(完整word版)飞机起落架液压系统设计

(完整word版)飞机起落架液压系统设计
(完整word版)飞机起落架液压系统设计

前言

任何人造的飞行器都有离地升空的过程,而且除了一次性使用的火箭导弹和不需要回收的航天器之外,绝大部分飞行器都有着陆或回收阶段。对飞机而言,实现这一起飞着陆功能的装置主要就是起落架。起落架就是飞机在地面停放、滑行、起飞着陆滑跑时用于支撑飞机重力,承受相应载荷的装置。简单地说,起落架有一点象汽车的车轮,但比汽车的车轮复杂的多,而且强度也大的多,它能够消耗和吸收飞机在着陆时的撞击能量。概括起来,起落架的主要作用有以下四个:

1)承受飞机在地面停放、滑行、起飞着陆滑跑时的重力;

2)承受、消耗和吸收飞机在着陆与地面运动时的撞击和颠簸能量;

3)滑跑与滑行时的制动;

4)滑跑与滑行时操纵飞机。

在过去,由于飞机的飞行速度低,对飞机气动外形的要求不十分严格,因此飞机的起落架都是固定的,这样对制造来说不需要有很高的技术。当飞机在空中飞行时,起落架仍然暴露在机身之外。随着飞机飞行速度的不断提高,飞机很快就跨越了音速的障碍,由于飞行的阻力随着飞行速度的增加而急剧增加,这时,暴露在外的起落架就严重影响了飞机的气动性能,阻碍了飞行速度的进一步提高。

因此,人们便设计出了可收放的起落架,当飞机在空中飞行时就将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时再将起落架放下来。

然而,有得必有失,这样做的不足之处是由于起落架增加了复杂的收放系统,使得飞机的总重增加。但总的说来是得大于失,因此现代飞机不论是军用飞机还是民用飞机,它们的起落架绝大部分都是可以收放的,只有一小部分超轻型飞机仍然采用固定形式的起落架。

所以说设计设计一种安全可靠性能良好和轻便的飞机起落架液压控制系统是十分必要的。本次设计就一这论题展开设计。

1 绪论

液压技术是一门古老而又兴起的学科,随着技术的不断革新近百年来又长足的进展。它被广泛的应用在各行各业中,诸如,机床液压、矿山机械、石油化工、冶炼技术以及航天航空等方面。可以说液压技术的发展,密切关系着我国计民生的许多方面。

正确合理的设计和使用液压系统,对于提高各类液压机械装置的工作品质和技术经济性能更具有重要意义。飞机液压系统设计可以说是极具代表性能的液压系统设计,现在就以飞机起落架液压系统作为本次设计。

本次设计飞机起落架液压系统设计主要包括下述内容:

1.1 液压系统工作原理设计

液压传动系统主要由供压部分(泵源回路)与工作部分(工作回路)所组成的。设计新的液压系统,首先根据飞机起落架总体对液压系统所提出的操纵要求,性能品质要求,可靠性要求选用合适的泵源回路与各操纵机构的液压工作回路组成整个起落架液压系统。

1) 液压系统方案原理图设计;

2) 液压原理方案说明书;

3) 典型工作剖面液压系统使用功率说明;

4) 液压系统可靠性、温度估算;

5) 方案总体评估说明。

1.2 确定液压系统主要参数

液压系统参数应满足标准化与规范化要求,为此进行系统参数设计前按总体要求首先确定:

1) 液压系统所用液压油;

2) 液压系统的工作压力等级;

3) 液压系统的工作范围;

根据机构执行系统工况,负载及性能要求 ,确定各工作回路所要求的输出功率及泵源回路应提供的功率,从而确定:

4) 液压装置的尺寸及性能;

5) 液压系统的额定流量;

6) 各管段的导管直径。

1.3 选择液压附件,开展对新研制附件的设计工作

根据工作原理图对附件的功能要求与所确定的系统主要参数选择定型的液压附件,对新研制的附件提出指标要求,同时开展对辅助附件的设计工作。

1.4 液压系统的安装调试

按液压系统的设计要求把整个系统在试验室里组装起来,通过1:1地面模拟试验,对液压系统进行全面的性能考核,通过模拟试验能在飞机试飞前考核液压系统性能,并对飞机产生过程中系统的重大更改作出鉴定,为进一步改进液压系统设计和提高系统安全性提供重要保证。

2 液压系统设计指标及要求

2.1 使用方面要求

一个液压系统往往包括多个工作部分,对它们各自都有不同的使用要求,大致可分为以下几方面:

2.1.1 不同的操纵特点

工作部分液压部件的操纵特点基本上可以划分为两类型:一类是传动系统,它们有得要求完成一位或多位得方向控制,有得要求进行一级或多级的压力控制,有的要求进行一速或多速控制;另一类是伺服系统,它们要求液压部件跟随操纵指令变化而动作,常用的有机液伺服与电液伺服两类系统。

2.1.2不同的操纵顺序

按照整个系统的要求,了解整个使用过程中各液压部件操纵的先后顺序,哪些是单独工作的,哪些复合运动的。对影响安全的液压部件,还应了解在应急情况下有关部件的操纵情况。

对不同的飞机还会有一些不同的使用要求。上述要求对液压系统的布局与参数选择有很大的影响。例如对伺服系统要求供压泵源保持恒压,而流量有变化要小。对某些危机及安全的液压部件应采用冗余措施,应备有应急操纵系统和应急泵源。

2.2 工作环境要求

系统工作环境如最高与最低温度、振动频率与幅值、冲击强度、过载大小、湿度大小、噪音强度、污染和腐蚀情况对系统影响都比较大,所以应注意。

2.3 外载荷

作用在液压装置上的外载荷基本有下述几种类形:

1) 质量力

作用在作动部件活动部分的重心上,它包括作动部件的重量和因飞机作加速运动或作动部件本身加速运动时产生的惯性矩。

2) 外力(接触力)

作用在作动部件表面上的力,例如飞机操纵面上作用的气动力,压紧机构的压紧力等。除了上述的主要载荷外,对液压作动部件本身有上开锁力,轴承与密封装置产生的摩擦力

及粘性阻尼力等。但这些力一般都比较小,在计算时通常按基本载荷的百分之几加以估算。

2.4 性能要求

飞机总体对各动作部件所提出的性能要求时液压系统设计的主要原始依据,它包括:

动作部件的行程(或转角),运动速度范围,加速度范围,动作部件的位置误差和同步动作的时间误差等。下面列举飞机液压系统各个动作部件的收放时间的大致要求:

表2-1收放时间表

Table 2-1 takes in and puts away the timetable

机型收放起落架时间(s) 收放减速板时间(s) 刹车时间(s)

歼击机7~8 2左右 1.5

前线轰炸机>20

远程轰炸机>25

2.5 可靠性要求

可靠性指标是液压系统的一项重要指标,它往往被设计者忽略,液压系统在使用过程

中是较容易发生故障的系统之一,如果液压系统的可靠性低,会使系统失去其使用价值。液

压系统可靠性指标有:

1) 系统基本可靠性

系统可靠性用平均无故障工作时间MTBF表示,该指标主要反应对系统使用维护及修

理后与后勤保障方面的要求。

2) 工作寿命

系统的返修期与报废期,系统经合理维修与更换附件其工作寿命应与整系统同寿。

3) 系统故障容错要求

除了提高组成系统附件可靠性外,还应该对系统的结构冗余组成提出故障容错要求。

对关键液压系统的泵源部分应满足一次故障工作,二次故障安全的故障容错要求。这样对

泵源最少有三套独立系统。对关键工作部分应满足故障安全的容错要求。应有正常与应急

两套相互独立系统。

2.6 重量要求

对飞机上的液压系统重量指标应控制在整机重量的1%左右,这个指标是比较严的,

在实际中往往要超过这个数字的。按实际系统设计而定。

3 液压系统原理图设计与参数初步估算

根据整个液压系统所提出的要求,选择合适的工作回路与泵源回路组成液压系统。工作部分要满足各动作部件功能、可靠性能等方面的需要;泵源部分应满足与工作部分协调一致。液压系统工作部分工作时,系统泵源应能立即提供所要求的功率;液压系统停止工作时候应能自动转入卸荷状态。

选择好的原理方案,是设计出高质量液压系统的基础。下面原理是经过几个方案比较比较实际实用的一种,本次设计就以本系统展开。

3.1 原理图

参照以前资料将液压系统设计为下图所示:

图3-1液压系统图

Fig.3-1 Hydraulic scheme

3.2 液压系统原理方案说明

起落架收放系统的功能应保证;再收起位置锁紧起落架与舱门起落架放下后锁紧起落架与舱门;再收起落架过程中开锁,起落架及轮舱收放与上锁等动作顺序应协调.起落架收放回路主要是由一些基本顺序回路组成。目前起落架收放回路基本上采用两种类型:一种用行程开关和电磁阀的顺序回路;另一种用顺序液压缸和触动式顺序阀的顺序回路。

本次设计即用顺序液压缸和触动式顺序阀的回路,供压部分来的高压油通到电磁阀1。当驾驶员将舱内起落架开关置于放下位置时,电磁阀切换至右位,高压油管先进入开锁液压缸2(顺序液压缸)的无杆腔内推动活塞向外运动,打开上位锁,同时也打开了中间油路。从中间油路流出的高压油分成两路:一路经应急活门3进入机轮护板液压缸的左腔,推动活塞向右运动,打开机轮护板;另一路经液压锁4进入主起架液压缸左腔,推(右腔)出口处安装有一单向节流阀5,起落架放下过程中单向阀处在关闭位置,回油只能经过节流阀流出,减少了起落架.放下时的速度,缓和了撞击.此外,还可以使起落架放下速度比机轮护板打开速度慢些,起延时作用,以防止起落架撞坏机轮护板。起落架放下后,驾驶员把收放开关放回中立位置,电磁阀断电, 阀芯恢复到中立位置。此时,液压缸收起起落架锁在放下位置,起双套保险作用。为防止放下腔内被锁闭的油液因油温升膨胀超压,和单向液压锁一起并联安置了热安全阀6。

为了保证放下的可靠,再一般飞机上,应急放起落架都应采用压缩空气作为应急能源。应急放下起落架时,驾驶员首先用手拉开上位锁,然后再打开应急放起落架冷气开关,储存再冷气瓶中的高压气体通过应急活门3进入起落架与机轮护板液压缸放下腔,将机轮护板打开并放下起落架.当驾驶员将起落架开关置于收上位置时,电磁阀切换至左位,高压油通到收上管路。一方面高压油进入开锁液压缸,使起落架上位锁锁钩复位;另一方面进入起落架液压缸右腔使起落架收起.为了保证先收起起落架再关闭机轮护板的工作顺序,采用了处动式顺序回路。当起落架收起后,触动按压式顺序阀7,使高压油进入机轮护板液压缸右腔,将机轮护板收上.触动式顺序阀有一个泄露油口与回油相通,防止由于活门不气密机轮护板过早收上。

3.3 系统基本可靠性估算

可根据附件类型,工作环境条件,从非电子附件可靠性手册中查出附件的失效率,下表给出一般液压附件失效率数据,查出失效率,查出有关附件的失效率,乘上环境因子K 后,可按下式估算出系统的平均无故障工作时间。

故障时间公式:

1

l

i

i i

t i

MTBF n k

λ==

∑ (3-1)

式中 i n -为某类的附件数目;

L -为附件种类数目; i λ-某附件的失效率; K –环境因子取80。

表3-1其他阀选取表 Table 3-1 Other valve selection

液压系统原理放案最后通过评比确定,目前常用的评比办法是记分法,把评比的内容按其重要性的主次给以一定分值,总分值最高的方案为当选方案。用这样方法所选定的方案能够比较全面的满足总体提出要求。

附件名称

故障次数 10-6

/h 下限

平均 上限 顺序阀 2.10 4.6 8.1 电动泵 2.25 8.7 27.4 固定节流孔 0.01 0.15 2.11 溢流阀 0.224 3.92 7.25 三通电磁阀 1.87 4.6 8.1 液压缸

0.005

0.008

0.12

4 系统主要参数的确定与估算

4.1选择系统所用液压油

系统液压油选择一般按飞机的总体要求确定,本次设计选取10号航空专用液压油。

下面是其性能指标:

表4-1油指标表

Table 4-1 Oil target table

项目质量指标实验方法

外观红色通明液体目测

运动黏度GB/T256

50°C 不小于 10

-50°C 不大于1250

机械杂质无GB/T511

油膜质量(65°C+1°C)合格GB/T264

密度(20°C)850 GB/T1884

4.2 选取系统工作压力等级与系统工作温度范围

4.2.1 系统压力确定

液压系统工作压力是系统的最基本参数之一,它对整个系统的性能有很大影响,随着液压系统输出功率增大,系统工作压力等级有日益提高的趋势。

现研究主要着眼于寻求最轻液压系统重量的所谓最佳压力.最早的结论是28MPa后来又以选择不同的压力等级来设计液压系统,结果表明在现有的材料条件下把现有的21MPa 分别提高到28MPa,35MPa和42MPa,系统重量分别比原来轻5%,6%和4.5%所以认为系统的最佳压力为32-35MPa.提高工作压力等级对液压系统会带来密封困难,附件加工精度高,附件生产成本高,发热量加大可靠性和寿命降低.因此在选取压力等级时不能一味追求高压结合实际情况选取本设计选取28MPa,由于要设计起落架根据材料选取22 MPa作为设计压力。

压力选取具体参照下图:

图4-1压力曲线图

Fig.4-1Pressure diagram of curves

4.2.2 系统主参数给定

液压系统主要参数应满足标准化与规范化的要求,在此进行系统参数设计设定。

=22MPa;

1) 泵的输出压力P

g

=19.8MPa;

2) 主起落架液压缸的输入压力为P

1

3) 溢流阀工作压力P=26.4MPa;

4) 液压系统的工作温度范围:-55°C~70°C。

4.3 确定执行机构的参数

现在以起落架主起液压缸和溢流阀为设计实例:

1) 液压缸的设计通常要求满足下述最基本技术要求:

(1) 承受最大的负载力,即输出力P=6.125×104N;

(2) 输出动作时间T=7s;

(3) 最大工作行程L=47.8㎝。

以上数据是由被操作对象的要求提出来的。例如起落架收放液压缸的负载力P是根据作用在起落架上的空气动力负载,起落架本身的重量以及惯性等来确定的。最大速度或动作时间t则是根据飞机的战术技术所规定的收放时间提出来的,最大工作行程L则是根据起落架传动图从收起位置到放下位置之间的运动范围提出的。

为了满足所提出的技术要求,设计液压缸最基本的内容在于保证其一定的有效面积,

强度和不漏油,并满足性能指标及使用要求。

2)设计步骤和方法

(1) 液压缸的输入压力P是根据系统的工作压力来确定

液压缸的输入压力p是根据系统的工作压力来确定的,通常有三种不同的观点:其一,按最小重度观点。经理论计算和实验检验,航空液压系统总重量与系统工作压

力有关,目前系统认为的最佳压力应为P

g =22MPa。所以,液压缸的输入压力P

1

在考虑进

油管路损失时,取: P

1=0.9P

g

=22×0.9=19.8MPa

其二,按最佳强度观点,此观点在本质上还是为了减小元件的尺寸和重量,不过是以材料强度为依据罢了,其结果形式为:

10.25[]

=(4-1)式中[]

σ为液压缸缸壁材料的许用应力。这就是说,此种方法是按照液压缸材料来确

定压力的,其壁厚应满足筒内外径比值

a=

其三,按液压泵的实际工作压力确定液压缸的最大输入压力。即

10.80.9

g

p p

=:(4-2)这种方法不能满足最佳性能的要求,但却是一种按具体问题采取具体解决的方法。式子种的系数,是考虑到传输管路和控制阀的压力损失。

(2) 确定有效面积F内径D和杆径d

以双面活塞杆液压缸为例,根据经验数据取回油腔的压力为P

2=0.05P

1

那么输入力公式变为:

P=(P

1-P

2

)F=(P

1

-0.05P

1

)F=0.95P

1

F (4-3)

则有效面积的计算公式为:

F=P/0.95P

1

=22/(0.95×19.8)≈4.418×10-3㎡(4-4)为了确定液压缸内径D和活塞杆直径d,按经验引入一个结构系数即

m=d/D=0.25~0.7 (4-5)取m=0.56

式中m为结构系数,低速小负载下取小反之取大值,由得下式

D=;d=md (4-6)

将 F=4.418×10-3㎡;

m=0.56代入;

得 D=7.8㎝ ; d=4.4㎝;

(3) 确定壳体壁厚δ和外径Dw 根据(16>D/δ>3)计算公式 1

(2.3[])hs P D

C P δσ?=

+-g (4-7)

式中?为强度系数,(无缝钢管? =1),c 为考虑壁厚公差及侵蚀的附加厚度0.2cm

227.8

0.2(2.372.919.8)1

δ?=

+?-?

=1.06+0.2 =1.26cm

据统计,飞机液压缸一般属于中等壁厚,故推荐用中等壁厚公式。 壁厚确定后,按下式确定外径D w

D w =D+2δ=7.8+2.6=10.4㎝ (4-8) (4) 确定密封装置的型式和尺寸

液压缸的密封装置广泛地采用圆界面橡胶圈。这种形式结构简单,装卸方便,寿命长,在30MPa 压力下具有良好的密封性能。密封装置按不同的工作条件来选择。

表4-2如下表为圆截面橡胶密封圈的各项要求

Table 4-2 For circular cross-section rubber seal packing collar each request

密封形式 圆截面橡胶密封圈

密封原理 基于密封圈和被密封表面间的接触压力和侧压力作用而加强密封性 密封材料 硅橡胶;氟橡胶四塑料

特殊技术

要求

要正确的计算和选择压缩率,正确选择槽宽度配合精度和光度在超过15mpa 的压力下,一般增设保护挡圈,性能更可靠

优缺点及应用

结构简单装卸方便成本低可用于35mpa 以下压力和温度在-60~3000

c 范围内工作在飞机液压系统中得到广泛应用

关于密封装置得原理理论计算在设计中修正了圆截面橡胶密封圈得 经验公式:

图4-2活塞密封圈示意图

Fig.4-2 measurement of piston structural representation

b=(1.3 1.5)d; =1.20.2cm =0.24cm ?: ; C=0.8d

=0.80.2cm =0.16cm

?; s=(0.10.001)mm : (4-9) 式中的s 为活塞于内腔的间隙,一般可用二级配合,压力越高,s 值越小。

(5)确定液压缸长度

缸未伸出长度为L ;活塞宽度2l ;行程长3l ;导向长度4l ;结构长度1l ;导向套长度5l

25

32

l l l k +≥

+ (4-10) 式中k 为隔离套长度。

将式中的已知量带入得:(见图)

图4-3 缸结构尺寸示意图

Fig.4-3 Cylinder structure size schematic drawing

347844

45.9202

l mm =

+=; (4-11) 20.60.67847l d mm =?=?= (4-12)

258047

63.522

l l mm ++==; (4-13)

4747880240845L mm =+++= (4-14)

(6) 验算活塞杆纵向弯曲强度和稳定性

在一般情况下当杆与杆径之比小于15时候,可不用验算活塞杆纵向弯曲强度和 稳定性比值大时候,可按下式公式进行验算:

2

a

ji di EJ P P p L

πξξ

==f

(4-15) 式中的

a J 为缸筒的惯性矩 444444

()

64

3.14

(0.10420.078)64

0.1510a a a a a J D d J J m π

-=

-=-=?

b J 为杆的惯性矩 4453.14

0.0440.18106464

b b J D m π

-=

=

?=?

因为 47478809570044;15.915

l mm

l l mm l +++=≥杆杆径径

===则k=

所以需要验算

114

2

53.14 2.1100.15100.18 1.3133.2810ji ji P P N

-?????

?== P=6.125×104N

故满足条件。

(7) 缸体与缸盖的焊缝强度计算 其焊缝应力公式为:

22w []()4

P

D D σσπ

η

≤-=

(4-16)

式子 5390.7;[]134.7544

b

MPa σησ====

带入可得:

442

22

6.12510 6.1251023.580.0026(0.10420.078)0.74

N

N

MPa m σπ??===-? (4-17) 故符合要求。

4.3.2 确定液压泵参数

液压泵的两个主要参数为所承受的最大压力于应提供的最大流量.液压泵所承受的最大压力有所选定的系统工作压力确定.液压泵应提供的流量可按下述步骤确定:

1) 计算液压缸所需提供的流量

已知液压缸尺寸及其收放或收方速度要求,可按照下式计算液压缸所需要的流量:

i i

i i i i i

L V Q F U F

t t ===g (4-18) 式中: i F -液压缸有效工作面积;

i U -液压缸要求的收放速度; i L -液压缸工作行程; i t -收方时间。

2) 确定所有工作部分所需用的流量 i

i i

V

Q Q t ==

∑∑ (4-19)

主起落架收放液压缸与工作容积为Z V

22(7.8 4.4)47.815604

Z V π

=

-?=cm

3

前起落架收放液压缸与工作容积为qe V

22(6.0 3.5)27.65174

qe V π

=

-?=cm 3

根据总体要求,起落架收起时间为7S,这起落架收放系统所需用的流量q Q

20.52431.2min

Z qE

q V V L

L

Q s t

+=

==

3) 确定液压泵供油量

液压泵供油量根据上面算出的式子有以下公式可得: (1) 液压系统存在内部泄漏c Q ?;

(2) 带动液压泵的发动机转速下降时,液压泵的流量下降zh Q ?; (3) 长期使用液压泵使供油量下降sh Q ?; (4) 系统中有些控制阀直接流回油箱f Q ?。 因此,液压泵的供油量应为:

b q Q Q Q =+?∑ (4-20)

31.2536.2min

b L

Q =+=

故液压泵的供油量为36.2min

L

故选取泵型号: CB-FD40

理论排量/mL ·r^(-1): 40.38 压力/MPa|额定: 22 压力/MPa|最高: 25 转速/r ·min^(-1)|额定: 2000 转速/r ·min^(-1)|最高: 3000 转速/r ·min^(-1)|最低: 600 容积效率/%: ≥91 总效率/%: ≥82 驱动功率/kW(额定工作状况): 31

液压系统的主要参数就是压力和流量,他们是设计液压系统,选择液压元件的主要依据。压力决定与外载荷。流量取决于液压执行元件的运动速度和结构尺寸。

4.3.3 溢流阀设计

溢流阀的设计,通常式根据其工作所要求的压力和流量选择阀的基本结构形式,根据最大流量并按经验确定阀的各部分尺寸,根据静态特性要求确定弹簧系数,然后计算静态特性。即按静态性能要求进行设计,之后可对动态特性能如压力超调量,阀的自振频率等进行校验。下面我们对先导溢流阀为例来介绍溢流阀的设计。

以下为尺寸示意图:

图4-4 阀结构尺寸示意图

Fig.4-4 measurement of valve structural representation

1) 设计要求

一般提出以下设计要求: (1) 额定压力 26.4e p =MPa (2) 额定流量36.2min

e L

Q =

(3) 调压范围1min 1max 26.4p p =:MPa (4) 背压 00p ≈

(5) 调成最高调成压力1max p 时,导阀的开启压力21max 0.9a p p ≥

(6) 调成最高调成压力1max p 时,主阀的开启压力11max 0.95a p p ≥;此时的溢流量

0.01a e Q Q ≤

(7) 调成最高调成压力1max p 时,主阀的闭合压力11max 0.9a p p ≥;此时的溢流量

0.01b e Q Q ≤

(8) 卸荷压力0.4x p =MPa 2)主要的结构尺寸的初步确定

(1) 进油口尺寸确定按照额定流量和允许流速来决定则:

d =

(4-21) 式中V 一般取6m/L;e Q -额定流量,将已知量带入可得:

2.77d =

==cm

(2) 主阀芯直径

1

d

按经验取 1(0.50.82) 1.66d d ==:cm (4-22)

(3) 主阀芯活塞直径

01(1.6 2.3) 1.662 3.22D d ==?=:cm (4-23)

0D 对阀的静态特性影响很大。按上式选取0D 时,对额定流量小的阀选较大的值。

(4) 主阀芯上段直径

2

D

按经验取主阀芯活塞下边面积3F 与上边面积4F 之比为:

根据上式子可得:

3

4

340.950.974()

4

F F F F π

π==

:22012202(D -d )D -d

2

D==

2

3.32 1.52

D==cm (4-24)

活塞下边面积稍小于上边面积,主阀关闭时的压紧力主要靠这个面积差形成液压力作用在主阀芯上。主阀弹簧只是在低压和无压力时使主阀关闭,因此主阀弹簧刚度可以很小。

(5) 主阀芯半锥角1

α,主阀座半锥角

1

θ和扩散角

2

θ

按经验取:

1

46

α=?

1

43

θ=?

2

22.5~35

θ=??

1

α稍大于

1

θ,使主阀芯与主阀座近似为线接触(接触线的直径近似于

1

d),密封性较好。

(6) 尾碟(消振尾)直径

4

d、长度

4

l、过度直径

5

d

尾碟的作用是消除液动力引起的振动。其尺寸

4

d、

4

l、

5

d可参考已定型阀的尺寸选取。无尾碟时,作用在主阀芯上的液动力方向向上;有了尾碟时,液动力方向向下。

(7) 节流孔直径

d、长度

l

按经验取:

0.08~0.20.1

d== cm (4-25)

00

(7~19) 1.0

l d

== cm (4-26)

节流孔的尺寸

d和

l对溢流阀性能有重要影响。如果节流孔太大或太短,则节流作用不够,将使阀的启闭特性变差,而且工作中会出现较大的压力振摆;反之,如果节流孔太

小或太长,则阀的动作会不稳定,压力超调量液会加大。按上式取

d和

l时,对额定流量小的阀选较小的值。要求通过节流孔的流量小于或等于额定流量的1%时所造成的压降足

以使主阀开始打开。因此,要通过静态特性计算对选定的0d 和0l 进行适当的调整。

(8) 导阀芯的半锥角2α

按经验取 : 2α=20?

2α取得小一些,密封性能较好但太小使阀芯与阀座得接触应力加大,影响使用寿命。 (9) 导阀座孔的孔径2d 和6d

按经验取 20(25)0.4d d ==:cm (4-27)

60.16d =cm (4-28)

2d 取得大则导阀弹簧要硬,使尺寸加大;取得太小又影响阀的稳定性能。 6d 不能取的太大,否则容易发生尖叫和振动。

(10) 主阀芯溢流口的直径3d 和长度3l

3d 和3l 可根据结构来确定。3d 不要太小,以免产生的压差太大,不利于主阀的开启。

(11) 主阀座的孔径1D

按经验取 11(0.10.2) 1.56D d cm =-=: (4-29)

(12) 阀体沉割直径3D 、沉割宽度1S

按经验取 30(0.1 1.5) 3.5D D cm =+=: (4-30)

1S 按结构确定,应保证进油口直径的要求。

本设计中取 10.4 3.17S d cm =+= (4-31)

(13) 主阀芯与阀盖的间距2S

2S 应保证主阀芯的位移要求,即2max S X ≥

max X 是主阀的最大开度,max X 的大小见静态特性计算。

(14) 导阀弹簧的装配长度5l

52(0.10.2)l L cm =+: (4-32)

飞机起落架结构优化设计及制造加工

2011 年春季学期研究生课程考核 起落架结构优化设计及制造加工 关键词:起落架设计改进制造技术 为满足某型飞机的研制需要,采用现代起落架的设计理念,在保持原起落架结构以及起落架与飞机的协调关系(连接形式、接口尺寸、电液和操作习惯)等方面基本不变的情况下,从设计、T艺方面进行改进,达到了增强承载能力、减轻重量和提高寿命的目的。试验验证和装机使用表明,改型后的飞机起落架性能优于原型机的性能,实现了减重、增寿,以及增强飞机使用安全性的目标。 1 设计改进 根据飞机起落架改进技术方案要求,在保证飞机安全性的前提下,尽量减轻起落架的重量,并达到增寿的目的。经设计分析和计算,对不满足强度要求的零部件进行加强改进,对强度较富裕的零部件进行减重改进。 1.1 缓冲支柱优化设计 飞机着陆蕈量的增加,相应引起起落架吸收动量增加,导致起落架着陆冲击载荷的增加。为了尽可能地降低着陆冲击过载,须对起落架的缓冲系统进行优化设计。为此,在充分利用原结构的前提下,进行缓冲器充填参数、阻尼油针的优化设计,选取多组缓冲结构并通过落震试验验证。通过一系列比较和验证,阻尼油针选用圆角方形截面结构,如图1所示。该油针的选用,使飞机起落架阻尼特性稳定、磨损小,同时提高了缓冲器系统承载能力。 1.2部分零(组)件结构重新设计 对起落架的部分零(组)件结构重新进行设计,改善了零件的受力状态,从而提高了起落架的承载能力。如将主起落架斜撑杆由刚性结构改为弹性结构,以改善起落架斜撑杆的协调承载能力,减少结构不 圈1圆角方形截面油针 Fig.1 Square section pin with round comer 协调引起的结构超载损伤,降低中部接头的应力水平,提高主起落架外筒中部接头的寿命。改进前后的结 构如图2、图3所示。 图2刚性斜撑杆(原结构) Fig.2 Rigid batter brace(original structure)

液压系统回路设计

1、液压系统回路设计 1.1、 主干回路设计 对于任何液压传动系统来说,调速回路都是它的核心部分。这种回路可以通过事先的调整或在工作过程中通过自动调整来改变元件的运行速度,但它的主要功能却是在传递动力(功率)。 根据伯努力方程: d q C x = (1-1) 式中 q ——主滑阀流量 d C ——阀流量系数 v x ——阀芯流通面积 p ?——阀进出口压差 ρ——流体密度 其中d C 和ρ为常数,只有v x 和p ?为变量。 液压缸活塞杆的速度: q v A = (1-2) 式中A 为活塞杆无杆腔或有杆腔的有效面积 一般情况下,两调平液压缸是完全一样的,即可确定1121A A =和1222A A =所以要保证两缸同步,只需使12q q =,由式(1-2)可知,只要主滑阀流量一定,则活塞杆的速度就能稳定。又由式(1-1)分析可知,如果p ?为一定值,则主滑阀流量q 与阀芯流通面积成正比即:v q x ∞,所以要保证两缸同步,则只需满足以下条件: 11p c ?=,22p c ?=且12v v x x = 此处主滑阀选择三位四通的电液比例方向流量控制阀,如图1-1所示。 图1-1 三位四通的电液比例方向流量控制阀 它是一种按输入的电信号连续地、按比例地对油液的流量或方向进行远距离控制的阀。比例阀一般都具有压力补偿性能,所以它输出的流量可以不受负载变化的

影响。与手动调节的普通液压阀相比,它能提高系统的控制水平。它和电液伺服阀的区别见表1-1。 表1-1 比例阀和电液伺服阀的比较 所以它被广泛应用于要求对液压参数进行连续远距离控制或程序控制,但对控制精度和动态特性要求不太高的液压系统中。 又因为在整个举身或收回过程中,单缸负载变化范围变化比较大(0~50T),而且举身和收回时是匀速运动,所以调平缸的功率为P Fv =,为变功率调平,为达到节能效果,选择变量泵。 综上所可得,主干调速回路选用容积节流调速回路。容积节流调速回路没有溢流损失,效率高,速度稳定性也比单纯容积调速回路好。 为保证p?值一定,可采用负荷传感液压控制,其控制原理图如图1-2所示。它主要利用负荷传感和压力补偿技术,可用单泵(或一组泵)驱动多个执行元件,各执行元件运动速度仅依赖于各节流阀开启度,而与各执行元件的负载压力和其它执行元件的工作状态无关。即使当泵的输出流量达不到实际需要时,各执行元件运动速度的比例关系仍然可以得到保持。此系统的这一特有的独立调速功能大大减少了作业中操纵者协调各执行元件动作所花费的时间,不但显著提高了作业效率,而且有效减轻了操作者的劳动强度。另外,能够以最节省能量的方式实现调速,系统无溢流损失,并以推动执行元件动作所需的最低压力供油。在工作间隙(发动机不停机,各执行元件处于无载状态,不动作),系统自动调节泵的排量到最小值。可以有效降低功率损耗、减小液压系统的温升,所以它是一种性能较好的新型液压系统。

飞机起落架设计(中英文对照)

Aircraft Landing Gear Layouts 飞机起落架设计(中英文对照图) 发布人:圣才学习网发布日期:2010-06-25 14:36 共292人浏览[大] [中] [小] Most aircraft today have three landing gear. 许多现代飞机使用三点式起落架。 Two main landing gear struts located near the middle of the aircraft usually support about 90% of the plane’s we ight while a smaller nose strut supports the rest. 重心附近的两个大的主轮,承担约90% 的重量,小轮子承担余下部分。 This layout is most often referred to as the "tricycle" landing gear arrangement.However,there are numerous other designs that have also been used over the years,and each has its own advantages and disadvantages.Let’s take a closer look at the various undercarriage options available to engineers. 目前的飞机以前三点起落架为主,让我们来回顾一下后三点起落架及其优缺点。(意译) Tail wheel or Tail dragger Gear 后三点尾轮式与后三点尾橇式起落架 Though the tricycle arrangement may be most popular today,that was not always the case.The tail wheel undercarriage dominated aircraft design for the first four decades of flight and is still widely used on many small piston-engine planes. 虽然前三点起落架比较普遍,但是在几十年前的飞机,及当今的许多小型飞机是使用后三点起落架的。 The taildragger arrangement consists of two main gear units located near the center of gravity (CG)that support the majority of the plane’s weight. 后三点起落架,由两个在重心靠前位置的主轮支持大部分的飞机重量。 A much smaller support is also located at the rear of the fuselage such that the plane appears to drag its tail,hence the name. 一个非常小的尾轮装置在机身,看上去这个小轮子是被拖着走,所以,英文Taildragger 也因此而得名。 This tail unit is usually a very small wheel but could even be a skid on a very simple design.它即可以是一个小尾轮,也可以是一个尾橇。

飞机液压系统

飞机液压系统 【摘要】 本论文主要阐述了液压系统的原理,主要部件组成,功用,以及维护与修理。液压系统是指飞机上以油液为工作介质,靠油压驱动执行机构完成特定操纵动作的整套装置。液压系统由液压油箱、油箱增压系统、液压泵、地面勤务系统等组成。由于飞机液压系统的工作情况直接与飞行安全密切相关。故现代飞机上大多装有两套(或多套)相互独立的液压系统。单位功率重量小、系统传输效率高、安装简便灵活、惯性小、动态响应快、控制速度范围宽、油液本身有润滑作用、运动机件不易磨损是其优点;缺点为油液容易渗漏、不耐燃烧、操纵信号不易综合。与其他机械的液压系统相比,飞机液压系统的特点是动作速度快、工作温度和工作压力高。本论文主要以波音737为例分析飞机液压系统。 关键词:液压系统驱动马达泵(EMDP)液压动力转换组件(PTU) Abstract: This paper describes the principle of the hydraulic system, major components, function, and maintenance and repair. Aircraft hydraulic system is to oil as the working medium, by the hydraulic actuator to complete a specific set of device control action. Hydraulic system by hydraulic tank, fuel tank pressurization system, hydraulic pump, ground service system components. Since the work of the aircraft hydraulic system directly related to flight safety. Therefore, most modern aircraft equipped with two (or sets) of independent hydraulic system. The weight of a small unit power, the system transmission efficiency, ease of installation flexibility, inertia is small, fast dynamic response, wide speed control, lubrication oil itself, moving parts, easy to wear its advantages; disadvantage of easy oil leakage, impatience burning, easy to manipulate the signal integrated. Hydraulic and other mechanical systems, aircraft hydraulic system is characterized by a movement speed, high temperature and pressure. In this thesis, an example of Boeing 737 aircraft hydraulic system. Key words:The hydraulic system EMDP PTU

针对IO的缓冲器版图设计

《集成电路版图设计》实验(二): 针对IO的缓冲器版图设计 一.实验内容 参考课程教学中互连部分的有关讲解,根据下图所示,假设输出负载为5PF,单位宽长比的PMOS等效电阻为31KΩ,单位宽长比的NMOS等效电阻为13KΩ;假设栅极和漏极单位面积(um2)电容值均为1fF,假设输入信号IN、EN是理想阶跃信号。与非门、或非门可直接调用LEDIT标准单元库,在此基础上,设计完成输出缓冲部分,要求从输入IN到OUT的传播延迟时间尽量短,可满足30MHz时钟频率对信号传输速度的要求(T=2T p)。 二.实验要求 要求:实验报告要涵盖分析计算过程 图1.常用于IO的三态缓冲器

三、实验分析 为了满足时钟频率对信号传输速度的要求,通过计算与非门和或非门的最坏延时,再用全局的时钟周期减去最坏的延时,就得到了反相器的应该满足的延时要求,可以得到反相器N管和P管宽度应该满足什么要求。标准与非门和或非门的电容、电阻可以通过已知条件算出。由于与非门、或非门可直接调用LEDIT标准单元库,所以本设计的关键在于后级反相器的设计上(通过调整反相器版图的宽长比等),以满足题目对电路延时的要求。由于输入信号IN和是理想的阶跃信号,所以输入的延时影响不用考虑。所以计算的重点在与非门和或非门的延时,以及输出级的延时。对于与非门,或非门的延时,由于调用的是标准单元,所以它的延时通过提取标准单元的尺寸进行估算,输出级的尺寸则根据延时的要求进行设计。 四、分析计算 计算过程: (1)全局延时要求为: 30MHz的信号的周期为T=1/f=33ns; 全局延时对Tp的取值要求,Tp<1/2*T=16.7ns; (2)标准单元延时的计算:

液压系统设计方法

液压系统设计方法 液压系统是液压机械的一个组成部分,液压系统的设计要同主机的总体设计同时进行。着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。 液压系统的设计步骤 液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,大致按如下步骤进行。 ⑴确定液压执行元件的形式; ⑵进行工况分析,确定系统的主要参数; ⑶制定基本方案,拟定液压系统原理图; ⑷选择液压元件; ⑸液压系统的性能验算: ⑹绘制工作图,编制技术文件。 1.明确设计要求 设计要求是进行每项工程设计的依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。 ⑴主机的概况:用途、性能、工艺流程、作业环境、总体布局等; ⑵液压系统要完成哪些动作,动作顺序及彼此联锁关系如何; ⑶液压驱动机构的运动形式,运动速度; ⑷各动作机构的载荷大小及其性质; ⑸对调速范围、运动平稳性、转换精度等性能方面的要求; ⑹自动化程度、操作控制方式的要求; ⑺对防尘、防爆、防寒、噪声、安全可靠性的要求; ⑻对效率、成本等方面的要求。 2.进行工况分析、确定液压系统的主要参数 通过工况分析,可以看出液压执行元件在工作过程中速度和载荷变化情况,为确定系统及各执行元件的参数提供依据。 液压系统的主要参数是压力和流量,它们是设计液压系统,选择液压元件的主要依据。压力决定于外载荷。流量取决于液压执行元件的运动速度和结构尺寸。 2.1载荷的组成和计算 2.1.1液压缸的载荷组成与计算 图1表示一个以液压缸为执行元件的液压系统计算简图。各有关参数已标注在图上,其中F W是作用在活塞杆上的外部载荷。F m是活塞与缸壁以及活塞杆与导向

飞机起落架结构及其系统设计

本科毕业论文题目:飞机起落架结构及其故障分析 专业:航空机电工程 姓名: 指导教师:职称: 完成日期: 2013 年 3 月 5 日

飞机起落架结构及其故障分析 摘要:起落架作为飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。为适应飞机起飞、着陆滑跑和地面滑行的需要, 起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机 轮上装有刹车或自动刹车装置。同时起落架又具有空气动力学原理和 功能,因此人们便设计出了可收放的起落架,当飞机在空中飞行时就 将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时 再将起落架放下来。本文重点介绍了飞机的起落架结构及其系统。对起落 架进行了系统的概述,对起落架的组成、起落架的布置形式、起落架的收 放形式、起落架的收放系统、以及起落架的前轮转弯机构进行了系统的论 述。并且给出了可以借鉴的起落架结构及其相关结构的图片。 关键词:起落架工作系统凸轮机构前轮转弯收放形式

目录 1. 引言 (1) 2. 起落架简述 (1) 2.1 减震器 (1) 2.2 收放系统 (1) 2.3 机轮和刹车系统 (2) 2.4 前三点式起落架 (2) 2.5 后三点式起落架 (3) 2.6 自行车式起落架 (5) 2.7 多支柱式起落架 (5) 2.8 构架式起落架 (6) 2.9 支柱式起落架 (6) 2.10 摇臂式起落架 (7) 3 起落架系统 (7) 3.1 概述 (7) 3.2 主起落架及其舱门 (7) 3.2.1 结构 (8) 3.2.2 保险接头 (8) 3.2.3 维护 (8) 3.2.4 主起落架减震支柱 (8) 3.2.5 主起落架阻力杆 (9) 3.2.6 主起落架耳轴连杆 (10) 3.3 前起落架和舱门 (10) 3.4 起落架的收放系统 (10) 3.4.1起落架收放工作原理 (10) 3.4.2 起落架收放过程中的的液压系统 (11) 3.4.3 主起落架收起时的液压系统工作过程 (12) 3.4.4 主起落架放下时的液压系统工作原理 (13) 3.4.5 在液压系统发生故障时应急放起 (14) 3.4.6 起落架收放的工作电路 (15) 3.5 前轮转弯系统 (17) 3.5.1 功用 (17) 3.5.2 组成 (17) 3.5.3 工作原理 (17) 3.6 机轮和刹车系统 (17) 4 歼8飞机主起落架机轮半轴裂纹故障分析 (17) 4.1 主起落架机轮半轴故障概况 (17) 4.2 主起落架机轮半轴失效分析 (18) 4.3 机轮半轴裂纹检测及断口分析 (20) 4.3.1 外场机轮半轴断裂检查 (20) 4.3.2 大修厂机轮半轴裂纹检查 (21) 4.4 主起落架机轮半轴疲劳试验结果 (22) 4.4.1 机轮半轴疲劳试验破坏部位 (22)

液压系统的设计步骤与设计要求

液压系统的设计步骤与设计要求 液压传动系统就是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行。着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。 1、1 设计步骤 液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,大致按如下步骤进行。 1)确定液压执行元件的形式; 2)进行工况分析,确定系统的主要参数; 3)制定基本方案,拟定液压系统原理图; 4)计算与选择液压元件; 5)液压系统的性能验算; 6)绘制工作图,编制技术文件。 1、2 明确设计要求 设计要求就是进行每项工程设计的依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其她方面了解清楚。 1)主机的概况:用途、性能、工艺流程、作业环境(温度、湿度、振动冲击)、总体布局(及液压传动装置的位置与空间尺寸的要求)等; 2)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何; 3)液压驱动机构的运动形式,运动速度; 4)各动作机构的载荷大小及其性质; 5)对调速范围、运动平稳性、换向定位精度等性能方面的要求; 6)自动化程度、操作控制方式的要求; 7)对防尘、防爆、防腐、防寒、噪声、安全可靠性的要求; 8)对效率、成本等方面的要求。

主机的工况分析 通过工况分析,可以瞧出液压执行元件在工作过程中速度与载荷变化情况,为确定系统及各执行元件的参数提供依据。 液压系统的主要参数就是压力与流量,它们就是设计液压系统,选择液压元件的主要依据。压力决定于外载荷。流量取决于液压执行元件的运动速度与结构尺寸。 主机工况分析包括运动分析与动力分析,对复杂的系统还需编制负载与动作循环图,由此了解液压缸或液压马达的负载与速度随时间变化的规律,以下对工况分析的内容作具体介绍。 2、1 运动分析 主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t) ,速度循环图(v—t) ,或速度与位移循环图表示,由此对运动规律进行分析。 1、位移循环图L —t 液压机的液压缸位移循环图纵坐标L 表示活塞位移,横坐标t 表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回与快速回程六个阶段组成。 2、速度循环图v —t(或v —L) 工程中液压缸的运动特点可归纳为三种类型。 图为三种类型液压缸的v —t 图,第一种如图中实线所示,液压缸开始作匀加速运动,然后匀速运动,最后匀减速运动到终点;第二种,如图中虚线所示,液压缸在总行程的前一半作匀加速运动,在另一半作匀减速运动,且加速度的数值相等;第三种,液压缸在总行程的一大半以上以较小的加速度作匀加速运动,然后匀减速至行程终点。v —t 图的三条速度曲线,不仅清楚地表明了三种类型液压缸的运动规律,也间接地表明了三种工况的动力特性。 位移循环图速度循环图 2、2 动力分析 动力分析,就是研究机器在工作过程中,其执行机构的受力情况,对液压系统而言,就就是研究液压缸或液压马达的负载情况。 1.液压缸的负载及负载循环图 (1)液压缸的负载力计算。 工作机构作直线往复运动时,液压缸必须克服的负载由六部分组成:

飞机起落架的设计分析

[键入公司名称] [键入文档标题] [键入文档副标题] [键入作者姓名] 姓名:龙玉 起落架的结构,布置型式,疲劳强度研究,动力学研究,设计与分析

目录 一.引言……………………………………………………………………………………………………………………………..2二.起落架结构概述…………………………………………………………………………. .2 1.结构 (2) ①.承力支柱、减震器 (2) ②.收放系统 (2) { ③.机轮和刹车系统 (2) ④.转弯系统 (2) 2.布置型式 (3) ①.前三点式起落架 (3) ②.后三点式起落架 (3) ③.自行车式起落架 (3) ④.多支柱式起落架 (3) '

3.结构分类 (4) 三.起落架研究现状与发展趋势 (4) (一). 疲劳破坏的相似规律…………………………………………………………………………………………. 5 1.疲劳强度的统计估算 法………………………………………………………………………………………………………… (5) 2.起落架结构材料疲劳破坏相似规律的研 究 (5) (二). 起落架动力学的分析方法 (6) & (三). 起落架设 计………………………………………………………………………………………… (6) 1.主起落架长度与防翻角的关 系 (6) 2.主起落架长度与尾座角的关 系 (6) 3.主起落架长度与侧翻角的关 系 (6) (四). 发展趋 势………………………………………………………………………………………… (8) ^ 四.总结 (8) 五.参考文

献 (8) / 飞机起落架的设计分析 一.引言 起落架是航空器下部用于起飞降落以及滑行时支撑航空器并用于移动的附件装置。起落架是唯一一种支撑整架飞机的部件,因此它是飞机不可分缺的一部份;随着飞行器设计和制造技术的发展,起落架也在不断的改进和创新之中。 在二战以前,由于飞机的飞行速度较低,所以当时的起落架在飞机飞行的时候也可以暴露在外面,这样对飞行性能的影响不太大,所用的技术要求不高。但二战后随着科技的井喷式的发展,飞机的飞行速度大幅度提高。速度的不断提升引起以致到超音速的阶段,由此伴随着的空气阻力也随之增大。为减小空气阻力,人们便设计出了可收放的起落架。尽管起可以收放的起落架加大了飞机的重量,但从整体来说这大大促进了飞机的飞行的进步。 二.起落架结构概述 1.结构 为了缩短着陆滑跑距离,机轮上装有刹车或自动刹车装置。此外还包括 ①.承力支柱、减震器(常用承力支柱作为减震器外筒):减震器即为飞行器在着陆或在不平坦的跑到上运动时用来消减飞机摇摆震动的结构以防止飞机颠簸。当减震器受撞击压缩时,空气的作用相当于弹簧,贮存能量。 、

飞机液压系统

液压系统 摘要:详细阐述了液压系统的工作原理,飞机液压系统的各组成系统及元件,重点论述了B737-800飞机液压系统的功能、组成、工作特点和使用维护要求。 关键字:液压;液压油箱;B737-8OO; 1 液压系统工作原理 1.1 启动电磁铁全部不得电,主泵输出油液通过阀6、21中位卸载。 1.2电磁铁1Y、5Y 得电,阀6 处于右位,控制油经阀8 使液控单向阀9 开启。 进油路:泵1-阀6右位-阀13-主缸上腔。 回油路:主缸下腔-阀9-阀6右位-阀21中位-油箱。

主缸滑块在自重作用下迅速下降,泵1 虽处于最大流量状态,仍不能满足其需要,因此主缸上腔形成负压,上位油箱15 的油液经充液阀14 进入主缸上腔。 1.3主缸慢速接近工件、加压 当主缸滑块降至一定位置触动行程开关2S 后,5Y 失电,阀9 关闭,主缸下腔油液经背压阀10、阀6 右位、阀21 中位回油箱。这时,主缸上腔压力升高,阀14 关闭,主缸在泵1 供给的压力油作用下慢速接近工件。接触工件后阻力急剧增加,压力进一步提高,泵1 的输出流量自动减小。 1.4 保压 当主缸上腔压力达到预定值时,压力继电器7发信号,使1Y失电,阀6回中位,主缸上下腔封闭,单向阀13 和充液阀14 的锥面保证了良好的密封性,使主缸保压。保压时间由时间继电器调整。保压期间,泵经阀6、21的中位卸载。 1.5 泄压 主缸回程保压结束,时间继电器发出信号,2Y 得电,阀6 处于左位。由于主缸上腔压力很高,液动滑阀12 处于上位,压力油使外控顺序阀11 开启,泵1输出油液经阀11 回油箱。泵1 在低压下工作,此压力不足以打开充液阀14 的主阀芯,而是先打开该阀的卸载阀芯,使主缸上腔油液经此卸载阀芯开口泄回上位油箱,压力逐渐降低。当主缸上腔压力泄到一定值后,阀12 回到下位,阀11关闭,泵1 压力升高,阀14完全打开,此时进油路:泵1-阀6左位-阀9-主缸下腔。回油路:主缸上腔-阀14-上位油箱15。实现主缸快速回程。 1.6 主缸原位停止 当主缸滑块上升至触动行程开关1S,2Y失电,阀6 处于中位,液控单向阀9将主缸下腔封闭,主缸原位停止不 1.7 下缸顶出及退回 3Y得电,阀21 处于左位。进油路:泵1-阀6中位-阀21左位-下缸下腔。回油路:下缸上腔-阀21 左位-油箱。下缸活塞上升,顶出。 3Y失电,4Y得电,阀21 处于右位,下缸活塞下行,退回。动。泵1 输出油液经阀6、21中位卸载。

飞机前起落架驱动系统设计与性能分析

飞机前起落架驱动系统设计与性能分析 陈炎 南京航空航天大学,南京 210000 摘要:本文以大型民机起落架液压系统为研究对象,结合具体设计要求,采用电力传动技术,设计了一套起落架收放系统的新型驱动系统。本系统还利用一套双余度电控应急方案取代了传统的钢索滑轮应急放机构,并针对其蜗轮蜗杆传动机构进行了初步设计。最后在https://www.360docs.net/doc/a415717148.html,b和https://www.360docs.net/doc/a415717148.html,b软件平台上分别建立起落架收放机构及其控制系统的联合仿真模型,并分别对系统在正常收放和应急放模式下的性能进行仿真分析,初步实现了飞机收放系统的机电液一体化仿真。通过本文的研究工作,可以为飞机起落架液压系统的改进提供了一些有价值的经验和结论,为进一步的优化设计和试验工作奠定了的基础,对我国飞机起落架相关设计工作提供了技术支持。 关键词:民机起落架、系统设计、Virtual Lab Motion、Amesim、联合仿真 0前言 起落架系统在飞机滑跑起飞、着陆时支撑飞行器重量、承受着当飞机与地面接触时产生的静、动载荷、吸收和消耗飞机在着陆撞击、跑道滑行等地面运动时所产生的能量,在减缓飞机发生振动,降低飞机地面载荷,提高乘员舒适性,保证飞机飞行安全等方面发挥着极其重要的作用,是飞机设计过程中的重要环节。传统的飞机起落架设计中一般采用液压驱动装置。液压系统具有技术成熟、输出功率大、动态响应好、定位精度高的优点,但是由于液压系统采用了集中式液压源,飞机全身布满液压管路、造成其易泄露、易污染、易燃、结构复杂、重量大等问题,同时为了维持输出,液压系统需要工作在连续模式下,这使得其利用率很低,由此可见液压系统的可靠性问题成为了整个飞机系统中的薄弱环节之一,致使飞机不得不采用多余度作动系统,这又带来了重量、体积增加等新的问题。 近些年来,随着“功率电传”系统的不断发展,国外提出了“多电或者全电”驱动的设计思路。利用多电/全电技术,广泛采用电力作动器和功率电传技术,可以取代飞机上机械传动、气压、液压和润滑系统,从而大大减少飞机的重量和复杂性,可使飞机的可靠性、维修性、效率、生存能力和灵活性大为改善,同时由于燃油消耗量的减少、飞机出勤率的提高,可明显节省飞行成本。 目前,用于飞行控制、环境控制、刹车、燃油和发动机启动系统的电力作动系统已得到验证,国外也已经开始对飞机起落架驱动系统进行研究,他们预测用新型电力作动系统取代原来的液压系统将显着提高起落架系统的可靠性。可以说起落架驱动系统全电化的实现,无论对我国民用还是军用飞机性能的提高都具有重要的意义,是未来飞机起落架系统发展的新趋势。 本文以我国大型民机为设计背景,以多电/全电飞机为设计思想,针对飞机起落架驱动系统开展分析、设计和仿真工作,初步形成一套集机电一体化设计、仿真、分析流程。 1驱动系统方案设计 1.1起落架驱动系统设计要求 飞机前起落架驱动系统的主要作用是实现起落架的收放和转弯功能。传统的前起落架驱动系统是通过集中液压源进行驱动的,但随着目前飞机向全电/多电化方向发展的趋势,飞机内不再设有集中液压源,所以原有的液压系统就需要重新设计。以起落架收放系统为例,其设计要求如下: 飞机起落架收放系统的主要作用是在飞机起飞离地后,将起落架及起落架舱门收起并上锁,在飞机着陆前,打开舱门控制起落架放下并上锁,是飞机中的关键系统之一。同时,收放系统在起落架收起过程中,能控制起落架及相关部件(如舱门)按顺序开、关。 飞机前起落架收放系统的具体设计要求是:

北航-飞行器总体设计期末整理

1.飞机设计的三个主要阶段是什么?各有些什么主要任务? ?概念设计:飞机的布局与构型,主要参数,发动机、装载的布置,三面图,初步估算性能、方案评估、参数选择与权衡研究、方案优化 ?初步设计:冻结布局,完善飞机的几何外形设计,完整的三面图和理论外形(三维CAD模型),详细绘出飞机的总体布置图(机载设备、分系统、载荷和结构承力系统),较精确的计算(重量重心、气动、性能和操稳等),模型吹风试验 ?详细设计:飞机结构的设计和各系统的设计,绘出能够指导生产的图纸,详细的重量计算和强度计算报告,大量的实验,准备原型机的生产 2.飞机总体设计的重要性和特点主要体现在哪些方面? ?重要性:①总体设计阶段所占时间相对较短,但需要作出大量的关键决策②设计前期的失误,将造成后期工作的巨大浪费③投入的人员和花费相对较少,但却决定了一架飞机大约80%的全寿命周期成本?特点(简要阐述) ①科学性与创造性:飞机设计要应用航空科学技术相关的众多领域(如空气动力学、材料学、自动控制、动力技术、隐身技术)的成果;为满足某一设计要求,可以由多种可行的设计方案。 ②反复循环迭代的过程 ③高度的综合性:需要综合考虑设计要求的各个方面,进行不同学科专业间的权衡与协调 3.B oeing的团队协作戒律 ①每个成员都为团队的进展与成功负责 ②参加所有的团队会议并且准时达到 ③按计划分配任务 ④倾听并尊重其他成员的观点 ⑤对想法进行批评,而不是对人⑥利用并且期待建设性的反馈意见 ⑦建设性地解决争端 ⑧永远致力于争取双赢的局面(win-win situations) ⑨集中注意力—避免导致分裂的行为 ⑩在你不明白的时候提问 4.高效的团队和低效的团队 1. 氛围-非正式、放松的和舒适的 2. 所有的成员都参加讨论 3. 团队的目标能被充分的理解/接受 4. 成员们能倾听彼此的意见 5. 存在不同意见,但团队允许它的存在 6. 绝大多数的决定能取得某种共识 7. 批评是经常、坦诚的和建设性的,不是针对个人的 8. 成员们能自由地表达感受和想法 9. 行动:分配明确,得到接受 10. 领导者并不独裁 11. 集团对行动进行评估并解决问题1. 氛围-互不关心/无聊或紧张/对抗 2. 少数团队成员居于支配地位 3. 旁观者难以理解团队的目标 4. 团队成员不互相倾听,讨论时各执一词 5. 分歧没有被有效地加以处理 6. 在真正需要关注的事情解决之前就贸然行动 7. 行动:不清晰-该做什么?谁来做? 8. 领导者明显表现出太软弱或太强硬 9. 提出批评的时候令人尴尬,甚至导致对抗 10. 个人感受都隐藏起来了 11. 集团对团队的成绩和进展不进行检查 5.飞机的设计要求有哪些基本内容? ①飞机的用途和任务 ②任务剖面 ③飞行性能 ④有效载荷⑤功能系统 ⑥隐身性能要求 ⑦使用维护要求 ⑦机体结构方面的要求 ⑦研制周期和费用 ⑦经济性指标 11环保性指标 6.飞机的主要总体设计参数有哪些? ①设计起飞重量W0 (kg)②动力装置海平面静推力T (kg)③机翼面积S (m2) 组合参数④推重比T/W0⑤翼载荷W0 /S (kg/m2) 7.毯式图的 步骤 ①保持推重比不变,改变翼载(x轴变量),获得总重曲线(y轴变量) ②推重比更改为另一个值后确定不变,改变翼载(x轴变量),获得总重(y轴变量)。同时需将y轴向左移动一任意距离。

飞机起落架机构设计及安全性分析开题报告

毕业设计(论文)开题报告 题目飞机起落架机构设计及安全性分析 一、毕业设计(论文)依据及研究意义: 飞机的起落架是飞机起飞和着陆的重要装置,它在工作过程中承受着极大的冲击载荷,所以采用高强度钢或超高强度钢制作。起落架在长期使用的过程中,受到外界各种因素的影响,它的坚固程度会变差,甚至产生裂纹。本文针对起落架的焊接进行了深入的分析与研究,并在此基础上研究了完善和加强飞机起落架的焊接工艺与材料的焊接性,从而大大的降低了飞机起落架焊接时出现的问题并提高了其焊接质量。起落架是飞机起飞、着陆系统,对飞机的性能和安全起着十分重要的作用 起落架是飞机在地面停放、滑行、起飞着陆滑跑时用于支撑飞机重力,承受相应载荷的装置。简单地说,起落架有一点象汽车的车轮,但比汽车的车轮复杂的多,而且强度也大的多,它能够消耗和吸收飞机在着陆时的撞击能量。概括起来,起落架的主要作用有以下四个: ①承受飞机在地面停放、滑行、起飞着陆滑跑时的重力。 ②承受、消耗和吸收飞机在着陆与地面运动时的撞击和颠簸能量。 ③滑跑与滑行时的制动。

④滑跑与滑行时操纵飞机。 二、国内外研究概况及发展趋势 起落架的收放机构运动复杂,起落架的收放,上、下位锁开锁和上锁,舱门的打开和关闭等均要正确匹配和协调,否则将会发生飞行事故。 我国开展了与起落架现代设计技术密切相关的专题研究,并取得了一大批研究成果,其中有些达到世界先进水平,如变油孔双腔缓冲器设计技术,飞机前轮防摆技术,飞机地面运动动力学分析技术,长寿命、高可靠性起落架设计及寿命评估技术,起落架结构优化设计技术,起落架收放系统仿真分析技术,起落架主动控制技术等,这些成果部分地应用于型号研制中,并取得了一定效果。许多学者与研究生在理论方面也开展了一系列研究工作。《起落架设计与评定技术指南》集中反应了我国近年来在起落架现代设计理论与方法方面的进展情况。但与国外相比,我国的大量研究成果是分散的,孤立的,没有作为模型、算法或程序模块集成于一套系统中,成为设计师的实用工具,更没有在高水平的硬件与软件平台上形成一套先进、实用、高效的起落架专业CAD/CAE软件系统,因而我国型号研制基本上仍是完全采用传统模式,费时、费力、耗资。 国内起落架的研究软件主要有南京航空航天大学和西北工业大学共同开发的起落架设计分析软件系统LCAE,功能比较强大,能进行结构布局设计、起落架机构运动分析或应力分析、有限元总体应力分析、变形及载荷分析、缓冲性能分析、损伤绒线分析、及破坏危险性分析。可以实现图形及文本的前处理功能、后处理功能、分析程序的过程处理功能。另外还有南京理工大学和沈阳飞机研究所的起落架设计专家系统ALGDES,它能进行结构布局设计和强度分析、系统空间位置造型仿真机干涉分析,它建立了起落架设计的知识表示形式和组织形式,即专家系统。北京航空航天大学和西北工业大学都做过起落架防滑刹车系统的机械装置和仿真软件。有人研究了飞机接地时所受到的加速度的计算方法[6],介绍了最大过载对飞行、起落架和气动力参数的敏感性。从国外文献上来看,有的从动能的角度研究了起落架摆振,还有的对在各种条件下的起落架性能进行了仿真,主要是在载荷及变形方面给予仿真。 在起落架行业,国外在大力开展起落架理论与专题研究的基础上,发展和推广应用起落架现代设计技术。在与现代设计技术密切相关的起落架专业理论研究方面,国外从六十年代开始,己做了大量专题研究工作。如DAUTI等公司从六、

歼七起落架故障分析

长沙航空职业技术学院毕业设计(论文) 歼七飞机起落架收放系统故障分析 系别航空装备维修工程系 专业飞机附件维修 姓名 班级 指导老师 及职称李向新 二〇一一年××月×××日 长沙航空职业技术学院

毕业设计(论文)任务书

毕业设计(论文)任务书 (2) 摘要................................. 错误!未定义书签。第1章歼七飞机前起落架自动收起的故障研究错误!未定义书签。 1.1起落架收放控制原理分析 ....................... 错误!未定义书签。 1.2起落架自动收起原因分析 ......................... 错误!未定义书签。 1.2.1电液换向阀性能不良 .............................. 错误!未定义书签。 1.2.2系统不完整,回油路堵死 ...................... 错误!未定义书签。 1.3 故障验证 .................................................... 错误!未定义书签。 1.4 维修对策 .................................................... 错误!未定义书签。第2章数据符合规定前起落架为何放不下错误!未定义书签。 2.1地面检查和模拟试验情况 ......................... 错误!未定义书签。 2.2原因分析 ..................................................... 错误!未定义书签。 2.3 结论............................................................. 错误!未定义书签。 第3章总结 (3) 参考文献............................... 错误!未定义书签。致谢错误!未定义书签。

飞机液压(带答案)

A207选择题(含94 小题) 1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.B 9.B10.C 11.B12.C13.B14.C15.B16.C17.C18.B19.B20.C 21.C22.C23.C24.B25.C26.B27.D28.D29.C30.C 31.D32.D33.C34.D35.B36.D37.B38.A39.D40.D 41.D42.C43.A44.A45.C46.A47.C48.A49.A50.B 51.A52.D53.B54.B55.B56.A57.D58.C59.A60.D 61.D62.C63.A64.A65.A66.C67.B68.A69.B70.B 71.B72.B73.A74.D75.C76.C77.A78.D79.D80.D 81.B82.C83.B84.B85.B86.D87.C88.B89.B90.B 91.C92.D93.A94.D 1.为保护油泵免受超载而损坏,往往装的机械保险装置是 A、热力释压活门。B、单向活门。 C、剪切销。D、安全活门。 2.卸荷活门与发动机驱动的定量泵结合使用,其目的是 A、防止油流的过度损失。 B、消除油泵的压力脉动。 C、在工作系统不工作时, 卸去系统的压力。 D、在工作系统不工作时, 卸去油泵的工作压力。 3.液压系统使用的"供压组件"是 A、比通常的供压系统能提供更大的压力。 B、指它有一个能产生较大压力的发动机驱动泵。 C、把所有供压附件安置在一起的组合件。 D、指它有一个自增压式油箱。 4.如果壹架飞机液压系统属于定量泵恒压系统,发现比平时卸荷频繁,然而又没有发现不正常的渗漏现象,其最大可能原因是 A、安全活门调节的压力过高。 B、油箱通气管被堵塞。 C、油箱中油量过多。 D、储压器充气压力不足。 5.在液压泵工作时,下列哪些原因最可能引起压力表的过大摆动? A、压力表内的波顿管破裂。 B、储压器充气压力不足。C、供油不足。 D、系统安全活门卡在关闭位。 6.飞机液压供压系统中使用的变流量泵恒压系统 A、一定要用卸荷活门才能保证恒压要求。 B、由于泵内有压力补偿装置,所以不需使用卸荷活门。 C、使用安全活门保证在工作系统不工作时,泵出口压力为恒定。 D、在工作系统不工作时, 泵的出口压力为最小。 7.石油基液压油颜色为 A、紫色。B、兰色。C、绿色。D、红色。 8.除去导管以外,组成一个简单的液压系统至少需要的附件为: A、作动筒、增压油箱、储压器、选择活门。

飞行器总体设计教学大纲

《飞行器总体设计》教学大纲 学时数:64学时讲授 授课对象:飞行器设计工程专业大学本科 前期课程:理论力学、材料力学、结构力学、自动控制原理、空气动力学与 飞行性能计算 一、课程地位:本课程是飞行器设计工程专业必修的专业主干课,是一门综 合性、实践性很强的课程。它要求学生在学习本课程中总体设计知识的同时,紧 密结合前期课程中的基础理论,学习和掌握飞机总体设计的一般思路、原理和方法。促进学生把理论和知识、技能转化为飞机总体设计能力的结合点,是培养学 生分析工程实际问题和工程设计能力的重要环节。 二、课程任务:教授现代飞机总体的现代设计原理、综合设计思想理念和设 计技术;培养学生在综合运用广泛理论的基础上对工程实际问题的分析能力、分 析评价方法和设计能力,以及接受和适应深层次设计技术发展的能力;锻炼、培 养学生辩证逻辑思维、创造性思维和系统工程思维。 课程要求:在设计原理、概念、方法等基础方面强调系统全面、深刻精炼、 科学逻辑的有机结合,要使学生能真正掌握和运用;强调理论与实际的有机结合; 强调理论知识综合运用能力的培养,加强主动式教学,启发学生主观能动性,利 用现代技术的高信息含量使学生更多了解国内外飞机总体设计技术和前沿学科 的发展;最终使学生基本掌握现代飞机总体设计的先进设计思想、设计理论和设 计技术,着力于工程设计能力的培养。 三、课程内容: 第一章绪言(2) 1、理解“飞机总体设计”的基本含义,本课程的特点,以及学习本课程的 目的与任务。 2、初步建立如飞机设计阶段、特点等基本概念。 第二章设计的依据与参数选择(8) 1、了解飞机的设计要求 2、了解飞机的设计规范 3、熟悉飞机的总体技术指标 4、掌握飞机总体设计的参数选择

相关文档
最新文档