可靠性设计要求

可靠性设计要求

1适用范围

本标准规定了可靠性设计的一般要求和详细要求。

本标准适用于公司所有产品的可靠性设计工作。

2引用标准

IEC60300-2-1992 可靠性管理第2部分可靠性程序元素和任务

GB6993-86 系统和设备研制生产中的可靠性程序

GJB 450-88 装备研制与生产的可靠性通用大纲

GJB 451-90 可靠性维修性术语

GJB 437-- 88 军用软件开发规范

GB 4943-1995 信息技术设备(包括电气事务设备)的安全

3名词术语

3.1可靠性 reliability

产品在规定的条件下和规定的时间内,完成规定功能的能力。

3.2可信性 dependability

产品在任一时刻完成规定功能的能力。它是一个集合性术语,用来表示可用性及其影响因素:可靠性、维修性、保障性。在不引起混淆和不需要区别的条件下,与可靠性等同使用。

3.3测试性 testability

产品能及时并准确地确定其状态(可工作、不可工作或性能下降),并隔离其内部的一种设计特性。

3.4维修性 maintainability

产品在规定的条件下和规定的时间内,按规定的程序和方法进行维修时,保持或恢复到规定状态的能力。

3.5可靠性要求(目标)

产品可靠性的高低是由一系列指标来描述的,包括MTBF值、环境应力范围、EMC应力范围等等。这一系列指标就是对产品的可靠性要求或产品的可靠性目标。

3.6可靠性(设计)方案

为实现产品可靠性目标而制定的技术路径和方法。

3.7可靠性(设计)报告

为实现产品可靠性目标而实施的技术路径和方法。

3.8可靠性设计

从制定可靠性目标到提供可靠性(设计)报告的全过程。

3.9工作项目

组成可靠性设计的相对独立的工作内容和过程。

3.10可靠性设计评审

由不直接参加设计的专家对可靠性设计进行论证和确认的过程。

4一般要求

4.1 可靠性设计是产品设计的一部分,应与产品设计同时进行。

4.2 可靠性部负责可靠性设计标准的制定,可靠性设计的技术支持,参加重要产品可靠性设计的评审。

4.3 各事业部设可靠性负责人,负责本事业部可靠性工作。各产品设可靠性工程师,负责

本产品的可靠性设计、试验和改进。

4.4 可靠性设计分阶段进行,各阶段的输出满足本标准的要求。

a)研制规范中的可信性部分(可信性要求),主要规定系统可信性的目标和要求,在

产品方案阶段输出(模板1);

b)总体方案中的可信性部分,也可以做成单独的可信性设计方案,主要规定实现产

品可信性目标的方法和技术路线,在产品方案阶段输出(模扳2);

c)产品可信性设计报告,主要报告产品可靠性设计的实施情况,产品工程研制阶段

输出;

d)产品可靠性试验方案,产品工程研制阶段输出。

4.5 产品可信性设计,由必做的工作项目和选做的工作项目组成。

a)必做的工作项目有:

可靠性建模、预计和分配;

热设计;

EMC设计;

元器件使用设计;

b)选做的工作项目有:

安全性设计

测试性、维修性设计;

故障模式影响分析(FMEA);

元器件和电路的容差分析;

软件可靠性

4.6 本标准规定的工作项目和模板规定的内容可以裁减,但要有足够的理由。

a)产品本身的特点;

b)有关标准是否要求;

c)用户是否要求;

d)该项目所涉及的问题是否存在;

4.7可靠性设计的工作项目,由产品可靠性工程师根据本标准的要求和产品具体情况,征得项目经理同意后决定。意见不一致时由公司可靠性部裁定。

4.8 可靠性设计的各种输出,均在研发流程的相应基线进行评审,评审结果对产品是

否进入下一阶段具有一票否决权。

5详细要求

5.1 可信性要求(工作项目1)

研制规范中的可信性要求应同时满足产品使用环境、相关国内外标准和用户的要求。

5.2 可信性设计方案(工作项目2)

总体方案中的可信性设计部分(或单独的可信性设计方案)要对实现可靠性目标的各项指标进行路径和方法的描述。

5.3 可靠性试验方案(工作项目3)

5.4 可靠性建模、预计和分配(工作项目4);

a)可靠性模型要说明各单板的串并联关系,说明冗余技术的采用与否;

b)MTBF预计值要超过设计目标值;

c)MTBF预计值要超过分配值;

5.5 热设计(工作项目5)

a)进行系统级热设计,系统温升满足研制规范的要求;

b)对发热量最大和发热密度最高的局部进行热校核,局部最大温升低于研制规范要求;

5.6 EMC设计(工作项目6)

a)接地方法说明(分系统、整机、单板三层或整机、单板二层);

b)屏蔽方法和效能说明(分整机和单板二层);

c)搭接方法和效果说明;

d)滤波设计和效果说明;

e)接口抗浪涌设计和效果说明;

5.7元器件使用设计(工作项目7)

a)关键元器件清单

b)元器件降额级别,关键元器件降额说明。

c)独家元器件说明。

5.8 安全性设计(工作项目8)

按相应设计标准进行。

5.9 测试性设计(工作项目9)

按相应设计标准进行。

5.10 维修性设计

按相应设计标准进行。

5.11 故障模式分析

按相应设计标准进行。

5.12 电路板和元器件容差分析

按相应设计标准进行。

5.13 软件可靠性设计

按相应设计标准进行。

6模板

6.1 研制规范中的可信性要求

1)环境适应性

说明产品的工作环境、防潮、防震、贮存及运输等环境条件的要求。

2)可靠性要求

说明产品的MTBF目标和使用寿命,产品的致命故障时间间隔要求。

3) EMC要求

说明产品的抗静电放电 (ESD)要求;浪涌、电快速瞬变脉冲群(EFT)、电压瞬时跌落要求;射频电磁场辐射抗扰性要求;无线电干扰发射和敏感度要求等。

4)安全性要求

说明产品安全防护方面的要求。

5)可测试性要求

说明系统机内测试要求:提出检出率、虚警率、隔离率(指明故障定位及其隔离能力);

生产可测试性要求:提出在线测试的能力及应具有的方式(包括中、大规模集成电路的边界扫描测试要求),功能测试的覆盖率要求等;

软件可测试性要求:软件模型应具有可测试性,通过相应的测试软件可以进行白盒测试;对关键程序的运行状况和关键数据(或全局数据)变化情况应能够实时或准实时显示;系统的各类程序在发生运行故障时应能告警并留下历史记录,通过该记录可以准确地定位故障;软件应具有接口的跟踪能力。比如:对通讯能力的可测试性要求。>

6)维修性要求

说明产品故障的平均维修时间(MTTR)和产品的最大维修时间,产品维修方法的要求。

7)软件可靠性

a)软件可靠性要求

针对本产品提出具体的软件可靠性设计技术和指标要求。如:

确定本软件中的关键功能、关键数据,提出软件冗余设计要求;

提出软件可靠性具体指标的目标值(失效容限、平均无故障时间、软件可靠性试验要求等)。

注:编写此项内容时,可参考技术中心研究部拟制的《软件可靠性报告》。>

b)软件的安全性要求

参照相关标准,针对本产品提出软件安全性设计技术和要求。如:

防止盗版、非法用户进入系统,提出软件加密技术和要求;

对重要数据和信息,提出软件加密技术和要求;

对可能造成意外人身伤害的设备及情况,提出软件安全性设计要求。>

c)故障处理要求:

对系统中可能发生的硬件故障或错误、用户误操作等,提出软件容错设计要求;

列出必须采取措施自动记录检测出的所有系统故障及系统运行情况;

必要时,列出故障处理一览表,包括可能发生的故障级别、类型和软件容错设计技术。

6.2总体方案中的可信性设计部分(或单独的可信性设计方案)

1) 耐环境设计

根据产品的使用环境要求,确定产品的防潮、防盐雾、防霉菌、防辐射等措施,对于运输和振动的要求,确定产品的结构和单元、单板应做的相应的防振、减振设计。同时对包装的防振、减振提出相应的要求。

2)可靠性建模、分配和预计

a)根据系统的总体设计进行可靠性建模(包括基本可靠性和任务可靠性)

b)根据系统的总体设计和MTBF规定值, 分配到各个单板的λ值(包括单板的冗余前后的λ值)。

c)过相似法和快速预计法等大概预计出每个单板λ值,与前面分配的结果相比较并进行修正,以达到整个系统的MTBF要求。>

d)简化设计

系统进行的简化设计思想,由此带来的相关单元或单板的可靠性指标的如何满足,包括功能合一的单板以及多功能的单板。

d)冗余和备份

说明系统进行的冗余设计的思想及方式,冗余前后单元、单板的可靠性指标变化和实现的要求变化。

3)热设计

产品的功耗和每个模块、单元及单板分配的功耗,确定大功耗单元/单板是否在机器的上部或者两侧,机器内部的热分布是否均匀。

确定产品内的大功耗的器件的功耗要求和发热要求,如何进行散热。机器的热流密度和体积功率密度是多少,确定必须采用何种冷却方式。

如果是强迫空气冷却方法,确定出所需的分量风量和风道。

估算机器内部实际的温度上限、温升和热分布情况

4) EMC设计

确定产品结构设计上的电磁屏蔽应采用的方法;内部地线安排的方式,与外部的地线连接的方式;确定机器内是否有保护地以及走线方式,

确定产品的外连接信号线和电源的进线,应承受的雷击浪涌、脉冲串等干扰的措施,电源进线的是否应滤波,其它的如传导干扰等线路上EMC问题的设计。

确定对静电的防护在单板和单元等各级必须满足的设计要求和方法。必须考虑防静电插座的位置。

5)元器件使用设计

参照公司的《元器件优选手册》和《元器件降额准则》确定本产品元器件的使用标准和规格,外购件、外协件的使用要求、可靠性参数和质量水平。

确定元器件的降额水平,关键元器件降额的说明。

说明独家元器件的使用情况。

确定通用件与新型号器件的使用比例,规定在单板中新电路的使用范围。

安规关键器件的确定和选择。

6)安全性设计

分析产品可能发生的危险的严重性等级和可能性等级,进行系统危险分析。

对产品的电气危险设计,确定产品中绝缘、隔离和接地要求,应采取的办法,进行FMECA 并提出控制方法。

进行产品的机械危险设计,考虑到包括机器的重心、稳定性,使用、安装和装卸中是否有卡、挤、轧或撞击,以及防爆等问题,对上述问题的措施。

危险性标志的设计,故障指示灯、安全警示标志、按钮、导线颜色等,有操作顺序要求的应有操作顺序的设计方法。

确定在错误操作后,有不会引起故障或者III级以上危险的故障。

7)防错设计

确定产品的单板或单元在结构上是否会混淆,如插错是否有危险,确定结构和电气上应采取的防范措施,以及防错的安装标志等。

对有信息显示的产品确定采用何种显示,确定显示的数据或其它信息如果有误,其它的纠正信息应能在操作能很直观地得到。

8)维修性设计

根据产品的维修性要求,确定单元、单板的维修方式和所需的维修复杂程度,包括单元的安装方法设计,可达性设计、标准化设计等,以达到最低的维修时间和费用。

(注:可编辑下载,若有不当之处,请指正,谢谢!)

可靠性设计基础试卷答案

可靠性设计基础试卷 考试时间 2013.11. 学院:—— 班级:—— 姓名:—— 学号:—— 一.填空题1'20, (共20分) 1、浴盆曲线可以分为 早期失效期 、 偶然失效期 、 耗损失效期三个阶段。我们应着力提高产品的 偶然失效期 。 2、系统故障概率变化率和引起其单元故障变化率的比值成为该单元的 关键重要 度 。 3、在FTA 树中,仅导致其他事件发生的原因事件称为 底事件 。 4、金字塔系统可靠性的评估是从金字塔的最 上 层依次想最 下 层进行,逐步进行各层次的可靠性评估,直至系统。 5、FMEA 是一种 自下而上 的失效因果关系的分析程序。 6、工程中常用的失效分布类型: 成败型 (二项分布),寿命型( 指 数 分布),性能和结构可靠性模型( 正态 分布)。 7、 降额 就是使元器件在低于其额定值的应力条件下工作。 8、产品可分为单元产品和 系统产品 。 9、可靠性筛选的目的是 剔除早期失效的产品 。 10、为了评价或提高产品(包括系统、设备、元器件、原材料)的可靠性而进行的试验,称为 可靠性试验 。 11、可靠性试验中,环境应力筛选的最有效方法是 温度循环 和 随机 振动 。 12.寿命试验的截尾方式分为 定时 截尾和 定数 截尾两种。

二.判断题'15, (1共15分) 1、点估计的特点是“简单、精度高”,区间估计的特点是“复杂、精度低”。 ( × ) 2、FEMA 只能进行定性分析,FTA 只能进行定量分析。 ( × ) 3 、 降 额 越 多 , 电 子 线 路 可 靠 性 越 高 。 ( × ) 4 、 旁 联 属 于 工 作 储 备 模 型 。 ( × ) 5、系统的逻辑图表示系统中各部分之间的物理关系。 ( × ) 6、若使用储备模型时,在层次低的部位采用的储备效果比层次高的差。 ( ×) 7、FTA 是一种由上而下的系统完整的失效因果关系的分析程序。 (√ ) 8 、 同 一 产 品 越 新 , 可 靠 性 越 高 。 ( × ) 9、 r/n 系统中的MTBFS 比并联系统少,比串联系统大。 ( √ ) 10.在工程中常认为组成系统的任何一个单元失效都会引起系统失效,故认为系统的可靠性 建模基本上是由各单元组成的并联系统。 ( × ) 11 、 严 重度分 布图 是以严 重度 级别为 纵坐 标。 ( ×) 12、割集是指故障树中一些底事件的集合,当这些事件同时发生时,顶事件必须发生。 (√ ) 13、系统结构可靠性分配过程中,对重要的单元,应分配较高的可靠度。 ( √) 14、一个系统的逻辑图和原理图是一一对应的,他们在联系形式和方框联系数目上是相同的。

可靠性设计准则

可靠性设计准则 1、新技术采用准则: 实施合理的继承性设计,在原有成熟产品的基础上开发、研制新产品; 尽量不使用不成熟的新技术、新工艺及新材料; 新技术的采用必须有良好的预研基础,并按规定进行评审和鉴定。 2、简化设计准则: 分析权衡产品功能,合并相同或相似功能,消除不必要功能; 在满足技术指标前提下尽量简化设计方案,减少零部件的数量; 尽量减少执行同一或相近功能的零部件、元器件数量; 优选标准化程度高的零部件、紧固件、元器件、连接件等; 最大限度采用通用组件、零部件、元器件,并尽量减少其品种; 必须使故障率高、易损坏、关键件的单元具有良好互换性和通用性; 产品修改时,不应改变其安装和连接方式以及有关部位的尺寸,使新旧可互换;设计须尽量使电路、结构简单的同时不给其他电路、结构增加不合理应力。 3、热设计准则: 元器件布局时应考虑周围零部件热辐射影响,将发热较大器件尽可能分散; 将热敏感器件远离热源或采取隔离(如电容器); 尽量采用温度漂移小的器件; 尽量降低接触面的热阻——加大热传导的面积、增加传导器件之间的接触压力、接触面应平整光滑且必要时可在发热体表面涂上散热图层以增加黑度系数、在传导路径中不应有绝热或隔热件; 应选用导热系数大的材料制造传导材料; 尽量缩短热传导的路径(加大横截面); 接近高温区的所有器件均应采取防护措施(间隙及使用耐高温绝缘材料); 发热器件应尽可能置于上方,条件允许应处于气流通道上; 发热量较大或电流较大元器件应安装散热器并远离其他器件; 尽可能利用金属机箱或底盘散热。

4、容差设计准则: 设计应考虑零部件元器件的制造容差、温漂、时漂的影响; 对系统参数影响较大的器件应选用低允差和高稳定性器件; 电路的阻抗匹配参数应保证在极限温度情况下电路工作稳定; 对稳定性要求高的电路,应通过容差分析进行参数设计; 正确选择元器件的工作点,使温度和使用环境的变化对电路影响最小。 5、机械环境设计准则: 应使电路结构对机械环境的影响最小; 元器件、材料的特性应满足产品的机械环境要求; 细长或较重的元器件应予以固定,以防振动疲劳断裂; 对振动和冲击强烈的部位应进行减震设计; 接插件等可移动的点接触部位,应加固和锁紧,以免振动时接触不良; 零部件应避免悬挂式安装,以防振动疲劳断裂; 供导线通过的金属隔板孔必须设置绝缘套,导线不得沿锐边、棱角铺设,以防磨损; 对于印制电路板应加固和锁紧,以免在振动时产生接触不良和脱开; 继电器安装应使触电的动作方向与衔铁的吸合方向相同,尽量不要与振动方向一致; 接插头处尽可能有支撑物; 在绕曲与振动环境下,应尽量使用软导线。 6、电磁兼容设计准则: 应采用良导体(如铜、铝)作为高频电场的屏蔽材料; 应采用导磁材料(如铁)作为低频磁场的屏蔽材料; 多重屏蔽能提高屏蔽效果和扩大屏蔽的频率范围; 有屏蔽要求的设备,应注意开口和间断处并做屏蔽处理; 金属表面之间必须紧密接触是获得良好搭接的关键; 搭接最好选用相同材料,选用不同材料时要注意搭接腐蚀问题; 在需要的场合,必须保护搭接免受潮气和其它腐蚀作用; 应把搭接片直接搭接在基体构件上,搭接片应能承受流过的电流;

通用的可靠性设计分析方法

通用的可靠性设计分析方法 1.识别任务剖面、寿命剖面和环境剖面 在明确产品的可靠性定性定量要求以前,首先要识别产品的任务剖面、寿命剖面和环境剖面。 (1)任务剖面“剖面”一词是英语profile的直译,其含义是对所发生的事件、过程、状态、功能及所处环境的描述。显然,事件、状态、功能及所处环境都与时间有关,因此,这种描述事实上是一种时序的描述。 任务剖面的定义为:产品在完成规定任务这段时间内所经历的事件和环境的时序描述。它包括任务成功或致命故障的判断准则。 对于完成一种或多种任务的产品,均应制定一种或多种任务剖面。任务剖面一般应包括:1)产品的工作状态; 2)维修方案; 3)产品工作的时间与程序; 4)产品所处环境(外加有诱发的)时间与程序。 任务剖面在产品指标论证时就应提出,它是设计人员能设计出满足使用要求的产品的最基本的信息。任务剖面必须建立在有效的数据的基础上。 图1表示了一个典型的任务剖面。 (2)寿命剖面寿命剖面的定义为:产品从制造到寿命终结或退出使用这段时间内所经历的全部事件和环境的时序描述。寿命剖面包括任务剖面。 寿命剖面说明产品在整个寿命期经历的事件,如:装卸、运输、储存、检修、维修、任务剖面等以及每个事件的持续时间、顺序、环境和工作方式。 寿命剖面同样是建立产品技术要求不可缺少的信息。 图2表示了寿命剖面所经历的事件。

(3)环境剖面环境剖面是任务剖面的一个组成部分。它是对产品的使用或生存有影响的环境特性,如温度、湿度、压力、盐雾、辐射、砂尘以及振动冲击、噪声、电磁干扰等及其强度的时序说明。 产品的工作时间与程序所对应的环境时间与程序不尽相同。环境剖面也是寿命剖面和任务剖面的一个组成部分。 2.明确可靠性定性定量要求 明确产品的可靠性要求是新产品开发过程中首先要做的一件事。产品的可靠性要求是进行可靠性设计分析的最重要的依据。 可靠性要求可以分为两大类:第一类是定性要求,即用一种非量化的形式来设计、分析以评估和保证产品的可靠性;第二类是定量要求,即规定产品的可靠性指标和相应的验证方法。 可靠性定性要求通常以要求开展的一系列定性设计分析工作项目表达。常用的可靠性定性设计工作项目见表1。

硬件系统可靠性设计规范

硬件系统可靠性设计规范 一、概论 可靠性的定义:产品或系统在规定条件下和规定时间内完成规定功能的能力 可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷电路板布线、通道隔离等。有完善的抗干扰措施,是保证系统精度、工作正常和不产生错误的必要条件。设备可靠性设计规范的一个核心思想是监控过程,而不是监控结果。 二、可靠性设计方法 1、元器件:构成系统的基本部件,作为设计与使用者,主要是保证所选用的元器件的质量或可靠性指标满足设计的要求 2、降额设计:使电子元器件的工作应力适当低于其规定的额定值,从而达到降低基本故障率,保证系统可靠性的目的。幅度的大小可分为一、二、三级降额,一级降额((实际承受应力)/(器件额定应力) < 50%的降额),建议使用二级降额设计方法,一级降额<70% 3、冗余设计:也称为容错技术或故障掩盖技术,它是通过增加完成同一功能的并联或备用单元(包括硬件单元或软件单元)数目来提高系统可靠性的一种设计方法,实现方法主要包括:硬件冗余;软件冗余;信息冗余;时间冗余等 4、电磁兼容设计:系统在电磁环境中运行的适应性,即在电磁环境下能保持完成规定功能的能力。电磁兼容性设计的目的是使系统既不受外部电磁干扰的影响,也不对其它电子设备产生电磁干扰。硬件措施主要有滤波技术、去耦电路、屏蔽技术、接地技术等;软件措施主要有数字滤波、软件冗余、程序运行监视及故障自动恢复技术等 5、故障自动检测及诊断 6、软件可靠性设计:为了提高软件的可靠性,应尽量将软件规范化、标准化、模块化 7、失效保险技术 8、热设计 9、EMC设计:电磁兼容(EMC)包括电磁干扰(EMI)和电磁敏感度(EMS)两个方面 三、可靠性设计准则

建筑结构可靠度设计统一标准GB50068-2001

建筑结构可靠度设计统一标准GB 50068-2001 中华人民共和国国家标准 建筑结构可靠度设计统一标准 Unified standard for reliability design of building structures GB 50068-2001 主编部门:中华人民共和国建设部 批准部门:中华人民共和国建设部 施行日期:2002年3月1日 关于发布国家标准《建筑结构可靠度设计统一标准》的通知 建标[2001]230 号 根据我部“关于印发《一九九七年工程建设标准制订、修订计划的通知》”(建标[1997]108号)的要求,由建设部会同有关部门共同修订的《建筑结构可靠度设计统一标准》,经有关部门会审,批准为国家标准,编号为GB 50068-2001 ,自2002年3月1日起施行。其中1.0.5,1.0.8为强制性条文,必须严格执行,原《建筑结构设计统一标准》GBJ 68-84 于2002年12月31日废止。 本标准由建设部负责管理,中国建筑科学研究院负责具体解释工作。建设部标准定额研究所组织中国建筑工业出版社出版发行。 中华人民共和国建设部 2001年11月13日 前言 本标准是根据建设部建标[1997]108 号文的要求,由中国建筑科学研究院会同有关单位对原《建筑结构设计统一标准》(GBJ 68-84)共同修订而成的。 本次修订的内容有:

1.标准的适用范围:鉴于《建筑地基基础设计规范》、《建筑抗震设计规范》在结构可靠度设计方法上有一定特殊性,从原标准要求的"应遵守"本标准,改为"宜遵守"本标准; 2.根据《工程结构可靠度设计统一标准》(GB 50153-92)的规定,增加了有关设计工作状况的规定,并明确了设计状况与极限状态的关系; 3.借鉴最新版国际标准ISO 2394:1998 《结构可靠度总原则》,给出了不同类型建筑结构的设计使用年限; 4.在承载能力极限状态的设计表达式中,对于荷载效应的基本组合,增加了永久荷载效应为主时起控制作用的组合式; 5.对楼面活荷载、风荷载、雪荷载标准值的取值原则和结构构件的可靠指标以及结构重要性系数等作了调整; 6.首次对结构构件正常使用的可靠度做出了规定,这将促进房屋使用性能的改善和可靠度设计方法的发展; 7.取消了原标准的附件。 本标准黑体字标志的条文为强制性条文,必须严格执行。 本标准将来可能需要进行局部修订,有关局部修订的信息和条文内容将刊登在《工程建设标准化》杂志上。 为了提高标准质量,请各单位在执行本标准的过程中,注意总结经验,积累资料,随时将有关的意见和建议寄给中国建筑科学研究院,以供今后修订时参考。 本标准主编单位:中国建筑科学研究院 本标准参编单位:中国建筑东北设计研究院,重庆大学,中南建筑设计院,四川省建筑科学研究院,福建师范大学。 本标准主要起草人:李明顺胡德炘史志华陶学康陈基发白生翔苑振芳戴国欣陈雪庭王永维钟亮戴国莹林忠民 1 总则 1.0.1 为统一各类材料的建筑结构可靠度设计的基本原则和方法,使设计符合技术先进,经济合理、安全适用、确保质量的要求,制定本标准。 1.0.2 本标准适用于建筑结构,组成结构的构件及地基基础的设计。

现代设计方法(第四章 可靠性设计)

简述可靠性设计传统设计方法的区别。 答:传统设计是将设计变量视为确定性单值变量,并通过确定性函数进行运算。 而可靠性设计则将设计变量视为随机变量,并运用随机方法对设计变量进行描述和运算。 1.可靠性:产品在规定的条件下和规定的时间内,完成规定功能的能力。 可靠度:产品在规定的条件下和规定的时间内,完成规定功能的概率。是对产品可靠性的概率度量。 可靠度是对产品可靠性的概率度量。 2)可靠性工程领域主要包括以下三方面的内容: 1.可靠性设计。它包括了设计方案的分析、对比与评价,必要时也包括可靠性试验、生产制造中的质量控制设计及使用维修规程的设计等。 2.可靠性分析。它主要是指失效分析,也包括必要的可靠性试验和故障分析。这方面的工作为可靠性设计提供依据,也为重大事故提供科学的责任分析报告。 3.可靠性数学。这是数理统计方法在开展可靠性工作中发展起来的一个数学分支。 。可靠性设计具有以下特点: 1.传统设计方法是将安全系数作为衡量安全与否的指标,但安全系数的大小并没有同可靠度直接挂钩,这就有很大盲目性。可靠性设计与之不同,它强调在设计阶段就把可靠度直接引进到零件中去,即由设计直接决定固有的可靠度。 2.传统设计是把设计变量视为确定性的单值变量并通 过确定性的函数进行运算,而可靠性设计则把设计变量视为随机变量并运用随机方法对设计变量进行描述和 运算。 3.在可靠性设计中,由于应力S和强度R都是随机变量,所以判断一个零件是否安全可靠,就以强度R大于应力S的概率大小来表示,这就是可靠度指标。 4.传统设计与可靠性设计都是以零件的安全或失效作 为研究内容,因此,两者间又有着密切的联系。可靠性设计是传统设计的延伸与发展。在某种意义上,也可以认为可靠性设计只是在传统设计的方法上把设计变量 视为随机变量,并通过随机变量运算法则进行运算而已。 。平均寿命(无故障工作时间):指一批产品从投入运行到发生失效(或故障)的平均工作时间。 对不可修复的产品而言,T是指从开始使用到发生失效的平均时间,用MTTF表示; 对可修复的产品而言,是指产品相邻两次故障间工作时间的平均值,用MTBF表示; 平均寿命的几何意义是:可靠度曲线与时间轴所夹的面积。 6.正态分布曲线的特点是什么?什么是标准正态分布? :正态分布曲线f(x)具有连续性,对称性,其曲线与横坐标轴间围成的总面积恒等于 1.在均值μ和离均值的距离为标准差的某一指定倍数z。之间,分布有确定的百分数,均值或数学期望μ表征随机变量分布的集中趋势,决定正态分布曲线位置;标准差σ,他表征随机变量分布的离散程度,决定正态分布曲线的形状。定义μ=0,σ=1,即N(0,1)为标准正态分布。 7.系统可靠性的大小主要取决于:(1)组成系统的零部件的可靠性 (2)零部件的组合方式。 1.什么是3σ法则?已知手册上给出的16Mn的抗拉强度为1100~1400MPa,试利用3σ法则确定该材料抗拉强度的均值和标准差。 在进行可靠性计算时,引用手册上的数据,可以认为它们服从正态分布,手册上所给数据范围覆盖了该随机变量的+-3σ,即6倍的标准差,称这一原则为3σ法则。均值=(1100+1400)/2=1250MPa 标准差=(1400-1100)/6=50Mpa。从正态分布知,对应+-3σ范围的可靠度已为0.9973. 2. 简述强度—应力干涉理论中“强度”和“应力” 的含义,试举例说明之。 答:强度一应力干涉理论中“强度”和“应力”具有 广义的含义:“应力”表示导致失效的任何因素;而 “强度”表示阻止失效发生的任何因素。“强度” 和“应力”是一对矛盾的两个方面,它们具有相同的 量纲;例如,在解决杆、梁或轴的尺寸的可靠性设计 中,“强度”就是指材料的强度,“应力”就是指零件 危险断面上的应力,但在解决压杆稳定性的可靠性设 计中,“强度”则指的是判断压杆是否失稳的“临界 压力”,而“应力”则指压杆所受的工作压力。 3.说明常规设计方法中采用平均安全数的局限性。 答:平均安全系数未同零件的失效率联系起来,有很 大的盲目性。 从强度一应力干涉图可以看出 1)即使安全系数大于 1,仍然会有一定的失效概率。2)当零件强度和工作 应力的均值不变(即对应的平均安全系数不变),但 零件强度或工作应力的离散程度变大或变小时,其干 涉部分也必然随之变大或变小,失效率亦会增大或减 少。 1.所谓系统,是为完成某一功能而由若干零部件相互 有机地组合起来的综合体。系统的可靠度取决于两个 因素:一是组成系统的零部件的可靠度;二是零部件 的组合方式。 3.串联系统:若系统中诸零件的失效相互独立,但当 系统中任一个零件发生故障都会导致整个系统失效 时,则这种零件的组合形式称为串联模型。 3.串联系统的可靠度:串联系统的可靠度Rs低于组 成零件的可靠度Ri。因此,要提高串联系统的可靠 度,最有效的措施是减少组成系统的零件数目。 4.并联系统:有冗余系统和表决系统。冗余系统又可 分为工作冗余系统和非工作冗余系统。 5.工作冗余系统:在该系统中,所有零件都同时参加 工作,而且任何一个零件都能单独支持整个系统正常 工作。即在该系统中,只要不是全部零件失效,系统 就可以正常工作。 6.非工作冗余系统:在该系统中,只有某一个零件处 于工作状态,其它零件则处于非工作状态。只有当工 作的零件出现故障后,非工作的零件才立即转入工作 状态。 。非工作冗余系统的可靠度高于工作冗余系统,这是 因为工作冗余系统的零件虽然都处于不满负荷状态 下,但它们总是在工作,必然会磨损或老化。非工作 冗余系统虽不存在这个问题,却存在一个转换开关的 可靠度问题。 。r/n表决系统:在n个零件组成的并联系统中,n个 零件都参加工作,但其中要有r个以上的零件正常工 作,系统才能正常工作。它是属于一种广义的工作冗 余系统。当r=1时,就是工作冗余系统,当r=n时, 就是串联系统。 。复杂系统的可靠性预测方法:等效功能图法、布尔 真值表法; 。故障树分析的步骤:1,在充分熟悉系统的基础上, 建立故障树;2,进行定性分析,识别系统的薄弱环 节;3,进行定量分析,对系统的可靠性作出评价。 。故障树:是一种倒立的树状逻辑因果关系图,它是 用事件符号、逻辑门符号和转移符号描述系统中各种 事件之间因果关系的图。 。故障树的定性分析是寻找故障树的全部最小割集或 最小路集。其目的是为了找出引了系统故障的全部可 能的起因,并定性的识别系统的薄弱环节。 。最小割集:如果将割集中任意去掉一个基本事件后就不再 是割集。 。最小路集:路集也是一些基本事件的集合,当该集合所有 的基本事件同时不发生时,则顶事件必然不发生。如果将路 集中任意去掉一个基本事件后就不再是路集的话,则称此路 集为最小路集。 。最小割集代表系统的一种失效模式;一个最小路集代表系 统的一个正常模式。 。故障树的全部最小割集即是顶事件发生的全部可能原因, 构成了系统的故障谱。因此,在产品设计中要努力降低最小 割集发生的可能性,这就是产品的薄弱环节。反过来说,为 保证系统正常工作,必须至少保证一个最小路集存在。 。故障树的定量分析就是根据基本事件的概率求出顶事件发 生的概率,从而对系统的可靠性作出评价。 。可靠度分配按分配原则的不同,有等同分配法、加权分配 法和动态规划最优分配法; 。等同分配法:它按照系统中各单元(子系统或零部件)的 可靠度均相等的原则进行分配。其计算简单,缺点是没有考 虑各子系统现有的可靠度水平、重要性等因素。 。加权分配法:它是把各子系统在整个系统中的重要度以及 各子系统的复杂度作为权重来分配可靠度的。 。最优分配法:采用动态规划最优分配法,可以把系统的成 本、重量、体积或研制周期等因素为最小作为目标函数,而 把可靠度不小于某一给定值作为约束条件进行可靠度分配; 也可以把系统可靠度尽可能大作为目标函数,而将成本等因 素视为约束条件进行可靠度分配。这要根据具体问题来确定。 特点:机电产品的可靠性指标不仅取决于零部件的可靠度, 而且还将受制造成本、研制周期、重量、体积等因素的制约。 因此,要全面考虑这些因素的影响,必须采用优化方法分配 可靠度。 。一是可靠性设计的有效性取决于所采用的统计参数是否准 确可靠;二是应用明确规定产品失效的形式和判据。 。试简述强度和应力均为正态分布时,强度和应力干涉的三 种典型情况下手失效率情况。 1.强度的均值大于应力的均值,这时的干涉概率,即不可靠 度F小于50%。当强度的均值减去应力的均值为一定值时, 概率F的大小,随强度和应力的标准增大而增大。常规设计 的安全系数大于1时属于这种情况。这种情况下,还可能出 现失效。 2.强度的均值等于应力的均值,此时,失效率F为50% 3.强度的均值小于应力的均值,此时安全系数小于1,失效 概率大于50%,零件仍具有一定的可靠度。

网络可靠性设计

网络可靠性设计

目录 1.1 网络可靠性设计 (2) 1.1.1 网络解决方案可靠性的设计原则 (3) 1.1.2 网络可靠性的设计方法实例 (4) 1.1.3 网络可靠性设计总结 (9)

1.1网络可靠性设计 可靠性是指:设备在规定的条件下、在规定的时间内完成规定的功能的能力。对于网络系统的可靠性,除了耐久性外,还有容错性和可维护性方面的内容。 1)耐久性。是指设备运行的无故障性或寿命,专业名称叫MTBF(Mean Time Between Failure),即平均无故障时间,它是描述整个系统可靠性的重要指标。对于一个网络系统来说,MTBF是指整个网络的各组件(链路、节点)不间断无故障连续运行的平均时间。 2)容错性。专业名称叫MTTR(Mean Time to Repair),即系统平均恢复时间,是描述整个系统容错能力的指标。对于一个网络系统来说,MTTR是指当网络中的组件出现故障时,网络从故障状态恢复到正常状态所需的平均时间。 3)可维护性。在系统发生故障后,能够很快地定位问题并通过维护排除故障,这属于事后维护;根据系统告警提前发现问题(如CPU使用率过高,端口流量异常等),通过更换设备或调整网络结构来规避可能出现的故障,这属于预防维护。可维护性需要管理人员来实施,体现了管理的水平,也反映了系统可靠性的高低。

表示系统可靠性的公式为: MTBF / ( MTBF + MTTR ) * 100%。 从公式或以看出,提高MTBF或降低MTTR都可以提高网络可靠性。造成网络不可用的因素包括:设备软硬件故障、设备间链路故障、用户误操作、网络拥塞等。针对这些因素采取措施,使网络尽量不出故障,提高网络MTBF指标,从而提升整网的可靠性水平。 然而,网络中的故障总是不可避免的,所以设计和部署从故障中快速恢复的技术、缩小MTTR指标,同样是提升网络可靠性水平的手段。 在网络架构的设计中,充分保证整网运行的可靠性是基本原则之一。网络系统可靠性设计的核心思想则是,通过合理的组网结构设计和可靠性特性应用,保证网络系统具备有效备份、自动检测和快速恢复机制,同时关注不同类型网络的适应成本。 构建可靠的网络,需要从耐久性、容错性以及可维护性三个方面进行网络规划设计。而网络的规划设计是个系统工程,不同的设计方案的可靠性性效果不尽相同,这就需要以科学的方法进行设计,构建符合需要的可靠性网络。 1.1.1网络解决方案可靠性的设计原则 不同的网络,其可靠性的设计目标是不同的。网络解决方案的可靠性需要根据实际需求进行设计。高可靠性的网络不但涉及到网络架构、设备选型、协议选择、业务规划等技术层面的问题,还受用户现有网络状况、网络投资预算、用户管理水平等影响,因此在规划可靠性网络时需要因地制宜,综合考虑各方面的影响因素。

可靠性设计的基本概念与方法

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

系统总体设计原则汇总

系统总体设计原则汇总 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

系统总体设计原则 为确保系统的建设成功与可持续发展,在系统的建设与技术方案设计时我们遵循如下的原则:1、统一设计原则统筹规划和统一设计系统结构。尤其是应用系统建设结构、数据模型结构、数据存储结构以及系统扩展规划等内容,均需从全局出发、从长远的角度考虑。 2、先进性原则系统构成必须采用成熟、具有国内先进水平,并符合国际发展趋势的技术、软件产品和设备。在设计过程中充分依照国际上的规范、标准,借鉴国内外目前成熟的主流网络和综合信息系统的体系结构,以保证系统具有较长的生命力和扩展能力。保证先进性的同时还要保证技术的稳定、安全性。 3、高可靠/高安全性原则系统设计和数据架构设计中充分考虑系统的安全和可靠。4、标准化原则系统各项技术遵循国际标准、国家标准、行业和相关规范。5、成熟性原则系统要采用国际主流、成熟的体系架构来构建,实现跨平台的应用。6、适用性原则保护已有资源,急用先行,在满足应用需求的前提下,尽量降低建设成本。7、可扩展性原则信息系统设计要考虑到业务未来发展的需要,尽可能设计得简明,降低各功能模块耦合度,并充分考虑兼容性。系统能够支持对多种格式数据的存储。 业务应用支撑平台设计原则 业务应用支撑平台的设计遵循了以下原则:1、遵循相关规范或标准遵循J2EE、XML、JDBC、EJB、SNMP、HTTP、TCP/IP、SSL等业界主流标准2、采用先进和成熟的技术系统采用三层体系结构,使用XML规范作为信息交互的标准,充分吸收国际厂商的先进经验,并且采用先进、成熟的软硬件支撑平台及相关标准作为系统的基础。 3、可灵活的与其他系统集成系统采用基于工业标准的技术,方便与其他系统的集成。4、快速开发/快速修改的原则系统提

机电设备可靠性设计准则条

A1 在确定设备整体方案时,除了考虑技术性、经济性、体积、重量、耗电等外,可靠性是首先要考虑的重要因素。在满足体积、重量及耗电等于数条件下,必须确立以可靠性、技术先进性及经济性为准则的最佳构成整体方案。 A2 在方案论证时,一定要进行可靠性论证。 A3 在确定产品技术指标的同时,应根据需要和实现可能确定可靠性指标与维修性指标。 A4 对己投入使用的相同(或相似)的产品,考察其现场可靠性指标,维修性指标及对这两种备标的影响因素,以确定提高当前研制产可靠性的有效措施。 A5 应对可靠性指标和维修性指标进行合理分配,明确分系统(或分机)、不见、以至元器件的的可靠性指标。 A6 根据设备的设计文件,建立可靠性框图和数学模型,进行可靠性预计。随着研制工作深入地进行,预计于分配应反复进行多次,以保持其有效性。 A7 提出整机的元器件限用要求及选用准则,拟订元器件优选手册(或清单)A8 在满足技术性要求的情况下,尽量简化方案及电路设计和结构设计,减少整机元器件数量及机械结构零件。 A9 在确定方案前,应对设备将投入使用的环境进行详细的现场调查,并对其进行分析,确定影响设备可靠性最重要的环境及应力,以作为采取防护设计和环境隔离设计的依据。 A10 尽量实施系列化设计。在原有的成熟产品上逐步扩展,抅成系列,在一个型号上不能采用过多的新技术。采用新技术要考虑继承性。 A11 尽量实施统一化设计。凡有可能均应用通用零件,保证全部相同的可移动模块、组件和零件都能互换。

A12 尽量实施集成化设计。在设计中,尽量采用固体组件,使分立元器件减少到最小程度。其优选序列为:大规模集成电路-中规模集成电路-小规模集成电路-分立元器件 A13 尽量不用不成熟的新技术。如必须使用时应对其可行性及可靠性进行充分论证,并进行各种严格试验。 A14 尽量减少元器件规格品种,增加元器件的复用率,使元器件品种规格与数量比减少到最小程度。 A15 在设备设计上,应尽量采用数字电路取代线性电路,因为数字电路具有标准化程度高、稳定性好、漂移小、通用性强及接口参数易匹配等优点。 A16 根据经济性及重量、体积、耗电约束要求,确定设备降额程度,使其降额比尽量减小,便不要因选择过于保守的组件和零件导致体积和重量过于庞大。A17 在确定方案时,应根据体积、重量、经济性与可靠性及维修性确定设备的冗余设计,尽量采用功能冗余。 A18 设计设备时,必须符合实际要求,无论在电气上或是结构上,提出局部过高的性能要求,必将导致可靠性下降。 A19 不要设计比技术规范要求更高的输出功率或灵敏度的线路,但是也必须在最坏的条件下使用而留有余地。 A20 在设计初始阶段就要考虑小型化和超小型化设计,但以不妨碍设备的可靠性与维修性为原则。 A21 对于电气和结构设计使用公差需考虑设备在寿命期内出现的渐变和磨损,并保证能正常使用。 A22 加大电路使用状态的公差安全系数,以消除临界电路。

可靠性实验室建设规划方案

可靠性实验室工作规划 一、可靠性实验室的目的 1、通过对产品的可靠性试验,能准确定位和量化我司产品适应使用环境的能力及衡量产品质量等 级。 2、评估我司产品的可靠性并及时发现潜在的质量隐患。 3、通过可靠性试验,能为产品的设计或升级、改良提供客观的证据和建议。 4、为产品的失效分析、可靠性测试及新产品定型试验提供测试平台. 二、试验项目及内容 1、EMS (电磁抗扰度)相关试验项目及内容 ⑴ 群脉冲抗扰度试验 根据GB/T 3797—2005 电气控制设备第4.13。3条规定,电气控制设备应通过电源端2KV ,信号和控制端1KV的电快速群脉冲干扰试验。此项试验属于常规EMS项目之一,通过此项试验验证产品对诸如来自切换瞬态过程切断感性负载、继电器触点弹跳等的各种类型瞬态骚扰的抗扰度。具体试验标准参考GBfT 17626.4-1998电快速瞬变脉冲群抗扰度试验标准(EFT)的要求。 ⑵ 静电抗扰度试验 根据GB/T 3797—2005 电气控制设备第4.13。3条规定,电气控制设备应通过空气放电8KV 及接触放电6KV 的静电放电试验. 此项试验属于常规EMS 项目之一,通过此项试验验证产品对来自外界的各种类型的静电放电(可能由人体或其它物体产生)的抗扰度。具体试验标准参考GB/T 17626.2-1998静电放电抗扰度试验标准(ESD)的要求。 ⑶1。2/5OUS及8/20US组合波浪涌(冲击)抗扰度试验 根据GB/T 3797—2005电气控制设备第4。13。3条规定,电气控制设备应通过线对线1KV ,线对地2KV 的组合波浪涌(冲击)抗扰度试验。此项试验属于常规EMS 项目之一,通过此项试验验证产品对抗击如开关切换、雷

可靠性设计基础试卷2(带答案)

可靠性设计基础试卷答案 考试时间:2012年月日 学院:_________________ 班级 :_________________ 学号: __________________ 一、 判断题(1′×10,共10分) 1、区间估计的置信度越高,置信区间越宽,估计精度越低。 (√) 2、FTA 可追溯系统失效的根源到基础元件失效的组合关系,它是一种多因素的分析方法,可以分析几种因素同时起作用才能导致的某种后果。(√) 3、系统的原理图为并联的,则其逻辑图一定是并联的。(×) 4、并联模型属于非工作贮备模型。(×) 5、机械结构不可靠性设计又称为概率设计。 (√) 6、并联单元越多,系统可靠性越高。 (√) 7、采用储备模型可以提高产品的任务可靠性及基本可靠性。(×) 8、战备完好性是保障性的出发点和归结点。(√) 9、产品的故障密度函数反映了产品的故障强度。 (×) 10、为简化故障树,可将逻辑门之间的中间事件省略。 (×) 二、 填空题(1′×20,共20分)

1、研究产品失效的两种常用方法__________、__________。(FMECA、FTA) 2、在FTA树中,用来表示事件关系的基本逻辑门符号有__________、__________、__________。(与门、或门、禁门) 3、工厂单独生产和可以单独验收的零部件称为__________。(单元产品) 4 、在可靠性设计中,影响可靠度大小的积分极限 u Zδ δ σ == , 该方程称为__________,由该方程可看出Z,不但取决于传统设计的 安全系数 s l u u,同时还取决于l X,s X的离散程度sσ与lσ,Z称为可靠 系数(概率安全系数)。(联结方程) 5、球故障树所有最小割据的方法有___________、_____________。(上行法、下行法) 6、产品丧失规定的功能叫___________。(失效) 7、FTA是一种_______________的系统完整的失效因果关系的分析程序。(自上而下/由系统到元件) 8、三次设计的容是:_________________________________(系统设计,参数设计,容差设计) 9、浴盆曲线分为________、__________、_________,我们应该着力提高产品的__________。 (早期失效期、偶然失效期、耗损失效期、偶然失效期) 10、从设计的角度,可靠性分为_________________和

可靠性设计技术工作规范

可靠性设计技术工作规范 1. 范围 本规范规定了可靠性设计大纲、工作计划编制的相关要求。 本规范规定了可靠性设计准则、原则与方法的相关要求。 2. 规范性引用文件 GJB450A-2004 装备可靠性工作通用要求 GJB841-1990 故障报告、分析和纠正措施系统 GJB899A-2009 可靠性鉴定和验收试验 GB/T7826-20012 系统可靠性分析技术――失效模式和影响分析(FMEA)程序 3. 术语和定义 3.1 可靠性 可靠性(Reliability)指产品(包括零件和元器件、整机设备、系统)在规定的条件下和规定的时间内,完成规定功能的能力。 可靠性指标主要反映产品或设备的可靠性(Reliability),可靠性是部件(Part)、元件(Component)、产品(Product)或系统(System)的完整性的最佳数量的度量。 平均故障间隔时间又称平均无故障时间(Mean Time Between Failure,MTBF)指可修复产品两次相邻故障之间的平均时间,是衡量一个产品的可靠性指标。 3.2 可靠性设计 可靠性设计(Reliability Design),即根据可靠性理论与方法确定产品零部件以及整机的结构方案和有关参数的过程。设计水平是保证产品可靠性的基础。 可靠性设计,在产品设计过程中,为消除产品的潜在缺陷和薄弱环节,防止故障发生,以确保满足规定的固有可靠性要求所采取的技术活动。可靠性设计是可靠性工程的重要组成部分,是实现产品固有可靠性要求的最关键的环节,是在可靠性分析的基础上通过制定和贯彻可靠性设计准则来实现的。 4. 可靠性设计大纲 为了保证产品满足规定的可靠性要求而制定的一套文件,包括可靠性设计组织机构及其职责,要求按进度实施的工作项目、工作程序和需要的资源等。

配电可靠性准则及规定

配电系统可靠性准则及规定 一、电力系统可靠性准则的一般概念 所谓电力系统可靠性准则,就是在电力系统规划、设计或运行中,为使发电和输配电系统达到所要求的可靠度满足的指标、条件或规定,它是电力系统进行可靠性评估所依据的行为原则和标准。 电力系统可靠性准则的应用范围为发电系统、输电系统、发输电合成系统和配电系统的规划、设计、运行和维修工作。 电力系统可靠性准则考虑的因素一般有:①电力系统发、输、变、配设备容量的大小;②承担突然失去设备元件的能力和预想系统故障的能力;③对系统的控制、运行及维护;④系统各元件的可靠运行;⑤用户对供电质量和连续性的要求;⑥能源的充足程度,包括燃料的供应和水库的调度;⑦天气对系统、设备和用户电能需求的影响等。其中①、②、⑥等因素可由规划、设计来控制,其余各因素则反映在生产运行过程之中。 电力系统可靠性准则按其所要求的可靠度获取的方法、考虑的系统状态过程及研究问题的性质不同,有以下几种不同的分类方法: 1.1. 概率性准则和确定性准则 电力系统可靠性准则按其要求的可靠度获取的方法,分为概率性准则和确定性准则。 (1)概率性准则。它是以概率法求得数字或参量来表示提供或规定可靠度的目标水平或不可靠度的上限值,如电力(电量)不足期望值或事故次数期望值。因此,概率性准则又称为指标或参数准则。此类准则又被构成概率性或可靠性评价的基础。 (2)确定性准则。它采取一组系统应能承受的事件如发电或输电系统的某些事故情况为考核条件,采用的考核或检验条件往往选择运行中最严重的情况。考虑的前提是如果电力系统能承受这些情况并保证可靠运行,则在其余较不严重的情况下也能够保证系统的可靠运行。因此,确定性准则又称为性质或性能的检验准则。此类准则是构成确定性偶发事件评价的基础。

机电设备可靠性设计准则1000条.

机电设备可靠性 设计准则1000条 陕西神木神源煤炭矿业有限公司 2016年1月

机电设备可靠性设计准则1000条 A1 在确定设备整体方案时,除了考虑技术性、经济性、体积、重量、耗电等外,可靠性是首先要考虑的重要因素。在满足体积、重量及耗电等条件下, 必须确立以可靠性、技术先进性及经济性为准则的最佳构成整体方案。 A2 在方案论证时,一定要进行可靠性论证。 A3 在确定产品技术指标的同时,应根据需要和实现可能确定可靠性指标与维修性指标。 A4 对己投入使用的相同(或相似)的产品,考察其现场可靠性指标,维修性指标及对这两种备标的影响因素,以确定提高当前研制产可靠性的有效措 施。 A5 应对可靠性指标和维修性指标进行合理分配,明确分系统(或分机)、不见、以至元器件的的可靠性指标。 A6 根据设备的设计文件,建立可靠性框图和数学模型,进行可靠性预计。 随着研制工作深入地进行,预计于分配应反复进行多次,以保持其有效性。 A7 提出整机的元器件限用要求及选用准则,拟订元器件优选手册(或清单)A8 在满足技术性要求的情况下,尽量简化方案及电路设计和结构设计,减少整机元器件数量及机械结构零件。 A9 在确定方案前,应对设备将投入使用的环境进行详细的现场调查,并对其进行分析,确定影响设备可靠性最重要的环境及应力,以作为采取防护设计 和环境隔离设计的依据。 A10 尽量实施系列化设计。在原有的成熟产品上逐步扩展,抅成系列,在一个型号上不能采用过多的新技术。采用新技术要考虑继承性。 A11 尽量实施统一化设计。凡有可能均应用通用零件,保证全部相同的可移动模块、组件和零件都能互换。 A12 尽量实施集成化设计。在设计中,尽量采用固体组件,使分立元器件减少到最小程度。其优选序列为:大规模集成电路-中规模集成电路-小规模集成 电路-分立元器件 A13 尽量不用不成熟的新技术。如必须使用时应对其可行性及可靠性进行充分论证,并进行各种严格试验。 A14 尽量减少元器件规格品种,增加元器件的复用率,使元器件品种规格与数量比减少到最小程度。 A15 在设备设计上,应尽量采用数字电路取代线性电路,因为数字电路具有标准化程度高、稳定性好、漂移小、通用性强及接口参数易匹配等优点。 A16 根据经济性及重量、体积、耗电约束要求,确定设备降额程度,使其降额比尽量减小,便不要因选择过于保守的组件和零件导致体积和重量过于庞 大。 A17 在确定方案时,应根据体积、重量、经济性与可靠性及维修性确定设备的冗余设计,尽量采用功能冗余。 A18 设计设备时,必须符合实际要求,无论在电气上或是结构上,提出局部过高的性能要求,必将导致可靠性下降。 A19 不要设计比技术规范要求更高的输出功率或灵敏度的线路,但是也必须

可靠性设计的一些内容

可靠性设计的一些内容 一、可靠性评价分析技术的应用 由于设计阶段对产品的可靠性将起到奠基作用,故在设计过程中,应不断对产品的可靠性进行定性和定量的评价分析)以便及时了解产品的可靠性指标是否有了保证,所采取的各种可靠性设计措施是否有效,有效程度如何,设计中是否还存在薄弱环节和潜在缺陷,产品在今后使用中可能会发生什么样的故障,以及故障一旦发生时,其影响和危害程度如何等等。弄清以上问题将有助于及时发现缺陷,及时改进设计,防止“带病”投产,保证预定的可靠性指标得到满足。 下面介绍几种主要的评价分析技术的应用: 1 .可靠性预计与分配 可靠性预计是在设计阶段,根据设计中所选用的电路程式、元器件、可靠性结构模型、工作环境、工作应力以及过去积累的统计数据,推测产品可能达到的可靠性水平。预计的目的不是在于了解在什么时候将发生什么样的失效,而是在于从设计开始就采取措施以防止失效的发生,并用定量的方法评价可靠性设计的效果。 可靠性分配是将可靠性指标或预计所能达到的目标值加以分解,用科学的方法,合理分配给分系统、设备、部件直至各元器件和每一个连接点、焊接点,以保证可靠性既定目标得以实现。通过分配,不仅可以层层落实设计指标,还可发现设计的薄弱环节和尚能挖掘的潜力。可靠性预计的方法一般有相似设备法、相似电路法。有源

器件法、元器件计数法及元器件应力分析法等,它们分别适用于不同的设计阶段:当产品处于方论证阶段时,可用相似设备法、相似电路法、有源器件法等快速预计法进行可行性预计,以评价设计方案的可行性;当产品处于旱期的详细设计阶段时,可用元器件计数法进行初步设计预计,以了解元器件的初步选择是否恰当,并为可靠性分配打下预计的基础,而当产品处于详细设计阶段的中期和后期,可用元器件应力分析法进行详细的设计预计,以便及时发现设计的薄弱环节或潜在能力,及时改进设计,以期达到优化设计 的目的。 下面就三种预计方法作一些简略的介绍: (1)有源器件法 所谓有源器件法,即按设备为完成规定功能所需的串联有源器件的数目预计设备失效的方法。预计公式为 λs = N* K (11.1) 式中:λs --设备的预计失效率; N--串联有源器件的数目; K ---各种设备中每个有源器件的失效率。 (2) 元器件计数法 所谓元器件计数法就是根据组成设备的各类元器件的通用失效率及其使用数量,来预计设备失效率的方法 。(3)元器件应力分析法预计 元器件应力分析法预计是考虑了温度、电应力、环境条件、元器件选

相关文档
最新文档