时程分析

时程分析
时程分析

19. 时程分析(Time History Analysis) 时程分析(Time History Analysis)中所使用的动力平衡方程如下。
: 质量矩阵(Mass Matrix) : 阻尼矩阵(Damping Matrix) : 刚度矩阵(Stiffness Matrix) : 动力荷载 、 、 : 位移、速度、加速度
时程分析是可以求出建筑物在动力荷载作用下的动力平衡方程解的方法,这 种方法利用建筑物的动力特性和承受的荷载,计算出处于任意时间内建筑物 的变形、内力等。时程分析方法中有直接积分法(Direct Integration)和振 型叠加法(Modal Superposition),由于振型叠加法的效果好,所以被较多 地使用。 振型叠加法 振型叠加法利用建筑物位移之间具有的正交性,通过线性组合的形式进行表 示,公式如下。这种方法是在假定阻尼矩阵可以用质量矩阵和刚度矩阵的线 性组合进行表示的前提之下。

(1)
(2) (3)
(4)
(5)
: Rayleigh 系数 : 第 i 振型的阻尼比 : 第 i 振型的基本周期 : 第 i 振型的模态 : 第 i 振型的单自由度方程的解 时程分析中,建筑物的位移可以按照像公式(4)一样使用振型模态和单自由 度方程解的乘积表示,位移的准确性受到所使用的振型数量的影响。这种方 法是结构分析程序中使用最多的方法,可以说是大型建筑物线性动力分析中 非常有效的方法。但是在非线性动力分析或者装有阻尼装置,阻尼无法用刚 度和质量的线性组合进行表现时是不能使用该方法的,这是该方法的缺点。

利用振型叠加法时,需要输入的数据和输入注意事项如下: 分析时间(或者分析步骤次数) : 打算进行分析的时间或者分析步骤数 分析时间间隔: 是分析过程中使用的时间间隔, 对分析的正确性有着相当 程度的影响,时间间隔的长短与建筑物的高阶振型周期或者荷载周期有着密 切的关系。分析时间间隔对<公式 5>的积分项有着直接的影响,如果输入的 数据不合适,结果将不正确。一般情况下,时间间隔为打算考虑的最高阶振 型周期的1/10 左右。还有分析时间间隔要小于所输入的荷载时间间隔。
: 打算考虑的最高阶振型周期 不同振型的阻尼比(或者Rayleigh系数) : 为了确定建筑物的阻尼所必需 的数值,需要全部建筑物的阻尼比或者各个振型的阻尼比。 动力荷载 : 直接作用于建筑物的节点或者基础的动力荷载,用时间函数 的形式表示,应充分体现出全部荷载的变化。没有输入的某一时间的荷载值 采用线性插入法计算。 下面为了帮助用户更加深刻地理解时程分析,下面说明一下建筑物动力分析 中所需要了解的一般事项。 图 1是单自由度建筑物运动的理想化图像。关于单自由度荷载的平衡方程如 下: (6)

(惯性力)是建筑物阻止运动速度发生变化而表现出的惯性效果,以力 的形式表示,大小为 ,作用方向与加速度的方向相反。
(弹性力)是如果建筑物发生了变形,力图使建筑物恢复到原来位置的 弹性恢复力。它的大小为 ,作用方向与发生位移的方向相反。阻尼
力是考虑建筑物在没有受到其他外力作用下,由于内部摩擦等原因消耗了运 动能量,从而使建筑物运动振幅逐渐减少的现象而假设的一种作用力,大小 为 ,作用方向与运动速度的方向相反。
图 1 单自由度构造物运动系
对上面的各种外力进行整理,结果如下:
(7)

上面公式中 m为质量, c为阻尼系数, k为弹性模量。从 <图 1> 力的平衡 关系中可以得出单自由度结构的运动方程,公式如下。
(8)
上面的公式中,如果
, 公式就成了自由振动方程。如果 假设为任意时间的激振

公式就成了非阻尼自由振动方程。还有如果将
力(或者位移、速度、加速度等) , 该公式就变成了关于强制振动的分析问题 , 利用振型叠加法(Mode Superposition Method)和直接积分法(Direction
Integration Method)可以求解。
例题 :
建筑物的概要 七层平面框架的时程分析 材料性质和弹性模量 弹性模量 截面性质 单元 单元 单元 单元 单元 单元 单元 : E = 29,500 kips/in2 : 截面面积和截面惯性矩 B1 : A = 50.00 in2 I = B2 : A = 50.00 in2 I = B3 : A = 50.00 in2 I = C1 : A = 51.17 in2 I = C2 : A = 62.10 in2 I = C3 : A = 72.30 in2 I = C4 : A = 84.40 in2 I =
3,330 4,020 5,120 2,150 2,670 3,230 3,910
in4 in4 in4 in4 in4 in4 in4

支座条件 平面约束条件 节点1~3: 约束所有的自由度。 每层的楼板都定义为刚性楼板。
层质量 每层Ⅹ方向0.490 kips·sec2/in
特征值分析 特征值数量: 7个
时程分析 使用振型叠加法
地震荷载 Elcentro N-S 加速度成分

平面框架的时程分析模型

时程分析结果的验算 时程分析结束后,应对下面的内容进行验算,确定分析结果是否正确。 1. 确认所要进行验算的事项,确认特征值分析结果是否正确。利用振型叠 加法是以特征值分析为基础的,因此需要判断特征值分析结果是否正 确。 2. 为了使外部荷载的频率在建筑物的固有频率范围之内,对建筑物的基本 振型数进行调整。 3. 输出节点的时程曲线,通过将结果变换为频谱领域的数值,判断是否充 分地考虑特征值数量。 4. 如果输入的动力荷载是有一定周期的荷载,对静荷载作用下产生的位移 和动力分析结果进行比较,然后对动力荷载的效果进行判断,并可以大 体掌握该效果是否准确。 5. 时程分析中使用的分析时间间隔对分析结果有很大的影响,因此要确认 该数据是否合理。不同情况下输入的时间间隔要有所不同,并判断分析 结果是否可以收敛。

ABAQUS时程分析实例

ABAQUS时程分析法计算地震反应得简单实例ABAQUS时程分析法计算地震反应得简单实例(在原反应谱模型上 修改) 问题描述: 悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2、1e11Pa,泊松比0、3,所有振型得阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg 得集中质量。反应谱按7度多遇地震,取地震影响系数为0、08,第一组,III类场地,卓越周期Tg=0、45s。 图1 计算对象 第一部分:反应谱法 几点说明: λ本例建模过程使用CAE; λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱; λ *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。 λ ABAQUS得反应谱法计算过程以及后处理要比ANSYS方便得多。 操作过程为: (1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。continue (3)Create lines,在 分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800 mechanical-->>elasticity-->>elastic,young‘s modulus:2、1e11,poisson’s ratio:0、3、

MATLAB弹性时程分析法编程

计算书:课程设计计算书(题一) 根据加速度调幅公式:m i a t a a a /)(max ,00*= )/(29002902s mm Gal a m == 得:58/)(72900/)(3500i i t a t a a =*= )(i t a =[0 600 1100 150021002500 2900350 2050

15001000600200 -700 -1300-1700 -2000 -1800-1500 -700-250200 -100 0 0 0]; 所以经调幅后为0a =[0 72.6 133.1 181.5 254.1 302.5 350.9 42.4 248.1 181.5 121 72.6 24.2 -84.7 -157.3 -205.7 -242 -217.8 -181.5 -84.7 -30.3 24.2-12.1 0 0 0 ] 6.7206.72''1''2=-=-U U 5.60 6.721.133''2''3=-=-U U 依次类推可以求出地面运动加速度的差值。 因为km c 2=ζ,08.0=ζ , m kN k /9000=, m s kN m /2502?= 代入可以算得m s kN c /240?= 一、表格第一行数据计算: t c t m k K i i /3/62++=*, t=0.05s 代入得m N K i /623400 =* )△△2 /3()3/6(''''''''t U U c U t U U m P i i g i *++---=* N 18150-6.72250-=*= **=i i P U K △△ mm K P U i i 03.0623400/18150 /-=-==**△△ 起始时刻时:0=U 0'=U 0''=U 因为'''2''3/6/6i i U t U t U U -*-*=△△ 所以7205.0/)03.0(62''1 -=-*=U △

动力学时程分析分解

研究生课程考核试卷 科目:结构动力学教师:刘纲 姓名:赵鹏飞学号:20131613163 专业:建筑与土木工程类别:专业 上课时间:2013年11月至2013年12月 考生成绩: 阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

1 题目及要求 1、按规定设计一个2跨3层钢筋混凝土平面框架结构(部分要求如附件名单所示;未作规定部分自定)。根据所设计的结构参数,求该结构的一致质量矩阵、一致刚度矩阵; 2、至少采用两种方法求该框架结构的频率和振型; 3、输入地震波(地震波要求如附件名单所示),采用时程分析法,利用有限元软件或自编程序求出该框架结构各层的线性位移时程反应。 要求给出: (1)框架结构图,并给出一致质量矩阵和一致刚度矩阵; (2)出两种方法名称及对应的频率和振型; (3)输入地震波的波形图,计算所得各楼层位移反应时程图。

2 框架设计 2.1 初选截面尺寸 设计框架为3层2跨,跨度均为5.0 m ,层高均为4.5m 。梁、柱混凝土均采用C30,214.3/c f N mm =,423.010/c E N mm =?,容重为 3 25/k N m 。 估计梁、柱截面尺寸如下: (1)梁: 梁高b h 一般取跨度的1/12-1/8,即417mm-625mm,故取梁高 b h =600mm ; 梁宽一般为梁高的1/2-1/3,即200mm-300mm ,取梁宽300b b mm =; 所以梁的截面尺寸为:600mm ×300mm (2)柱: 框架柱的截面尺寸根据柱的轴压比限值,按下列公式计算: ①柱组合的轴压力设计值...E N F g n β= 其中:β:考虑地震作用组合后柱轴压力增大系数; F :按简支状态计算柱的负荷面积; E g :折算在单位建筑面积上的重力荷载代表值,可近似取 为12-14KN/m ;

ABAQUS时程分析实例

ABAQUS时程分析法计算地震反应的简单实例ABAQUS时程分析法计算地震反应的简单实例(在原反应谱模型上 修改) 问题描述: 悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2.1e11Pa,泊松比0.3,所有振型的阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg 的集中质量。反应谱按7度多遇地震,取地震影响系数为0.08,第一组,III类场地,卓越周期Tg=0.45s。 图1 计算对象 第一部分:反应谱法 几点说明: λ本例建模过程使用CAE; λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱; λ *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。 λ ABAQUS的反应谱法计算过程以及后处理要比ANSYS方便的多。 操作过程为: (1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。continue (3)Create lines,在 分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800 mechanical-->>elasticity-->>elastic,young‘s modulus:2.1e11,poisson’s ratio:0.3.

时程分析法

第九章时程分析法 第一节时程分析法的概念 振型分解法仅限于计算结构在地震作用下的弹性地震反应。时程分析法是用数值积 分求解运动微分方程的一种方法,在数学上称为逐步积分法。这种方法是从t=0时刻开始,一个时段接着一个时段地逐步计算,每一时段均利用前一时段的结果,而最初时段应根 据系统的初始条件来确定初始值。即是由初始状态开始逐步积分直至地震终止,求出结 构在地震作用下从静止到振动、直至振动终止整个过程的地震反应。 时程分析法是对结构动力方程直接进行逐步积分求解的一种动力分析方法。时程分 析法能给出结构地震反应的全过程,能给出地震过程中各构件进入弹塑性变形阶段的内 力和变形状态,因而能找出结构的薄弱环节。 时程分析法分为弹性时程分析法和弹塑性时程分析法两类。 第一阶段抗震计算“小震不坏”中,采用时程分析法进行补充计算,这时计算所采用 的结构刚度和阻尼在地震作用过程中保持不变,称为弹性时程分析。 在第二阶段抗震计算“大震不倒”中,采用时程分析法进行弹塑性变形计算,这时结 构刚度和阻尼随结构及其构件所处的非线性状态,在不同时刻可能取不同的数值,称为 弹塑性时程分析。弹塑性时程分析能够描述结构在强震作用下在弹性和非线性阶段的内力、变形,以及结构构件逐步开裂、屈服、破坏甚至倒塌的全过程。 第二节时程分析法的适用范围 一、时程分析法的适用范围 时程分析法是根据选定的地震波和结构恢复力特性曲线,对动力方程进行直接积分,采用逐步积分的方法计算地震过程中每一瞬时的结构位移、速度和加速度反应,从而可观察到结构在强震作用下弹性和非弹性阶段的内力变化以及构件开裂、损坏直至结构倒塌的全过程。但此法的计算工作十分繁重,须借助计算机,费用较高,且确定计算参数尚有许多困难,目前仅在一些重要的、特殊的、复杂的以及高层建筑结构的抗震设计中应用。《建筑抗震设计规范》对时程分析法的适用范围规定如下:

时程分析法

时程分析法 定义:由结构基本运动方程沿时间历程进行积分求解结构振动响应的方法。 概述:时程分析法是世纪60年代逐步发展起来的抗震分析方法。用以进行超高层建筑的抗震分析和工程抗震研究等。至80年代,已成为多数国家抗震设计规范或规程的分析方法之一。 原理:时程分析法在数学上称步步积分法,抗震设计中也称为“动态设计”。由结构基本运动方程输入地面加速度记录进行积分求解,以求得整个时间历程的地震反应的方法。此法输入与结构所在场地相应的地震波作为地震作用,由初始状态开始, 一步一步地逐步积分,直至地震作用终了。 是对工程的基本运动方程,输入对应于工程场地的若干条地震加速度记录或人工加速度时程曲线,通过积分运算求得在地面加速度随时间变化期间结构的内力和变形状态随时间变化的全过程,并以此进行结构构件的界面抗震承载力验算和变形验算。 时程分析法是世纪60年代逐步发展起来的抗震分析方法。用以进行超高层建筑的抗震分析和工程抗震研究等。至80年代,已成为多数国家抗震设计规范或规程的分析方法之一。 “时程分析法”是由结构基本运动方程输入地震加速度记录进行积分,求得整个时间历程内结构地震作用效应的一种结构动力计算方法,也为国际通用的动力分析方法。 “时程分析法”常作为计算高层或超高层的一种(补充计算)方法,也就是说满足了规范要求的时候是可以不用它计算结构的。规范规定:对于特别不规则的建筑、甲类建筑及超过一定高度的高层建筑,宜采用时程分析法进行补充计算。所以有较多设计人员对应用时程分析法进行抗震设计感到生疏。近年来,随着高层建筑和复杂结构的发展,时程分析在工程中的应用也越来越广泛了。 地震动输入对结构的地震反应影响非常大。目前的现状是,输入地震动的选择大多选择为数不多的几条典型记录(如:1940年的El Centro(NS)记录或1952年的Taft记录),国内外进行结构时程分析时所经常采用的几条实际强震记录主要有适用于I类场地的滦河波、适用于II、III类场地的El-Centrol波(1940,N-S)和Taft波(1952,E-w)、适用于IV 类场地的宁河波等。

某框架结构动力时程分析研究

某框架结构动力时程反应分析研究 摘要:结构动力时程分析法是结构动力分析在经历静力法和反应谱法两阶段之后发展起来的。动力时程分析法较反应谱法或拟静力弹塑性分析法更能准确地反映了结构在动力荷载作用下的内力和位移变化, 因而在结构振动及结构抗震计算方面应用广泛。本文根据抗震规范,对一四层钢筋混凝土框架结构进行动力时程分析,将结构作为弹塑性振动系统, 施加动力荷载, 用逐步积分的方式求解依据结构弹塑性恢复力特性建立的动力方程, 直接计算结构在动力荷载作用下的位移、速度和加速度时程反应, 从而能够描述结构在动力荷载作用下,在弹性和非弹性阶段的内力变化,以及结构逐步开裂、屈服、破坏直至倒塌的全过程,对结构的设计进行指导。 关键词:时程分析反应谱弹塑性 1 前言 地震时地面运动是一个复杂的时间-空间过程,地震反应分析的发展经过了静力、反应谱、动力三个阶段,现行的抗震设计方法包括反应谱法和时程分析法[1]。动力阶段又可分为线性和非线性两个阶段,随机分析方法和确定性分析方法是在这一阶段共同发展起来的两种方法。确定性分析方法又可分为反应谱分析法和时程分析法,相应地形成三种方法,即:反应谱分析方法、时程分析方法和随机分析方法。人们对结构多维地震响应研究主要从反应谱和动力研究这两个阶段进行的。 2 方法比较 根据《建筑结构抗震规范》,对单自由度体系,给定场地条件以及结构的自振周期和阻尼比,便可以从反应谱中获得结构的最大地震响应(位移、速度和加速度),进而可求出结构的地震力。对于多自由度体系,首先采用多自由度体系的反应谱理论,即先利用模态分析法将多自由度体系分解为一系列广义单自由度体系,最后将各振型的最大值用一定的振型组合方法组合出结构的最大地震反应[2]。由于反应谱方法基本正确地反映了地震动特性,并考虑了结构的动力特性,所以对于一般的结构而言,具有良好的精度,且概念明确,计算方便。 地震地面运动是一个非平稳随机过程,而随机振动法充分考虑了地震发生的概率特性,所以普遍认为随机振动法是一种合理的分析方法[3] 。但是,随机振动法的缺点是它的计算量庞大而且对于非线性问题可能引起较大的误差,在处理罕遇地震下的强非线性问题时有其局限性。 时程分析法是确定性动力分析方法的一种,是发展较为成熟、应用较多的一种方法。由于这种分析方法是在离散时间点上一步一步地求响应的数值解,所以该法可以在任一时间点上随时修改结构参数,很适合于处理参数随时间变化的非

弹性与弹塑性动力时程分析方法中若干问题探讨

建 筑 结 构 学 报(增刊1) Journal of Building Structures (Supp le mentary Issue 1) 弹性与弹塑性动力时程分析方法中若干问题探讨 杨志勇,黄吉锋,邵 弘 (中国建筑科学研究院结构所,北京100013) 摘要:依据大量实际工程弹性、弹塑性动力时程分析经验,结合实际工程应用,探讨了弹性、弹塑性动力时程分析方法中的一些基本问题。针对性地分析了动力时程分析方法中地震波的离散性;地震波如何与反应谱曲线在统计意义上相符;人工模拟地震波方法及其工程应用;弹性、弹塑性时程分析法选取地震波的基本原则;弹性时程分析法地震波的选取数量;如何将反应谱分析结果与时程分析结果取较大值等方面的问题。通过大量的算例分析可以看出,正确地应用弹性、弹塑性动力时程分析方法需要从多个方面进行准确理解和把握,教条地应用很难发挥弹性、弹塑性动力时程分析应有的作用。关键词:弹性时程分析法;弹塑性时程分析法;地震波;反应谱中图分类号:T U31113 文献标识码:A D iscussi on on linear and nonlinear ti m e hist ory analysis method Y ANG Zhiyong,HUANG Jifeng,SHAO Hong (Building Structure Research I nstitute,China Academy of Building Research,Beijing 100013,China ) Abstract:This paper discussed linear and nonlinear ti m e hist ory analysis method,es pecially concerning with the following issues:the disperse of earthquake wave,scaling the earthquake wave t o fit the design res ponse s pectrum of China code,the earthquake wave si mulati on method,the basic p rinci p le of earthquake wave selection,the number of waves required in ti me hist ory analysis,and the maxi mum structural res ponse fro m s pectrum analysis and ti me hist ory analysis .A s sho wn in many examp les,linear and nonlinear ti m e hist ory analysis method should be used app r op riately t o obtain useful results . Keywords:linear ti me history analysis method;nonlinear ti me history analysis method;earthquake wave;res ponse s pectrum 基金项目:建设部软科学研究资助项目(062K9231)。 作者简介:杨志勇(1974— ),男,黑龙江齐齐哈尔人,工学博士,副研究员。收稿日期:2008年6月 0 前言 《建筑抗震设计规范》(G B 50011—2001)、《高层建 筑混凝土结构技术规程》(JGJ 3—2002)、《高层民用建筑钢结构技术规程》(JGJ 99—98)等对于弹性、弹塑性 动力时程分析方法进行了具体的规定,涉及到弹性、弹塑性时程分析方法适用范围,地震波的选取原则,变形 验算的限值规定等方面[123] 。随着复杂、超限结构的增多,弹性、弹塑性动力时程分析方法在实际建筑结构抗震设计中得到了越来越多的工程应用。通过对一定数量的实际工程弹性、弹塑性动力时程分析实例的参与,发现在实际应用中存在着较多方面的问题,对其中的一些重要问题做一总结和探讨,为弹性、弹塑性动力时程分析方法的进一步完善提供量化依据。 1 地震波的离散性 图1所示为一幢17层高层混凝土结构模型,该结构有2层地下室,抗震设防烈度为8度,Ⅱ类场地,多遇地震特征周期0135s 。图2、图3给出了该结构4条天然波和4条人工波的多遇地震弹性时程分析法和反应谱分析法计算得到的顶点位移、基底剪力响应结果,这些地震波来源于PKP M 软件的地震波数据库。表1为多遇地震时8条地震波的弹性时程分析与反应谱分析响应的对比结果,对比曲线见图2。表2为多遇地震弹性时程分析法中地震波离散性的分析结果,对比曲线见图3。 3 12

时程分析法介绍

时程分析法 时程分析法又称直接动力法,在数学上又称步步积分法。顾名思义,是由初始状态开始一步一步积分直到地震作用终了,求出结构在地震作用下从静止到振动以至到达最终状态的全过程。它与底部剪力法和振型分解反应谱法的最大差别是能计算结构和结构构件在每个时刻的地震反应(内力和变形)。 当用此法进行计算时,系将地震波作为输入。一般而言地震波的峰值应反映建筑物所在地区的烈度,而其频谱组成反映场地的卓越周期和动力特性。当地震波的作用较为强烈以至结构某些部位强度达到屈服进入塑性时,时程分析法通过构件刚度的变化可求出弹塑性阶段的结构内力与变形。这时结构薄弱层间位移可能达到最大值,从而造成结构的破坏,直至倒塌。作为高层建筑和重要结构抗震设计的一种补充计算,采用时程分析法的主要目的在于检验规范反应谱法的计算结果、弥补反应谱法的不足和进行反应谱法无法做到的结构非弹性地震反应分析。 时程分析法的主要功能有: 1)校正由于采用反应谱法振型分解和组合求解结构内力和位移时的误差。特别是对于周期长达几秒以上的高层建筑,由于设计反应谱在长周期段的人为调整以及计算中对高阶振型的影响估计不足产生的误差。 2)可以计算结构在非弹性阶段的地震反应,对结构进行大震作用下的变形验算,从而确定结构的薄弱层和薄弱部位,以便采取适当的构造措施。 3)可以计算结构和各结构构件在地展作用下每个时刻的地震反应(内力和变形),提供按内力包络值配筋和按地震作用过程每个时刻的内力配筋最大值进行配筋这两种方式。 总的来说,时程分析法具有许多优点,它的计算结果能更真实地反映结构的地震反应,从而能更精确细致地暴露结构的薄弱部位。 时程分析法有关的几个问题: 1、恢复力特性曲线; 恢复力特性曲线应用于计算必须模型化,常用的有双线型模型与退化三线型模型;退化三线型模型(附图)能较好地反映以弯曲破坏为主的钢筋混凝土构件的的特性,所以适用于此类构件计算。 2、结构计算模型及分析方法; 3、地震波的选用; 4、时程分析计算结果的处理。 时程分析要依靠计算机及软件,作为一般的工程设计人员,只需要了解1、2两个问题的内容,为软件的选用及前期数据准备做基础。问题3、4的内容,特别是问题3的内容,设设计人员能够把握的,也是能否得到良好分析结果的重要因素。 目前结构动力时程分析模型主要有三种:三维空间模型、二维平面模型和层模型。 从理论上讲,三维空间模型最接近结构的实际情况,是较理想的分析模型,计算精度也高,但由于这种模型计算工作量巨大,在目前的微机硬件资源条件下,大型结构设计中很少采用。二维平面模型和层模型对结构作了较多的简化处理,二维平面模型是将结构离散成一系列相互独立的“榀”,这种模型适用于刚度分布均匀、几何布置规则的结构。仅就独立的一榀而言,二维平面模型的弹塑性动力反应分析理论研究比较成熟,计算工作量有限,效率和精度都比较高,但由于建筑造型的多样化,结构不规则布置是经常的,将二维平面模型应用于不规则

底部剪力法,反应谱法和时程分析法三者应用分析

从传统的观点来看,底部剪力法,反应谱法和时程分析法是三大最常用的结构地震响应分析方法。那么正确的认识它们的一些关键概念,对于建筑结构的抗震设计具有非常重要的意义。HiStruct在此简单的总结一些,全当抛砖引玉。 1. 底部剪力法 高规规定:高度不超过40m、以剪切变形为主且质量和刚度沿高度分布比较均匀的高层建筑结构,可采用底部剪力法。底部剪力法适用于基本振型主导的规则和高宽比很小的结构,此时结构的高阶振型对于结构剪力的影响有限,而对于倾覆弯矩则几乎没有什么影响,因此采用简化的方式也可满足工程设计精度的要求。底部剪力法尚有一个重要的意义就是我们可以用它的理念,简化的估算建筑结构的地震响应,从而至少在静力的概念上把握结构的抗震能力,它还是很有用的。 2. 反应谱方法 高规规定:高层建筑结构宜采用振型分解反应谱法。对质量和刚度不对称、不均匀的结构以及高度超过100m的高层建筑结构应采用考虑扭转耦联振动影响的振型分解反应谱法。反应谱的振型分解组合法常用的有两种:SRSS和CQC。虽然说反应谱法是将并非同一时刻发生的地震峰值响应做组合,仅作为一个随机振动理论意义上的精确,但是从实际上它对于结构峰值响应的捕捉效果还是很不错的。一般而言,对于那些对结构反应起重要作用的振型所对应频率稀疏的结构,并且地震此时长,阻尼不太小(工程上一般都可以满足)时,SRSS是精确的,频率稀疏表面上的反应就是结构的振型周期拉的比较开;而对于那些结构反应起重要作用的振型所对应的频率密集的结果(高振型的影响较大,或者考虑扭转振型的条件下),CQC是精确的。这是因为对于建筑工程上常用的阻尼而言,振型相关系数(见高规3.3.11-6)在很窄的范围内才有显著的数值。 3.反应谱分析的精确性 对于采用平均意义上的光滑反应谱进行分析而言,其峰值估计与相应的时程分析的平均值相比误差很小,一般只有百分之几,因此可以很好的满足工程精度的要求,正是在这个平均(普遍性)意义上,我们认为反应谱分析方法是精确的。但是对于单个锯齿形的反应谱而言,其分析结果与单个波的时程分析,误差可以达到10-30%之间,因此在个别(特殊性)意义上而言,反应谱分析结果是有误差的,因此,规范规定对于复杂的或者高层建筑需要采用时程分析进行补充计算和验证。 4.反应谱分析与时程分析对于高阶振型计算的不同之处 一般反应谱的高频段是采用平台段来表达的,实际上对于高阶振型反应不显著的结构而言,反应谱适用性很好,也足够准确。但是对于高柔结构而言,一般高阶振型的影响比较显著,采用时程分析的时候,等于其高频段的峰值并未被人为削成平台段,因此采用时程分析的时候此频段的地震响应可能很大,一般表现为高层建筑的顶部或者对其他结构对高阶振型影响显著部位,其地震响应峰值比反应谱分析结果要大(但是总体的剪力和弯矩差别则没这么明显)。 5.时程分析 理论上时程分析是最准确的结构地震响应分析方法,但是由于其分析的复杂性,且地震波的随机性,因此一般只是把它作为反应谱的验证方法而不是直接的设计方法使用。高规规定:3 7~9度抗震设防的高层建筑,下列情况应采用弹性时程分析法进行多遇地震下的补充计算:

动力弹塑性时程分析的方法及其应用

动力弹塑性时程分析的方法及其应用 彪仿俊1 阎晓铭1 陈志强1王传甲1王庆扬1,2张劲2 (1 深圳市电子院设计有限公司;2 中国石油大学) 摘要:本文对现有的弹塑性分析方法进行了概述,重点介绍了动力弹塑性时程分析的理论、优点和基本方法,及该方法在东莞一实际工程中的成功应用,对于动力弹塑性时程分析方法在高层、特别是超限高层分析中的推广应用提供了有益的参考和借鉴。 关键词: 静力弹塑性分析动力弹塑性时程分析 ABAQUS 混凝土塑性损伤模型 1.引言 《建筑抗震设计规范》5.5.2条规定,对于特别不规则的结构、板柱-抗震墙、底部框架砖房以及高度不大于150m的高层钢结构、7度三、四类场地和8度乙类建筑中的钢筋混凝土结构和钢结构宜进行弹塑性变形验算。对于高度大于150m的钢结构、甲类建筑等结构应进行弹塑性变形验算。《高层建筑混凝土结构技术规程》5.1.13条也规定,对于B级高度的高层建筑结构和复杂高层建筑结构,如带转换层、加强层及错层、连体、多塔结构等,宜采用弹塑性静力或动力分析方法验算薄弱层弹塑性变形。 历史上的多次震害也证明了弹塑性分析的必要性:1968年日本的十橳冲地震中不少按等效静力方法进行抗震设防的多层钢筋混凝土结构遭到了严重破坏,1971年美国San Fernando地震、1975年日本大分地震也出现了类似的情况。相反,1957年墨西哥城地震中11~16层的许多建筑物遭到破坏,而首次采用了动力弹塑性分析的一座44层建筑物却安然无恙,1985年该建筑又经历了一次8.1级地震依然完好无损。 可以看出,随着建筑高度迅速增长,复杂程度日益提高,完全采用弹性理论进行结构分析计算和设计已经难以满足需要,弹塑性分析方法也就显得越来越重要。2.现有弹塑性分析方法综述 2.1 静力弹塑性分析 静力弹塑性分析(PUSH-OVER ANAL YSIS,以下简称POA)方法也称为推覆法,它基于美国的FEMA-273抗震评估方法和ATC-40报告,是一种介于弹性分析和动力弹塑性分析之间的方法,其理论核心是“目标位移法”和“承载力谱法”。 1.计算方法 (1)建立结构的计算模型、构件的物理 参数和恢复力模型等; (2)计算结构在竖向荷载作用下的内 力; (3)建立侧向荷载作用下的荷载分布形 式,将地震力等效为倒三角或与第 一振型等效的水平荷载模式。在结 构各层的质心处,沿高度施加以上 形式的水平荷载。确定其大小的原 则是:水平力产生的内力与前一步 计算的内力叠加后,恰好使一个或 一批杆件开裂或屈服; (4)对于开裂或屈服的杆件,对其刚度 进行修改后,再增加一级荷载,又 使得一个或一批杆件开裂或屈服; (5)不断重复步骤(3)、(4),直至结构 达到某一目标位移或发生破坏,将 此时的结构的变形和承载力与允许

反应谱与时程理论对比

反应谱是在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形。更直观的定义为:一组具有相同阻尼、不同自振周期的单质点体系,在某一地震动时程作用下的最大反应,为该地震动的反应谱。 反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK= αG 其中α为地震影响系数,即单质点弹性体系在地震时最大反应加速度。另一方面地震影响系数也可视为作用在质点上的地震作用与结构重力荷载代表值之比。 目前,反应谱分析法比较成熟,一些主要国家的抗震规范均将它作为基本设计方法。不过,它主要适合用于规则结构。对于不规则结构以及高层建筑,各国规范多要求采用时程分析法进行补充计算。 地震作用反应谱分析本质上是一种拟动力分析,它首先使用动力法计算质点地震响应,并使用统计的方法形成反应谱曲线,然后使用静力法进行结构分析。但它并不是结构真实的动力响应分析,只是对于结构动力响应最大值进行估算的近似方法,在线弹性范围内,反应谱分析法被认为是高效而且合理的方法。反应谱分为加速度反应谱、速度反应谱和位移反应谱。基于不同周期结构相应峰值的大小,我们可以绘制结构速度及加速度的反应谱曲线。一般情况下,随着周期的延长,位移反应谱为上升曲线,速度反应谱为平直曲线,加速度反应谱为下降曲线,目前结构设计主要依据加速度反应谱。 加速度反应谱在短周期部分为快速上升曲线,并且在结构周期与场地特征周期接近时出现峰值,后面更大范围为逐渐下降阶段。峰值出现的时间与对应的结构周期和场地特征周期有关。一般来说结构自振周期的延长,地震作用将减小。当结构自振周期接近场地特征周期时,地震作用最大。 反应谱分析方法需要先求解一个方向地震作用响应,再基于三个正交方向的分量考虑结构总响应,即基于振型组合求解一个方向的地震响应,再基于方向组合求解结构总响应。 振型组合方法有SRSS法,CQC法。 1.SRSS法 SRSS法是平方和平方根法,这种方法假定所有最大模态值在统计上都是相互独立的,通过求各参与阵型的平方和平方根来进行组合。该法不考虑各振型间的藕联作用,实际上结构模态都是相互关联的,不可避免的存在藕联效应,对那些相邻周期几乎相等的结构,或者不规则结构不适用此法。《抗规》GB50011-2010规定的SRSS法为如下所示:

弹性、弹塑性时程分析

PKPM软件园地 建筑结构.技术通讯 2007年1月 弹性、弹塑性时程分析法在结构设计中的应用 杨志勇 黄吉锋 (中国建筑科学研究院 北京 100013) 0 前言 地震作用是建筑结构可能遭遇的最主要灾害作用之一。几十年来,人们积累了大量的实测地震资料,这些资料多以位移、速度或者加速度时程的形式体现。与此相对应,时程分析方法也被认为是最直接的一种计算建筑结构地震响应的方法。但是,由于地震作用随机性导致计算结果的不确定性,弹性时程分析方法只是结构设计的一种辅助计算方法;虽然如此,抗震规范为了增强重要结构的抗震安全性,还是将弹性时程分析方法规定为常遇地震作用下振型分解反应谱法的一种补充计算方法;尤其是考虑了结构的弹塑性性能后,弹塑性时程分析方法更是被普遍认为是一种仿真的罕遇地震作用响应计算方法。 《建筑抗震设计规范》(GB50011-2001)第3.6.2,5.1.2,5.5.1,5.5.2,5.5.3等条文规定了时程分析相关的内容。下面结合TAT ,SATWE ,PMSAP 和EPDA 等软件应用,探讨如何将弹性、弹塑性时程分析正确应用到结构设计中去。 1 弹性时程分析的正确应用 11 正确地在软件中应用弹性时程分析方法需要对规范的相关条文规定有正确的认识。以下几点是需要特别明确的: (1)抗震规范第5.1.2条第3点规定,“可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值”。在设计过程中,如何实现“较大值”有不同的做法:1)设计采用弹性时程分析的构件内力响应包络值的多波平均值与振型分解反应谱法计算结果二者的较大值直接进行构件设计;2)在实现振型分解反应谱方法时,放大地震力使得到的楼层响应曲线包住时程分析楼层响应曲线的平均值。 图1 SATWE 地震作用放大系数 前一种做法可能使得构件配筋较大,因为在时程分析过程中,构件内力的最大响应具有不同时性,采用包络值进行设计会使得构件内力,尤其是压弯构件内力偏于保守。因此, TAT ,SATWE ,PMSAP 等软件均提供了地震力放大功能。SATWE 地震作用放大系数见图1,可以通过适当地放大振型分解反应谱法的地震作用来满足相应的规范要求。TAT 软件给出了一种折中的做法,如果设计者进行了弹性时程分析,则程序会将弹性时程分析结果作为一种地震荷载工况进行组合、设计。但是为了避免设计结果过于保守,程序会进行构件弹性时程分析内力的预组合。 (2)“采用时程分析方法时,应按建筑场地类别和设计地震分组选用不少于两组的实际强震记录和一组人工模拟的加速度时程曲线”。建筑结构在不同地震波作用下的响应差别可能较大,选用多条地震波的平均值可在一定程度上避免离散性。人工模拟地震波一般是以规范反应谱为基础,通过蒙特卡罗方法来得到,更加贴近规范反应谱或反映场地土的当地特征。TAT ,SATWE ,PMSAP ,EPDA 等软件按照结构的特征周期给出多组天然波和人工波,见图2。无论是进行弹性还是进行弹塑性时程分析,均要选取足够数量的地震波进行计算,以得到有代表意义的结果。 图2 按照特征周期区分的地震波库 (3)“多波平均地震响应系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符”。其条文说明解释为二者在各个周期点上相差不大于20%。对于人工波来说,这一规定一般是天然满足的,因为人工波是拟合规范反应谱得到的。对于天然波来讲则较难满足,因为规范的反应谱是依据众多实际采集的地震动时程曲线通过平滑化后的概率平均意义上的结果。图3所示为上述软件地震波库0.45s 特征周期中的2条天然波的动力放大系数谱曲线,可见与规范反应谱的差异还是明显的。那么如何执行规范的这条规定呢?其实规范的规定从概念上讲是合理的,因为频谱特征是地震波的最重要特征之一,一定程度上会影响时程分析结果的合理性。一种可行的做法是判断某条实际地震波 第一作者简介:杨志勇,男,1974.6出生,工学博士,副研究员。

PKPM动力时程共19页

7、动力时程分析 7.1结构的弹性动力时称分析(图01 ) 图01主界面 图1 主菜单 表5.1.2.1 采用时程分析法的房屋高度范围 房屋高度范围 度、烈度、场地 别 8度Ⅰ、Ⅱ >100 类和7`度 >80 8度Ⅲ、Ⅳ 类

9度>60 1.1 结构的弹性动力时程分析(图1.1):位置:主菜单\结构的弹性动力时称分析 图1 地震波选择 操作说明及规范链接: ○〈选择地震波〉:选用不少于二组的实际强震记录,一组人工模拟的加速度时程曲线。见〈建筑抗震设计规范〉[GB50011-2001]第5.1.2条。 ○〈地震波信息〉:纵坐标示〈加速度〉,横坐标示记录时间。 ○〈峰值加速度值〉:最大值见〈建筑抗震设计规范〉[GB50011-2001]5.1.2条 表5.1.2.-2 时程曲线最大值 地震影响6度7度8度9度 多遇地震1835(55)70(110)140 罕遇地震220(310)4000(510)620○方向: 计算单向地震时,主分量峰值加速度赋正确值,其它赋0; 计算双向地震时,主、次分量峰值加速度赋正确值,其它赋0; ○楼层剪力、楼层弯矩不分塔统计:应勾选。 1.2分析参数(图1.2):位置:主菜单\分析参数 图1.2 弹性动力时程分析参数 操作说明及规范链接:

○〈地震波主方向与X轴夹角〉:可用90。 ○〈主分量峰值加速度〉: ○〈次分量峰值加速度〉: ○〈垂直分量峰值加速度〉: 计算单向地震时,主分量峰值加速度赋正确值,其它赋0; 计算双向地震时,主、次分量峰值加速度赋正确值,其它赋0; ○〈结构阻尼比〉: 钢筋混凝土结构:0.05; 小于12层纲结构:0.03; 大于12层纲结构:0.035。 ○〈第一条地震波放大系数〉:可不放大。 ○〈第二条地震波放大系数〉:可不放大。 ○〈第三条地震波放大系数〉:可不放大。 2.1、时程分析结果图形显示(图2.1):位置:主菜单\时程分析结果图形显示 图2.1.位置菜单 2.1.1动力时程分析结果(WDYNA.OUT1): 位置:位置菜单\动力时程分析结果WDYNA.OUT WDYNA.OUT动力时程分析结果 2.1.2 最大楼层位移曲线(图2.1.2):位置:位置菜单\最大楼层位移曲线 图2.1.2最大楼层位移曲线

推荐:什么是结构时程分析

什么是结构时程分析 【学员问题】什么是结构时程分析? 【解答】时程分析是结构抗震分析较为高端的一种分析方法。其实质是将实际地震时测得的地震加速度数据输入结构,根据结构动力学方程,通过数值方法求解结构的地震响应。由于地震加速度随时间是剧烈变化的,因此按这种方法得到的结构响应也将与时间有关,故称时程分析。 时程分析分为线弹性时程分析和弹塑性时程分析两种,其区别在于前者仅考虑材料的线弹性性质,而后者考虑材料的弹塑性性质。 这里必须明确一个概念:材料弹塑性性质构件弹塑性性质结构弹塑性性质。 这三个概念是不同的。 材料弹塑性属于弹塑性力学研究对象,工程上直接应用弹塑性力学的理论方法还比较困难,例如应力空间,屈服曲面,三参数强化法则,五参数强化法则,随动强化,等向强化,流动法则,这些概念对于不少工程师来讲估计挺头疼的。究其原因,一是对数学和力学的要求较高,二是这些复杂的力学理论也不便于工程使用。不过无论如何,力学是整个土木工程的基石,良好的力学功底对于结构工程师来讲还是相当重要的。构件弹塑性现多建立在塑性铰理论基础上,例如杆件在外加力作用下进入弹塑性后在杆件的端部产生塑性铰。结构弹塑性性质则是构件弹塑性性质的宏观反应。

静力弹塑性分析:也称Pushover分析、推覆分析。结构在假定的水平力分布下,沿水平方向不断施加单向推覆力,直到结构构件产生足够多的塑性铰而形成机构发生结构整体破坏。简单通俗地说,就是不断施加外力,把结构给推倒了为止。推覆过程中关心的几个关键点包括:结构线弹性点、结构屈服点、结构性能点、结构承载力点。注意这些点都是针对结构整体受力特性而言。然而,静力弹塑性分析的假定是存在缺陷的:其一是采用假定的地震力分布模式,其二是单向加载而不是像真实地震作用那样往复加载。所以,由静力弹塑性分析得到的计算结果不一定能够真实地放映结构的实际受力状态。 动力弹塑性分析:这种方法与静力弹塑性分析方法的不同之处在于,直接将地震加速度波输入结构计算结构的弹塑性地震响应,其弹塑性性质一般也基于塑性铰理论。这种分析方法更接近实际情况,因此更准确些。当然这种分析方法对工程人员的理论要求较高,而且较耗费计算机资源。现在仅在少数大型重要复杂工程中有所应用,当然也仅是少数水平较高设计院的专利。 以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。 结语:借用拿破仑的一句名言:播下一个行动,你将收获一种习惯;播下一种习惯,你将收获一种性格;播下一种性格,你将收获一种命运。事实表明,习惯左右了成败,习惯改变人的一生。在现实生活中,大多数的人,对学习很难做到学而不厌,学习不是一

动力时程分析和静力弹塑性分析方法的相同于不同点

时程分析法又称直接动力法,在数学上又称步步积分法。顾名思义,是由初始状态开始一步一步积分直到地震作用终了,求出结构在地震作用下从静止到振动以至到达最终状态的全过程。它与底部剪力法和振型分解反应谱法的最大差别是能计算结构和结构构件在每个时刻的地震反应(内力和变形)。 当用此法进行计算时,系将地震波作为输入。一般而言地震波的峰值应反映建筑物所在地区的烈度,而其频谱组成反映场地的卓越周期和动力特性。当地震波的作用较为强烈以至结构某些部位强度达到屈服进入塑性时,时程分析法通过构件刚度的变化可求出弹塑性阶段的结构内力与变形。这时结构薄弱层间位移可能达到最大值,从而造成结构的破坏,直至倒塌。 作为高层建筑和重要结构抗震设计的一种补充计算,采用时程分析法的主要目的在于检验规范反应谱法的计算结果、弥补反应谱法的不足和进行反应谱法无法做到的结构非弹性地震反应分析。 时程分析法的主要功能有: 1)校正由于采用反应谱法振型分解和组合求解结构内力和位移时的误差。特别是对于周期长达几秒以上的高层建筑,由于设计反应谱在长周期段的人为调整以及计算中对高阶振型的影响估计不足产生的误差。 2)可以计算结构在非弹性阶段的地震反应,对结构进行大震作用下的变形验算,从而确定结构的薄弱层和薄弱部位,以便采取适当的构造措施。 3)可以计算结构和各结构构件在地展作用下每个时刻的地震反应(内力和变形),提供按内力包络值配筋和按地震作用过程每个时刻的内力配筋最大值进行配筋这两种方式。 总的来说,时程分析法具有许多优点,它的计算结果能更真实地反映结构的地震反应,从而能更精确细致地暴露结构的薄弱部位。 时程分析法有关的几个问题: 1、恢复力特性曲线; 恢复力特性曲线应用于计算必须模型化,常用的有双线型模型与退化三线型模型;退化三线型模型(附图)能较好地反映以弯曲破坏为主的钢筋混凝土构件的的特性,所以适用于此类构件计算。 2、结构计算模型及分析方法; 3、地震波的选用; 4、时程分析计算结果的处理。

时程分析

19. 时程分析(Time History Analysis) 时程分析(Time History Analysis)中所使用的动力平衡方程如下。
: 质量矩阵(Mass Matrix) : 阻尼矩阵(Damping Matrix) : 刚度矩阵(Stiffness Matrix) : 动力荷载 、 、 : 位移、速度、加速度
时程分析是可以求出建筑物在动力荷载作用下的动力平衡方程解的方法,这 种方法利用建筑物的动力特性和承受的荷载,计算出处于任意时间内建筑物 的变形、内力等。时程分析方法中有直接积分法(Direct Integration)和振 型叠加法(Modal Superposition),由于振型叠加法的效果好,所以被较多 地使用。 振型叠加法 振型叠加法利用建筑物位移之间具有的正交性,通过线性组合的形式进行表 示,公式如下。这种方法是在假定阻尼矩阵可以用质量矩阵和刚度矩阵的线 性组合进行表示的前提之下。

(1)
(2) (3)
(4)
(5)
: Rayleigh 系数 : 第 i 振型的阻尼比 : 第 i 振型的基本周期 : 第 i 振型的模态 : 第 i 振型的单自由度方程的解 时程分析中,建筑物的位移可以按照像公式(4)一样使用振型模态和单自由 度方程解的乘积表示,位移的准确性受到所使用的振型数量的影响。这种方 法是结构分析程序中使用最多的方法,可以说是大型建筑物线性动力分析中 非常有效的方法。但是在非线性动力分析或者装有阻尼装置,阻尼无法用刚 度和质量的线性组合进行表现时是不能使用该方法的,这是该方法的缺点。

时程分析报告阻尼模型附数值计算方法

时程分析阻尼模型及数值计算方法 1、阻尼模型 阻尼是用以描述结构在振动过程中能量的耗散方式,是结构的动力特性,是影响结构动力反应的重要因素之一。结构振动时,由于结构材料的内摩擦、材料的滞回效应等机制导致能量消耗,使结构振动幅值逐渐减少,最后直至完全静止。结构的耗能机制非常复杂,它与介质的特征、结构粘性等诸多因素有关。常用的是粘滞阻尼理论,它认为,阻尼力与速度成正比。试验也证明,对于许多材料,这种阻尼理论是可行的,并且物理关系简单,便于应用和计算。 根据实测去确定阻尼大小是相当困难的,但由于阻尼的影响通常比惯性力和刚度的影响小,所以一般都采用简化的方法考虑阻尼。本文采用最为广泛应用的瑞雷阻尼。 瑞雷阻尼假设阻尼矩阵是质量矩阵和刚度矩阵的线性组合,即 [][][]C M K αβ=+ (4.15) 式中,α、β为常数,可以直接给定,或由给定的任意二阶振型的阻尼比i ξ、j ξ反算求得。 根据振型正交条件,待定常数α和β与振型阻尼比之间的关系应满足: 22 k k k βωα ξω= + (k =1,2,3,…,n ) (4.16a) 任意给定两个振型阻尼比i ξ和j ξ后,可按下式确定比例常数 22 2j i i j i j i j ξωξωαωωωω-=- 222j i i j i j ξωξωβωω-=- (4.16b) i ω、j ω分别为第i 、j 振型的原频率。本文取前两阶振型频率求得α、β值。 2、数值积分方法 多自由度结构体系动力微分方程为: []{}[]{}[]{}[]{}()g M x C x K x M x t I ++=- (4.17) 其中,[]M -质量矩阵;[]C -阻尼矩阵;[]K -刚度矩阵;{}I -单位对角阵;() g x t -地面运动加速度;{}x 、{}x 、{}x -结构楼层相对于地面的位移、速度和加速度反应。

相关文档
最新文档