30V-3A恒压-恒流直流可调稳压电源

30V-3A恒压-恒流直流可调稳压电源
30V-3A恒压-恒流直流可调稳压电源

30V/3A恒压/恒流直流可调稳压电源

电路特点

(1)数字电压表电压上图电流显示,显示精度0.1 V上图0.01A(2)过流保护功能,限制电流通过电流表设置。即具有恒流功能。此功能在维修、调整有短路故障的电路时可以防止电流过大而烧毁线路板或稳压电源本身。

(3)具有自动风扇控制电路,电源调整管散热片超过55℃时自动启动散热风扇。

工作原理

主电路:图1由1M31 7、Q1、Q2组成。是1M31 7的典型扩流应用电路。未采用目前流行的大功率稳压集成电路1M338,是因为它的过流保护功能太灵敏,瞬间超过5A即进入保护状态,而小型电动工具(如小电钻、直流电机)的启动电流往往超过5A且不能带感性负载,这一点我已经试验过。电流表取样电阻R6如果采用康铜丝绕制,由于阻值太小,即使事先用电桥精密测好,加上接点(焊点)电阻也会超出误差范围。这里采用0.12Ω水泥电阻,电流产生的压降经RP3调整后送至满度为2V的电压表头,电流满度为20.00A。

控制电路。恒流控制电路由电压比较器1M393的一个比较器构成,RP4为电流调整电位器,由IC5产生的精密电压基准(约2.5-2.6V)经RP3分压后送至IC6的反相输入端。由RP4分压后产生的电流取样电压送至IC6的同相输入端。如果实际电流超过设定的恒流值,IC6输出高电平,Q4导通,1M317调整端电位下降→输出电压下降→输出电流下降,直至实际电流等于设定电流值。同时Q3导通,发光二极管VD6显示处于恒流状态。

短路保护功能:1M317本身具有完善的保护功能,但输出短路时并不能保护扩流功率管。

短路时输出电流远大于设定的电流值使Q4完全导通,1M317的输出为最小值(约1.2V)此时实测显示的短路电流值约4-5A。虽然限制了短路电流,但由于扩流功率管的耗散功率较大,时间长还是有危险最好加装输出短路保护保险管(5A)。J2为电流设置/显示转换继电器。处于1位置时,电流取样电阻R6的压降经RP3调整后送至电流表,显示当前的实际电流。处于位置2时,电流调整电位器RP4上的电压送至电流表,显示设置的电流值。电流表是一个满度为2V的电压表头。1M393的另一个比较器构成风扇控制电路,这里采用的是滞回比较电路。图中的电路可实现在55℃时风扇自动启动,低于45℃时风扇停止。从而减小了噪声,提高风扇寿命。RH为820欧的负温度系数热敏电阻,应紧固于散热片上。动作温度可通过调整滞回比较器对应电阻选定。

轻触按钮控制电路:考虑到操作的手感舒适,未采用普通按钮/钮子开关,而采用轻触开关+数字控制电路+继电器模式。电路。

元件选择电压表采用满度200V的电压表头,十位数后的小数点点亮。电流表采用满度2V的电压表头,百位数后的小数点点亮(即满度20.00A)。

变压器采用150W以上的工频变压器或环型火牛改制,功率绕组用1.4mm漆包线。

J1采用触点电流大于10A的12V继电器。J2采用JRX型小型继电器。

RP1.RP2由于通过的电流较大,不能用普通碳膜电位器,采用WX13-1 1型线绕电位器,可显着提高使用寿命。RP3采用多圈精密微调电阻。Q1采用Ic≥10A,BVceo≥60V的大功率NPN管,Q2采用一般PNP中功率管即可。

12V风扇用10×10cm的仪表风扇。电路调整

组装完成。电压、电流表正常显示,且电压可调后,进行如下调试:

将10Ω、5W的负载电阻和数字万用表(在大电流档)接电源输出端,调节电压输出使万用表显示1.00A,调整RP3使本机电流表显示1.00A。

将1 0 Ω、5W的负载电阻接输出端,K2打在2位置,设置恒流电流在某一值(例如0.50A),再将K2打在1位置,缓慢提高输出电压,负载电流升高值设定值时,电压、电流均不再上升,维持在电流设定值。此时恒流功能发挥作用。

短路测试:将输出端短路,电流表显示在4-5A之间,同时VD6点亮,提示过流。

数控恒压恒流电源设计

直流稳压电源是任何电子电路试验中不可缺少的基础仪器设备,基本在所有的跟电有关的实验室都可以见到。对于一个电子爱好者来说,直流稳压电源也是必不可少的。要得到一个电源,一般有两种方法:一是购买一台成品电源,这样最为省事:二是自己制作一台电源(因为你是电子爱好者),当然相比于第一种方法会麻烦很多。很显然这篇文章不是教你如何去选购一台直流稳压电源…… 基本的恒压恒流电源结构框图如图1所示。由电压基准源、调整管、误差放大、电压取样以及电流取样组成。电压基准源的作用是为误差放大器提供一个参考电压,要求电压准确且长时间稳定并且受温度影响要小。取样电路、误差放大和调整管三者组成了闭环回路以稳定输出电压。这样的结构中电压基准源是固定的,电压和电流的取样电路也是固定的,所以输出电压和最高的输出电流就是固定的。而一般的可变恒压恒流电源是采用改变取样电路的分压比例来实现输出电压以及最高限制电流的调节。 图1 基本恒压恒流电源框图 图2 基本稳压电源简图

图2中所示的是一个基本输出电压可变的稳压电源简图,可以很明显地看出这个电路就是一个由运算放大器构成的同相放大器,输出端加上了一个由三极管组成的射极跟随器以提高输出能力,因为射极跟随器的放大倍数趋近于1,所以计算放大倍数时不予考虑。输入电压V+通过R1和稳压二极管VD产生基准电压Vref,然后将Vref放大1+R3/R2倍,即在负载RL上的得到的电压为Vref(1+R3/R2),因为R3可调范围是0~R3max,所以输出电压范围为Vref~Vref(1+R3max/R2)。这不就和我们常用的LM317之类的可调稳压芯片一样了,只是像LM317之类的芯片内部还集成了过热保护等功能,功能更加完善,但是也有它的弊端,主要因为它是将电压基准、调整管、误差放大电路都集成在了一个芯片上,因此在负载变化较大时芯片的温度也会有很大的变化,而影响半导体特性的主要因素之一就是温度,所以使用这种集成的稳压芯片不太容易得到稳定的电压输出,这也正是高性能的电压基准都是采用恒温措施的原因,比如LM399、LTZ1000等。 图3 一只正在FLUKE 8808A 五位半数字万用表中“服役”的LM399H 图3是我从FLUKE 8808A五位半数字万用表中拍的恒温电压基准LM399H。扯远了,言归正传(欲了解更多关于电压基准源的知识,请参看以前《无线电》杂志2008年第7期中张利民老师有关电压基准的文章)。这种以改变取样电阻阻值来改变输出电压的稳压电源应用是比较普遍的,图4照片中是我们实验室中大量使用的稳压电源,就是使用调节取样电阻阻值来调节输出电压的,电压电流的显示是使用一片专用的电压测量芯片ICL7107实现的,这种电源价格低廉易于普及,但也有显而易见的缺点,因为进行电压调节的可变电阻经过长时间使用会出现接触不良的情况,这导致的后果是相当严重的,假设你正在将电压从5V慢慢地向6V调整,因为某个点电位器接触不良,相当于电位器开路,从图2可以看出,R3开路的话,输出电压就是能输出的最高电压,那么你心爱的电路板就可能会回到文明以前了。

开关稳压电源设计说明书

开关稳压电源设计说明书 学生姓名: 学号: 专业班级:物电学院电子2班报告提交日期: 2014年5月20日 湖南理工学院物电学院

目录 一、设计任务及要求 (2) 1、设计任务 (2) 2、设计要求 (2) 二、基本原理与分析 (2) 三、方案设计 (5) 1、开关器件的选择 (5) 2、参数的设定 (5) 四、电路设计 (5) 1、电路整体设计 (5) 2、电路工作原理 (5) 五、总结 (7) 六、参考文献 (7)

一、设计任务及要求 1、设计任务 设计一手机开关型电池充电器,满足: (1)开关电源型充电; (2)输入电压220V,输出直流电压自定; (3)恒流恒压; (4)最大输出电流为:I max=1.0 A; 2、设计要求 (1)合理选择开关器件; (2)完成全电路理论设计、绘制电路图; (3)撰写设计报告。 二、基本原理与分析 随着电子技术和集成电路的飞速发展,开关稳压电源的类型越来越多,分类方法也各不相同,如果按照开关管与负载的连接方式分类,开关电源可以分为串联型、并联型和变压器耦合(并联)型3种类型。下面分别对这三种类型的开关电源做一些简单的介绍。 (1)串联型。 图1所示的开关电源是串联型开关电源,其特点是开关调整管VT与负载R L串联。因此,开关管和续流二极管的耐压要求较低。且滤波电容在开关管导通和截止时均有电流,故滤波性能好,输出电压U0的纹波系数小,要求储能电感铁心截面积也较小。其缺点是:输出直流电压与电网电压之间没有隔离变压器,即所谓“热地盘”,不够安全;若开关管部短路,则全部输入直流电压直接加到负载上,会引起负载过压或过流,损坏元件。因此,输出端一般需加稳压管加以保护。 根据稳压条件可得:(U i-U0)T1/L=U0T2/L 即 U0=U1T1/(T1+T2)=(T1/T)U i,σ=T1/T 由上式可见,可以通过控制开关管激励脉冲的占空比σ来调整开关电源的输出电压U0。

电压控制恒流充电电路设计讲解

《电子技术》课程设计报告 课题:电压控制恒流充电电路设计 班级学号 学生姓名 专业 系别 指导教师 淮阴工学院 电子信息工程系 2013年12月

一、设计目的 电子技术课程设计是模拟电子技术、数字电子技术课程结束后进行的教学环节。其目的是: 1、培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。 2、学习较复杂的电子系统设计的一般方法,提高基于模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 3、进行基本技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。 4、培养学生的创新能力。 二、设计要求 1、充电电流为100mA; 2、控制电压为4.5V和6.5V,当充电电压上升到6.5V时自动断电,当用电电 压下降到4.5V时自动通电; 3、由交流220V市电供电; 4、主要单元电路和元器件参数计算、选择; 5、画出总体电路图; 6、安装自己设计的电路图,按照自己设计的电路图,在通用版上焊接。焊 接完毕后,应对照电路仔细检查,看是否有错接、漏接、虚焊的现象; 7、调试电路; 8、电路性能指标测试; 提交格式上符合要求,内容完整的设计报告。 三、总体设计

(1)在恒流源部分,我们通过利用9012NP硅管其发射级-基极导通电压0.7V 和6,8Ω电阻输出100mA电流。 (2)在充电电路的控制电压部分,接入12V电压,调节Rw1,大约调到4K 左右,经过10k电阻的分压以后,在上部电路中的电位比较器的正向输入端的电压为 4.5V。同理,调节Rw2的大小,使下部电位比较器的反向输入端电压为6.5V。当电压在0-6.5V之间时,上部电路中的电位比较器输出为高电平,下部电路中的电位比较器输出为低电平,电源电压为U0=12V>>1.4V,晶闸管导通,继电器的线圈J1中有电流流过,由电磁感应,常断开关触点导通电源开始给电池充电。当电压增加到超过6.5V时,上面的电压比较器输出低电平,三极管导通,所以J2中有电流流过,常闭开关触点断开,导致晶闸管下端断开,截止工作,J1的常断触点打开,电源停止给电池充电。用电容和电阻组成的充放电回路消耗电压,使电压低于6.5V,但在电压低于4.5V时,上部电路的电位比较器输出为低电平,继电器的触点接在J1-2和J2-2上,电路又处在充电状态,如此循环,这样就实现了电压控制恒流充电了。

恒流恒压充电器的原理与设计

恒流恒压充电器的原理与设计

本电路实际上是一个恒流源。核器件是集成三端可调稳压器LM317T。 LM317T在电源电压足够的情况下可以保持其+Vout端比其ADJ端电压高 1。25V。请看图中的接法,ADJ端直接与待充电池相连。但ADJ端的内阻很 大(正常情况下ADJ端的电流不会超过50μA),可近似看作开路,但它可以对电 压进行取样。LM317T将+Vout端的电压提高到比ADJ端高1.25V,那么跨 接在+Vout端与ADJ端的电阻上将有1.25V/25.5Ω=0。05A=50mA 的电流流过(25.5Ω为开关打开时,R1与R2并联后的总阻值)。这个电流便流 过电池,对电池进行了恒流充电。 公式与计算、 普通充电电池充电时间计算 一、充电常识 在这里,首先要说明的是,充电是使用充电电池的重要步骤。适当合理的充电对延长电池寿命很有好处,而野蛮胡乱充电将会对电池寿命有很大影响。上一篇曾说过,目前的锂电池基本都是根据各个产品单独封装,互不通用的,因此各个产品也提供各自的充电设备,互不通用,在使用时只要遵循各自的说明书使用即可。所以本篇对电池充电的介绍主要是指镍镉电池和镍氢电池。 对镍隔电池和镍氢电池充电有两种方式,就是我们大家所熟知的“快充”和“慢充”。快充和慢充是充电的一个重要概念,只有了解了快充和慢充才能正确掌握充电。 首先,快充和慢充是个相对的概念。有人曾问,我的充电器充电电流有200mA,是不是快充?这个答案并不绝对,应该回答对于某些电池来说,它是快充,而对于某些电池来说,它只是慢充。那我们究竟怎样来判别快充还是慢充呢? 例如一节5号镍氢电池的电容量为1200mAH,而另一节则为1600mAH。我们把一节电池的电容量称为1C,可见1C只是一个逻辑概念,同样的1C,并不相等。 在充电时,充电电流小于0.1C时,我们称为涓流充电。顾名思义,是指电流很小。一般而言,涓流充电能够把电池充的很足,而不伤害电池寿命,但用涓流充电所花的时间实在太长,因此很少单独使用,而是和其它充电方式结合使用。 充电电流在0.1C-0.2C之间时,我们称为慢速充电。充电电流大于0.2C,小于0.8C则是快速充电。而当充电电流大于0.8C时,我们称之为超高速充电。 正因为1C是个逻辑概念而非绝对值,因此根据1C折算的快充慢充也是一个相对值。前面例子中提到的200mA充电电流对于1200mAH的电池来说是慢充,而对于700mAH的电池来说就是快充。

恒压电源与恒流电源的定义与区别

恒压电源与恒流电源的定义与区别 大家可能偶尔会听到,我的电源是恒压的,我的电源是恒流的,电源适配器不都一样吗,这两个到底是什么区别?为什么会有这样的区分?联运达为大家介绍一下。 一、恒压电源是指在允许负载的情况下,输出电压是恒定的,不会随着负载的变化而变化。比较常见的是为小功率LED光条就是用的恒压电源,也是大家常说的稳压电源。蓄电池、干电池都可以看做是恒压电源,只不过因为转化的原因,稳压性能比较差一些。 举个例子说明一下:如果一个恒压电源的空载输出为12V,电阻为12Ω,将电阻接到电源正负极,根据欧姆定律计算,电流为1A。这个时候我们将电路中的电阻增加一个,电阻变成了24Ω,如果不是电源不是恒压的,那么正常情况电路中的电流应该是0.5A,那么是恒压电源呢,根据电阻的增加,电压一直保持不变,始终是12V,电流会相应增加,这个时候电流变为了2A。 大家平时的家庭用电也是差不多的一个情况,恒压电源相当于家里的市电220V。家用电器的使用情况来说明,比如看着电视、开着灯、用着电暖炉,它们的电流可能不一样,但是外接的电压都是220V。大家每增加一个用电器就相当于增加了电流,电压不变,功率也会相应增高,用电度数自然不会少,所以大家在家用电的时候可以尽量少开一些电器,节约电力资源。 二、恒流电源是指在允许负载的情况下,输出电流是恒定的,不会随着负载变化而变化。相对来说恒流电源应用没有恒压那么广,咱们平时广场或者酒店采用的那种大功率LED泛光灯就是恒流电源驱动的。恒流电源主要用于保护电子产品不会因为电压变化而损坏。 举个例子:一个恒定电流1A,最高输出达到12V的一个恒流电源,电路中的电阻可以从0~12Ω变化,但是它的电流始终会保持不变,为1A。当电阻超过12Ω时,进入限压保护,恒流电源会认为是非工作保护区而拒绝工作。 大家平时可能恒流电源情况比较少不好理解,联运达给大家做个简单的比喻,方便大家理解。台式电脑大家都见过,恒流的情况就是在大家使用台式电脑的时候用USB连接手机、MP3等电子产品的时候,电脑主机的电流和大家电子产品的电流是一样大小的。如果台式电脑的电流是1A,那么此时和台式电脑连接的电子产品的电流也是1A。会出现一些情况,比如大家玩游戏、听音乐同时进行的时候,电流会稍微大一些,平时不要把电子产品和电脑连接充电,而用配套的电源适配器会对电子产品好很多。 平时大家在选购的时候可以通过观察电源适配器的参数知道它是恒压的还是恒流的。电源适配器的输出电压都会写在参数里面,拿LED电源做参考,如果这个标称电压是恒定值,比如12V,那么可以知道它是恒压电源,如果这个标称

手机充电器电路设计[1]

手机充电器电路设计 摘要:通过对课程的学习设计。了解手机充电器的工作原理及设计流程,确定相关参数和电路图。 关键字:隔离变压器频率绝缘电阻绝缘强度可燃性自由跌落湿热试验工作原理工作流程 1 前言(李洋) 1 电路设计思想 从手机锂离子二次电池的恒流/恒压充电控制出发,用220V 交流电通过配置的内置储能锂电池对手机锂离子电池充电。电路的具体工作流程如图1所示。 图1 工作流程图 2 电路设计方案 充电芯片选用美信半导体公司的锂电池充电芯片,这款充电芯片具

有很强的充电控制特性,可外接限流型充电电源和P沟道场效应管,能对单节锂电池进行安全有效的快充。其最大特点是在不使用电感的情况下仍能做到很低的功率耗散,且充电控制精度达0.75%;可以实现预充电;具有过压保护和温度保护功能,其浮充方式能够充至最大电池容量。当充电电源和电池在正常的工作温度范围内时,接通电源将启动一次充电过程。充电结束的条件是平均的脉冲充电电流达到快充电流的1%,或时间超出片上预置的充电时间。所选用的充电芯片能够自动检测充电电源,在没有电源时自动关断以减少电池的漏电。启动快充后打开外接的P型场效应管,当检测到电池电压达到设定的门限时进入脉冲充电方式,充电结束时,外接LED指示灯将会进行闪烁提示。 电路工作原理 内置储能电池的充电及其保护电路其中包括:LED显示、热敏电阻,电流反向保护。ADJ引脚通过10kΩ的电阻与内部1.4V的精密基准源相连接,当ADJ对地没有连接电阻时,电池充电电压阈值为缺省值:VBR =4.2V;当需要自行设置充电阈值时,可在ADJ引脚与GND间接一精度为1%的电阻RADJ,阻值由式(1)确定:RADJ=10kΩ/(VBR/VBRC-1) (1) 由图3可知,充电阈值为4.1V,可得RADJ=410k 做手机充电器电路设计,需先对其工作环境进行分析,了解其工作原理。

恒流恒压充电器的原理与设计

恒流恒压充电器的原理与设计 2009-09-22 09:26 随着高新电子技术的发展各类充电电子产品不断上升,为此云峰电子为朋友们提供些相关恒流充电器的制作与原理分析,请仔细阅读!详情咨询https://www.360docs.net/doc/a27636847.html, 第一类、lm317恒流源电路图 图1、图2分别是用78××和LM317构成的恒流充电电路,两种电路构成形式一致。对于图1的电路,输出电流Io=Vxx/R+IQ,式中Vxx是标称输出电压,IQ是从GND端流出的电流,通常IQ≤5mA。当VI、Vxx及环境温度变化时,IQ的变化较大,被充电电池电压变化也会引起IQ的变化。IQ是Io的一部分,要流过电池,IQ的值与Io相比不可忽略,因而这种电路的恒流效果比较差。对于图2的电路,输出电流Io=VREF/R+IADJ,式中VREF是基准电压,为1.25V,IADJ是从调整端ADJ流出的电流,通常IADJ≤50μA。虽然IADJ也随VI及环境条件的变化而变化,且也是Io的一部分,但由于IADJ仅为78××的IQ的1%,与Io相比,IQ可以忽略。可见LM317的恒流效果较好。 对可充电电池进行恒流充电,用三端稳压集成电路构成恒流充电电路具有元件易购、电路简单的特点。有些读者在设计电路时采用78××稳压块,如《电子报》2001年第2期第十一版刊登的《简单可靠的恒流充电器》及今年第6期第十版的《恒流充电器的改进》一文,均采用7805。78××虽然可接成恒流电路,但恒流效果不如LM317,前者是固定输出稳压IC,后者是可调输出稳压IC,两种芯片的售价又相近,采用LM317才是更为合理的改进。 LM317采用T0-3金属气密封装的耗散功率为20W,采用TO-220塑封结构的耗散功率为15W,负载电流均可达1.5A,使用时需配适当面积的散热器。由于LM317的VREF=1.25V,其最小压差为3V,因此输入电压VI达4.25V就能正常工作。但应注意输出电流Io调得较大时,输入电压VI的范围将减小,超出范围会进入安全保护区工作状态,使用时可从图3的安全工作区保护曲线上查明输入—输出压差(VI-Vo)的范围。 78××与LM317内部均有限流、过热保护功能,后者还有安全工作区保护功能。78××不允许GND端悬空,否则器件极易损坏。LM317即使ADJ端悬空,各种保护功能仍然

关于可调恒压恒流电源的原理、特性及使用

关于可调恒压恒流电源的原理、特性及使用: 恒压恒流的原理: 根据U=IR,R=U/I: 如果R>(U/I),则电源正常工作。 如果R<(U/I),I是恒定不变的,则电源恒流部分保护,输出电压下降,直到满足条件R=(U/I)。 特性: 所谓的恒压,即电压可以恒定到一个值上,可调恒压,即这个恒定的电压值是可调的。 所谓的恒流,即电流可以恒定到一个值上,可调恒流,即这个恒定的电流值是可调的。 使用: 可调恒压恒流电源在使用前需要先设置恒流保护值,再设置输出电压,然后开始工作。 首先将电源输出电压调到5V左右,短路输出,调整电流输出旋钮设置保护电流到你需要的值,撤消短路,调整电压到需要值,接上实验设备开始工作。 例如:一个电路的工作电压是12V所需电流约0.3A,操作如下。

将电源输出电压调到5V左右,短路输出,调整电流输出旋钮设置保护电流0.5A(要比工作电流略大),撤消短路,调整电压到12V,接上电路开始实验。 如果试验过程中电路板放到金属上部分电路短路了,使电流剧增,当电流上升到0.5A时,电源恒流保护部分工作随即使输出电压下降以保护试验设备。 常识了解: 交流电压经过全波整流电容滤波后直流电压约是交流电压的1.414倍。 例如10V的交流电压经过全波整流电容滤波后直流电压约等于14V。 继电器切换点的选择: 交流输入电压减去5V等于切换电压。 例如变压器抽头0-15V-25V-35 那么第一级的切换电压是15V-5V=10V,即在10V 时切换到25V的抽头上。 第二级的切换电压是25V-5V=20V,即在20V时切换到35V的抽头上。 关于继电器切换与否可以测R17两端的电压来判断,R17电压(直流)除以1.414约等于当前的抽头电压(交流)。

基于LM317的恒流恒压充电电路

基于LM317的恒流恒压充电电路 本组认为LM317比MC34063A芯片更常用更简易。固权衡后,以为设计本身服务为原则,采用LM317芯片搭建模块一的恒流恒压主电路。 模块一: 用恒流充电以时间来控制通、断电,易造成充不足或过充电;而用恒压充电,当开始充电时,由于电池电压比较低,充电电流过大会对电池有害。此恒流-恒压充电器对两者取长补短,开始时恒流充电,当电池电压升到某一值时变为恒压充电。 如图电路,开始充电时电池电压较低,不能使VS导通,LM317接成恒流充电形式,充电电流I=1.25/R。充电一段时间后,电池电压上升到某一值时,VS导通,LM317 1脚通过RP1和VS接地,此时变成恒压充电,充电电压U=1.25[1+(R2/R1)-0.7],式中R2--RP1取值,R1—(R+R1)取值。充电电流若很大,可在VD2上并联二极管。R 承受功率W》1.6/R。VS尽量选用导通电阻小的单向晶闸管。 使用时选择R阻值,从而确定恒流充电电流,然后调RP1得恒压充电电压,最后调RP2,使VS导通时电池电压应比充电电压低0.2V 左右。

模块二: 利用指示灯显示充电电量多少,即利用多谐振荡器将直流电压转换成一定频率的交流电压使得发光二极管有相同频率的闪烁。经过筛选我们选择了时精确度高、温度稳定度佳,且价格便宜的NE555来搭建振荡电路,而且由于其只需简单的电阻器、电容器,即可完成特定的振荡延时作用以及它的操作电源范围极大,可与TTL,CMOS等逻辑电路配合,其输出端的供给电流大,可直接推动多种自动控制的负载,使得其相对于其他振荡电路更具有优势。 NE555多谐振荡电路如下: 多谐振荡器的放电时间常数分别为

PS-305D恒压恒流电源

PS-305D直流可调稳压电源 技术参数: 输出电压:0~30V 输出电流:0~5A 源效应:≤0.01%±1mV 负载效应:≤0.01%±5mV 纹波和噪音:≤1mVrms 显示:双3 1/2位LED显示 显示精度:电压(Voltage)±1%±2 电流(current)±1.5%±2 外形尺寸:291×158×136mm 恒压/恒流自动转换型, 它能随负载的变化在恒压与恒流状态之间连续转变, 恒压与恒流方式之间的交点称为转换点。 一个直流电源有两种工作状态,一种是恒压状态,按照恒压电源的特征在工作,一种是恒流状态,按照恒流电源的特征在工作。这种电源内部有两个控制单元,一个是稳压控制单元,在负载发生变化的情况下,努力使输出电压保持稳定,前提是输出电流必须小于预先设定的恒流值。实际上在恒压状态时,恒流控制单元处于休止状态,它不干扰输出电压和输出电流。当由于负载电阻逐步减小,使得负载电流增加到预先设定的恒流值时,恒流控制单元开始工作,它的任务是在负载电阻继续减小的情况下,努力使输出电流按预定的恒流值保持不变,为此需要使输出电压随着负载电阻的减小而随之降低,在极端情况下,负载电阻阻值降为零(短路状态),输出电压也随之降到零,以保持输出电流的恒定。这些都是恒流部件的功能,在恒流部件工作时,恒压部件亦处于休止状态,它不再干预输出电压的高低。这种既具有恒压控制部件,又具有恒流控制部件的电源就叫做恒压恒流电源。 试举一例说明:某恒流恒压电源,通过调节面板上电压调节和电流调节两旋扭,使电源空载输出电压定在30V ,恒流值调在1A ,电源是如何随着负载电阻的变化而自动改变电源工作状态的呢?通过以上介绍,我们可以知道,当输出电流小于1A 时,电源处于恒压工作状态,努力保持输出电压为30V ,而输出电流是随着负载的大小变化而变化,而当电流值趋向大于1A 时,电源处于恒流工作状态,努力保持输出电流为1A ,而输出电压是随着负载的大小变化而变化。当输出电压为30V 时,负载电阻洽好为30 欧,输出电流洽好为1A 时,是电源两种工作状态的转折点,电源既可以说是恒压状态,亦可以说是恒流状态。为此我们可以对这一具体事例,得出下述结论: 当负载电阻R =30 欧时为恒压恒流状态的转折点( 此时电压30V,电流1A) 当R >30 欧时,电源处于恒压状态(此时电压30 伏,电流<1 安) 当R <30 欧时,电源处于恒流工作状态(此时电压<30 伏,电流=1 安) 在恒压状态时,电压稳定,电流随着负载电阻的变化而变化,稳压控制单元工作,稳流控制单元休止。在恒流状态时,电流稳定,电压随着负载电阻的变化而变化,稳流控制单元工作,稳压控制单元休止。

基于51单片机恒压恒流源的设计

恒压、恒流源的设计 学校: 专业:电气工程及其自动化 带队教师: 参赛队员: 第一章前言 (3) 第二章方案论证 (4) 第三章整体设计思路 (5) 1)、整体主电路框图 2)、整体框图 3)、电源主体 4)、控制电路

第四章单元电路 (7) 1)、充电电流取样检测电路 2)、充电电压取样检测电路 3)、检查及保护电路 4)、时钟芯片DS1302辅助电路 5)、1602液晶显示模块 第五章软件设计 (13) 第七章结论 (14) 附页 前言 铅酸蓄电池是目前世界上广泛使用的一种化学电源,该产品具有良好的可逆性,电压特性平稳,使用寿命长,适用范围广,原材料丰富(且可再生使用)及造价低廉等优点而得到了广泛的使用。是社会生产经营活动中不可缺少的产品。但是,若使用不当,其寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,而采用正确的充电方式,能有效延长蓄电池的使用寿命。研究发现:电池充电过程

对电池寿命影响最大,放电过程的影响较少。也就是说,绝大多数的蓄电池不是用坏的,而是“充坏”的。由此可见,一个好的充电器对蓄电池的使用寿命具有举足轻重的作用。而且,传统充电器的充电策略比较单一,只能进行简单的恒压或者恒流充电,以致充电时间很长,充电效率降低。另外,充电即将结束时,电池发热量很大,从而造成电池极化,影响电池寿命。针对上述问题,设计了一种智能充电器,尽量延长铅酸蓄电池的使用寿命。 第二章方案论证 一、方案论证与比较 控制器的选择 方案1:采用AT89S52单片机,该单片机做为经典单片机,方便使用,价格便宜,较长使用;但其功能单一,使用中需要外加多个其他电路,增加外围电路的设计及成本; 方案2:选择STC12C5A60S2单片机,此款作为本控制器自身带有AD转换、捕捉、PWM等功能,可减少外围设计且价格适中,开发周期短,编程及调试环境简单,容易实现;

某恒压恒流电源的电路图及解释

图解电源(转贴,讲得非常好) 电源是最常用的电器,作用是把220V交流转变成需要的直流电,供各种电器使用。除了商品上各种独立的电源外,我们常见的各种适配器、充电器、机箱里用的模块化的(比如计算机用的),都可以认为是电源。对于动手一族(DIY族),电源不仅是最常用的工具,往往也是DIY的对象。也就是说,电源本身构造相对简单,往往可以DIY。 按照类别,电源可以分成线性电源和开关电源两类。线性电源是先采用工频变压器降压,然后整流滤波,再用线性调整管进行稳压的方式,性能可以做得比较好。开关电源是先整流滤波,然后高频振荡,再变压,再整流滤波。由于初始滤波电容电压比较高,因此比能量比较大所以体积比较小,更因为高频振荡频率比工频高得多,因此变压器的体积和重量大大减少,再加上可以采用PWM反馈调节的方式,使得开关电源的效率很高,因此也不需要大体积的散热片,这样,开关电源的体积、重量与同功率的线性电源比大大减少。但是,由于采用高频振荡,其谐波很可能向外发射或通过输出电源和输出电源传 到外部,对通讯设备造成干扰。 值得注意的是,这种干扰并非是全频段的,而是在一些频率上(主要是谐波)有干扰。同时,由于开关电源频率的不确定性,因此干扰频率也是不确定的,大多是变化的。因此,不能简单的用收音机或者电台检查几个频点没有发现有干扰,就能确定某开关电源对通讯设备没有干扰。正规的检查方法是要用频谱仪。 另外,有些电源是固定输出的,有些电源的电压可以在一定范围内可调,还有一些电源可以从0V起调。可调的线性电源要解决好低压输出效率低下的问题,而可调的开关电源 要解决大范围占宽比变化的问题。 大部分电源具备输出显示。一般至少有一个电压表,也有的具备电流表,也有的是电压电流可以转换。根据电压、电流表的类型,可以分成模拟显示电源和数字显示电源,前者用模拟表头显示,而后者用数字表显示。数字显示电源有的是3位显示,也有高精度一些用4位表头显示,甚至更高的位数。高分辨的数字显示电源可以很方便的测量各种电器在不同电压下和不同状态下的耗电,或者可以很方便的测量各种元器件的V-I特性曲线,比如二极管、稳压管的正反向特性,FET、VMOS管的转移特性等。 现在有很多数字电源,即不仅电流和电压表是数字的,而且输入也是数字的。当然,并非数字电源一定是开关的,二者是不相干的,因为数字电源也可以是线性的。数字电源的优势是可以精确的设置电压电流值,多组设置值可以存储起来,甚至可以程序控制(程控电源),完成自动时序输出或者自动测量功能。 还有一类电源,本身带有充电功能,而且在交流电停电后,可以自动转为电池输出,这

可调恒压恒流电源的原理、特性及使用

可调恒压恒流电源的原理、特性及使用 恒压恒流的原理: 根据U=IR,R=U/I: 如果R>(U/I),则电源正常工作。 如果R<(U/I),I是恒定不变的,则电源恒流部分保护,输出电压下降,直到满足条件R=(U/I)。 特性: 所谓的恒压,即电压可以恒定到一个值上,可调恒压,即这个恒定的电压值是可调的。 所谓的恒流,即电流可以恒定到一个值上,可调恒流,即这个恒定的电流值是可调的。 使用: 可调恒压恒流电源在使用前需要先设置恒流保护值,再设置输出电压,然后开始工作。 首先将电源输出电压调到5V左右,短路输出,调整电流输出旋钮设置保护电流到你需要的值,撤消短路,调整电压到需要值,接上实验设备开始工作。 例如:一个电路的工作电压是12V所需电流约0.3A,操作如下。

将电源输出电压调到5V左右,短路输出,调整电流输出旋钮设置保护电流0.5A(要比工作电流略大),撤消短路,调整电压到12V,接上电路开始实验。 如果试验过程中电路板放到金属上部分电路短路了,使电流剧增,当电流上升到0.5A时,电源恒流保护部分工作随即使输出电压下降以保护试验设备。 常识了解: 交流电压经过全波整流电容滤波后直流电压约是交 流电压的1.414倍。 例如10V的交流电压经过全波整流电容滤波后直流电压约等于14V。 继电器切换点的选择: 交流输入电压减去5V等于切换电压。 例如变压器抽头0-15V-25V-35 那么第一级的切换电压是15V-5V=10V,即在10V 时切换到25V的抽头上。 第二级的切换电压是25V-5V=20V,即在20V时切换到35V的抽头上。 关于继电器切换与否可以测R17两端的电压来判断,R17电压(直流)除以1.414约等于当前的抽头电压(交流)。

LED开关电源设计

《开关电源课程设计》 指导教师:熊春宇 姓名:李丽丽 学号:200701071235 电话:136664664296

LED照明驱动开关电源设计 (李丽丽,大庆师范学院物电学院07级电子信息工程专业)摘要:LED照明驱动设计了恒流输出、空载保护、隔离输出及EMC等功能.系应用于LED 照明驱动的开关电源电路。采用PWM自动调节实现恒流输出,稳压管过压锁定实现空载保护,电磁隔离和光隔离实现隔离输出。经过多次的运行与检测,实践证明该电路恒流输出稳定,发热量低。本设计体积小,微调反馈电路可设置作为为LED驱动常用的350mA或700mA恒流输出。可广泛适用于生活照明,商用照明。 关键词:LED驱动电源;发热低恒流;隔离低成本 Abstract:LED lighting design drive the constant-current output, the output and protection, isolation no-load EMC etc. Function. Is applied to the switch power LED lighting driving circuit. Using PWM automatic adjustment output voltage, the constant-current over-voltage protection tube, electromagnetic no-load realize locking and isolation realize isolation output isolation. After many operation and test, the practice has proved that the constant-current circuits, low heat stable output. This design, small size, fine-tuning feedback circuit can be set as the common 350mA LED drive or 700mA constant-current output. Life can be widely used in commercial lighting, lighting. Key words:Leds driving power;Fever is low;Constant flow;Isolation;Low cost 0概述 0.1选题的目的与意义: 全球能源紧张,提高电器的效率是行之有效的方法。照明用电占据全球21%的总用电量,如果能提高照明用的的效率,可以有效缓解能源紧张。如何提高照明系统的能源利用率,延长照明系统的寿命,并且是绿色无污染的?取代白炽灯,荧光灯,节能灯的第四代照明灯具是什么?业界给出的答案就是LED灯照明。LED照明每W流明数可达到120lm。远高于白炽灯和日光灯,此外LED灯珠寿命可长达十万小时,并且绿色无污染。LED照明具备的这些优点决定了其应用前景是非常广阔的。LED照明应用上的限制在于LED有固定的正向压降,电流也有上限(工作电流是影响LED寿命的主要因素)。大功率白光LED上的正向压降一般为3-4V,不能直接使用市电驱动。因此一个和LED灯珠匹配的高效,环保,长寿命的电源是必须的,这正是这次选题的意义与目的所在。 0.2研究现状 开关电源的技术已经非常成熟,由于LED驱动的降压技术大部分采用开关电源。因此即使是LED驱动电源真正进入研究的时间不算长,却无碍其技术的成熟。LED驱动要求的技术特点是:寿命长,体积小(特别商用照明和家用照明,最好可以内嵌到灯头)。 众所周知,绝大部分开关电源都需要一个输出滤波的电解电容,即使高品质的电解电容,工作在100摄氏度左右,寿命也只有1Wh左右。毫无疑问,电解电容正是LED灯整体寿命的瓶颈。而内嵌式驱动板上的电解电容,由于LED的发热以及驱动板本身的发热,长期在

关于LED驱动电源恒压与恒流区别的解析

关于LED驱动电源恒压与恒流区别的解析 1.恒流电源是电源电压发生变化,而流过负载的电流不变。 恒压电源是流过负载的电流变化时,电源电压不发生变化 不要简单的用欧姆定律来理解,电源不是直接接负载,中间都有个电路。 2.所谓恒流/恒压就是在一定范围内输出电流/电压保持恒定。“恒定”的前提是在一定范围内。对于“恒流”就是输出电压要在一定范围内,对于“恒压”就是输出电流要在一定范围内。超出这个范围“恒定”就无法保持。因此恒压源会设定输出电流档(最大可输出)的参数。其实电子世界里根本没有“恒定”这个东西,所有电源都有负载调整率(load regulation)这个指标。以恒压(电压)源为例:随着你负载的加大,输出电压一定是下降的。 3.恒压源和恒流源在定义上的区别: 1)恒压源在允许的负载情况下,输出的电压是恒定的,不会随负载的变化而变化。通常应用于小功率LED模块,小功率LED灯条用的比较多。恒压源就是我们常说的稳压电源,能保证负载(输出电流)变化的情况下,保持电压不变。2)恒流源在允许的负载情况下,输出的电流是恒定的,不会随着负载的变化而变化,通常应用在大功率LED和高档小功率产品上。 *如果从寿命上考良的话,恒流源LED驱动比较好一点。 恒流源是在负载变化的情况下,能相应的调整自己的输出电压,使输出电流保持不变。 我们见到的开关电源基本上都是恒压源,而所谓的“恒流型开关电源”则是在恒压源的基础之上,在输出上加一个小阻值的采样电阻,通过反馈到前级去控制来进行恒流控制。 4.如何从电源参数上识别是恒压源还是恒流源呢? 可以从电源的label上看:如果他标识的输出电压是一个恒定的值(如Vo=48V),就是恒压源;如果标识的是一个电压范围(如Vo为45~90V),可以确定这是个恒流源了。 5.恒压源与恒流源的优缺点:恒压源能够为负载提供恒定的电压,理想的恒压源内阻为零,不能短路:恒流源可以为负载提供恒定的电流,理想的恒流源内阻为无穷大,不能开路。 6.LED作为恒流工作的电子元器件(工作电压比较固定,其稍加偏移,就会使电流有很大的变化),只有采用恒流方式,才能真正保证亮度的一致和长寿命。恒压式驱动电源在工作时,需要在灯具上加恒流模块或限流电阻,而恒流式驱动电源只是把恒压源的的恒流模块内置了。

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

30V3A 恒压恒流直流可调稳压电源

30V3A 恒压恒流直流可调稳压电源 电路特点 (1)数字电压表电压上图电流显示,显示精度0.1 V上图0.01A (2)过流保护功能,限制电流通过电流表设置。即具有恒流功能。此功能在维修、调整有短路故障的电路时可以防止电流过大而烧毁线路板或稳压电源本身。 (3)具有自动风扇控制电路,电源调整管散热片超过55℃时自动启动散热风 扇。 工作原理 主电路:图1由1M31 7、Q1、Q2组成。是1M31 7的典型扩流应用电路。未采用目前流行的大功率稳压集成电路1M338,是因为它的过流保护功能太灵敏,

瞬间超过5A即进入保护状态,而小型电动工具(如小电钻、直流电机)的启动电流往往超过5A且不能带感性负载,这一点我已经试验过。电流表取样电阻R6如果采用康铜丝绕制,由于阻值太小,即使事先用电桥精密测好,加上接点(焊点)电阻也会超出误差范围。这里采用0.12Ω水泥电阻,电流产生的压降经RP3调整后送至满度为2V的电压表头,电流满度为20.00A。 控制电路如图2所示。恒流控制电路由电压比较器1M393的一个比较器构成,RP4为电流调整电位器,由IC5产生的精密电压基准(约2.5-2.6V)经RP3分压后送至IC6的反相输入端。由RP4分压后产生的电流取样电压送至IC6的同相输入端。如果实际电流超过设定的恒流值,IC6输出高电平,Q4导通,1M317调整端电位下降→输出电压下降→输出电流下降,直至实际电流等于设定电流值。同时Q3导通,发光二极管VD6显示处于恒流状态。 短路保护功能:1M317本身具有完善的保护功能,但输出短路时并不能保护 扩流功率管。 短路时输出电流远大于设定的电流值使Q4完全导通,1M317的输出为最小值(约1.2V)此时实测显示的短路电流值约4-5A。虽然限制了短路电流,但由于扩流功率管的耗散功率较大,时间长还是有危险最好加装输出短路保护保险管 (5A)。

恒流LED驱动电源设计教学文案

恒流式LED电源的优化设计与应用 LED 由于环保、寿命长、光电效率高等众多优点,近年来在各行业的应用得以快速发展,LED 的驱动电源成了关注热点。理论上,LED 的使用寿命在10 万h 以上,但在实际应用过程中,由于驱动电源的设计及驱动方式选择不当,使LED 极易损坏。针对LED 照明的恒流式电源,首先阐述了LED 电源的基本工作原理,然后根据整体电路的基本架构,给出了整个的设计思路,主要介绍了电磁干扰(EMI)滤波器、有源功率因素校正(APFC) 电路以及散热设计。最后,介绍了LED 电源在生活中的应用以及今后设计需要解... 引言 当前我国正在创建资源节约型、环境友好型社会,人们对于城市环境的呼声日益高涨。据统计,全球照明耗能约占总用电量的20%,绿色照明是节省能源的重要途径,也是人类社会可持续发展的一项重要举措。近年来,随着LED 技术的发展,LED产品已正式应用在多项大型亮化工程中,例如北京奥运村、北京长安西街、西宁湟水河廊桥、上海大厦、上海高宝金融大厦、青岛鑫江华润酒店、陕西万邦时代广场、中国科技会堂、南京水游城、贵州铜仁瓦窑河大桥及武汉阳逻长江大桥等一大批重要工程。 LED 是电流控制元件,通过流过的电流,直接将电能转变为光能,故也称光电转换器。因其不存在摩擦损耗和机械损耗,所以在节能方面比一般的光源效率高,但是LED 光源并不能像一般的普通光源一样可以直接使用电网电压,它必须配置一个电压转换装置,提供满足其额定的电压、电流,才能正常使用,即LED 驱动电源。但是各种不同的LED电源其性能和转换效率各不相同,所以选择合适、高效的LED 驱动电源,才能真正体现LED 光源的高效特性。 1 LED 电源基本工作原理 采用隔离变压器、PFC(功率因素校正,PowerFactor Correction)控制实现开关电源,输出恒定的电流和电压,驱动LED 灯。电路的总体框图见图1。 对于主电路部分,LED 抗浪涌的能力比较差,特别是抗反向电压能力,加强这方面的保护很重要,LED 电源若用于路灯装在户外更要加强浪涌防护。由于电网负载的启动和雷击的感应,从电网系统会侵入各种浪涌,有些浪涌会导致LED 的损坏。因此LED 驱动电源应具有抑制浪涌侵入,保护LED 不被损坏的能力。EMI 滤波电路主要防止电网上的谐波干扰串入模块,影响控制电路的正常工作。三相交流电经过全桥整流后变成脉动的直流在滤波电容和电感的作用下,输出直流电压。主开关DC/AC 电路将直流电转换为高频脉冲电压在变压器的次级输出。变压器输出的高频脉冲经过高频整流、LC (无源) 滤波和EMI 滤波,输出LED 路灯需要的直流电。PWM (脉宽调制) 控制电路采用电压电流双环控制,以实现对输出电压的调整和输出电流的限制。反馈网络采用恒流恒压器件和比较器。反馈信号通过光耦送

相关文档
最新文档