 1.2 matlab中函数 P=polyfit(x,y,n) [P S mu]=polyfit(x,y,n) polyval(P,t):返回n次多项式在t处的值 注:其中x y已知数据点向量分别表示横纵坐标,n 为拟合多项 式的次数,结果返回:P-返回n次拟合多项式系数从高到低 依次存放于向量P中,S-包含三个值其中normr是残差平方

和,mu-包含两个值mean(x)均值,std(x)标准差。 1.3举例 1. 已知观测数据为: X:0 1 2 3 4 5 6 7 8 9 1 Y:-0.447 1.987 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.3 11.2 用三次多项式曲线拟合这些数据点: x=0:0.1:1 y=[- 0.447,1.978,3.28,6.16,7.08,7.34,7.66,9.56,9.48,9.3,1 1. 2] plot(x,y,'k.','markersize',25) hold on axis([0 1.3 -2 16]) p3=polyfit(x,y,3) t=0:0.1:1.2: S3=polyval(P3,t); plot(t,S3,'r');

最小二乘法多项式拟合

最小二乘法多项式拟合 对于给定的数据点N i y x i i ≤≤1),,(,可用下面的n 阶多项式进行拟合,即 为了使拟合出的近似曲线能尽量反映所给数据的变化趋势,要求在所有数据点上的残差 都较小。为达到上述目标,可以令上述偏差的平方和最小,即 称这种方法为最小二乘原则,利用这一原则确定拟合多项式)(x f 的方法即为最小二乘法多项式拟合。 确定上述多项式的过程也就是确定)(x f 中的系数n k a k ≤≤0,的过程,根据最小二乘原则,则偏差平方和应该是这些系数的函数,即 为使上式取值最小,则其关于n k a k ≤≤0,的一阶导数应该为零,即有 将上面各等式写成方程组的形式可有 写成矩阵形式有 上述方程组可以通过克莱姆法则来计算,从而解出各系数n k a k ≤≤0,得到拟合方程。 考虑到一般情况提高拟合多项式的阶数并不能提高拟合精度,所以常用的多项拟合阶数为一阶和二阶,即线性拟合和二次拟合。两者的计算公式如下: 关于线性拟合,除上面按克莱姆法则来计算外,还可以有另一思路,下面对

此进行说明。由于是线性拟合,最后得到的是一条直线,因此,直线可以由斜率和截距两个参数来确定,因此,求出这两个参数即可。首先对克莱姆法的求解结果进行展开可以得到 下面考虑先计算斜率再计算截距的方法,从下图可见,斜率计算与坐标系的 位置无关,所以可以将坐标原点平移到样本的i x 和i y 坐标的均值所在点上 图中 则在新的坐标系),(y x ''下斜率的计算公式与前面1a 的计算公式相同,将其中的坐标 ),(y x 换成),(y x ''即可得到下面的计算公式 由样本在新坐标系下的坐标i x '和i y '的均值为零,或者由下面推导可知 则斜率的计算公式可以简化为 还原为原坐标有 下面推导截距的计算公式 x '

曲线拟合(数值 (C语言))

(1)曲线拟合: #include #include #define MAX 100 void main() { int i,j,k,m,n,N,mi; float tmp,mx; float X[MAX][MAX],Y[MAX],x[MAX],y[MAX],a[MAX]; printf("\n 输入拟合多项式的次数:\n"); scanf("%d",&m); printf("\n 输入给定点的个数n及坐标(x,y):\n"); scanf("%d",&N); printf("\n"); for(i=0;imx) { mi=i; mx=fabs(X[i][j]); } if(j

Y[j]=Y[mi]; Y[mi]=tmp; for(k=j;k<=m;k++) { tmp=X[j][k]; X[j][k]=X[mi][k]; X[mi][k]=tmp; } } for(i=j+1;i<=m;i++) { tmp=-X[i][j]/X[j][j]; Y[i]+=Y[j]*tmp; for(k=j;k<=m;k++) X[i][k]+=X[j][k]*tmp; } } a[m]=Y[m]/X[m][m]; for(i=m-1;i>=0;i--) { a[i]=Y[i]; for(j=i+1;j<=m;j++) a[i]-=X[i][j]*a[j]; a[i]/=X[i][i]; } printf("\n 所求的二次多项式为:\n"); printf("P(x)=%f",a[0]); for(i=1;i<=m;i++) printf("+(%f)*x^%d",a[i],i); } 输入拟合多项式的次数: 2 输入给定点的个数n及坐标(x,y): 5 1,2 5,3 2,4 8,3 -1,5 所求的二次多项式为: P(x)=3.952280+(-0.506315)*x^1+(0.050877)*x^2Press any key to continue

Matlab多项式拟合曲线

?MATLAB软件提供了基本的曲线拟合函数的命令. 1 多项式函数拟合:a=polyfit(xdata,ydata,n) 其中n表示多项式的最高阶数,xdata,ydata为将要拟合的数据,它是用数组的方式输入.输出参数a 为拟合多项式的系数 多项式在x处的值y可用下面程序计算. y=polyval(a,x) 2 一般的曲线拟合:p=curvefit(‘Fun’,p0,xdata,ydata) 其中Fun表示函数Fun(p,data)的M函数文件,p0表示函数的初值.curvefit()命令的求解问题形式是若要求解点x处的函数值可用程序f=Fun(p,x)计算. 例如已知函数形式,并且已知数据点要确定四个未知参数a,b,c,d. 使用curvefit命令,数据输入;初值输;并且建立函数的M文件(Fun.m).若定义,则输出 又如引例的求解,MATLAB程序: t=[l:16];%数据输人 y=[ 4 6.4 8 8.4 9.28 9.5 9.7 9.86 10.2 10.32 10.42 10.5 10.55 1 0.58 10.6] ; plot(t,y,’o’) %画散点图 p=polyfit(t,y,2) (二次多项式拟合) 计算结果: p=-0.0445 1.0711 4.3252 %二次多项式的系数 由此得到某化合物的浓度y与时间t的拟合函数。 ?zjxdede | 2008-10-17 12:10:06 ?MATLAB软件提供了基本的曲线拟合函数的命令. 1 多项式函数拟合:a=polyfit(xdata,ydata,n) 其中n表示多项式的最高阶数,xdata,ydata为将要拟合的数据,它是用数组的方式输入.输出参数a为拟合多项式的系数 多项式在x处的值y可用下面程序计算. y=polyval(a,x) 2 一般的曲线拟合:p=curvefit(‘Fun’,p0,xdata,y data) 其中Fun表示函数Fun(p,data)的M函数文件,p0表示函数的初值.curvefit()命令的求解问题形式是 若要求解点x处的函数值可用程序f=Fun(p,x)计算. 例如已知函数形式,并且已知数据点要确定四个未知参数a,b,c,d. 使用curvefit命令,数据输入;初值输;并且建立函数的M文件(Fun.m).若定义,则输出 又如引例的求解,MATLAB程序: t=[l:16];%数据输人 y=[ 4 6.4 8 8.4 9.28 9.5 9.7 9.86 10.2 10.32 10.42 10.5 1 0.55 10.58 10.6] ;

最小二乘法的本原理和多项式拟合

第一节 最小二乘法的基本原理和多项式拟合 一 最小二乘法的基本原理 从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差 i i i y x p r -=)((i=0,1,…,m) 的大小,常用的方法有以下三种:一是误差 i i i y x p r -=)((i=0,1,…,m)绝对值的最大值i m i r ≤≤0max ,即误差 向量 T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=m i i r 0 ,即误差向量r 的1— 范数;三是误差平方和∑=m i i r 02 的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=m i i r 02 来 度量误差i r (i=0,1,…,m)的整 体大小。 数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即 ∑=m i i r 0 2 =[]∑==-m i i i y x p 0 2 min )( 从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最 小的曲线)(x p y =(图6-1)。函数)(x p 称为拟合 函数或最小二乘解,求拟合函数)(x p 的方法称为曲线拟合的最小二乘法。 在曲线拟合中,函数类Φ可有不同的选取方法. 6—1 二 多项式拟合 假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一 Φ ∈=∑=n k k k n x a x p 0 )(,使得 [] min )(0 02 02 =??? ??-=-=∑∑∑===m i m i n k i k i k i i n y x a y x p I (1) 当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘 拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。

数值分析函数逼与曲线拟合

第三章 函数逼近与曲线拟合 1 函数的逼近与基本概念 1.1问题的提出 多数计算机的硬件系统只提供加、减、乘、除四种算术运算指令,因此为了计算大多数有解析表达式的函数的值,必须产生可用四则运算进行计算的近似式,一般为多项式和有理分式函数.实际上,我们已经接触到两种逼近多项式,一种是泰乐多项式,一种是插值多项式.泰乐多项式是一种局部方法,误差分布不均匀,满足一定精度要求的泰乐多项式次数太高,不宜在计算机上直接使用.例如,设 ()f x 是[1,1]-上的光滑函数,它的Taylor 级数0 ()k k k f x a x ∞ ==∑, ()(0) ! k k f a k = 在[1,1]-上收敛。当此级数收敛比较快时,1 1()()()n n n n e x f x s x a x ++=-≈。这个误差分布是不均匀的。当0x =时,(0)0n e =,而x 离开零点增加时,()n e x 单调增加,在1x =±误差最大。为了使[1,1]-的所有x 满足()()n f x s x ε-<,必须选取足够大的n ,这显然是不经 济的。插值函数出现的龙格现象表明,非节点处函数和它的插值多项式相差太大。更重要的是,实际中通过观测得到的节点数据往往有各种误差,此时如果要求逼近函数过全部节点,相当于保留全部数据误差,这是不适宜的。如图1所示,给出五个点上的实验测量数据,理论上的结果应该满足线性关系,即图1中的实线。由于实验数据的误差太大,不能用过任意两点的直线逼近函数。如果用过5个点的4次多项式逼近线性函数,显然误差会很大。

1.2范数与逼近 一、线性空间及赋范线性空间 要深入研究客观事物,不得不研究事物间的内在联系,给集合的元素之间赋予某种“确定关系”也正是这样的道理.数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将这样的集合称为空间。最常用的给集合赋予一种“加法”和“数乘”运算,使其构 成线性空间.例如将所有实 n 维数对组成的集合,按照“加法”和“数乘”运算构成实数域上的线 性空间,记作n R ,称为n 维向量空间.类似地,对次数不超过n 的实系数多项式全体,按通常多项式与多项式加法及数与多项式乘法也构成数域R 上一个线性空间,用n H 表示,称为多项式空间。所有定义在[,]a b 上的连续函数集合,按函数加法和数与函数乘法构成数域R 上的线 性空间,记作[,]C a b .类似地,记[,]p C a b 为具有p 阶连续导数的函数空间. 在实数的计算问题中,对实数的大小、距离及误差界等是通过绝对值来度量的.实践中,我们常常会遇到对一般线性空间中的向量大小和向量之间的距离进行度量的问题,因此有必要在一般线性空间上,赋予“长度”结构,使线性空间成为赋范线性空间. 定义1 设 X 是数域K 上一个线性空间,在其上定义一个实值函数g ,即对于任意 ,x y X ∈及K α∈,有对应的实数x 和y ,满足下列条件 (1) 正定性:0x ≥,而且0x =当且仅当0x =; (2) 齐次性:x x αα=; (3) 三角不等式:x y x y +≤+; 实验数据 真函数 插值多项式逼近 精确的线性逼近 图1

正交实验结果如何进行数据分析57070

正交实验如何数据分析 我们把在试验中考察的有关影响试验指标的条件称为因素(也叫因子),把在试验中准备考察的各种因索的不同状态(或配方)称为水平。在研究比较复杂的工程问题中,往往都包含着多个因素,而且每个因素要取多个水平。 对于包含五个因素、五个水平的工程项目,理论计算必须进行55=3125次试验。显然,所需要的试验次数太多了,工作量太大。实践告诉我们,合理安排试验和科学分析试验,是试验工作成败的关键。 试验方案设计的好,试验次数就少,周期也短,这样不仅节省了大量人力、物力、财力和时间,而且可以得到理想的结果。相反,如果试验设计安排的不好,即使进行了很多次试验,浪费了大量材料、人力和时间,也不一定能够得到预期的结果。 正交试验法,就是在多因素优化试验中,利用数理统计学与正交性原理,从大量的试验点中挑选有代表性和典型性的试验点,应用“正交表”科学合理地安排试验,从而用尽量少的试验得到最优的试验结果的一种试验设计方法。 正交试验法也叫正交试验设计法,它是用“正交表”来安排和分析多因素问题试验的一种数理统计方法。这种方法的优点是试验次数少,效果好,方法筒单,使用方便,效率高。 由于试验次数大大减少,使得试验数据处理非常重要。我们可以从所有的试验数据中找到最优的一个数据,当然,这个数据肯定不是最佳匹配数据,但是肯定是最接近最佳的了。

用正交表安排的试验具有均衡分散和整齐可比的特点。均衡分散,是指用正交表挑选出来的各因素和各水平组合在全部水平组合中的分布是均衡的。整齐可比是说每一因素的各水平间具有可比性。 最简单的正交表L4(23)如表-1所示。 表-1 记号L4(23)的含意如下: “L”代表正交表; L下角的数字“4”表示有4横行(简称为行),即要做四次试验; 括号内的指数“3”表示有3纵列(简称为列),即最多允许安排的因素个数是3个; 括号内的数“2”表示表的主要部分只有2种数字,即因素有两种水平l与2,称之为l水平与2水平。 表L4(23)之所以称为正交表是因为它有两个特点: 1、每一列中,每一因素的每个水平,在试验总次数中出现的次数

离散试验数据点的正交多项式最小二乘拟合

%离散试验数据点的正交多项式最小二乘拟合 function a=ZJZXEC(x,y,m) if(length(x) == length(y)) n = length(x); else disp('x和y的维数不相等!'); return; end syms v; d = zeros(1,m+1); q = zeros(1,m+1); alpha = zeros(1,m+1); for k=0:m px(k+1)=power(v,k); end B2 = [1]; d(1) = n; for l=1:n q(1) = q(1) + y(l); alpha(1) = alpha(1) + x(l); end q(1) = q(1)/d(1); alpha(1) = alpha(1)/d(1); a(1) = q(1); B1 = [-alpha(1) 1]; for l=1:n d(2) = d(2) + (x(l)-alpha(1))^2; q(2) = q(2) + y(l)*(x(l)-alpha(1)); alpha(2) = alpha(2) + x(l)*(x(l)-alpha(1))^2; end q(2) = q(2)/d(2); alpha(2) = alpha(2)/d(2); a(1) = a(1)+q(2)*(-alpha(1)); a(2) = q(2); beta = d(2)/d(1); for i=3:(m+1) B = zeros(1,i); B(i) = B1(i-1); B(i-1) = -alpha(i-1)*B1(i-1)+B1(i-2); for j=2:i-2 B(j) = -alpha(i-1)*B1(j)+B1(j-1)-beta*B2(j);

实验题目用正交多项式做小二乘曲线拟合

实验题目:用正交多项式做小二乘曲线拟合

实验题目: 用正交多项式做最小二乘的曲线拟合 学生组号: 6 完成日期: 2011/11/27 1 实验目的 针对给定数据的煤自燃监测数据中煤温与N O 2 2 ,之间的非线性关系,用正交多项式 做最小二乘曲线拟合。 2 实验步骤 2.1 算法原理 设给定n+1个数据点:( y x k k ,),k=0,1,···,n ,则根据这些节点作一个m 次的最 小二乘拟合多项式 p m (x )= a +x a x a a m m x +++ (2) 21=x a j m j j ∑=0 ① 其中,m ≤n,一般远小于n.。 若要构造一组次数不超过m的在给定点上正交的多项式函数系{)(x Q j (j=0, 1,...,m)},则可以首先利用{)(x Q j (j=0,1,...,m)}作为基函数作最小二乘 曲线的拟合,即 p m (x )= )(...)()(1 1 x x x Q q Q q Q q m m +++ ② 根据②式,其中的系数 q j (j=0,1,...,m)为 ∑∑=== n k k j n k k j k j x Q x Q y q 2 ) () (,j=0,1,...,m ③ 将④代入③后展开就成一般的多项式。 构造给定点上的正交多项式 )(x Q j (j=0,1,...,m)的递推公式如下: ?? ? ? ???-=--=-==-+1 ,...,2,1),()()()()()(1)(1 1010m j x x x x x x x Q Q Q Q Q j j j j j βαα ④

数据拟合方法

第二讲 数据拟合方法 在实验中,实验和戡测常常会产生大量的数据。为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。数据拟合方法与数据插值方法不同,它所处理的数据量大而且不能保证每一个数据没有误差,所以要求一个函数严格通过每一个数据点是不合理的。数据拟合方法求拟合函数,插值方法求插值函数。这两类函数最大的不同之处是,对拟合函数不要求它通过所给的数据点,而插值函数则必须通过每一个数据点。例如,在某化学反应中,测得生成物的质量浓度y (10 –3 g/cm 3)与时间t (min )的关系如表所示 显然,连续函数关系 y (t )是客观存在的。但 是通过表中的数据不可能确切地得到这种关系。何况,由于仪器和环境的影响,测量数据难免有误差。因此只能寻求一个近拟表达式 y = (t )

寻求合理的近拟表达式,以反映数据变化的规律,这种方法就是数据拟合方法。数据拟合需要解决两个问题:第一,选择什么类型的函数)(t ?作为拟合函数(数学模型);第二,对于选定的拟合函数,如何确定拟合函数中的参数。 数学模型应建立在合理假设的基础上,假设的合理性首先体现在选择某种类型的拟合函数使之符合数据变化的趋势(总体的变化规律)。拟合函数的选择比较灵活,可以选择线性函数、多项式函数、指数函数、三角函数或其它函数,这应根据数据分布的趋势作出选择。为了问题叙述的方 假设拟合函数是线性函数,即拟合函数的图形是一条平面上的直线。而表中的数据点未能精确地落在一条直线上的原因是实验数据的误差。则下一步是确定函数 y= a + b x 中系数a 和b 各等于多少从几何背景来考虑,就是要以a 和b 作为待定系数,确定一条平面直线使得表中数据所对应的10个点尽可能地靠近这条直线。一般来讲,数据点将不会全部落在这条直线上,如果第k 个点的数据恰好落在这条直线上,则这个点的坐标满足直线的方程,即 a + b x k = y k 如果这个点不在直线上,则它的坐标不满足直线方程,有一个绝对值为 k k y bx a -+的差异(残差) 。于是全部点处的总误差是 ∑=-+10 1 k k k y bx a 这是关于a 和b 的一个二元函数,合理的做法是选取a 和b ,使得这个函 数取极小值。但是在实际求解问题时为了操作上的方便,常常是求a 和b 使得函数 ∑=-+=10 12)(),(k k k y bx a b a F 达到极小。为了求该函数的极小值点,令 0=??a F ,0=??b F , 得

用正交多项式做最小二乘拟合

关于用正交多项式做最小二乘拟合的实验报告 1.实验目的: 用正交多项式做最小二乘拟合及拟合图形 2.实验内容: 编写用正交多项式做最小二乘拟合的程序,并用于求解一个任意给定的数的3次多项式最小二乘拟合问题,在这里给出数据如下: 对表格中数据用正交多项式做最小二乘拟合在拟合完后作出拟合曲线的图形,计算平方误差,最后对它们进行分析。 程序如下: 1). 构建的正交多项式最高项次数为3时的程序: >> x= 1:0.3:4; >> y=[2.718 3.669 4.95 6.686 9.025 12.182 16.445 22.198 29.964 40.447 54.598]; >> n=3; 构建的正交多项式最高项次数为3 >> result=inputdlg({'请输入权向量w:'},'charpt-3',1,{'[1 1 1 1 1 1 1 1 1 1 1]'}); >> w=str2num(char(result)); 利用str2num函数将数值型转化为符号型 >> m=length(x)-1; >> s1=0; >> s2=ones(1,m+1); >> v2=sum(w); >> d(1)=y*w'; >> c(1)=d(1)/v2; >> for k=1:n xs=x.*s2.^2*w'; a(k)=xs/v2; if(k==1) b(k)=0; else b(k)=v2/v1; end s3=(x-a(k)).*s2-b(k)*s1; v3=s3.^2*w'; d(k+1)=y.*s3*w'; c(k+1)=d(k+1)/v3; s1=s2;

s2=s3; v1=v2; v2=v3; end >> r=y.*y*w'-c*d' r = 0.8918 >> alph=zeros(1,n+1) alph = 0 0 0 0 >> T=zeros(n+1,n+2); >> T(:,2)=ones(n+1,1); >> T(2,3)=-a(1); >> >> if(n>=2) for k=3:n+1 for i=3:k+1 T(k,i)=T(k-1,i)-a(k-1)*T(k-1,i-1)-b(k-1)*T(k-2,i-2); end end end >> for i=1:n+1 for k=i:n+1 alph(n+2-i)=alph(n+2-i)+c(k)*T(k,k+2-i); end end >> xmin=min(x); >> xmax=max(x); >> dx=(xmax-xmin)/(25*m); >> t=(xmin-dx):dx:(xmax+dx); >> s=alph(1); >> for k=2:n+1 s=s.*t+alph(k); end >> plot(x,y,'x',t,s,'-'); >> grid on; >> disp(alph); >> disp(r)

用多项式模型进行数据拟合实验报告(附代码)

实验题目: 用多项式模型进行数据拟合实验 1 实验目的 本实验使用多项式模型对数据进行拟合,目的在于: (1)掌握数据拟合的基本原理,学会使用数学的方法来判定数据拟合的情况; (2)掌握最小二乘法的基本原理及计算方法; (3)熟悉使用matlab 进行算法的实现。 2 实验步骤 2.1 算法原理 所谓拟合是指寻找一条平滑的曲线,最不失真地去表现测量数据。反过来说,对测量 的实验数据,要对其进行公式化处理,用计算方法构造函数来近似表达数据的函数关系。由于函数构造方法的不同,有许多的逼近方法,工程中常用最小平方逼近(最小二乘法理论)来实现曲线的拟合。 最小二乘拟合利用已知的数据得出一条直线或曲线,使之在坐标系上与已知数据之间的距离的平方和最小。模型主要有:1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型等,根据应用情况,选用不同的拟合模型。其中多项式型拟合模型应用比较广泛。 给定一组测量数据()i i y x ,,其中m i ,,3,2,1,0Λ=,共m+1个数据点,取多项式P (x ),使得 min )]([020 2=-=∑∑==m i i i m i i y x p r ,则称函数P (x )为拟合函数或最小二乘解,此时,令 ∑==n k k k n x a x p 0 )(,使得min ])([02 002=??? ? ??-=-=∑∑∑===m i n k i k i k m i i i n y x a y x p I ,其中 n a a a a ,,,,210Λ为待求的未知数,n 为多项式的最高次幂,由此该问题化为求),,,(210n a a a a I I Λ=的极值问题。 由多元函数求极值的必要条件:0)(200 =-=??∑∑==m i j i n k i k i k i x y x a a I ,其中n j ,,2,1,0Λ= 得到: ∑∑∑===+=n k m i i j i k m i k j i y x a x )(,其中n j ,,2,1,0Λ=,这是一个关于n a a a a ,,,,210Λ的线 性方程组,用矩阵表示如下所示:

试验设计与数据处理

试验设计与数据处理方法总述及总结 王亚丽 (数学与信息科学学院 08统计1班 081120132) 摘要:实验设计与数据处理是一门非常有用的学科,是研究如何经济合理安排 试验可以解决社会中存在的生产问题等,对现实生产有很重要的指导意义。因此本文根据试验设计与数据处理进行了总述与总结,以期达到学习、理解、掌握的以及灵活运用的目的。 1 试验设计与数据处理基本知识总述 1.1试验设计与数据处理的基本思想 试验设计与数据处理是数理统计学中的一个重要分支。它是以概率论、数理统计及线性代数为理论基础,结合一定的专业知识和实践经验,研究如何经济、合理地安排实验方案以及系统、科学地分析处理试验结果的一项科学技术,从而解决了长期以来在试验领域中,传统的试验方法对于多因素试验往往只能被动地处理试验数据,而对试验方案的设计及试验过程的控制显得无能为力这一问题。 1.2试验设计与数据处理的作用 (1)有助于研究者掌握试验因素对试验考察指标影响的规律性,即各因素的水平改变时指标的变化情况。 (2)有助于分清试验因素对试验考察指标影响的大小顺序,找出主要因素。(3)有助于反映试验因素之间的相互影响情况,即因素间是否存在交互作用。(4)能正确估计和有效控制试验误差,提高试验的精度。 (5)能较为迅速地优选出最佳工艺条件(或称最优方案),并能预估或控制一定条件下的试验指标值及其波动范围。 (6)根据试验因素对试验考察指标影响规律的分析,可以深入揭示事物内在规律,明确进一步试验研究的方向。

1.3试验设计与数据处理应遵循的原则 (1)重复原则:重可复试验是减少和估计随机误差的的基本手段。 (2)随机化原则:随机化原则可有效排除非试验因素的干扰,从而可正确、无偏地估计试验误差,并可保证试验数据的独立性和随机性。 (3)局部控制原则:局部控制是指在试验时采取一定的技术措施方法减少非试验因素对试验结果的影响。用图形表示如下: 2试验设计与数据处理方法总述和总结 2.1方差分析 (1)概念:方差分析是用来检验两个或两个以上样本的平均值差异的显著程度。并由此判断样本究竟是否抽自具有同一均值的总体。 (2)优点:方差分析对于比较不同生产工艺或设备条件下产量、质量的差异,分析不同计划方案效果的好坏和比较不同地区、不同人员有关的数量指标差异是否显著时,是非常有用的。 (3)缺点:对所检验的假设会发生错判的情况,比如第一类错误或第二类错误的发生。 (4)基本原理:方差分析的基本思路是一方面确定因素的不同水平下均值之间的方差,把它作为对由所有试验数据所组成的全部总体的方差的第一个估计值;另一方面再考虑在同一水平下不同试验数据对于这一水平的均值的方差,由此计算出对由所有试验数据所组成的全部数据的总体方差的第 二个估计值。比较上述两个估计值,如果这两个方差的估计值比较接近就说明因素的不同水平下的均值间的差异并不大,就接受零假设;否则,说明因素的不同水平下的均值间的差异比较大。

数据的n次拟合多项式

数据的n次拟合多项式 第一章绪论 1.1课题国内外研究动态,课题研究背景及意义 1.2国内外的研究现状 1.3发展趋势 第二章数据拟合的基本理论2.1 最小二乘曲线拟合 2.2 线性拟合函数 2.3 二次拟合函数 2.4多项式拟合函数 2.5 小结 第三章数据拟合的应用实例3.1 数据拟合在物理实验中的应用 3.2 数据拟合在经济监控中的应用 3.3 模型评价 参考文献 附录

第一章绪论 1.1课题国内外研究动态,课题研究背景及意义 数学分有很多学科,而它主要的学科大致产生于商业计算的需要、了解数字间的关系、测量土地及预测天文事件。而在科技飞速发展的今天数学也早已成为众多研究的基础学科。尤其是在这个信息量巨大的时代,实际问题中得到的离散数据的处理也成为数学研究和应用领域中的重要的课题。 在解决实际工程问题和科学实验的过程中,经常需要通过研究某些变量之间的函数关系,帮我们去认识事物内在的规律和本质属性,这些变量间的未知的关系一般隐含在从观测、试验而得到的一组离散的数据之中。所以,是否能够根据一组试验观测数据来找到变量之间的相对准确的函数关系成为了解决工程实际问题的关键。 在实际问题中,通过观测数据能否正确揭示某些变量之间的关系,进而正确认识事物的内在规律与本质属性,往往取决于两方面因素。其一是观测数据的准确性或准确程度,这是因为在获取观测数据的过程中一般存在随机测量误差,导致所讨论的变量成为随机变量。其二是对观测数据处理方法的选择,即到底是采用插值方法还是用拟合方法[1-3],插值方法之中、拟合方法之中又选用哪一种插值或拟合技巧来处理观测数据。插值问题忽略了观测误差的影响,而拟合问题则考虑了观测误差的影响。但由于观测数据客观上总是存在观测误差,而拟合函数大多数情况下是通过经验公式获得的,因此要正确揭示事物的内在规律,往往需要对大量的观测数据进行分析,尤为重要的是进行统计分析。统计分析的方法有许多,如方差分析、回归分析等。数据拟合虽然较有效地克服了随机观测误差的影响,但从数理统计的角度看,根据一个样本计算出来的拟合函数(系数),只是拟合问题的一个点估计,还不能完全说明其整体性质。因此,还应该对拟合函数作区间估计或假设检验,如果置信区间太大或包含零点,则由计算得到的拟合函数系数的估计值就毫无意义。 所以,据科学和工程问题可以通过比如采样、实验等方法而得到若干的离散的数据,根据这些离散的数据,我们往往希望能得到一个连续函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合。这个过程叫做拟合。也就是说,如果数据不能满足某一个特定的函数的时候,而要求我们所要求的逼近函数“最优的” 靠近那些数据点,按照误差最小的原则为最优标准来构造出函数。我们称这个函数为拟合函数。 现在,对数据点进行函数拟合以获得信息模型是许多工程应用领域的一个核

正交试验设计方法 讲义及举例

正交试验设计方法讲义及举例 第5章 正交试验设计方法 5.1 试验设计方法概述 试验设计是数理统计学的一个重要的分支。多数数理统计方法主要用于分析已经得到的数据,而试验设计却是用于决定数据收集的方法。试验设计方法主要讨论如何合理地安排试验以及试验所得的数据如何分析等。 例5-1 某化工厂想提高某化工产品的质量和产量,对工艺中三个主要因素各按三个水平进行试验(见表5-1)。试验的目的是为提高合格产品的产量,寻求最适宜的操作条件。 对此实例该如何进行试验方案的设计呢? 很容易想到的是全面搭配法方案(如图5-1所示): 此方案数据点分布的均匀性极好,因素和水平的搭配十分全面,唯一的缺点是实验次数多达33=27次(指数3代表3个因素,底数3代表每因素有3个水平)。因素、水平数 愈多,则实验次数就愈多,例如,做一个6因素3水平的试验,就需36=729次实验,显然难以做到。因此需要寻找一种合适的试验设计方法。 试验设计方法常用的术语定义如下。 试验指标:指作为试验研究过程的因变量,常为试验结果特征的量(如得率、纯度等)。例1的试验指标为合格产品的产量。 因素:指作试验研究过程的自变量,常常是造成试验指标按某种规律发生变化的那些原因。如例1的温度、压力、碱的用量。 水平:指试验中因素所处的具体状态或情况,又称为等级。如例1的温度有3个水平。温度用T 表示,下标1、2、3表示因素的不同水平,分别记为T 1、T 2、T 3。

常用的试验设计方法有:正交试验设计法、均匀试验设计法、单纯形优化法、双水平单纯形优化法、回归正交设计法、序贯试验设计法等。可供选择的试验方法很多,各种试验设计方法都有其一定的特点。所面对的任务与要解决的问题不同,选择的试验设计方法也应有所不同。由于篇幅的限制,我们只讨论正交试验设计方法。 5.2 正交试验设计方法的优点和特点 用正交表安排多因素试验的方法,称为正交试验设计法。其特点为:①完成试验要求所需的实验次数少。②数据点的分布很均匀。③可用相应的极差分析方法、方差分析方法、回归分析方法等对试验结果进行分析,引出许多有价值的结论。 从例1可看出,采用全面搭配法方案,需做27次实验。那么采用简单比较法方案又如何呢? 先固定T 1和p 1,只改变m ,观察因素m 不同水平的影响,做了如图2-2(1)所示的三次实验,发现 m =m 2时的实验效果最好(好的用 □ 表示),合格产品的产量最高,因此认为在后面的实验中因素m 应取m 2水平。 固定T 1和m 2,改变p 的三次实验如图5-2(2)所示,发现p =p 3时的实验效果最好,因此认为因素p 应取p 3水平。 固定p 3和m 2,改变T 的三次实验如图5-2(3)所示,发现因素T 宜取T 2水平。 因此可以引出结论:为提高合格产品的产量,最适宜的操作条件为T 2p 3m 2。与全面搭配法方案相比,简单比较法方案的优点是实验的次数少,只需做9次实验。但必须指出,简单比较法方案的试验结果是不可靠的。因为,①在改变m 值(或p 值,或T 值)的三次实验中,说m 2(或p 3或T 2 )水平最好是有条件的。在T ≠T 1,p ≠p 1时,m 2 水平不是最好的可能性是有的。②在改变m 的三次实验中,固定T =T 2,p =p 3 应该说也是可以的,是随意的,故在此方案中数据点的分布的均匀性是毫无保障的。③用这种方法比较条件好坏时,只是对单个的试验数据进行数值上的简单比较,不能排除必然存在的试验数据误差的干扰。 运用正交试验设计方法,不仅兼有上述两个方案的优点,而且实验次数少,数据点分布均匀,结论的可靠性较好。 正交试验设计方法是用正交表来安排试验的。对于例1适用的正交表是L 9(34),其试验安排见表5-2。 所有的正交表与L 9(34)正交表一样,都具有以下两个特点: (1) 在每一列中,各个不同的数字出现的次数相同。在表L 9(34)中,每一列有三个水平,水平1、2、3都是各出现3次。 (2) 表中任意两列并列在一起形成若干个数字对, 不同数字对出现的次数也都相同。

相关文档
最新文档