二轮复习 函数零点的个数问题 学案(全国通用)

二轮复习     函数零点的个数问题   学案(全国通用)
二轮复习     函数零点的个数问题   学案(全国通用)

微专题10 函数零点的个数问题

一、知识点讲解与分析:

1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点

2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。 (1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提 (2)零点存在性定理中的几个“不一定”(假设()f x 连续) ① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个 ② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点 ③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号

3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x

4、函数的零点,方程的根,两图像交点之间的联系

设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若

()()()f x g x h x =-,则方程可转变为()()g x h x =,即方程的根在坐标系中为()()

,g x h x 交点的横坐标,其范围和个数可从图像中得到。

由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。(详见方法技巧) 二、方法与技巧:

1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。例如:对于方程

ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ??

>< ???

即可判定

其零点必在1,12??

???

2、函数的零点,方程的根,两函数的交点在零点问题中的作用 (1)函数的零点: 工具:零点存在性定理

作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。

缺点:方法单一,只能判定零点存在而无法判断个数,且能否得到结论与代入的特殊值有关 (2)方程的根: 工具:方程的等价变形

作用:当所给函数不易于分析性质和图像时,可将函数转化为方程,从而利用等式的性质可对方程进行变形,构造出便于分析的函数

缺点:能够直接求解的方程种类较少,很多转化后的方程无法用传统方法求出根,也无法判断根的个数

(3)两函数的交点: 工具:数形结合

作用:前两个主要是代数运算与变形,而将方程转化为函数交点,是将抽象的代数运算转变为图形特征,是数形结合的体现。通过图像可清楚的数出交点的个数(即零点,根的个数)或者确定参数的取值范围。

缺点:数形结合能否解题,一方面受制于利用方程所构造的函数(故当方程含参时,通常进行参变分离,其目的在于若含x 的函数可作出图像,那么因为另外一个只含参数的图像为直线,所以便于观察),另一方面取决于作图的精确度,所以会涉及到一个构造函数的技巧,以及作图时速度与精度的平衡(作图问题详见:1.7 函数的图像)

3、在高中阶段主要考察三个方面:(1)零点所在区间——零点存在性定理,(2)二次方程根分布问题,(3)数形结合解决根的个数问题或求参数的值。其中第(3)个类型常要用到函数零点,方程,与图像交点的转化,请通过例题体会如何利用方程构造出函数,进而通过图像解决问题的。 三、例题精析:

例1:直线y a =与函数3

3y x x =-的图象有三个相异的交点,则a 的取值范围为 ( ). A .()2,2- B .[]2,2- C .[)2,+∞ D .(],2-∞-

思路:考虑数形结合,先做出3

3y x x =-的图像,

()()'233311y x x x =-=-+,令'0y >可解得:1x <-或

1x >,

故3

3y x x =-在()(),1,1,-∞-+∞单调递增,在()1,1-单调递减,函数的极大值为()12f -=,极小值为()12f =-,

做出草图。而y a =为一条水平线,通过图像可得,y a =介于极大值与极小值之间,则有在三个相异交点。可得:()2,2a ∈- 答案:A

小炼有话说:作图时可先作常系数函数图象,对于含有参数的函数,先分析参数所扮演的角色,然后数形结合,即可求出参数范围。

例2:设函数()()2

22ln 1f x x x x =+-+,若关于x 的方程()2

f x x x a =++在[]0,2上恰

有两个相异实根,则实数a 的取值范围是_________

思路:方程等价于:()()2

2

22ln 12ln 1x x x x x a a x x +-+=++?=-+,即函数y a

=与()()2ln 1g x x x =-+的图像恰有两个交点,分析

()g x 的单调性并作出草图:()'21

111

x g x x x -=-

=

++ ∴令()'0g x >解得:1x > ()g x ∴在()0,1单调递

()

1,2单调递增,

()()()112ln2,00,222ln3g g g =-==-,由图像可得,水平线y a =位于()()1,2g g 之

间时,恰好与()g x 有两个不同的交点。 ∴12ln222ln3a -<≤- 答案:12ln222ln3a -<≤-

小炼有话说:(1)本题中的方程为()2

2

22ln 1x x x x x a +-+=++,在构造函数时,进行

了x 与a 的分离,此法的好处在于一侧函数图像为一条曲线,而含参数的函数图像由于不含x 所以为一条水平线,便于上下平移,进行数形结合。由此可得:若关于x 的函数易于作出图像,则优先进行参变分离。所以在本题中将方程转变为()2ln 1a x x =-+,构造函数

()()2ln 1g x x x =-+并进行数形结合。

(2)在作出函数草图时要注意边界值是否能够取到,数形结合时也要注意a 能否取到边界值。 例3:已知函数()()2,0

ln ,0

kx x f x k R x x +≤?=∈?

>?,若函数()y f x k =+有三个零点,则实数k

的取值范围是( ) A. 2k ≤

B. 10k -<<

C. 21k -≤<-

D.2k ≤-

思路:函数()y f x k =+有三个零点,等价于方程()f x k =-有三个不同实数根,进而等价于()f x 与y k =-图像有三个不同交点,作出()f x 的图像,则k 的正负会导致()f x 图像不同,且会影响y k =-的位置,所以按0,0k k ><进行分类讨论,然后通过图像求出k 的范围为2k ≤-。

答案:D

小炼有话说:(1)本题体现了三类问题之间的联系:即函数的零点?方程的根?函数图象的交点,运用方程可进行等式的变形进而构造函数进行数形结合,解决这类问题要选择合适的函数,以便于作图,便于求出参数的取值范围为原则。

(2)本题所求k 在图像中扮演两个角色,一方面决定()f x 左侧图像直线的倾斜角,另一方面决定水平线的位置与x 轴的关系,所以在作图时要兼顾这两方面,进行数形结合。 例4:已知函数()f x 满足()()3f x f x =,当[)()1,3,ln x f x x ∈=,若在区间[)1,9内, 函数()()g x f x ax =-有三个不同零点,则实数a 的取值范围是( )

A .ln 31,3e ??

???

B. ln 31,93e ?? ??? C .ln 31,92e ?? ??? D .ln 3ln 3,93??

??? 思路:()()()33x f x f x f x f ??=?=

???Q ,当[)3,9x ∈时,()ln 33x x f x f ??

== ?

??

,所以

()ln ,13ln ,393

x x f x x x ≤

=?≤

个不同交点,如图所示,可得直线y ax =应在图中两条虚线之间,所以可解得:

ln31

93a e

<<

答案:B

小炼有话说:本题有以下两个亮点。 (1)如何利用 ()3x f x f ??

=

???

,已知[)()1,3,x f x ∈的解析式求[)()3,9,x f x ∈的解析式。

(2)参数a 的作用为直线y ax =的斜率,故数形结合求出三个交点时a 的范围

例5:已知函数)(x f 是定义在()()+∞∞-,00,Y 上的偶函数,当0>x 时,

()?????>-≤<-=-2,22

12

0,12)(|1|x x f x x f x ,则函数1)(4)(-=x f x g 的零点个数为( )

A . 4

B .6

C .8

D .10

思路:由()f x 为偶函数可得:只需作出正半轴的图像,再利用对称性作另一半图像即可,当

(]0,2x ∈时,可以利用2x y =利用图像变换作出图像,2x >时,()()1

22

f x f x =

-,即自变量差2个单位,函数值折半,进而可作出(]2,4,(]4,6,……的图像,()

g x 的零点个数即为()14f x =根的个数,即()f x 与14

y =的交点个数,观察图像在0x >时,有5个交点,根据对称性可得0x <时,也有5个交点。共计10个交点

答案:D 小炼有话说:

(1)()()1

22

f x f x =

-类似函数的周期性,但有一个倍数关系。依然可以考虑利用周期性的思想,在作图时,以一个“周期”图像为基础,其余各部分按照倍数调整图像即可 (2)周期性函数作图时,若函数图像不连续,则要注意每个周期的边界值是属于哪一段周期,在图像中要准确标出,便于数形结合。

(3)巧妙利用()f x 的奇偶性,可以简化解题步骤。例如本题中求交点个数时,只需分析正半轴的情况,而负半轴可用对称性解决

例6:对于函数()f x ,若在定义域内存在..实数x ,满足()()f x f x -=-,称()f x 为“局部奇函数”,若()1

242

3x

x f x m m +=-+-为定义域R 上的“局部奇函数”,则实数m 的取值范

围是( )

A.11m ≤≤+

B. 1m -≤≤

C. m -≤≤

D. 1m -≤≤ 思路:由“局部奇函数”可得: 2

2422342230x

x

x

x m m m m ---?+-+-?+-=,整理可

得:(

)()2

44

22

2

260x x

x

x

m m

--+-++-=,考虑到()

2

44

22

2x

x

x

x --+=+-,从而可将

22x x -+视为整体,方程转化为:()()2

222222280x x x x m m --+-++-=,利用换元设

22x x t -=+(2t ≥),则问题转化为只需让方程222280t mt m -+-=存在大于等于2的解

即可,故分一个解和两个解来进行分类讨论。设()2

2

2280g t t mt m =-+-=。

(1)若方程有一个解,则有相切(切点x m =大于等于2)或相交(其中交点在2x =两侧),即0

2m ?=??

≥?

或()20g ≤

,解得:m =

11m ≤≤+(2)若方程有两解,则()0

202

g m ?>??

≥??>?

,解得:1112m m m m m ?-<??

综上所述:1m ≤≤答案:A

小炼有话说:本题借用“局部奇函数”概念,实质为方程的根的问题,在化简时将22x

x

-+视

为整体,进而将原方程进行转化,转化为关于22x x -+的二次方程,将问题转化为二次方程根分布问题,进行求解。

例7:已知函数()y f x =的图像为R 上的一条连续不断的曲线,当0x ≠时,

()()'0f x f x x +

>,则关于x 的函数()()1

g x f x x

=+的零点的个数为( ) A .0 B .1 C .2 D .0或2

思路:()()()()()()'

''

000xf x f x xf x f x f x x x x

++>?>?>,结合()

g x 的零点个数即为方程()1

0f x x

+

=,结合条件中的不等式,可将方程化为()10xf x +=,可设()()1h x xf x =+,即只需求出()h x 的零点个数,当 0x >时,()'0h x >,即()h x 在

()0,+∞上单调递增;同理可得:()h x 在(),0-∞上单调递减,()()min 01h x h ∴==,故

()()010h x h ≥=>,所以不存在零点。

答案:A 小炼有话说:

(1)本题由于()f x 解析式未知,故无法利用图像解决,所以根据条件考虑构造函数,利用单调性与零点存在性定理进行解决。 (2)所给不等式()()

'

0f x f

x x

+

>呈现出()f x 轮流求导的特点,猜想可能是符合导数的乘法法则,变形后可得

()()'

0xf x x

>,而()g x 的零点问题可利用方程进行变形,从而与条件中

的()xf x 相联系,从而构造出()h x

例8:定义域为R 的偶函数()f x 满足对x R ?∈,有()()()21f x f x f +=-,且当[]2,3x ∈时,()2

21218f x x x =-+-,若函数()()

log 1a y f x x =-+在()0,+∞上至少有三个零点,

则a 的取值范围是( )

A. 2??

??? B. ? ?? C. ? ?? D. ? ??

思路:()()()21f x f x f +=-体现的是间隔2个单位的自变量,其函数值差()1f ,联想到周期性,考虑先求出()1f 的值,由()f x 为偶函数,可令1x =-,得()()()111f f f =--

()10f = ()()2f x f x ∴+=, ()f x 为周期是2的周期函数。已知条件中函数()()log 1a y f x x =-+有三个零点,可将零点问题转化为方程()()log 10a f x x -+=即

()()log 1a f x x =+至少有三个根,

所以()f x 与()log 1a y x =+有三个交点。先利用()f x 在[]2,3x ∈的函数解析式及周期性对称性作图,通过图像可得:1a >时,不会有3个交点,考虑01a <<的

()log a g x x

=,则

()()log 11a y x g x =+=+,利用图像变换作图,通

过观察可得:只需当2x =时,()

log 1a y x =+的图像

()

f x 上方即可,即

()()2log 2122log 32log a a a f a -+>=-?>-= 所以

213

303

a a >?<< 答案:B

小炼有话说:本题有以下几个亮点:

(1)()f x 的周期性的判定: ()()()21f x f x f +=-可猜想与()f x 周期性有关,可带入特殊值,解出()1f ,进而判定周期,配合对称性作图

(2)在选择出交点的函数时,若要数形结合,则要选择能够做出图像的函数,例如在本题中,

()f x 的图像可做,且()log 1a y x =+可通过图像变换做出

例9:已知定义在R 上的函数()f x 满足()()2f x f x +=-,当(]1,3x ∈-时,

()(]()(]

21,1,112,1,3x x f x t x x ?-∈-?=?

--∈??,其中0t >,若方程()3f x x =恰有三个不同的实数根,则实数t 的取值范围是( )

A. 40,3?? ??

? B. 2,23

?? ???

C. 4,33

?? ???

D. 2,3

??+∞ ???

思路:由

()()

2f x f x +=-可得

()()()42f x f x f x +=-+=,即()f x 的周期为4,所

解方程可视为()y f x =与()3

x

g x =

的交点,而t 的作用为影响()

12y t x =--图像直线的斜率,也绝对此段的最值(max y t =),先做出3

x

y =

的图像,再根据三个交点的条件作出()f x 的图像(如图),可发现只要在2x =处,()f x 的图像高于()g x 图像且在6

x =处()f x 的图像低于()g x 图像即可。所以有()()()()

6622f g f g

>??(6)(2)2

2(2)3f f t f t ==

?

=>??

,即2

23

t << 答案:B

例10:(2014甘肃天水一中五月考)已知函数()()sin 1,0

2log 0,1,0a

x x f x x a a x π???

-≠>? 的图像上

关于y 轴对称的点至少有3对,则实数a 的取值范围是( )

A. 50,5?? ???

B. 5,15?? ???

C. 3,13?? ???

D. 30,3??

???

思路:考虑设对称点为00,x x -,其中00x >,则问题转化为方程()()00f x f x =-至少有三个解。即

sin 1log 2

a x x π??

--= ???

有三个根,所以问题转化为()sin 12

g x x π

??=-

- ???与()log a h x x =有三个交点,先做出sin 12

y x π??

=-- ???

的图像,通过观察可知若log a y x =与其有三个交点,则01a <<,进一步观察图像可得:只要

()()55g h <,则满足题意,所以

22

511sin 1log 52log 5log log 552

a a a a a a π??

-- ???

,所以55a <

答案:A

三、近年模拟题题目精选:

1、已知()f x 是以2为周期的偶函数,当[0,1]x ∈

时,()f x =

(1,3)-内,

关于x 的方程()()f x kx k k R =+∈有4个根,则k 的取值范围是( ).

A .104k <≤

或k =.1

04k <≤

C .104k <<

或k =.1

04

k <<

2、(2014吉林九校联考二模,16)若直角坐标平面内A,B 两点满足条件:①点,A B 都在函数()f x 的图像上;

点,A B 关于原点对称,则称(),A B 是函数()f x 的一个“姊妹点对”((),A B 与(),B A 可看作同一点对),已知()22,0

2,0x x x x f x x e

?+

=?≥??,则()f x 的“姊妹点对”有______

3、(2015,天津)已知函数()()2

2,2,

2,2,x x f x x x ?-≤?=?->?? 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( )

A. 7,4??

+∞

??? B. 7,4?

?-∞ ??? C.

70,4?? ??? D. 7,24??

???

4、(2015,湖南)已知()3

2,,x x x a

f x x a

?≤?=?>??,若存在实数b ,使函数()()g x f x b =-有两个

零点,则a 的取值范围是______

5、(2014,新课标全国卷I )已知函数()3

2

31f x ax x =-+,若()f x 存在唯一的零点0x ,

且00x >,则a 的取值范围是( )

A. ()2,+∞

B. ()1,+∞

C. (),2-∞-

D. (),1-∞- 6、(2014,山东)已知函数()()21,f x x g x kx =-+=,若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是( )

A. 10,2?

? ??

? B. 1,12?? ???

C. ()1,2

D. ()2,+∞ 7、(2014,天津)已知函数()23,f x x x x R =+∈,若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围是_________

8、(2015,江苏)已知函数()()20,01

ln ,42,1

x f x x g x x x <≤??==?-->??,则方程()()1

f x

g x +=实根的个数为__________

9、已知函数()3231f x ax x =-+,若()f x 存在唯一的零点0x ,且00x > ,则a 的取值范围是( )

A. ()2,+∞

B. ()1,+∞

C. (),2-∞-

D. (),1-∞- 10、对于函数()(),f x g x ,设(){}(){}

|0,|0m x f x n x g x ∈=∈=,若存在,m n 使得

1m n -≤,则称()f x 与()g x 互为“零点关联函数”

,若函数()()12log 1x

f x x e -=+-与()23

g x x ax a =--+互为“零点关联函数”

,则实数a 的取值范围是( ) A. 72,3?????? B. 7,33??

???? C. []2,3 D. []2,4

11、已知偶函数()f x 满足对任意x R ∈,均有(1)(3)f x f x +=-且

2(1),[0,1]

()1,(1,2]

m x x f x x x ?-∈=?

-∈?,若方程3()f x x =恰有5个实数解,则实数m 的取值范围是 .

12、(2016,河南中原第一次联考)已知函数()cos2sin f x x a x =+在区间()()

0,n n N π*∈内恰有9个零点,则实数a 的值为________

13、(2014,四川)已知函数()2

1,,, 2.71828x

f x e ax bx a b R e =---∈=L 为自然对数的

底数

(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[]0,1上的最小值 (2)若()10f =,函数()f x 在区间()0,1内有零点,求a 的取值范围

习题答案: 1、答案:B

解析:根据周期性和对称性可作出()f x 的图像,直线()()f x kx k k R =+∈过定点()1,0-

结合图像可得:若(1,3)-内有四个根,可知10,4

k ??∈ ??

?

。若直线与()f x 在()2,3相切,联立

方程:230y ky y k y kx k

?=?

-+=?

=+??,令0?=

可得:6k =

,当6k =时,解得()52,3x =?,综上所述:10,4k ??

∈ ???

2、答案:2

解析:关于原点对称的两个点为(),x y 和(),x y --,不妨设0x >,则有()222x y e y x x ?=???-=--?

,从而2

22x x x e -=-

,所以“姊妹点对”的个数为方程2

22x x x e

-=-的个数,即曲线22y x x =-与2

x y e

=-的交点个数,作出图像即可得有两个交点

3、答案:D

解析:由()()2

2,2,

2,2,x x f x x x -≤??=?->??得222,0(2),0x x f x x x --≥??-=?

2,0

()(2)42,

0222(2),2

x x x y f x f x x x x x x x ?-+

=+-=---≤≤??--+->?, 即222,0()(2)2,

0258,2x x x y f x f x x x x x ?-+

=+-=≤≤??-+>?

()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程 ()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象

的4个公共点,由图象可知

7

24

b <<. 4、答案:()(),01,a ∈-∞+∞U

解析:()()g x f x b =-由两个零点,即方程()f x b =有两个根,从而()y f x =与y b = 有两个交点。可在同一直角坐标系下作出3

2

,y x y x ==,观察图像可得:0a <时,水平线与

2y x =有两个交点,故符合题意;当01a ≤≤时,()f x 为增函数,所以最多只有一个零点,

不符题意;当1a >时,存在水平线与32

,y x y x ==分别有一个交点,共两个符合题意。综上所述:()(),01,a ∈-∞+∞U 5、答案:C

解析:3

2

331310ax x a x x -+=?=

-,令1

t x

=,依题意可知y a =与33y t t =-应在有唯一交点且位于0t >的区域。设()33g t t t =-,所以()()()'233311g t t t t =-=-+,则()g t 在()()1,0,0,1-单增,在()(),1,1,-∞-+∞单减,()()12,12g g =-=-,作出图像可知只有当2a <-时,y a =与3

3y t t =-有唯一交点,且在0t >的区域。 6、答案:B

解析:方法一:方程()()f x g x =有两个不等实根可转化为函数()y f x =与()y g x =的图像有两个不同交点,其中k 为直线的斜率。通过数形结合即可得到1,12k ??

∈ ???

方法二:本题还可以先对方程进行变形,再进行数形结合,21x kx -+=中0x =显然不是

方程的解,当0x ≠时,21x k x -+=,设()1

1,2

2131,2

x x x

h x x x x

?-≥?-+?==??-

解析:方程为:2

31x x a x +=-,1x =显然不是方程的解,所以1x ≠时,231

x x

a x +=-,

即4151a x x =-+

+-,令1t x =-,则y a =与4

5y t t

=++有4个交点即可,作出图像数形结合即可得到()()0,19,a ∈+∞U 8、答案:

4

解析:方程等价于()()1f x g x +=±,即()()1f x g x =-+或()()1f x g x =--共多少个

根,()2

21,0111,127,2x y g x x x x x <≤??=-=-<

()221,0113,125,2x y g x x x x x -<≤??

=--=-<

,同理可得()f x 与()1y g x =--有两个交点,所以共

计4个 9、答案:C

解析:3

3

2

13310ax x a x x

??-+=?=-+ ???,令1t x =,依题意可知3

3a t t =-+只有一个零

点0t 且00t >,即y a =与()3

3g t t t =-+只有一个在横轴正半轴的交点。()233g t t -=-+可

知()g t 在()(),1,1,-∞-+∞减,在()1,1-增,()12g -=- 作出图像可得只有2a <-时,

y a =与()33g t t t =-+只有一个在横轴正半轴的交点。

10、答案:C

解析:先从()()12log 1x

f x x e

-=+-入手,可知()f x 为单增函数,且()10f =,所以()

f x 有唯一零点1x =,即1m =;所以1102n n -≤?≤≤,即()2

3g x x ax a =--+在[]

0,2有零点。考虑方程22

34

301211

x x ax a a x x x +--+=?=

=++-++,即y a = 与4

121

y x x =++

-+在[]0,2有公共点即可,数形结合可得:[]2,3a ∈ 11

、答案:8448(,(,6666

++++-

-U 解析:当0m >时,方程恰有5个解?方程2

3[1(4)]m x x --=有两个解且方程

23[1(8)]m x x --=无解,

m <<;由对称性,当0m <时,方程恰有5

个解的范围是m <

837415415837

(,)(,)6666

++++-

-U 12、答案:1a =±

解析:由()0f x =,得cos2sin 0x a x +=,即2

2sin sin 1=0x a x --.设

2()2sin sin 1

g x x a x =--,令

sin t x

=,则

2()21g x t at =--.考察(0,2)x π∈的函数()g x 的零点个

数,即如下图所示为sin t x =,(0,2)x π∈的图象,易知:(1)方程2

210t at --=的一个根为1,另一个根为(1,0)-时,()g x 在(0,2)π内有三个零点,此时

2

211102(1)(1)10

a a ?-?-=???--?-->?,解得1a =;(1)方程2

210t at --=的一个根为-1,另一个根为(0,1)时,()g x 在(0,2)π内有三个零点,此时22(1)(1)10

21110

a a ??--?--=??-?->?,解得

1a =-.综上可知当1a =±时,()cos 2sin f x x a x =+在(0,2)π内有3个解.再由9

33

=可

知,236n =?=.综上可知1a =±,6n =. 13、解析:(1)()()'

2x g x f

x e ax b ==--

()'2x g x e a ∴=-

当[]0,1x ∈时,()[]'

12,2g x a e a ∈--

∴当11202

a a -≥?≤

时,()'

0g x ≥ ()g x ∴单调递增 ()()min 0g x g b ∴==-

当1120222

e a e a a -<<-?

<<时 ()g x 在()()0,ln 2a 单调递减,在()()ln 2,1a 单调递增 ()()()()min ln 222ln 2g x g a a a a b ∴==--

当202

e e a a -≤?≥

时,()'

0g x ≤

()g x ∴单调递减

()()min 12g x g e a b ∴==--

综上所述:1

2

a ≤

时,()()min 0g x g b ==- 122

e

a <<时,()()()()min ln 222ln 2g x g a a a a

b ==-- 2

e

a ≥时,()()min 12g x g e a

b ==--

(2)()()10,00f f ==Q 且()f x 在区间()0,1内有零点 .()f x ∴在()0,1不单调,且至少有两个极值点

()()'g x f x ∴=在()0,1至少有两个零点

由(1)可得:若12a ≤

或2

e

a ≥,则()g x 在()0,1单调,至多一个零点,均不符题意 122

e

a ∴<< ()g x ∴在()()0,ln 2a 单调递减,在()()ln 2,1a 单调递增 ()()()()ln 2022ln 2000102010g a a a a

b g b e a b g ?->????-->>??

由()10f =可得:101e a b b e a ---=?=--,代入到不等式组可得:

()()()22ln 21021101210

a a a a e a e e a a e a e a -++--??--->???

---->? 由()()110

21210e a a e a e a e a --->?>-?????<---->???

下面判断:()2,1a e ∈-时,()22ln 210a a a a e -++-<是否恒成立 设()()()22ln 2132ln 21h a a a a a e a a a e =-++-=-+-

()()()'1

322ln 212ln 2h a a a a a

∴=-?

-=- 令()'

0h a >

解得:2

a <

()h a ∴在2e ?- ??单调递增,在2?? ???

单调递减

()

max 311022h a h e e ?∴==?-+-=-< ??

()()22ln 210h a a a a a e ∴=-++-<在()2,1a e ∈-时恒成立 ()2,1a e ∴∈-

新教材高中数学第三章函数3.2函数与方程、不等式之间的关系第1课时函数的零点及其与对应方程、不等式解集之

新教材高中数学第三章函数3.2函数与方程、不等式之间的关系第1课时函数的零点及其与对应方程、不等式解集之间的关系课 后课时精练新人教B 版必修第一册 A 级:“四基”巩固训练 一、选择题 1.下列说法中正确的有( ) ①f (x )=x +1,x ∈[-2,0]的零点为(-1,0); ②f (x )=x +1,x ∈[-2,0]的零点为-1; ③y =f (x )的零点,即y =f (x )的图像与x 轴的交点; ④y =f (x )的零点,即y =f (x )的图像与x 轴交点的横坐标. A .①③ B .②④ C .①④ D .②③ 答案 B 解析 根据函数零点的定义,f (x )=x +1,x ∈[-2,0]的零点为-1,函数y =f (x )的零点,即y =f (x )的图像与x 轴交点的横坐标.因此,说法②④正确.故选B. 2.函数f (x )=x 2 -x -1的零点有( ) A .0个 B .1个 C .2个 D .无数个 答案 C 解析 Δ=(-1)2 -4×1×(-1)=5>0,所以方程x 2 -x -1=0有两个不相等的实根,故函数f (x )=x 2 -x -1有2个零点. 3.函数f (x )=2x 2 -3x +1的零点是( ) A .-1 2,-1 B.12,1 C.1 2,-1 D .-12 ,1 答案 B 解析 方程2x 2-3x +1=0的两根分别为x 1=1,x 2=12,所以函数f (x )=2x 2 -3x +1的 零点是1 2 ,1. 4.函数y =x 2 -bx +1有一个零点,则b 的值为( )

A .2 B .-2 C .±2 D .3 答案 C 解析 因为函数有一个零点,所以Δ=b 2 -4=0,所以b =±2. 5.设a <-1,则关于x 的不等式a (x -a )? ?? ??x -1a <0的解集为( ) A .(-∞,a )∪? ?? ??1a ,+∞ B .(a ,+∞) C.? ????-∞,1a ∪(a ,+∞) D.? ?? ??-∞,1a 答案 A 解析 ∵a <-1,∴a (x -a )? ????x -1a <0?(x -a )? ?? ??x -1a >0.又a <-1,∴1a >a ,由函数f (x ) =(x -a )·? ?? ??x -1a 的图像可得所求不等式的解集为(-∞,a )∪? ?? ??1a ,+∞. 二、填空题 6.函数f (x )=? ???? 2x -4,x ∈[0,+∞, 2x 2 -3x -2,x ∈-∞,0的零点为________. 答案 2,-1 2 解析 当x ≥0时,由2x -4=0,得x =2;当x <0时,由2x 2 -3x -2=0,得x =-12或 2(舍去).故函数f (x )的零点是2,-1 2 . 7.已知函数f (x )=ax 2 -5x +2a +3的一个零点为0,则f (x )的单调递增区间为________. 答案 ? ????-∞,-53 解析 由已知,得f (0)=2a +3=0,∴a =-32,∴f (x )=-32x 2 -5x ,∴f (x )的单调递 增区间为? ????-∞,-53. 8.已知a 为常数,则函数f (x )=|x 2 -9|-a -2的零点个数最多为________. 答案 4 解析 令g (x )=|x 2 -9|,h (x )=a +2,在同一平面直角坐标系内画出两个函数的图像,如图所示.

高中数学函数的零点教学设计

第4讲与函数的零点相关的问题 函数零点的个数问题 1.函数f(x)=xcos 2x在区间[0,2π]上的零点的个数为( D ) (A)2 (B)3 (C)4 (D)5 解析:要使f(x)=xcos 2x=0,则x=0,或cos 2x=0,而在区间[0,2π]上,通过观察y=cos 2x 的函数图象,易得满足cos 2x=0的x的值有,,,,所以零点的个数为5个. 2.(2015南昌二模)已知函数f(x)=函数g(x)是周期为2的偶函数,且当x∈[0,1]时,g(x)=2x-1,则函数y=f(x)-g(x)的零点个数是( B ) (A)5 (B)6 (C)7 (D)8 解析:函数y=f(x)-g(x)的零点个数就是函数y=f(x)与y=g(x)图象的交点个数.在同一坐标系中画出这两个函数的图象: 由图可得这两个函数的交点为A,O,B,C,D,E,共6个点. 所以原函数共有6个零点.故选B. 3.(2015南昌市一模)已知函数f(x)=若关于x的方程f[f(x)]=0有且只有一个实数解,则实数a的取值范围为. 解析:依题意,得a≠0,令f(x)=0,得lg x=0,即x=1,由f[f(x)]=0,得f(x)=1, 当x>0时,函数y=lg x的图象与直线y=1有且只有一个交点,则当x≤0时,函数y=的图象与直线y=1没有交点,若a>0,结论成立;若a<0,则函数y=的图象与y轴交点的纵坐标-a<1,得-1

答案:(-1,0)∪(0,+∞) 4.(2015北京卷)设函数f(x)= ①若a=1,则f(x)的最小值为; ②若f(x)恰有2个零点,则实数a的取值范围是. 解析:①当a=1时,f(x)=其大致图象如图所示: 由图可知f(x)的最小值为-1. ②当a≤0时,显然函数f(x)无零点; 当01,由二次函数的性质可知,当x≥1时,f(x)有2个零点,则要使f(x)恰有2个零点,则需要f(x)在(-∞,1)上无零点,则2-a≤0,即a≥2.综上可知,满足条件的a的取值范围是[,1)∪[2,+∞). 答案:①-1 ②[,1)∪[2,+∞) 确定函数零点所在的区间 5.(2015四川成都市一诊)方程ln(x+1)-=0(x>0)的根存在的大致区间是( B ) (A)(0,1) (B)(1,2) (C)(2,e) (D)(3,4) 解析:设f(x)=ln(x+1)-, 则f(1)=ln 2-2<0,f(2)=ln 3-1>0, 得f(1)f(2)<0,函数f(x)在区间(1,2)有零点,故选B. 6.(2015河南郑州市一模)设函数f(x)=e x+2x-4,g(x)=ln x+2x2-5,若实数a,b分别是 f(x),g(x)的零点,则( A )

高考复习专题:函数零点的求法及零点的个数()

函数零点的求法及零点的个数 题型1:求函数的零点。 [例1] 求函数 222 3+--=x x x y 的零点. [解题思路]求函数 222 3+--=x x x y 的零点就是求方程 0222 3=+--x x x 的根 [解析]令 32 220x x x --+=,∴ 2(2) (2) x x x --- = ∴(2)(1)(1)0x x x --+=,∴112x x x =-==或或 即函数222 3 +--=x x x y 的零点为-1,1,2。 [反思归纳] 函数的零点不是点,而是函数函数 ()y f x =的图像与x 轴交点的横坐标,即零点是 一个实数。 题型2:确定函数零点的个数。 [例2] 求函数f(x)=lnx +2x -6的零点个数. [解题思路]求函数f(x)=lnx +2x -6的零点个数就是求方程lnx +2x -6=0的解的个数 [解析]方法一:易证f(x)= lnx +2x -6在定义域(0,)+∞上连续单调递增, 又有(1)(4)0f f ?<,所以函数f(x)= lnx +2x -6只有一个零点。 方法二:求函数f(x)=lnx +2x -6的零点个数即是求方程lnx +2x -6=0的解的个数 即求ln 62y x y x =?? =-?的交点的个数。画图可知只有一个。 [反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法: ①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。 题型3:由函数的零点特征确定参数的取值范围 [例3] (2007·广东)已知a 是实数,函数 ()a x ax x f --+=3222,如果函数()x f y =在区 间[]1,1-上有零点,求a 的取值范围。 [解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点寻找关于参数 a 的不等式(组),但由于涉及到a 作为2 x 的系 数,故要对a 进行讨论 [解析] 若0a = , ()23f x x =- ,显然在 []1,1-上没有零点, 所以 0a ≠. 令 ()248382440 a a a a ?=++=++=, 解得 37 2a -±= ①当 37 2a --= 时, ()y f x =恰有一个零 点在[ ] 1,1-上; ②当()()()()05111<--=?-a a f f ,即15a <<时, () y f x =在[ ] 1,1-上也恰有一个零点。 ③当()y f x =在[ ] 1,1-上有两个零点时, 则 ()()20824401 1121010a a a a f f >? ??=++>??-<-??-<-

高中数学《方程的根与函数的零点》公开课优秀教学设计一

2016年全国高中青年数学教师优秀课展示与培训活动交流课案 课 题:3.1.1 方程的根与函数的零点 教 材:人教A 版高中数学·必修1 【教材分析】 本节课的内容是人教版教材必修1第三章第一节,属于概念定理课。“函数与方程”这个单元分为两节,第一节:“方程的根与函数的零点”,第二节:“用二分法求方程的近似解”。 第一节的主要内容有三个:一是通过学生已学过的一元二次方程、二次函数知识,引出零点概念;二是进一步让学生理解:“函数()y f x =零点就是方程()0f x =的实数根,即函数 ()y f x =的图象与x 轴的交点的横坐标”;三是引导学生发现连续函数在某个区间上存在零 点的判定方法:如果函数()y f x =在区间[],a b 上图象是连续不断的一条曲线,并且有 ()()0f a f b ?<,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根。这些内容是求方程近似解的基础。本节课的 教学主要是围绕如何用函数的思想解决方程的相关问题展开,从而使之函数与方程紧密联系在一起。为后续学习二分法求方程的近似解奠定基础,本节内容起着承上启下的作用,承接以前学过的方程知识,启下为下节内容学习二分法打基础。 【教学目标】 1.理解函数零点的概念;掌握零点存在性定理,会求简单函数的零点。 2.通过体验零点概念的形成过程、探究零点存在的判定方法,提高学生善于应用所学知识研究新问题的能力。 3.通过本节课的学习,学生能从“数”“形”两个层面理解“函数零点”这一概念,进而掌握“数形结合”的方法。 【学情分析】 1.学生具备的知识与能力 (1)初中已经学过一元二次方程的根、一元二次函数的图象与x 轴的交点横坐标之间的关系。 (2)从具体到抽象,从特殊到一般的认知规律。 2. 学生欠缺的知识与能力 (1)超越函数的相关计算及其图象性质. (2)通过对具体实例的探究,归纳概括发现的结论或规律,并将其用准确的数学语言表达出

函数与方程、零点

函数与方程 一、考点聚焦 1.函数零点的概念 对于函数))((D x x f y ∈=,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点,注意以下几点: (1)函数的零点是一个实数,当函数的自变量取这个实数时,其函数值等于零。 (2)函数的零点也就是函数)(x f y =的图象与x 轴的交点的横坐标。 (3)一般我们只讨论函数的实数零点。 (4)求零点就是求方程0)(=x f 的实数根。 2、函数零点的判断 如果函数)(x f y =在区间],[b a 上的图象是连续不断的曲线,并且有0)()(

高中数学人教A版必修1函数的零点及二分法(无答案)学案

优质资料---欢迎下载 函数的零点及二分法 1、引入:已知函数26y x x =-- (1)当x 取何值时,0y =;(2)当x 取何值时,0,0y y >< 2、零点:如果函数()y f x =在实数α处的值等于零,即()0f α=,则α叫做这个函数的零点。 3、二次函数()20y ax bx c a =++≠ (1)方程的根与函数的零点: (2)二次函数零点的性质: 注: ①任意的图像是连续不间断的函数,上述性质成立。 ②通过奇数重零点时,函数值变号,这样的零点叫变号零点;通过偶数重零点时,函数值不变号。 ③相邻两个零点之间的所有函数值保持同号。 4、二分法: (1)原理:若函数()y f x =在区间[],a b 上连续不间断,且()()0f a f b ?<,则在[],a b 内至少 有一个零点α,使()0f α=。 (2) 定义:对于在区间[],a b 上连续不断,且()()0f a f b ?<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法。 (3)变号零点:曲线通过零点时变号,此零点叫变号零点;曲线通过零点时不变号,此零点叫不变号零点。 (4)二分法的步骤:见教材P73 三、例题: 例1:已知函数3222y x x x =--+(1)求此函数的零点; (2)解不等式y>0 小结:形如:()()()()1200n x x x x x x ---><数轴标根。 (系数为1) 例2、解不等式:(1)()()()2110x x x --+<3(2)()()()21210x x x --+>

高中数学《方程的根与函数的零点》导学案

3.1.1方程的根与函数的零点 1.函数零点的概念 函数的零点:□1对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点. 注意:函数的零点不是一个点,而是f(x)=0的根. 2.方程的根与函数零点的关系 方程f(x)=0有实数根?□2函数y=f(x)的图象与x轴有交点?□3函数y=f(x)有零点. 3.零点的存在性定理 □4如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.注意:(1)函数y=f(x)在(a,b)内有零点,f(a)·f(b)<0不一定成立. (2)若连续不断的曲线y=f(x)在区间[a,b]上有f(a)·f(b)<0,y=f(x)在(a,b)内一定有零点,但不能确定有几个. 1.判一判(正确的打“√”,错误的打“×”) (1)所有的函数都有零点.() (2)若方程f(x)=0有两个不等实根x1,x2,则函数y=f(x)的零点为(x1,0),(x2,0).() (3)若函数y=f(x)在区间(a,b)上有零点,则一定有

f(a)·f(b)<0.() 答案(1)×(2)×(3)× 2.做一做 (1)(教材改编P88T1)函数f(x)=x2+3x的零点是________. (2)(教材改编P88例1)若函数f(x)在区间(2,5)上是减函数,且图象是一条连续不断的曲线,f(2)·f(5)<0,则函数f(x)在区间(2,5)上零点的个数是________. (3)已知函数y=f(x)的定义域为R,图象连续不断,若计算得f(1)<0,f(1.25)<0,f(1.5)>0,则可以确定零点所在区间为________.答案(1)0和-3(2)1(3)(1.25,1.5) 『释疑解难』 (1)若函数f(x)在区间[a,b]上的图象是连续不断的,且在两端点处的函数值f(a),f(b)异号,则函数y=f(x)的图象至少穿过x轴一次,即方程f(x)=0在区间(a,b)内至少有一个实数根c. (2)零点的存在性定理只能判断出零点的存在性,而不能判断出零点的个数.如图(1)(2),虽然都有f(a)·f(b)<0,但图(1)中函数在区间(a,b)内有4个零点,图(2)中函数在区间(a,b)内仅有1个零点. (3)零点的存在性定理是不可逆的,因为f(a)·f(b)<0可以推出函数y=f(x)在区间(a,b)内存在零点.但是,已知函数y=f(x)在区间(a,b)内存在零点,不一定推出f(a)·f(b)<0.如图(3),虽然在区间(a,b)内函

方程的根与函数的零点》说课稿

《方程的根与函数的零点》说课稿 1教材分析 1.1地位与作用 本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时,主要内容是函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理,是一节概念课. 新课标教材新增了二分法,也因而设置了本节课.所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存在性定理的是二分法的必备知识. 之前的教材虽然没有设置本节内容,但方程的根与函数的关系从来是重要且无法回避的,所以将本节课直接编入教材很有必要.本节课也就不仅为二分法的学习做准备,而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这种联系正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础. 从研究方法而言,零点概念的形成和零点存在性定理的发现,符合

从特殊到一般的认识规律,有利于培养学生的概括归纳能力,也为数形结合思想提供了广阔的平台. 1.2教学重点 基于上述分析,确定本节的教学重点是:了解函数零点概念,掌握函数零点存在性定理. 2学情分析 2.1学生具备必要的知识与心理基础. 通过前面的学习,学生己经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础. 方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础. 2.2学生缺乏函数与方程联系的观点. 高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位. 例如一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数的图象.函数与方程相联系的观点的建立,函数应用的意识的初步树立,就成

函数的零点及判断零点个数提高题

函数的零点及判断零点个数提高题 1.已知函数()22,52,x x a f x x x x a +>?=?++≤?,函数()()2g x f x x =-恰有三个不同的零点,则实数a 的取值范围是( ) A .[)1,1- B .[]0,2 C .[)2,2- D .[)1,2- 【答案】D . 【解析】 22()()232x x a g x f x x x x x a -+>?=-=?++≤?,而方程20x -+=的解为2,方程 2320x x ++=的解为1-或2-,所以?? ???≤-≤-->,当1x ≤-?1x -≥,又f (x )为奇函数, ∴0x <时, ()(] 12log (1),1,0()()13,,1x x f x f x x x ?--+∈-?=--=??-+--∈-∞-?,(也可以不求解析式,依 据奇函数的图象关于原点对称,画出y 轴左侧的图象),画出y =f (x ),y =a (01a <<)的图象,如图 共有5个交点,设其横坐标从左到右分别为x 1,x 2,x 3,x 4,x 5,则45123,322 x x x x ++=-=

函数零点教学设计

《函数零点》教学设计 一、教学目标: 1.函数零点理解函数零点的概念,了解函数的零点与方程根的联系; 2.理解“在函数的零点两侧函数值乘积小于0”这一结论的实质,并运用其解决有关一元 二次方程根的分布问题; 3.通过函数零点内容的学习,分析解决对一元二次方程根的分布的有关问题,转变学生对 数学学习的态度,加强学生对数形结合、分类讨论等数学思想的进一步认识。 二、教学重点:函数零点存在性的判断。 三、教学难点:数形结合思想,转化化归思想的培养与应用。 四、教学方法: 在相对熟悉的问题情境中,通过学生自主探究,在合作交流中完成学习任务,尝试指导与自主学习相结合。 五、教学过程: 1、实例引入 解方程:(1)2-x=4;(2)2-x=x. 意图:通过纯粹靠代数运算无法解决的方程,引起学生认知冲突,激起探求的热情. 2、一元二次方程的根与二次函数图象之间的关系.

问题2:一元二次方程的根与相应的二次函数的图象之间有怎样的关系? 学生讨论,得出结论:一元二次方程的根就是函数图象与x轴交点的横坐标. 意图:通过回顾二次函数图象与x轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备. 3、一般函数的图象与方程根的关系. 问题3:其他的函数与方程之间也有类似的关系吗?请举例! 师生互动,在学生提议的基础上,老师加以改善,现场在几何画板下展示类似如下函数的图象:y=2x-4,y=2x-8,y=ln(x-2),y=(x-1)(x+2)(x-3).比较函数图象与x轴的交点和相应方程的根的关系,从而得出一般的结论: 方程f(x)=0有几个根,y=f(x)的图象与x轴就有几个交点,且方程的根就是交点的横坐标. 意图:通过各种函数,将结论推广到一般函数,为零点概念做好铺垫 4、函数零点. 概念:对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点. 即兴练习:函数f(x)=x(x2-16)的零点为(D )A.(0,0),(4,0) B.0,4 C.(–4,0),(0,0),(4,0) D.–4,0,4 设计意图:及时矫正“零点是交点”这一误解. 说明:①函数零点不是一个点,而是具体的自变量的取值. ②求函数零点就是求方程f(x)=0的根. 5、归纳函数的零点与方程的根的关系. 问题4:函数的零点与方程的根有什么共同点和区别? (1)联系:①数值上相等:求函数的零点可以转化成求对应方程的根; ②存在性一致:方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点. (2)区别:零点对于函数而言,根对于方程而言. 以上关系说明:函数与方程有着密切的联系,函数问题有时可转化为方程问题,同样,有些方程问题可以转化为函数问题来求解,这正是函数与方程思想的基础. 6、零点存在性定理的探索. 探究:(1)观察二次函数f(x)=x2-2x-3的图象: 在区间[-2,1]上有零点______; f(-2)=_______,f(1)=_______,f(-2)·f(1)_____0(“<”或“>”). 在区间(2,4)上有零点______;f(2)·f(4)____0(“<”或“>”). (2)观察函数的图象: ①在区间(a,b)上___(有/无)零点;f(a)·f(b) ___ 0(“<”或“>”). ②在区间(b,c)上___(有/无)零点;f(b)·f(c) ___ 0(“<”或“>”). ③在区间(c,d)上___(有/无)零点;f(c)·f(d) ___ 0(“<”或“>”). 意图:通过归纳得出零点存在性定理. 7、零点存在性定理: 如果函数y=f(x)在区间[a,b]上的图象是连续不断一条曲线, 并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点. 即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. 即兴练习:下列函数在相应区间内是否存在零点? ,2];(2)f(x)=e x-1+4x-4,x∈[0,1]. (1)f(x)=log2x,x∈[1 2

函数与方程的含参零点问题

函数与方程的含参零点问题 ?方法导读 函数与方程问题常以基本初等函数或分段函数为载体,考查函数零点的存在区间、确定零点的个数、参数的取值范围、方程的根或函数图象的交点等问题.函数与方程不仅考查考生计算、画图等方面的能力,还考查考生函数与方程、数形结合及转化化归等数学思想的综合应用.在解决函数零点问题时,既要注意利用函数的图象,也要注意根据函数的零点存在性定理、函数的性质等进行相关的计算,把数与形紧密结合起来. ?高考真题 【·天津卷理·】已知,函数,若关于的方程 恰有个互异的实数解,则的取值范围是______. ?解题策略 本题属于分段函数的零点问题,所以需要分类讨论: 当时,由,推出, 当时,由,推出, 再分别画出它们的图象,由图象可知, 当直线和的图象有两个不同的交点,而直线和 的图象无交点时满足条件. ?解题过程 当时,由,得, 当时,由,得,

令,作出直线,函数的图象如图所示, 的最大值为,由图象可知,若恰有个互异的实数解,则 ,得. ?解题分析 1.求函数零点问题,是高考试卷中的热点问题,这类问题要通过学生的直观想 象能力,画出函数图象求解比较直观、易理解; 2.本题由求解问题,通过变形转化为求和 的问题,然后通过图象可以顺利求解; 3.分类讨论思想贯穿整个高中阶段的数学学习中,在每年的高考试卷做题中都 会出现,尤其是解决综合题型时,很多学生不知道该如何分类讨论,所以学生在 平时的训练中要有意识的加以培养和应用. ?拓展推广 1.判断函数零点个数的常见方法 (1)直接法:解方程,方程有几个解,函数就有几个零点;

(2)图象法:画出函数的图象,函数的图象与轴的交点个数即为函数的零点个数; (3)将函数拆成两个常见函数和的差,从而 ,则函数的零点个数即为函数与函数 的图象的交点个数; (4)二次函数的零点问题,通过相应的二次方程的判别式来判断. 2.判断函数在某个区间上是否存在零点的方法 (1)解方程,当对应方程易解时,可通过解方程,看方程是否有根落在给定区间 上; (2)利用零点存在性定理进行判断; (3)画出函数图象,通过观察图象与轴在给定区间上是否有交点来判断. 3.已知函数有零点(方程有根)求参数值(取值范围)常用的方法 (1)把函数零点问题转化为方程根的问题 利用函数的零点方程的根,把求函数零点的相关问题转化为求方程根的问题,通过方程的根所满足的条件建立不等式来解决问题. (2)把函数零点问题转化为函数图象与坐标轴的交点问题 利用函数的零点函数的图象与轴的交点,把函数零点的相关问题转化为图象与坐标轴的交点问题,再利用数形结合的思想方法来解决问题. (3)把零点问题分离变量后转化为函数值域问题 将函数零点问题先转化为方程根的问题,然后进行变量分离,将参数分离出来转化为求函数值域问题,这种方法思路简洁,学生容易想到. (4)把函数零点问题转化为两个函数图象的交点问题

函数零点的教学设计

函数的零点教案设计 ※教案背景 (1)、课题:函数的零点 (2)、教材版本:人教B版数学必修(一)第二章2.4.1函数的零点 (3)、课时:1课时 ※教材分析 (1)本节课的主要内容有函数零点的概念、函数零点存在性判定定理。 函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图形表示看,函数的零点就是函数f(x)与x轴交点的横坐标.函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。 (2)本节是函数应用的第一课,因此教学时应当站在函数应用的高度,从函数与其他知识的联系的角度来引入较为适宜。 ※教学目标: 1、知识与技能 (1)理解函数(结合二次函数)零点的概念。 (2)领会函数零点与相应方程的根的关系,掌握零点存在的判定条件。 2、过程与方法 (1)通过观察例题的图象,发现函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法。 (2)让学生归纳整理本节所学知识。 3、情感、态度与价值观 在函数与方程的联系中体验数学中的转化思想的意义和价值,培养学生的观在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.体验数学内在美,激发学习热情,培养学生创新意识和科学精神。 ※教学重点:是函数零点的概念及求法 ※教学难点:是利用函数的零点作图教学方法: ※教学方法:以教师为主导,以学生为主体,以能力发展为目标,从学生的认识规律出发进行启发式教学,利用课件,视频等引导学生对问题的思考,运用学生自主学习、小组合作探究的教学方式。 ※教学环节 (一)、课前延伸 1、知识链接,温故知新 求方程x2-2x-3=0的实数根,并画出函数y=x2-2x-3的图象。 通过学生熟悉一元二次方程入手,观察函数图像与x轴的交点与相应方程根的关系,让学生建立数型结合的思想。(用投影仪展示函数图象) 【百度搜索】https://www.360docs.net/doc/a25787606.html,/testdetail/26588/

高中数学专题练习-函数零点问题

高中数学专题练习-函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(2015·北京)设函数f (x )=??? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (·天津)已知函数f (x )=??? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数 a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

函数与方程(零点问题)

§2.8 函数与方程 函数零点问题 学习目标;(1)理解函数零点定义,会应用函数零点存在性定理 (2)体会函数与方程的转化思想 一 知识导练 1. (必修1 P43练习3改编) 函数32()2f x x x x =-+的零点是____________. 解析:解方程x3-2x2+x =0得x =0或x =1,所以函数的零点是0或1. 导航:函数零点的求解 2.(必修1 P111复习13改编)已知函数()23x f x x =-,则函数f(x)的零点个数是____. 解析:解法1:令f(x)=0,则2x =3x ,在同一坐标系中分别作出y =2x 和y =3x 的图象,由图知函数y =2x 和y =3x 的图象有2个交点,所以函数f(x)的零点个数为2. 解法2:由f(0)>0,f(1)<0,f(3)<0,f(4)>0,…,所以有2个零点,分别在区间(0,1)和(3,4)内. 导航:函数零点个数的判定 3.给出以下三个结论:(1)0一定是奇函数的一个零点; (2)单调函数有且仅有一个零点; (3)周期函数一定有无穷多个零点. 其中正确的结论共有_____个。 4.(必修1 P97习题8)若关于x 的方程27(13)20x m x m -+--=的一个根在区间(0,1)上,另一个在区间(1,2)上,则实数m 的取值范围为_____________. 解析:设f(x)=7x2-(m +13)x -m -2,则???? ?f (0)>0,f (1)<0,f (2)>0,解得-41. 要点回顾:

函数的零点问题

函数零点问题的求解 【教学目标】 知识与技能: 1.理解函数零点的定义以及函数的零点与方程的根之间的联系,掌握用连续函数 零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间法. 3.能根据函数零点的情况求参数的取值范围. 过程与方法: 1.函数零点反映了函数和方程的联系,函数零点与方程的根能相互转化,能把方程问题合理 转化为函数问题进行解决. 2.函数的零点问题的解决涉及到分类讨论,数形结合,化归转化等数学思想方法,有效提升了 学生的数学思想方法的应用. 情感、态度与价值观: 1.培养学生认真、耐心、严谨的数学品质; 2.让学生在自我解决问题的过程中,体验成功的喜悦. 【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理问题的意识. 【教学难点】 根据函数零点所在的区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 【教学过程】 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2 解法一:代数解法 解:(1).因为()0 0e 0210f =+-=-<,()1 1e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念 对于函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2. 零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有

高中数学人教B版必修一第二章2.4.1《函数的零点》 教学设计

《函数的零点》课堂教学设计 一.教学内容 本课内容选自经全国中小学教材审定委员会2004年初审通过的人教版普通高中课程标准试验教科书,数学必修①,B 版第二单元《函数》中的《函数的零点》,新授课,第一课时。 1.知识背景 2.4节《函数与方程》作为新课程改革试验教材中的新增内容,其课程目标是想 通过对本节的学习,使学生学会用二分法求函数零点近似解的方法,从中体会函数与方程之间的联系,同时达到“方法构建、技术运用、算法渗透”这一隐性的教学目标。建立实际问题的函数模型,利用已知函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求函数零点的近似解,是在建立和运用函数模型的大背景下展开的。方程的根与函数的零点的关系、用二分法求函数零点的近似解中均蕴涵了“函数与方程的思想”,这也是本章渗透的主要数学思想. 2.本节内容 《函数的零点》通过对二次函数图像的绘制、分析,得到零点的概念,从而进一步 探索一般函数零点存在性的判定,这些活动就是想让学生在了解初等函数的基础上,对函数图像进行全新的认识,在函数与方程的联系中体验数学中的转化思想的意义和价值。 二.教学目标 知识与技能:(1)通过对二次函数增图像的描绘,理解函数零点的概念,体会我们在 研究和解决问题过程的一般思维方法。 (2)通过对一般函数图像的描绘分析,领会函数零点与相应方程之间的 关系,掌握零点存在的判定条件。 (3)培养学生对事物的观察、归纳能力和探究能力。 过程与方法: 通过画函数图像,分析零点的存在性。 情感态度与价值观: 使学生再次领略“数形”的有机结合,渗透由抽象到具体的思想, 理解动与静的辨证关系,体会数学知识之间的紧密联系。 三.教学重点 重点:理解零点的概念,判定二次函数零点的个数,会求函数的零点. 具体流程设计 一、创设情境 画函数322--=x x y 的图像,并观察其图象与其对应的一元二次方程0322=--x x [师生互动] 师:引导学生通过配方,画函数图象,分析方程的根与图象和x 轴交点坐标的关系。

函数与方程(零点)

§1-10 函数的应用---根与零点及二分法 【课前预习】阅读教材P86-90完成下面填空 1.方程()0=x f 有实根 ? ? 7.若()y f x =的最小值为1,则()1y f x =-的零点个数为 ( ) A .0 B .1 C .0或l D .不确定

8.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点 9.若函数()f x 在[],a b 上连续,且有()()0f a f b >.则函数()f x 在[],a b 上 ( ) A .一定没有零点 B .至少有一个零点C .只有一个零点 D .零点情况不确定 10.如果二次函数)3(2 +++=m mx x y 有两个不同的零点,则m 的取值范围是( ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞ 11.方程22lg x x -=的实数根的个数是 ( ) A .1 B .2 C .3 D .无数个 12.二次函数()f x =ax 2 +bx+c 中,ac<0则函数的零点个数是 13.若()f x 的图像关于y 轴对称,且()f x =0有三个零点,则这三个零点之和等于 14.若()f x =???--≤≥--2 1,11 2,12 x x x x x 或则函数g(x)= ()f x -x 的零点为 15.已知()f x 是R 上最小正周期为2的周期函数,且当0≤x<2时,()f x =x 3 -x,则函数y=()f x 的图像在区间[0,6]上与x 轴的交点的个数为 16.已知函数()f x =4x +m.2x +1仅有一个零点,求m 的取值范围,并求出零点 17.若函数()f x =(m-2)x 2 +mx+(2m+1)的两个零点分别在区间(-1,0)和区间(1,2)内,则的取值范围是( ) A .(-21,41) B.(- 41,21) C.( 41,21) D.[ 41,2 1] 18.数()f x =ax+b(a ≠0)有一个零点是2,那么函数g(x)=bx 2 -ax 的零点是 19.数()f x =x 3 -3x+a 有3个不同的零点,则实数a 的取值范围是( ) A .(-2,2) B. [-2,2] C.(-∞,1) D. (1,+∞) 20.=cosx 在(-∞,+∞)内 ( ) A .没有根 B.有且仅有一个根 C. 有且仅有两个根 D. 有无穷多个根 21.()ln 2f x x x =-+的零点个数为 。 [学后反思]____________________________________________________

函数零点个数问题赏析

函数零点个数问题赏析

————————————————————————————————作者:————————————————————————————————日期:

近年高考试卷中的N 型函数零点个数问题赏析 近些年来,有不少的N 型函数零点个数问题出现在不同年份、不同省区与全国的高考试卷中,这不能不成为高考的热门话题和需要我们研究并指导高三学生进行科学备考的一个重点内容。什么是N 型函数零点个数问题呢,就是含参函数()y f x =在其定义域内连续可导,有两个极值点1x 、2x 并将其定义域分成三个单调区间,通常是“增减增”或“减增减”,在此条件的基础上,方程()0f x =或()f x m =的根的个数与参数取值范围相关的问题。这里注意:函数()y f x =在其靠近定义域两端点时,函数值会很大或很小(即一端足够大,大于极大值;一端足够小,小于极小值)。 N 型函数有哪些呢?一可能是三次函数3 2 ()f x ax bx cx d =+++(0)a ≠,二可能是函数 2()ln()f x ax bx x t =+++(0)a ≠,它们在定义域内都必须有两个极值点。 例1、(2006年福建高考卷)已知函数2 ()8f x x x =-+,()6ln g x x m =+。 (Ⅰ)求f (x )在区间[,1]t t +上的最大值()h t ; (Ⅱ)是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由。 解析:(Ⅰ)略;(Ⅱ)构作函数2 ()()()86ln x f x g x x x x m ?=-=-++,0x >; 求导得:22862(1)(3) '()x x x x x x x ?-+--==,0x >,函数单调性与极值列表如下: x (0,1) 1 (1,3) 3 (3,)+∞ '()x ? + - + ()x ? 7m ?=- 极大 6ln 315m ?=+-极小 依题意,转化为函数()x ?图象与x 轴的交点为3时情形,当x 充分接近0时,()0x ?<,当x 充分大时,()0x ?>,为此有:707156ln 36ln 3150m m m ??=->? ?<<-? =+-

相关文档
最新文档