水肥一体化之节水节肥技术实践与案例应用分享

水肥一体化之节水节肥技术实践与案例应用分享
水肥一体化之节水节肥技术实践与案例应用分享

醴陵市葡萄园水肥一体化之节水节肥技术

醴陵市土壤肥料工作站廖世喜李江林

2016年4月

摘要:水肥一体化技术是将灌溉与施肥融为一体的农业新技术。葡萄园水肥一体化是借助压力灌溉系统,将可溶性固体肥料或液体肥料配兑而成的肥液与灌溉水一起,均匀、准确地输送到作物根部土壤。采用灌溉施肥技术,可按照作物生长需求,进行全生育期需求设计,把水分和养分定量、定时,按比例直接提供给作物。

葡萄园水肥一体化智能灌溉系统可以帮助生产者很方便的实现自动的水肥一体化管理。系统由系统云平台、墒情数据采集终端、视频监控、施肥机、过滤系统、阀门控制器、电磁阀、田间管路等组成。整个系统可根据监测的土壤水分、作物种类的需肥规律,设置周期性水肥计划实施轮灌。施肥机会按照用户设定的配方、灌溉过程参数自动控制灌溉量、吸肥量、肥液浓度、酸碱度等水肥过程的重要参数,实现对灌溉、施肥的定时、定量控制,充分提高水肥利用率,实现节水、节肥,改善土壤环境,提高作物品质的目的。该系统广泛应用于大田、旱田、温室、果园等种植灌溉作业。

一、水肥一体化膜下滴灌

膜下滴灌水肥一体化技术把滴灌技术与地膜覆盖栽培技术结合起来,充分利用滴灌施肥的节水节肥作用,配合地膜覆盖的增温保墒作用,从而达到节水、节肥、高产、优质的目的。滴灌水肥一体化技术是借助压力灌溉系统,将可溶性固体肥料或液体肥料配兑而成的肥液与灌溉水融为一体,均匀、准确、定时、定量地供给作物吸收的一项农业新技术。也就是利用其灌溉系统设备,把灌溉水或溶于水中的化肥溶液加压(或地形自然落差)、过滤,通过各级管道输送到田园,再通过滴头以水滴的形式不断地湿润果树根系主要分布区的土壤,使其经常保持在适宜作物生长的最佳含水状态。

1、水肥一体化滴灌施肥系统的选择

葡萄园选择滴灌施肥系统,选用动力压差系统,滴灌水压力由加压泵来完成,同时要有缓冲池作为水源的调节;灌水器一般应用滴灌管;施肥装置一般选择压差式施肥罐或注肥泵。

2、水肥一体化滴灌水运行与大水漫灌的区别

滴灌水在土体中通过滴头不断的滴水,土体纵切面有上而下逐渐扩润,横切面由中心点由里向外逐渐扩润,滴点之间、滴灌管之间经过时间的延续相互重叠湿润;而土壤表面始终保持干燥状态,不宜形成板结,抑制了杂草的生长。真正达到了浇作物的效果。

大水漫灌则是由地头开始,水在田面整体下渗,地头水极度浪费,地尾水不能足够渗到,不仅水浪费,而且容易造成地面板结。

3、水肥一体化滴灌管的铺设

不同作物、不同树龄、作物生长的不同时期、不同的栽培方式,滴灌管离作物主干基部的距离应有所不同,合适的铺设距离对滴灌浇水施肥的效果影响较大。铺设的原则是:滴灌管上的滴点应在作物根系生长最集中的部位。根据这一原则,葡萄的不同种植方式:篱架栽植应在两侧顺行铺设;棚架栽植应在棚下根据行距大小顺行铺设2-3根管,每根距离1-1.2米。以此类推。

4、水肥一体化大田滴灌系统及设施的冬前管理

入冬前,由于葡萄已经收获不需要灌水作业,为了下一年的安全浇水和系统中的设施、设备的冬季安全越冬,需要做好以下几个方面的工作:

一是打开蓄水池、滴灌主管道最低处的排水阀,放干其中的存水;并关好阀门。二是将过滤器、施肥器进行清洗,之后安装待用。

三是将田间滴灌管卸下,放干存水,盘好放入仓库。

四是田间露出田面的支管道口、水表等部件,可用带颜色的塑料袋包好,有明显标志,以免人蓄破坏。

做好这几项工作,可延长系统、设施的使用寿命。

5、水肥一体化滴灌设施操作规程

5.1水肥一体化运行操作步骤

1、开启要灌溉田间地块的各阀门,检查清理两个过滤器。灌溉过程中要对系统首部组合过滤器(离心+网式)定时冲洗。对于离心式过滤器:根据水质含沙量多少,对储沙罐内的沙子进行冲洗,冲洗时先打开压盖,将沙子取出冲净即可。对于网式过滤器:手工清洗时,板动手柄,放松螺杆,打开压盖,取出滤网,刷洗筛网上的污物并用清水冲洗干净;自动冲洗时,打开排污阀,反复冲洗,直到

正常为止。

2、由深井通过管灌系统或深井直接,经过已开启的蓄水池阀门,将水注入池中。水位超过池内水泵时,合闸启动水泵运行,及时检查电源电压,检查水表压力不得超过2.5。

3、池内水泵运行正常后,到田间巡回检查各个滴头滴水是否正常,不滴水的地方可用木棍轻轻震动,保证所有滴头正常滴水。

4、田间检查完后,对所施可溶性化肥按比例配方在适当容器中,充分溶解,可使用细纱网或纱布进行过滤,将不含残渣的肥料溶液注入施肥罐或池中待用。先开启施肥罐出水口开关,再开启进水口开关。如果用简易施肥池,注意注肥泵的压力要大于输水管的压力。

5、施肥过程应放在该组浇水的中间环节,以利于滴灌管得到充分清洗,减少堵塞现象发生。施肥结束后,不要立即停止,系统须运行一段时间将剩余肥料用清水冲洗干净。肥料全部施完后,先关闭进水口开关,再关闭施肥罐出水口开关。根据水表水量确定达到要求的灌水量时,更换下一组地块,应先开启下一组各开关,再关已灌水的所有开关,下一组的操作步骤按以上重复进行。

6、所有地块灌水结束后,先关闭管灌系统或深井的开关或阀门,其次关闭池内水泵开关,最后关闭田间的各开关。对过滤器等设备进行全面检查,达到下一次正常运行的标准。

6、水肥一体化技术应用效果

实施水肥一体化技术,实现了三个转变:即由大水漫灌转变为浸润式灌溉,由浇地转变为浇作物,由单一浇水转变为浇营养液。其效果主要体现在以下八个方面:

1、节水。水肥一体化技术可减少水分的下渗和蒸发,提高水分利用率。在露天条件下,滴灌施肥与传统灌溉相比,节水率达50%左右。膜下滴灌亩节水100-150方左右,与大水漫灌相比,节水率70%左右。

2、节肥。水肥一体化技术实现了平衡施肥和集中施肥,减少了肥料挥发和流失,以及养分过剩造成的损失,具有施肥简便、供肥及时、作物易于吸收、提高肥料利用率等优点。膜下滴灌使用滴灌专用肥比传统施肥节省化肥20-40%。

3、节药。空气湿度的降低,在很大程度上抑制了作物病害的发生,减少了农药的投入,滴灌施肥每亩农药用量减少15%-30%。

4、省工。滴灌施肥减少了中耕和防治病虫害等劳力投入,一般每亩每季节省劳力4-6个。膜下滴灌设施栽培节省防治病虫害和中耕等投工15-20个。

5、改善生态环境。采用水肥一体化技术,一是地温比常规灌溉施肥技术提高,

增强了土壤微生物活性,促进作物对养分的吸收;二是减轻了因灌溉造成的土壤板结和团粒破坏程度,土壤容重降低,孔隙度增加,改善了土壤物理性质;三是减少了水分下渗引起的土壤养分淋失和地下水的污染。

6、提高土地利用率。滴灌网络从水源到地头,不用修渠、打埂,提高土地利用率5%-7%。

7、增加产量,改善品质。水肥一体化技术可促进作物产量提高和产品质量的改善,作物一般增产10%-30%。同时,产品质量得到不同程度的改善。

8、提高经济效益。水肥一体化技术经济效益包括增产、改善品质和节省投入的效益。

二、水肥一体化滴灌肥料的选择

1、水肥一体化滴灌肥料的选择原则

一是溶解度、纯净度高,没杂质;

二是相容性好,使用时相互不会形成沉淀物;

三是养分含量较高;

四是不会引起灌溉水PH的剧烈变化;

五是灌溉设备的腐蚀性小。同时,微量元素肥料的使用尽管很少,如果通过微灌系统施肥,就需要考虑其溶解度。

2、水肥一体化常用的滴灌用肥

固体肥料:大量元素肥料有尿素、硝酸铵、硫酸铵、硝酸钙、硝酸钾、磷酸、磷酸二氢钾、磷酸一铵(工业级)、氯化钾(加拿大钾肥除外)等;常用的中量元素肥料有硫酸镁,微量元素应选用螯合态的肥料。

在配制时要特别注意:①含磷酸根的肥料与含钙、镁、铁、锌等金属离子的肥料混合后产生沉淀;②含钙离子的肥料与含硫酸根离子的肥料混合后会产生沉淀;③最好现用现配;④对于混合后会产生沉淀的肥料应采用分别单独注入的办法来解决。

3、水肥一体化滴灌肥料的配制原则

在微灌施肥制度确定之后,就要选择适宜的肥料。

一是可以直接选用市场上的微灌专用固体或液体肥料,但是这种肥料中的各养分元素的比例可能不完全满足作物的需求,还需要补充某种肥料。

二是按照拟定的养分配方,选用溶解性好的固体肥料,自行配制微灌专用肥料。

生产实践中选配肥料时最常用的方法是解析法,通过公式计算求出基础肥料的用量和肥料总量。

三、葡萄应用膜下滴灌水肥管理技术

1、葡萄生长发育需水特性

葡萄是比较耐旱的果树,但在干旱季节和葡萄需水期适时灌水才可获得高产和更优质的产品。葡萄有4个需水关键时期。

一是萌芽期。由于休眠状态刚刚结束,土壤和植株体内易出现暂时的水分亏缺,而且萌芽和新梢生长需要大量的水分。此期水分供应不足,将造成萌芽率下降、萌芽不整齐、新梢生长缓慢、坐果率低等现象。

二是浆果膨大期。开花坐果后,浆果进入细胞分裂期,此期的水分状况对浆果的生长的发育有重要的作用,如出现水分亏缺,将明显抑制浆果的细胞分裂和膨大,造成产量下降。同时,浆果膨大期也是花芽分化的旺盛时期,供水不足,会影响花芽分化的数量和质量,影响下一年的产量。

三是果实采收后,由于树体消耗了大量的养分和水分,应及时补充,否则将影响植株的越冬和下一年的萌芽率。

四是越冬前,需要埋土防寒。在埋土防寒前后浇冻水,可明显改善土壤和植株体内的水分状况,有利于植株的越冬和下一年的萌芽。

2、葡萄生长发育需肥特性

葡萄以萌芽期、新梢、花序生长期、幼果膨大期需要量最大。

氮是葡萄需要量较多的营养元素之一,氮肥对葡萄树的生长和发育均有很大的影响。在一定范围内适当多施氮肥,可增加葡萄枝叶数量,增强葡萄树势,协调树体营养生长和生殖生长,促进副梢萌发,起到多次开花结实提高产量的作用。但若施用氮肥过量,则会引起枝梢徒长,导致大量落花,引起产量降低,而且还可以引起新生枝条和根系木质化程度降低,影响越冬能力,葡萄展叶后,随着枝叶的增长,开花和果实膨大对磷的需要逐渐增加。

葡萄树对磷的需求最较少,但由于土壤固定等因素,在实际施肥时肥料用量要比需要高出许多。在果实采收后施磷比较关键,因为此时葡萄根系的第二个生长高峰尚未结束,施入的磷肥被葡萄吸收后,参与代谢、制造合成大最的有机养分,增加了树体的营养贮藏量,既可恢复树势、促进花芽的分化,又可提高葡萄的抗冻能力。

葡萄需钾量大,有“钾质作物”之称,适当施用钾肥对浆果成熟、着色,提

高糖分含量、风味及耐贮性能有重要作用,还可促进根系生长、枝条成熟,增强植株的抗寒、抗旱能力。

葡萄施用硼肥可提高坐果率,改善葡萄的营养状况,提高产量。

2.1葡萄滴灌用水配肥制度

2.2葡萄滴灌用水配肥方案

本方案适宜丘陵区,中壤土质,土壤pH为5.1左右,要求地势平坦,耕性良好,保肥保水性好。密度为330株/亩,目标产量1200-1500kg/亩。

秋季葡萄落叶后沟施基肥,每亩沟埋秸秆200kg及优质腐熟的畜禽肥800~

900kg、氮(N)0.2kg、磷(P

2O

5

)10.5kg/亩。肥料品种可选择过磷酸钙75kg/

亩和碳酸氢铵1kg/亩,增施碳酸氢铵1kg/亩目的是调节C/N,促进玉米秸秆腐熟。同时亩沟灌50m3/亩水。

萌芽前滴灌施肥1次,灌水量12 m3/亩·次,肥料品种可选用磷酸二铵5.2kg/亩、尿素8.8kg/亩。开花前滴灌施肥2次,灌水量13 m3/亩·次,每次肥料品种可选用磷酸二铵4.8kg/亩、尿素5kg/亩、硫酸钾2kg/亩。

幼果膨大期一般滴灌施肥2次,灌水量15 m3/亩·次,肥料品种可选用磷酸二铵、尿素、硫酸钾。遇到旱情严重时可适当增加灌水量或灌水次数。灌水次数不可减少,只是根据降雨情况、土壤墒情提前或推后灌水。

果实膨大期滴灌施肥2次,灌水量18 m3/亩·次,肥料品种可选用磷酸二铵、尿素、硫酸钾。果实成熟期滴灌施肥时不施入氮肥。

除滴灌施肥外,葡萄叶面喷肥十分重要,早春萌芽后易出现叶片黄化现象,要及时喷施0.2%~0.3%尿素加0.1%~0.2%磷酸二氢钾,在10~15天内连续喷施

3次,可使叶面很快由黄变绿,生长前期叶面喷施磷酸二氢钾,花前喷施0.1%~0.3%的硼砂可提高坐果率,生长中期叶面喷施0.1%左右的硫酸锌可经增加果重,提高产量。采收前果实喷施氨基酸叶面肥(氨基酸10%、钙2%),可提高果实品质,延长贮藏期。

水肥一体化技术

水肥一体化技术 水肥一体化技术是将灌溉与施肥融为一体的农业新技术。水肥一体化是借助压力灌溉系统,将可溶性固体肥料或液体肥料配兑而成的肥液与灌溉水一起,均匀、准确地输送到作物根部土壤。采用灌溉施肥技术,可按照作物生长需求,进行全生育期需求设计,把水分和养分定量、定时,按比例直接提供给作物。压力灌溉有喷灌和微灌等形式,目前常用形式是微灌与施肥的结合,且以滴灌、微喷与施肥的结合居多。微灌施肥系统由水源、首部枢纽、输配水管道、灌水器四部分组成。水源有:河流、水库、机井、池塘等;首部枢纽包括电机、水泵、过滤器、施肥器、控制和量测设备、保护装置;输配水管道包括主、干、支、毛管道及管道控制阀门;灌水器包括滴头或喷头、滴灌带。 一、适宜范围 该项技术适宜于有井、水库、蓄水池等固定水源,且水质好、符合微灌要求,并已建设或有条件建设微灌设施的区域推广应用。主要适用于设施农业栽培、果园栽培和棉花等大田经济作物栽培,以及经济效益较好的其他作物。 二、技术要点 1.微灌施肥系统的选择 根据水源、地形、种植面积、作物种类,选择不同的微灌施肥系统。保护地栽培、露地瓜菜种植、大田经济作物栽培一般选择滴灌施肥系统,施肥装置保护地一般选择文丘里施肥器、压差式施肥罐或注肥泵。果园一般选择微喷施肥系统,施肥装置一般选择注肥泵,有条件的地方可以选择自动灌溉施肥系统。 2.制定微灌施肥方案 (1)微灌制度的确定 根据种植作物的需水量和作物生育期的降水量确定灌水定额。露地微灌施肥的灌溉定额应比大水漫灌减少50%,保护地滴灌施肥的灌水定额应比大棚畦灌减少30%-40%。灌溉定额确定后,依据作物的需水规律、降水情况及土壤墒情确定灌水时期、次数和每次的灌水量。以褐土区重壤土设施栽培番茄为例,微灌制度见表1。 表1 设施栽培番茄微灌灌溉制度 (2)施肥制度的确定 微灌施肥技术和传统施肥技术存在显著的差别。合理的微灌施肥制度,应首先根据种植作物的需肥规律、地块的肥力水平及目标产量确定总施肥量、氮磷钾比例及底、追肥的比例。作底肥的肥料在整地前施入,追肥则按照不同作物生长期的需肥特性,确定其次数和数量。实施微灌施肥技术可使肥料利用率提高40%-50%,故微灌施肥的用肥量为常规施肥的50%-60%。仍以设施栽培番茄为例,目标产量为10000公斤/亩,每生产1000公斤番茄吸收 N:3.18公斤、P 2O 5 :0.74公斤、K 2 O:4.83公斤,养分总需求量是N:31.8公斤、P 2 O 5 :7.4 公斤、K 2 O:48.3公斤;设施栽培条件下当季氮肥利用率57%-65%,磷肥为35%-42%,钾肥为 70%-80%;实现上述产量应亩施N:53.12公斤、P 2O 5 :18.5公斤,K 2 O:60.38公斤,合计132

水肥一体化技术应用的现状及发展前景

水肥一体化技术应用的现状及发展前景 【摘要】近来随着我国经济的加速发展,农业的进程也逐渐加快,对农业方面的要求也越来越高。农业生产从种植到收获,以及对土地的状况都要进行极为高效有益的评估,所以本文重点介绍了水肥一体化在国内外的发展现状,多角度的分析其优点,同时也找出了其中的局限性,积极展望了该技术的应用前景。 【关键词】水肥一体化;应用现状;发展前景 在我国,水肥一体化技术又称微灌施肥技术,其主要的机制是借助压力系统,或者借助地形自然落差,充分结合微灌和施肥技术,以水为载体,灌溉同时施肥,结果达到水和肥一体化利用,水和肥的管理更高效,当然,也可以根据不同作物的特点,如植物的需肥特点,对土壤环境的要求,以及养分含量的具体状况进行设计。可以满足作物的生育期需水和需肥规律,使水和肥料以最优质的结合在土壤中被作物吸收和利用。 1、水肥一体化技术国内外发展及应用现状 1.1国外应用与发展状况 水肥一体化的进程在以色列表现的较为经典。20世纪中期,伴随着国家的塑料工业的发展开始发展滴灌开始使用水肥一体化的技术。如今的以色列,该技术广泛应用于各个方面,果园,温室,大田以及绿化等,使用的面积以及占灌溉面积的一半以上,位居世界之首。在世界范围上的水肥一体化技术,大都广泛应用在干旱缺水和经济发达的地区和国家[1]。 1.2我国应用与发展状况 我国最早应用的水肥一体化技术是引进于墨西哥,1974年引进的滴灌设备试点的面积达到了5.3hm,从此以后该滴灌技术开始得到了进一步的研究。十年后的1998年,我国就自主研制出了第1代滴灌设备。自此以后,随着我国引进的先进生产工艺技术,规模化的灌溉生产也在我国逐步的形成。水肥一体化的技术在应用上逐渐从试验和示范田推广到到大面积的应用。到了20世纪后期,水肥一体化的技术愈来愈得到高度的重视,我国组织专业的人员开展该技术的技术培训,并拨款进行研讨。2000年水肥一体化的技术培训和指导得到进一步的发展,中央农业部的全国农业技术推广中心参与国际合作,连续5年在我国举办水肥一体化技术培训班,该次培训的指导专家是国内外的一级专业人员,将理论技术和实际操作结合在一起,加大了微灌施肥的面积[2]。当前。水肥一体化技术已经由过去的局部试验、示范发展,成为现在的大面积推广应用,辐射范围从华北地区扩大到西北旱区、东北寒温带和华南亚热带地区。覆盖设施栽培、无土栽培、果树栽培,以及蔬菜、花卉、苗木、大田经济作物等多种栽培模式和作物,特别是西北地区膜下滴灌施肥技术处于世界领先水平。为了响应国家“菜篮子工程”以及省农业厅“百万亩设施蔬菜工程”规划。加快发展设施蔬菜产业,丰富城

第一章 水肥一体化技术基本原理

第一章水肥一体化技术简介 一、水肥一体化技术的基本概念 作物生产的目标是用更低的生产成本去获得更高的产量、更好的品质和更高的经济效益。从作物的生长要素来看,其基本生长要素包括光照、温度、空气、水分和养分。在自然生长条件下,前三个因素是人为难以调控的,而水分和养分因素则可人为调控。因此,要实现作物的最大生产潜力,合理调节水肥的平衡供应非常重要。 在水肥的供给过程中,最有效的供应方式就是如何实现水肥的同步供给,充分发挥两者的相互作用,在给作物提供水分的同时最大限度地发挥肥料的作用,实现水肥的同步供应,即水肥一体化技术。那么,什么是水肥一体化技术呢?狭义讲,就是把肥料溶解在灌溉水中,由灌溉管道带到田间每一株作物,以满足作物生长发育的需要。如通过喷灌及滴灌管道施肥。 图1-1 雷州半岛的香蕉园通过滴灌施用硫酸钾镁肥

图1-2 山地砂糖桔果园通过滴灌系统施用氯化钾 图1-3 内蒙古马铃薯种植区通过滴灌系统施肥的场面 广义讲,就是水肥同时供应以满足作物生长发育需要,根系在吸收水分的同时吸收养分。除通过灌溉管道施肥外,如淋水肥、冲施肥等都属于水肥一体化的简单形式。

图1-4 广东冬种马铃薯地区拖管淋水肥的场景 图1-5 菜农挑担淋水肥的场景

图1-6 海南西瓜种植户通过膜下水带施液体肥的场景 水肥一体化技术是现代种植业生产的一项综合水肥管理措施,具有显著的节水、节肥、省工、优质、高效、环保等优点。水肥一体化技术在国外有一特定词描述,叫“FERTIGATION”,即“FERTILIZATION(施肥)”和“IRRIGATION(灌溉)”各拿半个字组合而成,意为灌溉和施肥结合的一种技术。国内根据英文字意翻译成“水肥一体化”、“灌溉施肥”、“加肥灌溉”、“水肥耦合”、“随水施肥”、“管道施肥”、“肥水灌溉”、“肥水同灌”等多种叫法。“水肥一体化”这个称谓目前被广泛接受,而“管道施肥”笔者认为更加形象贴切,肥料自身不会从管道流动,必须要溶解于水才能随管道流动。这很容易区别于传统的施肥。针对于具体的灌溉形式,又可称为“滴灌施肥”、“喷灌施肥”、“微喷灌施肥”等。 灌溉的理论基础是植物的蒸腾失水及土面蒸发失水,必须要源源不断补充土壤水分作物才能正常生长。而水肥一体化的理论基础是什么呢?这要从植物是如何吸收养分说起。植物有两张“嘴巴”,根系是它的大嘴巴,叶片是小嘴巴。大量的营养元素是通过根系吸收的。叶面喷肥只能起补充作用。施到土壤的肥料怎样才能到达植物的嘴边呢?通常有三个过程。一个叫扩散过程。肥料溶解后进入土壤溶液,靠近根表的养分被吸收,浓度降低,远离根表的土壤溶液浓度相对较高,结果产生扩散,养分向低浓度的根表移动,最后被根系吸收。第二个过程叫质流。植物在有阳光的情况下叶片气孔张开,进行蒸腾作用(这是植物的生理现象),导致水分损失。根系必须源源不断地吸收水分供叶片蒸腾耗水。靠近根系的水分被吸收了,远处的水就会流向根表,溶解于水中的养分也跟着到达根表,从而被根系吸收。第三个过程叫截获,即养分正好就在根系表面而被吸收。扩散和质流是最重要的养分迁移到根表的过程。这两个过程都离不开水做媒介。因此,肥料一定要溶解才能被吸收,不溶

智能农业之水肥一体化智能灌溉系统

智能农业灌溉系统组成要素及功能特点 一、智能农业水肥一体化应用技术: 智能农业灌溉系统可以帮助生产者很方便的实现自动的水肥一体化管理。系统由上位机软件系统、区域控制柜、分路控制器、变送器、数据采集终端组成。通过与供水系统有机结合,实现智能化控制。可实现智能化监测、控制灌溉中的供水时间、施肥浓度以及供水量。变送器(土壤水分变送器、流量变送器等)将实时监测的灌溉状况,当灌区土壤湿度达到预先设定的下限值时,电磁阀可以自动开启,当监测的土壤含水量及液位达到预设的灌水定额后,可以自动关闭电磁阀系统。可根据时间段调度整个灌区电磁阀的轮流工作,并手动控制灌溉和采集墒情。整个系统可协调工作实施轮灌,充分提高灌溉用水效率,实现节水、节电,减少劳动强度,降低人力投入成本。 用户通过操作触摸屏进行管控,控制器会按照用户设定的配方、灌溉过程参数自动控制灌溉量、吸肥量、肥液浓度、酸碱度等水肥过程中的重要参数,实现对灌溉、施肥的定时、定量控制,节水节肥、省力省时、提高产量,专用于连栋温室、日光温室、温室大棚和大田种植灌溉作业。 托普云农智能农业水肥一体化技术以自动化精确灌溉、施肥,节省用工和提高效益为核心,在现代农业生产中应用显示出明显的优势。本文就该技术作相关阐述。

二、智能农业水肥一体化系统组成以及适用范围: 托普云农智能农业水肥一体化微滴灌系统主要是由阀门、水表、水泵、自动反冲洗过滤系统、智肥化施肥机、pH/EC控制器、施肥罐、安全阀、电磁阀、田间管道系统等组成。该系统适合在已建成设施农业基地或符合建设微灌设施要求的地方应用,要有固定水源且水质良好,如水库、蓄水池、地下水、河渠水等。比较适合用于经济价值较高的蔬菜和果树等作物上。 三、智能农业水肥一体化微灌、施肥制度制定: 1、微灌制度拟定 智能农业水肥一体化灌溉系统根据作物全生育期需水量与降水量的差值确定灌溉定额、灌水次数、灌水间隔时间、每次灌水延续时间和灌水定额等。还需考虑土壤墒情、温度、设施条件和农业技术措施等。大棚膜下滴灌用水量会比畦灌减少30%~40%,比大水漫灌减少50%以上。 2、施肥制度拟定 智能农业水肥一体化灌溉系统根据作物全生育期需肥总量与土壤中养分含量的差值来确定实际施肥量、每次施肥量、施肥次数、施肥时期和肥料品种,同时作物的需肥特性、肥料利用率、目标产量、施肥方式也是决定施肥制度拟定的因素。微灌施肥通常可比习惯施肥减少30%~50%的肥料用量。 3、微灌和施肥制度拟合 按照作物拟定的微灌制度将肥料同微灌的灌水时间和次数进行合理分配,主要原则就是肥随水走、分阶段拟合。注入肥液浓度一般为0.1%。操作上还要注意,要先走水15min左右,再注入配好的肥料溶液,微灌施肥结束后需用不含肥的水清洗清灌管道15~30min,防止堵塞出水口。此步聚智能农业水肥一体化滴灌系统系统可以自动进行,无需人工控制。 4、肥料选择 智能微灌系统的滴灌管出水口很小,非常容易被各种微小的杂质堵塞,影响到微灌施肥的效果。为此肥料的选择注意以下几个方面:首先必须是全溶性的肥料,溶于水后无沉淀;二是肥料的相溶性要好,搭配使用不会相互作用生成沉淀物;三是施磷肥时尽量通过基肥施入土壤;四是用微量元素时,应选用螯合态微肥,否则与大量元素肥混合使用时易产生沉淀物。在市场上常用的溶解性好的普通肥料有尿素、硝酸铵、硫酸铵、硝酸钙、硝酸钾、磷酸、磷酸二青钾、磷酸一铵(工业级)、氯化钾等,或选用微灌专用固体肥料。

农田水肥一体化自动滴灌系统

农田水肥一体化自动滴灌系统 一、模块化 农田滴灌自动系统主要由以下几个部分组成: 1、水源:水源井或渠水 2、过滤:砂滤、沉淀或精密过滤 3、计量:对浇灌用水量进行计量 4、轮灌控制:手动或自动进行轮灌控制 5、施肥:人工施肥或自动计量跟踪施肥 6、自动控制系统:自动控制系统时整个系统的控制中心,有 可编程控制器、触摸屏,计算机组成。 我们所做的整个系统力求用现代的自动化技术来替代人工的繁重劳动操作,做到科学化、自动化滴灌和精准化施肥。 我们的农田水肥一体化自动化滴灌系统将以上几个部分整合,做成以下几个模块,可在实际中组合和控制: 1)水源和过滤模块,根据不同的水源做不同的配置,用可编程控制器对水源泵进行自动控制,确保对滴灌带不发 生堵塞的现象,根据用户要求可实现恒压供水,保证供 水压力平稳。 2)轮灌控制模块,使用计算机软件或可编程控制器,对农田滴灌阀进行自动轮灌控制,操作人员只需将轮灌间隔 时间输入,系统则自动根据要求进行轮灌,轮灌完毕发 出信号,提醒操作人员。整个轮灌过程无需人员干预。

3)自动施肥模块,自动施肥系统是一套科学的精准施肥控制,系统测量供水系统的流量,根据供水流量自动按照 加药比例进行加药,加药比例可根据每次不同的药剂进 行设定。加药量始终跟随供水量的大小自动变化,无需 人员干预。 4)自动控制系统模块,将上述几个模块用通讯的方式级联,有可编程控制器或计算机统一控制,并可将控制信号通 过GPRS等方式远传到后台服务器,通过手机APP进行 远端查看或应急控制,实现智能化管理。 二、智能化 系统的智能化体现在: 1)前端控制系统智能化、自动化,操作人员只需将系统检查,启动后,设置好所需要的滴灌参数后,系统则自动 运行,做到了现场无人值守,系统出现故障,则自动发 出警示信号给操作人员; 2)后台智能化管理,前端控制器信号可通过GPRS或3G上网卡与后台服务器通讯,用户可使用手机APP平台随时 观察农田浇地的情况和相关的数据信息,并可做应急处 理; 3)通过APP管理平台,用户可随时了解科学种田以及农田管理的基本知识,并可实现用户之间的信息互动 三、一体化

水肥一体化技术应用存在的问题及对策

龙源期刊网 https://www.360docs.net/doc/a511928566.html, 水肥一体化技术应用存在的问题及对策 作者:孙彦国 来源:《乡村科技》2017年第29期 [摘要] 在我国南方地区,水肥一体化技术在农业生产中得到了广泛的应用,全面提高了 农作物的产量,也达到了节水灌溉的目的。但是,在这项技术的应用过程中存在一些问题有待解决。基于此,本文对水肥一体化技术在农业生产中应用存在的问题进行深入分析,并结合实际提出有效的改善对策,以期全面提升水肥一体化技术的整体应用水平。 [关键词] 水肥一体化技术;农业生产;节水灌溉 [中图分类号] S275;S147.2 [文献标识码] A [文章编号] 1674-7909(2017)29-69-1 1 水肥一体化技术应用中的不足 1.1 推广宣传力度不够 在对水肥一体化技术进行宣传的过程中,因宣传力度不足,导致广大农户没有真正地认识到这项技术的优势。同时,宣传力度也较为单一,在一定程度上导致农户对于水肥一体化技术的了解及应用缺乏全面性。虽然水肥一体化技术是我国农业部门重点推广的技术,但在实际的宣传过程中宣传力度远远不够,并与相关部门如水利、科技等部门缺乏一定的沟通,导致相关社会人士的参与度较低,因而宣传效果不理想。 1.2 试点工作的开展不够完善 对于水肥一体化技术的应用来说,要想全面推广开来,对于相关的试验工作必须要加大重视力度,通过技术示范来使农户全面了解水肥一体化技术的实际应用效果。但是,在实际的试点示范中,还没有发现比较专业的水肥一体化技术的示范基地,同时也缺乏相关的配套设施设备,这就导致试验效果非常不理想,进而导致农户不能全面了解水肥一体化技术的实际应用效果,因此会阻碍水肥一体化技术的推广与应用。 1.3 水肥资源未得到有效利用 水肥一体化技术应用的主要目的就是节省现阶段我国的水肥资源,以达到全方位满足我国农业灌溉发展的需要。但是,目前在水肥一体化技术的应用过程中,由于节水灌溉方法不够科学合理,导致许多地区的农业用水量仍较大,进而影响了农业总体经济效益的提升。因此,在推广应用水肥一体化技术时,必须重新建立一些基础设施,以提高技术应用效果。 1.4 相关设备研发和市场运行机制不完善

浅析智能水肥一体化灌溉系统

浅析智能水肥一体化灌溉系统 一,概述 我国水资源总量不足,时空分布不均,干旱缺水严重制约着农业发展。大力发展节水农业,实施化肥使用量零增长行动,推广普及水肥一体化等农田节水技术,全面提升农田水分生产效率和化肥利用率,是保障国家粮食安全、发展现代节水型农业、转变农业发展方式、促进农业可持续发展的必由之路。 水肥一体化的核心是实现灌溉和施肥同步进行,不需要人工操作便可以自动进行灌溉。想要发挥最大作用离不开科学的规划设计。从实际情况看,水肥一体化实施要在进行充分调研的基础上,弄清农田环境情况,根据农田附近水源、地形、作物情况进行规划,节约安装成本。而石家庄圣启科技研发的水肥一体化智能灌溉系统,就满足了当下的市场需求。 二,系统组成

水肥一体化智能灌溉系统可以帮助生产者很方便的实现自动的水肥一体化管理。系统由上位机软件系统、区域控制柜、分路控制器、变送器、数据采集终端组成。 通过与供水系统有机结合,实现智能化控制。可实现智能化监测、控制灌溉中的供水时间、施肥浓度以及供水量。变送器(土壤水分变送器、流量变送器等)将实时监测的灌溉状况,当灌区土壤湿度达到预先设定的下限值时,电磁阀可以自动开启,当监测的土壤含水量及液位达到预设的灌水定额后,可以自动关闭电磁阀系统。可根据时间段调度整个灌区电磁阀的轮流工作,并手动控制灌溉和采集墒情。整个系统可协调工作实施轮灌,充分提高灌溉用水效率,实现节水、节电,减少劳动强度,降低人力投入成本。 三,系统功能: 1.用水量控制管理

实现两级用水计量,通过出口流量监测作为本区域内用水总量计量,通过每个支管压力传感采集数据实时计算各支管的轮灌水量,与阀门自动控制功能结合,实现每一个阀门控制单元的用水量统计。同时水泵引入流量控制,当超过用水总量将通过远程控制,限制区域用水。 2.运行状态实时监控 通过水位和视频监控能够实时监测滴灌系统水源状况,及时发布缺水预警;通过水泵电流和电压监测、出水口压力和流量监测、管网分干管流量和压力监测,能够及时发现滴灌系统爆管、漏水、低压运行等不合理灌溉事件,及时通知系统维护人员,保障滴灌系统高效运行。 3.阀门自动控制功能 通过对农田土壤墒情信息、小气候信息和作物长势信息的实时监测,采用无线或有线技术,实现阀门的遥控启闭和定时轮灌启闭。根据采集到的信息,结合当地作物的需水和灌溉轮灌情况制定自动开启水泵、阀门,实现无人职守自动灌溉,分片控制,预防人为误操作。 4.运维管理功能 包括系统维护、状态监测和系统运行的现场管理;实现区域用水量计量管理、旱情和灌溉预报专家决策、信息发布等功能的远程决策管理;以及对用水、耗电、灌水量、维护、材料消耗等进行统计和成本核算,对灌溉设施设备生成定期维护计划,记录维护情况,实现灌溉工程的精细化维护运行管理。节水灌溉自动化控制系统能够充分发

国内外水肥一体化技术发展现状与趋势

第56卷 第6期Vol. 56 No. 6 2018年6月 June 2018农业装备与车辆工程 AGRICULTURAL EQUIPMENT & VEHICLE ENGINEERING doi:10.3969/j.issn.1673-3142.2018.06.004 国内外水肥一体化技术发展现状与趋势 李寒松1,贾振超1, 张锋2,赵峰1,贺晓东1,慈文亮1,李青1,李震3 (1. 250100 山东省 济南市 山东省农业机械科学研究院;2. 250200 山东省 济南市章丘区农业机械管理局; 3. 250100 山东省 济南市 山东农业工程学院) [摘要] 水肥一体化技术是解决我国当前灌溉水肥利用率低、消耗大、污染严重等问题的有效手段,是一 种新型的农业高新实用技术。文章介绍了水肥一体化技术的国内外现状和相关应用装备,分析了现今国内 技术发展的主要问题,并总结了解决途径和发展方向。 [关键词] 水肥一体化技术;现状;趋势 [中图分类号] S365 [文献标识码] A [文章编号] 1673-3142(2018)06-0013-04 Current Development Status and Trend of Fertigation Technology at Home and Abroad Li Hansong1, Jia Zhenchao1, Zhang Feng2, Zhao Feng1, He Xiaodong1, Ci Wenliang1, Li Qing1, Li Zhen3 (1. Shandong Academy of Agricultural Machinery Sciences,Jinan City,Shandong Province 250100, China 2. Zhangqiu District Agricultural Machinery Authority, Jinan City,Shandong Province 250200, China 3. Shandong Agriculture and Engineering University, Jinan City, Shandong Province 250100, China) [Abstract] Fertigation technology is an effective means to solve the current problems of low utilization of irrigation water and fertilizer, large consumption and serious pollution. It is a new type of agricultural high-tech practical technology. This paper introduces the current situation of fertigation technology and related application equipment, analyzes the main problems of domestic technology development, and summarizes the solutions and development direction. [Key words] fertigation technology; current status; trend 0 引言 我国是一个严重缺水的国家,水资源总量仅为世界的6%,我国耕地面积占世界的9%,每年生产占世界26%的农产品,属于水资源严重紧缺的国家。每年灌溉用水缺口300亿 m3以上,同时我国的灌溉水利用系数平均仅为0.3~0.4,仅为发达国家的1/2左右。我国化肥使用量却是世界之最,化肥年用量超 6 000万t,占世界总量的1/3,然而化肥利用率仅为30%,比发达国家低20%。目前这种水肥高消耗、低效率的生产方式已经造成了土壤性状恶化、资源浪费、环境污染、生态破坏等一系列问题,严重制约了我国农业的可持续发展[1]。针对当前问题,水肥一体化技术的进一步发展和推广势在必行。水肥一体化技术将灌溉和施肥融为一体,根据植物所需养分含量和土壤墒情,将可溶性固体肥料或液态肥与灌溉水融合,借助灌溉压力系统控制灌溉强度和灌溉深度,将根据作物要求和土壤养分需求所确定的水肥溶液准确直接输送到作物根系发育生长区域,使作物土壤始终保持作物所需的水分和养分,避免水肥的深层渗漏和超量棵间蒸发,从而达到节水、节肥的目的,改变田间气候,是一种新型的农业高新实用技术。相比一般的水肥施用方法,水的利用率可提高40%~60%,肥料利用率可提高30%~50%,在节水、节肥方面优势明显,是现代化农业发展的必然趋势[2]。为了提升我国水肥一体化的发展水平,本文总结了国内外现状和当前应用装备情况,分析现有问题,并提出问题的解决途径和未来发展趋势。 1 国内外发展现状 1.1 国外发展现状 国外发展水肥一体化技术起步较早,自20世纪30年代就开始研究运用喷灌技术,用于庭院花卉和草坪的灌溉。到20世纪三四十年代,随着金 基金项目:山东省农机装备研发创新计划项目(2017YH004)收稿日期: 2017-08-16 修回日期: 2017-08-25

新型喷灌机水肥一体化技术应用

关键词:喷灌机、卷盘式喷灌机、绞盘式喷灌机、卷盘喷灌机、喷灌设备、长尾词:厂家、价格、哪家好、多少钱、哪家先进、、、等等 企业介绍: 河北农哈哈机械集团有限公司是集农业全程机械化产品研发、生产、销售、服务于一体的行业龙头企业,拥有进出口权,“农哈哈”商标是中国第一个驰名商标。历经37年的发展,产品覆盖耕作、播种、植保、灌溉、收获、粮食烘干六大类农机产品;厂区占地面积300多亩,员工1000余人,产值近3亿元。 2013年,农哈哈公司开始涉足农业节水灌溉领域,并开创了中国智能卷盘式喷灌机的时代,引领国内卷盘喷灌技术的发展潮流;2015年,农哈哈公司从欧洲引进国际先进的喷灌技术,后经研发和创新,成功推出适合中国农业的新型卷盘平移式淋灌机,是国内唯一一家全套引进国外先进喷灌技术并实现国产化的灌溉产品,为中国卷盘式喷灌机贴上了节能、高效、节水的标签。 2017年,农哈哈公司成功开发了智能化固液态施肥机,与新型卷盘平移式淋灌机配套使用,实现水肥一体化作业。目前,在国内是唯一能够在卷盘式喷灌机上应用智能化固液态水肥一体化技术的产品。 新型卷盘平移式淋灌机核心技术: 节能:驱动装置采用扼流(直冲)式水涡轮,水能动力转换率70%以上,相比传统侧冲式水涡轮动力转换提高了约1.5倍,入机水压只需0.25Mpa就可正常喷洒作业。 减速装置采用6档变速齿轮箱,提升传动扭矩,降低驱动力需求;回收速度可调范围4-105米/小时,满足不同作物浇水量需要。 高效:喷洒装置采用40米幅宽30个8毫米口径喷头的淋灌架,出水量50立方米/小时,作业效率2.5-4公顷/昼夜。 节水:淋灌架喷洒装置离地距离约1.5-1.8米之间,低压喷洒,水滴无雾化,水份蒸发小于5%。 应用广泛: 1:抗风性能强:淋灌架喷头离地距离较低约1.5米,且水滴无雾化,在5-6级风天气情况下可正常喷洒作业,特别适合北方地区春季多风天气浇水作业。(配1张风中作业场景图片)

重庆滴灌水肥一体化技术方案.doc

葡萄基地智能水肥一体化 系统建设项目 技 术 方 案 本方案适合于葡萄、草莓、蔬菜等窄株距、小行距的作物。 2017年7月

葡萄水肥一体化系统设计方案 一、设计目标 1、构建一个智能型、经济型的葡萄滴灌施肥系统。该系统可通过田间电磁阀控制滴灌带灌溉,从而达到建设高标准示范基地的目的。 2、设计一个灌溉施肥系统,实现水肥一体化系统;在大大节约人工的同时,提高施肥效率,葡萄长势均匀,品质优,商品率高。 二、基本资料 1、地形 本灌溉区地势落差较大,地形为梯田式倾斜小块,灌溉区内最高点与最低点落差最大可达50m。灌溉区内种植由猕猴桃、香提、枇杷三种作物。猕猴桃GPS 面积4.8公顷,即73亩;其他作物种植GPS面积58亩,由于灌溉区采用同一种灌溉方式来进行灌溉。猕猴桃的种植行距约为其他作物的一半,按约2米的行距铺设滴灌带,即综合灌溉面积约合130亩。 2、水源 水源取自灌区自建水池。蓄水池可由降雨或提灌站引水补给,来水有保障。 3、灌区范围 整个灌区为不规则长楔形图形,葡萄基地种植面积总和约130亩。 4、电源 根据当地情况,灌区需380/220V灌溉电力线(电源电缆线由供方提供)。 4、灌溉类型 该项目为室外山地葡萄灌溉,要求满足园区作物生长所需水分、肥料的同时,兼顾调节园区温湿度、降低病虫害。葡萄采用滴灌带+施肥(根部肥)方式进行灌溉。 三、设计依据 (一)设计依据 1、《节水灌溉工程技术规范》(GB T50363-2006); 2、《喷灌与微灌工程技术管理规程》(SL236-1999); 3、《微灌工程技术规范》(SL103-95);

4.、《灌溉与排水工程设计规范》(GB50288-99) 5、《农田灌溉水质标准》GB5084-92。 (二)滴灌工程技术参数选择 根据以上规范、标准及国内外灌溉技术发展积累多年的经验,技术参数设定: 1、节灌土壤湿润比:P=60%; 2、节灌水利用系数: =0.95; 3、设计灌水均匀度:Eu≥90%; 4、设计湿润深度:Z=0.3m; 5、设计日耗水强度:Ea=5mm/day。 四、灌水器选型及布置方式 1、滴灌带布置及滴灌带选型 项目区葡萄种植制度为中等株行距,株距1.5m×行距2m;园区采取每行葡萄铺设一条滴灌带的毛管布置方式;滴灌带全部采用压力补偿式滴灌带,平地最长铺设距离可达120m,确保项目区溉施肥均匀,葡萄长势均匀,果子商品率高。 2.、滴灌带参数说明 滴头类型工作压力滴头流量湿润直径其他说明 Driplex滴灌带 1.0bar 1.0L/h0.5-0.6m 滴头间距0.3m,美国托罗TORO进口 3、滴灌带系统特点: ①灌溉均匀度超过85%; ②压力补偿能力,即使滴灌带长距离铺设其首尾两 端出水仍然高度均匀; ③结构简单,便于维护; ④灌溉水滴细,防止土壤板节及水流损失,创造良好的生产条件 五、灌水量计算 (一)滴灌供水量 葡萄为窄行距种植,株距1.5m×行距2m,葡萄根据品种不同根系深度约为60-100cm,为中、深根系作物,每两行葡萄布置一条滴灌带,经计算整个灌溉区有27000米滴灌带,滴头间距0.3米,每个滴头流量为1L/小时,则全灌溉区

水肥一体化技术的应用现状与发展前景

水肥一体化技术的应用现状与发展前景 摘要介绍水肥一体化国内外发展现状,分析其优点及特点,指出其存在的局限性,并对该技术的应用前景进行展望。 关键词水肥一体化;应用现状;优点;发展前景 水肥一体化技术在我国又称为微灌施肥技术,是借助压力系统(或地形自然落差),将微灌和施肥结合,利用微灌系统中的水为载体,在灌溉的同时进行施肥,实现水和肥一体化利用和管理,并根据不同作物的需肥特点、土壤环境和养分含量状况,作物不同生育期需水、需肥规律情况进行需求设计,使水和肥料在土壤中以优化的组合状态供应给作物吸收利用。 1水肥一体化技术国内外发展及应用现状 1.1国外应用与发展状况 20世纪60年代初随着塑料工业的发展,以色列开始发展滴灌。60年代末开始应用水肥一体化技术。目前,以色列在果园、温室、大田、绿化等方面已全面应用此项技术,应用面积占灌溉面积的67.9%,居世界之首。从世界范围看,水肥一体化技术广泛应用于干旱缺水以及经济发达的国家。 1.2我国应用与发展状况 1974年,我国从墨西哥引进滴灌设备,试点总面积5.3 hm2,自此开始滴灌技术的研究工作。1980年,我国自主研制生产了第1代滴灌设备[1]。自1981年后,在引进国外先进生产工艺的基础上,规模化生产在我国逐步形成,在应用上由试验、示范到大面积推广。20世纪90年代中期,我国开始大量开展技术培训和研讨,水肥一体化理论及应用受到重视。2000年开始,农业部全国农业技术推广中心与国际钾肥研究所(IPI)合作,连续5年在我国不同地区举办水肥一体化技术培训班,由国内外专家介绍水肥一体化理论技术和实际操作,促使微灌施肥的面积逐步扩大。当前,水肥一体化技术已经由过去的局部试验、示范发展,成为现在的大面积推广应用,辐射范围从华北地区扩大到西北旱区、东北寒温带和华南亚热带地区,覆盖设施栽培、无土栽培、果树栽培,以及蔬菜、花卉、苗木、大田经济作物等多种栽培模式和作物,特别是西北地区膜下滴灌施肥技术处于世界领先水平。 为了响应国家“菜篮子工程”以及省农业厅“百万亩设施蔬菜工程”规划,加快发展设施蔬菜产业,丰富城乡居民“菜篮子”工程,保障市场供应,促进农民增产增收。近年来,汉中市注重农业生产中开展“水肥”双节技术,在城固、勉县等地进行了设施蔬菜水肥一体化技术宣传、推广,取得了较好的成效。 2水肥一体化技术的优点

智能水肥一体化系统向精准灌溉施肥迈进 水肥一体化设备方案

智能水肥一体化系统向精准灌溉施肥迈进水肥一体化设备方案 目前,随着农业部对于水肥一体化应用范围以及重视程度不断加大,水肥一体化进程得到了有效推进。随着水溶性产品推陈出新,各种滴管设备也在不断跟进。与此同时,种植户科学施肥理念有所提升,但上海市蔬菜生产中土肥水管理过程仍存在诸多问题:一是土壤次生盐渍化严重,设施蔬菜10万亩,其中20%的设施菜地土壤质量退化,已成为上海设施农业可持续发展的制约瓶颈之一。二是蔬菜复种指数高,菜农缺乏节水节肥观念,年化肥用量高,肥料利用率低,仅为8.7%-24.4%。三是蔬菜水肥一体化技术示范面积规模小,难以形成规模化管理。 建立土壤墒情评价体系探索蔬菜精准灌溉技术 托普云农智能水肥一体化系统一直以测土试验等技术基础工作为核心开展了大量土壤分析工作,开展蔬菜全生育期养分吸收规律研究,其中包括黄瓜、卷心菜、花菜等,明确蔬菜全生育期内养分吸收利用特征,采集蔬菜样品600个;开展主要蔬菜作物肥效试验80组,研究不同单质肥料施用量与产量的关系、肥料当季利用率、产值、产投比、净效益等。在此基础上,研发大田蔬菜专用配方肥料10个,为建立主要蔬菜土壤养分丰缺指标体系和构建科学施肥体系打下扎实的基础。探索土壤墒情监测在蔬菜精准灌溉技术上的应用。 据悉,目前喷灌、移动喷灌车、地膜覆盖滴灌等几种水肥一体化技术模式在绿叶菜、大田露地类、茄果瓜类作物上处于日趋成熟的发展过程。优质水溶性肥

料+先进滴灌设备才能达成预期肥效。与时俱进的滴管设备能够实现按比例施肥、计量精确;随时监控肥料的比例,在感应田间施肥量的同时,进行自动施肥。 蔬菜水肥一体化践行科学施肥理念 传统的田间蔬菜管理方式既费时又费力,为了能够更好地节约用水、节约化肥,省工、省力,水肥一体化技术发展正当时。水肥一体化是按照蔬菜生长过程中对水分和肥料吸收规律和需求量来设计的,在一定时期定量的水分和肥料按比例直接提供给作物,将灌溉与施肥融为一体,借助灌溉系统将肥料准确地输送到作物根部土壤,既可以减少肥料的成本,还可以减少肥料对地下水及土壤环境污染,减少农药残留污染,有效改善田间生态环境。 近些年,水肥一体化技术的主要围绕以下几个方面进行:一是番茄、黄瓜土壤养分评估与推荐施肥技术。已经在7个核心示范基地对番茄、黄瓜进行土壤测试和田间辅助试验,建立菜地主要蔬菜作物养分丰缺指标体系,通过对示范基地菜地土壤养分的检测与分析,对菜地土壤养分进行科学评估,根据“缺啥补啥”原则,为蔬菜生产提供推荐施肥技术方案,推进该技术的示范应用。 二是目标产量引导蔬菜平衡施肥技术,通过对番茄、黄瓜进行相应的肥料梯度与运筹试验,特别是了解氮素营养需求规律和氮素营养关键需求时期,以及灌溉管理措施来优化追肥次数,根据蔬菜目标产量、土壤养分供应和肥料当季利用率,提供蔬菜有机无机配比、氮磷钾三要素平衡以及补充中微量元素,合理使用水溶性肥料,为菜农提供蔬菜平衡施肥技术。 三是田间快速测试仪引导精确灌溉技术,建立上海郊区主要土壤类型田间持

水肥一体化的技术要点

水肥一体化的技术要点 水肥一体化是借助压力灌溉系统,将可溶性固体或液体肥料溶解在灌溉水中,按作物 的水肥需求规律,通过可控管道系统直接输送到作物根部附近的土壤供给作物吸收。 其特点是能够精确地控制灌水量和施肥量,显著提高水肥利用率。水肥一体化常用形 式有微喷、滴灌、渗灌、小管出流等,在我省小麦、玉米上以微喷灌为主。因其具有 节水、节肥、节地、增产、增效等优势,是一项应用前景广阔的现代农业新技术。 一、水肥一体化工程构成 水肥一体化系统由水源、首部系统、输水管道和微灌带四部分组成。水源包括地 表水和地下水。首部系统主要包括潜水泵、加压泵、逆止阀、过滤器、压力表、水表、排气阀、施肥器、施肥罐或施肥池。输水管道包括干管与支管两级管道。干管可采用 地上软管或地埋硬管两种形式。地上软管多采用PE软管,地埋硬管多采用PVC管材,埋深0.8米,输水支管采用φ63的PE软管,微喷带常采用N65五孔或七孔微喷带。 微喷带铺设长度40~60米,间距1.8米或2.4米,输水支管的最大铺设长度50~70米。 二、水肥一体化肥料选择 1.肥料要求常温下能够具有以下特点:高度可溶性、养分含量高、杂质含量低、 溶解速度快,避免产生沉淀,酸碱度为中性至微酸性。 2.常用肥料有尿素、硫酸钾、溶解度高的复合肥、硝酸钾、硝酸铵等。 三、水肥一体化操作步骤 1.检查 首先检查微喷带的阀门状态,需要灌溉的地块开启,其他地块阀门全部关闭。应 根据机井的出水量和压力情况估算1个灌溉单元的微喷带条数。例如潜水泵出水量为 45立方米/小时,微喷带的喷水量10立方米/100米/小时,总微喷带应开启长度为 450米,单条微喷带长度50米,应开启9条,为防止压力过大造成爆带或接头憋开,实际应先开启10~11条。 2.启动 先开启潜水泵,待水充满微喷带并喷起后,再开启管道加压泵。根据实际压力状态调 整喷灌带开启条数以达到最佳喷水状态,以水雾单侧辐射微喷带间距的1/2左右为合 理状态,喷辐交叉不宜过多。 3.施肥方法

水肥一体化滴灌建设内容

建设内容: 在我县*****果场建立150亩的水肥一体化滴灌技术示范园,建立安装一套固定式的滴灌设备,建设区水设备,建造储水池和配肥池一座,配置水泵、化肥施加器、过滤器、节水设施及设备等,购置滴灌专用管道,把管道铺设到每各行果树,滴头安装在每一株果树的树盘内,根据柑橘各个生长季节对肥水的需要,应用滴灌设备进行自动化施肥和灌溉,起到节约用水、提高肥料利用率,降低劳动强度、改善土壤环境、提高柑橘的产量和质量作用。投资估算, 1.取水设备一套,投入1.5万; 2.建造储水池一座100立方米,每立方米造价300元,开支 3.0万元; 3.建造配肥池一座20立方米,每立方米造价300元,开支0.6万元; 4.建立水泵房一间50平方米,每平方米造价400元,开支2.0元; 5.节水设施及设备购置安装8万元; 6.每亩配置干管、支管、毛管、滴头开支1000元,150亩共开支15万元; 7.项目管理和技术培训宣传费4万元。以上1----7项合计开支34.1万元。 建设目标: 通过建立地灌设施,采用水肥一体化技术,使项目区果园能根据生长和挂果的需要,通过滴灌系统及时向果树根部输送水分和养分,满足柑橘各个时期对水分、和养分的需要,提高果树的座果率,节约用水,减少灌溉和施肥用工的开支,改善了示范园的生态环境,提高肥料的利用率,减少裂果、落果,提高单果重,确保柑橘在恶略的气候环境下,也能达到丰产稳产的目的。同时通过示范点建设成功,积累果园实行水肥一体化技术经验,为进一步推广应用树立示范样板。效益;1.每亩每年减少施肥、灌溉用工10工,每工50元,节约开支500元;2.每亩每年节约用水50吨,每吨1.3元,减少开支65元;3.果园进入挂果期后,每亩增产200公斤,每公斤销售3.0元,增收600元。果园水肥一体化设备建立后,可使用10年以上,每年每亩可增收节支1165元,150亩项目区每年增收节支17.475万元,10年增收节支174.75万元。 建设项目有利条件 1.**县地处广西的东南部,气候温暖,光照充足,雨量充沛,土地肥沃,土层深厚,被列入《广西柑橘产业发展规划》柑橘类生态最适应地区,品质最优气候带柚类优势区和柑橘优势区。独特的气候条件和优越的地理环境是我县生产的以柑橘为代表的优质柑橘具有果实大小均匀、果皮色泽鲜艳、果核细小,风味浓甜多汁的特点,深受关大消费者的好评,产品远销国内各大城市。2010年全县水果种植面积54万亩,总产量5万多吨,总产值2亿元。我县在发展柑橘生产中,经常会遇到秋旱严重的问题,秋季又是柑橘果实发育和秋稍生长期,需水量最大,秋旱造成柑橘果实大小不一,品质下降、秋稍抽生不良的现象,增加果园施肥灌溉成本,增产不增收,各级政府、技术部门和广大果农希望引进水肥一体化技术来提高柑橘果实品质、降低生产成本。各级政府和群众推广水肥一体化技术的积极性高。 2.项目实施的果场业主是我县柑橘专业镇的种植示范大户,当地农村致富的带头人,思想解放、热爱科学,能全力配合项目的实施工作,该果园在当地有很大的影响力,在果园建立水肥一体化滴灌项目,对于全县果园水肥一体化技术的推广具有积极的示范作用。 3.项目实施的果园的**镇**村位于**二级公路旁,离县城25公里,离***市区35公里,果园方便的交通为项目实施过程的材料运输、设备安装、现场指导提供便利。

水肥一体化技术的组成与功能亮点

水肥一体化技术的组成与功能亮点 总述: 水肥一体化技术是将灌溉与施肥融为一体的农业新技术。水肥一体化是借助压力系统(或地形自然落差),将可溶性固体或液体肥料,按土壤养分含量和作物种类的需肥规律和特点,配兑成的肥液与灌溉水一起,通过可控管道系统供水、供肥,使水肥相融后,通过管道和滴头形成滴灌、均匀、定时、定量,浸润作物根系发育生长区域,使主要根系土壤始终保持疏松和适宜的含水量,同时根据不同的蔬菜的需肥特点,土壤环境和养分含量状况;蔬菜不同生长期需水,需肥规律情况进行不同生育期的需求设计,把水分、养分定时定量,按比例直接提供给作物。 托普水肥一体化智能灌溉系统可以帮助生产者很方便的实现自动的水肥一体化管理。通过与供水系统有机结合,实现智能化控制。整个系统可协调工作实施轮灌,充分提高灌溉用水效率,实现对灌溉、施肥的定时、定量控制,节水节肥节电,减少劳动强度,降低人力投入成本。省力省时、提高产量。专用于连栋温室、日光温室、温室大棚和大田种植灌溉作业。水肥一体化构架图 系统功能: 1.运行状态实时监控 通过水位和视频监控能够实时监测滴灌系统水源状况,及时发布缺水预警;通过水泵电

流和电压监测、出水口压力和流量监测、管网分干管流量和压力监测,能够及时发现滴灌系统爆管、漏水、低压运行等不合理灌溉事件,及时通知系统维护人员,保障滴灌系统高效运行。 2.阀门自动控制功能 通过对农田土壤墒情信息、小气候信息和作物长势信息的实时监测。根据采集到的信息,结合当地作物的需水和灌溉轮灌情况制定自动开启水泵,实现无人职守自动灌溉,分片控制,预防人为误操作。 3.运维管理功能 节水灌溉自动化控制系统能够充分发挥现有的节水设备作用,优化调度,提高效益,通过自动控制技术的应用,更加节水节能,降低灌溉成本,提高灌溉质量,将使灌溉更加科学、方便,提高管理水平。 4.移动终端APP 方便管理人员通过手机等移动终端设备随时随地查看系统信息,远程操作相关设备。 托普水肥一体化智能灌溉系统亮点: 应用范围: 农业、土肥、植保、经作、园林等农技推广;

水肥一体化应用-草莓实验

自2003年起中国草莓的种植面积和产量已超过美国,成为世界草莓第一国。2010年全国草莓栽培面积约176万亩,总产量约200万吨,面积和产量均居世界首位。然而很多地方草莓生产仍采用大水大肥,全生育期灌水30~40次,每次灌水10~25方/亩,不仅浪费了大量的水肥资源,而且会造成土壤板结、地下水潜在污染等很多问题。从2005年开始北京市逐渐摸索完善草莓水肥一体化技术模式,可节水提质增效,并在全市范围内推广取得良好效果。 1、草莓水肥一体化技术的概念 草莓水肥一体化技术是指在有压水源条件下,借助施肥设施,在灌溉的同时将草莓不同生育期需要的肥水混合液,通过管道系统与灌水器适时适量地直接输送到草莓根部附近的土壤表面或土层中,实现水肥一体,满足作物对水分和养分需求。相对常规灌溉施肥可节水40%,节肥20%左右,省工,提高果实品质。草莓上常用的水肥一体化技术主要有滴灌施肥技术和微喷带施肥技术,一般与地膜覆盖相结合,减少地表蒸发,降低温室湿度,减少病虫害和杂草的发生,同时避免草莓直接接触土壤,提高草莓外观和品质。 2、草莓水肥一体化技术内容 (1)灌溉管路铺设。定植前需整地、施底肥、做畦、铺设滴灌、安装施肥器等。北京日光温室草莓一般做小高垄:垄宽40~50厘米,垄沟宽30~40厘米,垄高20~25厘米。草莓定植株距17~20厘米,每垄栽两行。在定植两行草莓株距中间位置处铺设一条或2条滴灌毛管(滴灌带或1条微喷带);滴头间距一般选用20cm为宜。 (2)滴灌施肥。定植时一般滴灌20~30方/亩;移栽至开花期每5~7天滴灌一次,每次滴灌6~10方/亩;开花至膨大期每10~15天滴灌一次,每次滴灌8~10方/亩,如墒情好可适当延长灌水间隔;采收期每6~10天滴灌一次,每次滴灌6~8方/亩;草莓拉秧前10~15天停止灌水。缓苗后天开始追肥,随水施肥25~28次,每次3~5公斤/亩,拉秧前20天停止追肥。肥料的可溶性要好,并且含有适量中微量元素,N : P2O5 : K2O比例前期约为1.2 : 0.7 : 1.1,中期约为1.1 : 0.5 : 1.4,后期约为1.0 : 0.3 : 1.7。根据滴灌肥料养分含量高低,适当增减每次加肥量。 每次加肥时须控制好肥液浓度,一般1方水中加入0.6~0.9公斤肥料。有条件的地方可埋设张力计,当张力计指针在绿色区域时,表示土壤水分状况最佳;在蓝色区域时,土壤水分基本能够满足作物生长的需水量;在红色区域时,表示土壤水分亏缺,需要对作物进行灌溉;在黄色区域时,表示水分太多,土壤透气性差,需要排水。 (3)注意事项

相关文档
最新文档