解析几何第四版习题答案第四章

解析几何第四版习题答案第四章
解析几何第四版习题答案第四章

第四章 柱面、锥面、旋转曲面与二次曲面

§ 柱面

1、已知柱面的准线为:

?

?

?=+-+=-+++-0225

)2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。 解:(1)从方程

??

?=+-+=-+++-0

225

)2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(2

2

2

=-+++--z y y z 即:02

3

5622=----+z y yz z y 此即为要求的柱面方程。

(2)取准线上一点),,(0000z y x M ,过0M 且平行于直线?

??==c z y

x 的直线方程为:

???

??=-=-=?

??

?

??=+=+=z z t y y t

x x z

z t y y t

x x 0

00000 而0M 在准线上,所以

??

?=+--+=-++-+--0

2225

)2()3()1(222t z y x z t y t x 上式中消去t 后得到:026888232

2

2

=--+--++z y x xy z y x 此即为要求的柱面方程。

2

而0M 在准线上,所以:

??

?+=-++=-)

2(2)2(2

2t z t x t z y t x 消去t ,得到:010*******

2

2

=--+++z x xz z y x 此即为所求的方程。

3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过

又过准线上一点),,(1111z y x M ,且方向为{

}1,1,1的直线方程为: ???

??-=-=-=?

??

?

??+=+=+=t z z t y y t

x x t

z z t y y t

x x 1

11111 将此式代入准线方程,并消去t 得到:

013112)(5222=-++---++z y x zx yz xy z y x

此即为所求的圆柱面的方程。

4、已知柱面的准线为{})(),(),()(u z u y u x u =γ,母线的方向平行于矢量{}Z Y X S ,,=,试证明柱面的矢量式参数方程与坐标式参数方程分别为:

S v u Y x +=)(

??

?

??+=+=+=Zv u z z Yv u y y Xv u x x )()()( 式中的v u ,为参数。

证明:对柱面上任一点),,(z y x M ,过M 的母线与准线交于点))(),(),((u z u y u x M ',则,

v M ='

1、求顶点在原点,准线为01,0122

=+-=+-z y z x 的锥面方程。 解:设为锥面上任一点),,(z y x M ,过M 与O 的直线为:

z

Z y Y x X == 设其与准线交于),,(000Z Y X ,即存在t ,使zt Z yt Y xt X ===000,,,将它们代入准线方程,并消去参数t ,得:

0)()(222=-+--y z y z z x

即:02

22=-+z y x 此为所要求的锥面方程。

2、已知锥面的顶点为)2,1,3(--,准线为0,12

2

2

=+-=-+z y x z y x ,试求它的方程。

解:设),,(z y x M 为要求的锥面上任一点,它与顶点的连线为:

2

2

1133++=++=--z Z y Y x X 令它与准线交于),,(000Z Y X ,即存在t ,使

???

??++-=++-=-+=t z Z t y Y t x X )2(2)!(1)3(30

00 将它们代入准线方程,并消去t 得:

044441026753222=+-+-+--+-z y x xz yz xy z y x

此为要求的锥面方程。 4、求

对锥面上任一点),,(z y x M ,过M 与顶点O 的母线为:

z

Z y Y x X == 令它与准线的交点为),,(000Z Y X ,即存在t ,使zt Z yt Y xt X ===000,,,将它们代入准线方程,并消去t 得:

0=++zx yz xy

此即为要求的圆锥面的方程。

5、求顶点为)4,2,1(,轴与平面022=++z y x 垂直,且经过点)1,2,3(的圆锥面的方程。 解:轴线的方程为:

1

42221-=

-=-z y x 过点)1,2,3(且垂直于轴的平面为:

0)1()2(2)3(2=-+-+-z y x

即: 01122=-++z y x 该平面与轴的交点为)9

37,920,911(

,它与)1,2,3(的距离为: 3

116)1937()2920()3911(222=-+-+-=d

∴要求圆锥面的准线为:

的径矢为{}0000,,z y x =γ,试证明锥面的矢量式参数方程与坐标式参数方程分别为:

0()(1)v u v γγγ=+-

000()(1)()(1)()(1)x vx u v x y vy u v y z vz u v z

=+-??

=+-??=+-?

式中,v u ,为参数。

证明:对锥面上任一点),,(z y x M ,令OM γ=,它与顶点A 的连线交准线于

((),(),())M x u y u z u '=,即OM ()u γ'=。

//AM AM ',且0AM '≠(顶点不在准线上) AM vAM '∴=

即00(())v u γγγγ-=- 亦即0()(1)v u v γγγ=+-

此为锥面的矢量式参数方程。

若将矢量式参数方程用分量表示,即:

000{,,}{(),(),()}(1){,,}x y z v x u y u z u v x y z =+-

??

?

??-+=-+=-+=∴000)1()()1()()1()(z

v u vz z y v u vy y x v u vx x 此为锥面的坐标式参数方程,v u ,为参数。

§ 旋转曲面

1、求下列旋转曲面的方程:

(1);

111112x y z -+-==-绕1

112x y z -==

-旋转 (2);1211x y z -==-绕1112x y z -==

-旋转 (3)1133

x y z -==-绕z 轴旋转;

(4)空间曲线2

221

z x

x y ?=??+=??绕z 轴旋转。

解:(1)设1111(,,)M x y z 是母线

111

112

x y z -+-==

-上任一点,过1M 的纬圆为:

111222222111()()2()0(1)(1)(1)

(2)

x x y y z z x y z x y z ---+-=??++-=++-?

因1M 在母线上, 1111

211

x y z -∴

==

- (3) 从(1)——(3)消去111,,x y z ,得到:

2225523122424242446230x y z xy yz xz x y z ++--+-+-+=

此为所求的旋转面的方程。

(3)对母线上任一点1111(,,)M x y z ,过该点的纬圆为:

1222222111

(1)(2)

z z x y z x y z =??++=++?

又1M 在母线上,所以:

111

1133

x y z -==- (3) 从(1)——(3)消去111,,x y z ,得到:

2229()10690x y z z +---=

此为所求的旋转面方程。

(4)对母线上任一点1111(,,)M x y z ,过1M 的纬圆为:

1

222222111

(1)(2)

z z x y z x y z =??++=++?

又1M 在母线上,所以

2

112211(1)1

(2)

z x x y ?=??+=??

从(1)——(3)消去111,,x y z ,得到:

221x y +=

211101z z x z ==≤∴≤≤

即旋转面的方程为:2

2

1x y += (01)z ≤≤ 2、将直线

01

x

y z

βα

-=

=绕z 轴旋转,求这旋转面的方程,并就,αβ可能的值讨论这是什么曲面

解:先求旋转面的方程式:

z

任取母线上一点1111(,,)M x y z ,过1M 的纬圆为:

1222222111

(1)(2)

z z x y z x y z =??++=++?

1

11

01

x y z βα

-=

= (3) 从(1)——(3)消去111,,x y z ,得到:

222220x y z αβ+--=

此即为所求旋转面的方程。

当0,0αβ=≠时,旋转面为圆柱面(以z 轴为轴);

当0,0αβ≠=时,旋转面为圆锥面(以z 轴为轴,顶点在原点); 当,0αβ≠时,旋转面变为z 轴;

当0,0αβ=≠时,旋转面为单叶旋转双曲面。

3、已知曲线Γ的参数方程为(),(),()x x u y y u z z u ===,将曲线Γ绕z 轴旋转,求旋转曲面的参数方程。

解:如图,设((),(),())M x u y u z u 为Γ上任一点,则对经过M 的纬圆上任一点(,,)p x y z ,

§椭球面

1、做出平面20x -=与椭球面222

21494x y z +

+=的交线的图形。 解:平面20x -=与椭球面222

21494

x y z +

+=的交线为: 2

2

39

442

y z x ?+=

???=? ,即 22

12734y z ?+=???? ——椭 图形为

y

2、设动点与点(1,0,0)的距离等于从这点到平面4x =的距离的一半,试求此动点的轨迹。 解:设动点(,,)M x y z ,要求的轨迹为∑,则

条两两相互垂直的射线,分别交曲面123,,p p p ,设112233,,op r op r op r ===,试证:

222222123111111r r r a b c

++=++ 证明:利用上题结果,有2222222

1(1,2,3)i i i i i r a b c

λμν=++=

其中,,i i i λμν是i op 的方向余弦。

若将(1,2,3)i op i =所在的直线看成新的坐标系的三个坐标轴,则123,,λλλ是坐标矢量关于

新坐标系的方向余弦,从而222

1231λλλ++=,同理,

2221231μμμ++=,2221231ννν++= 所以,

222222222

123123123222222123222

111111()()()111

r r r a b c a b c λλλμμμννν++=++++++++=

++

即:

222222

123111111r r r a b c ++=++ 5、一直线分别交坐标面,,yoz zox xoy 于三点,,A B C ,当直线变动时,直线上的三定点

,,A B C 也分别在三个坐标面上变动,另外,直线上有第四点p ,它与三点的距离分别为,,a b c ,当直线按照这样的规定(即保持,,A B C 分别在三坐标面上)变动,试求p 点的轨

迹。

解:设112233(0,,),(,0,),(,,0)A y z B x z C x y ,则知:

2121331221

,x z z y

x y z z z z =

=--

z z

21211221

(

,,0)x z z y

C z z z z ∴-- 又设(,,)p x y z ,,,pA a pB b pC c ===

2222

11

2222222222

21211221()()(1)()()(2)()()(3)

x y y z z a x x y z z b x z z y

x y z c z z z z ?

?+-+-=??-++-=???-+-+=--??

又p 在AB 的连线上,11

1121

y y z z x x y z z --∴

==--(4) 从(1)——(4)消去1122,,,y z x z ,得到

即:22

2

22(1)1a a b c

λ-=-

222

2

222

a

c b c b a

λ-=?- λ∴=满足要求的平

2、给定方程

222

1(0)x y z A B C A B C λλλ

++=>>>--- 试问当λ取异于,,A B C 的各种数值时,它表示怎样的曲面

解:对方程222

1(0)x y z A B C A B C λλλ

++=>>>--- (*) 1o、当A λ>时,(*)不表示任何实图形; 2o、当A B λ>>时,(*)表示双叶双曲面; 3o、当B C λ>>时,(*)表示单叶双曲面; 4o

、当C λ<时,(*)表示椭球面。

3、已知单叶双曲面222

1494

x y z +-=,试求平面的方程,使这平面平行于yoz 面(或xoz 面)

且与曲面的交线是一对相交直线。

解:设所求的平面为x k =,则该平面与单叶双曲面的交线为:

(*) 222

1

494

x y z x k ?+-=???=?

亦即 2221944y z k x k ?-=-

???=?

为使交线(*)为二相交直线,则须:2

104

k -=,即2k =± 所以,要求的平面方程为:2x =±

同理,平行于xoy 的平面要满足它与单叶双曲面的交线为二相交直线,则该平面为:3y =± 4、设动点与(4,0,0)的距离等于这点到平面1x =的距离的两倍,试求这动点的轨迹。 解: 2

2

20241160x y x +--= 此即为要求的射影柱面方程。

6、设直线l 与m 为互不垂直的两条异面直线,C 是l 与m 的公垂线的中点,,A B 两点分别在直线l ,m 上滑动,且90ACB ∠=,试证直线AB 的轨迹是一个单叶双曲面。 证明:以l ,m 的公垂线作为z 轴,C 作为坐标原点,再令x 轴与l ,m 的夹角均为α,公垂线的长为2c ,若设tg αλ=,则l 0:y x l z c λ+=??=? 0:y x m z c λ-=??=-?

令11(,,)A x y c ,22(,,)B x y c -11220,0y x y x λλ+=-=

又AC CB ⊥,所以:222222222

11221212()()(2)x y c x y c x x y y c +++++=-+-+ 亦即 2

12120x x y y c +-= (2)

又设(,,)M x y z 为AB 上任一点,则

c

c

z y y y y x x x x 2121121--=--=-- (3)

从(1)——(3)中消去2211,,,y x y x ,得:

222222222)1()1(c z y x λλλλλ=+---

即:

11122

2

222222=+---c z c y c x λλλ (4) l 不垂直m ,1≠∴λ

(4)表示单叶双曲面,即AB 的轨迹是一单叶双曲面。 7、试验证单叶双曲面与双叶双曲面的参数方程分别为:

?????===ctgu z v u b y v u a x sin sec cos sec 与 ??

?

??===u c z v btgu y v atgu x sec sin cos 解为:

z b

y a x 222

22=+ 令确定a 与b

)6,2,1( 和)1,1,3

1

(-均在该曲面上。

∴有:

??????

?=+=+219112412

222b a b

a 从而

56

1,536122

==b a

所以要求的椭圆抛物面的方程为:z y x 25

65362

2=+ 即:z y x 53182

2

=+

2、适当选取坐标系,求下列轨迹的方程:

(1)到一定点和一定平面距离之比为定常数的点的轨迹;

(2)与两给定的异面直线等距离的点的轨迹,已知两异面直线间的距离为a 2,夹角为α2。 解:(1)取定平面为xoy 面,过定点且垂直于xoy 面的直线作为z 轴,则定点的坐标设为

),0,0(a ,而定平面即为0=z ,设比值常数为c ,并令所求的轨迹为∑,则

点c z

a z y x z y x M =-++?

∈2

22)(),,(

即02)1(2

2

2

2

2

=+--++a az z c y x

此为的方程。

(2)取二异面直线的公垂线为轴,中点的坐标为原点;再取x 轴,使其与二异面直线的夹角相等,则二异面直线的方程为:

???==?+a z x tg y 0α 与 ??

?-==?-a

z x tg y 0

α 设所求的轨迹为∑,则

α

α

αα

α

α22

2222

221110011100),,(tg tg y

x x a z tg a z y

tg tg y

x x a z tg a z y

z y x M +-+-+--=

+++++?

∑∈

解:略。

5、试验证椭圆抛物面与双曲抛物面的参数方程可分别写成:

???

???

?

===221sin cos u

z v bu y v au x 与 ???

??=-=+=uv z v u b y v u a x 2)()( 式中的v u ,为参数。 解:对方程

???

?

???

===2

21sin cos u z v bu y v au x

消去参数v u ,得:z b

y a x 222

22=+

这正是椭圆抛物面的方程。

对方程

??

?

??=-=+=uv z v u b y v u a x 2)()( 消去参数v u ,得:z b

y a x 222

22=-

这正是双曲抛物面的方程。

§ 单叶双曲面与双叶双曲面的直母线

1、 求下列直纹面的直母线族方程:

(1)02

22=-+z y x (2)axy z = 解:(1)从原方程得:2

2

2

y z x -=- 即:y y z x z x ?-=-+))((

亦即:

?

?

?-=-=+?=--=+y t z x ty z x t z x y

y z x )( 为了避免取极限,将上方程写成:

??

?-=-=+sy

t z x ty

z x s )()( (1) 若将原方程变形为:2

22x z y -=-,则可得到: ?

?

?-=-=+ux z y v vx

z y u )()( (2)

若令)(2

1s t u -=

,)(2

1s t v +=

,则(2)便是(1)

∴原曲面的直母线族是(1),其中t s ,不全为零。

(2)原方程变形为:ay x

z

=

亦即:t ay x

z

==

??

?==∴t

ay xt

z (1) 由

ax y

z

= 得: ??

?==s

ax sy

z (2)

(1)(2)即这原曲面的两组直母线族方程。 2、 求下列直线族所成的曲面(式中的λ为参数)

(1)0112λ

λ-=-=-z y x ; (2)???=--=++4

42442z y x z y x λλλλ 解:(1)原方程等价于?

??=-=-λλz y

x 2

从此式中消去λ,得:y x z +=2

此即为直母线(1)所形成的曲面。

(2)从原方程中消去λ得:14

1622

2=-+z y x 此即为(2)的直母线族所形成的曲面。

3、在双曲抛物面z y x =-4162

2上,求平行于平面0423=-+z y x 的直母线。 解:双曲抛物面z y x =-4

162

2的两族直母线为: ??????

?=-=+z y x u u

y

x )24(24 及 ???????=+=-z y

x v v y

x )2

4(2

4

第一族直母线的方向矢量为:},1,2{u - 第二族直母线的方向矢量为:},1,2{v 据题意,要求的直母线应满足:

2

04232104232=?=-+?=?=--?v v u u

要求的直母线方程为:

???????=-=+z y x y x 24124 及 ???????=+=-2

2422

4z y x y

x

4、试证单叶双曲面122

2222=-+c

z b y a x 的任意一条直母线在xoy 面上的射影,一定是其腰圆

的切线。

证明:单叶双曲面的腰圆为??

???==+

0122

22z b y a x

两直母线为:

??????

?+=--=+)1(1)1(b y v

c z a x b

y v c z

a x 它在xoy 面内的射影为 : ?????=-++=0

)

1(12z v v

b y v v a x

(2) 将(2)的第一式代入(1)的第一式得:

44)]1(1[222

=+-++b

y v v b y v v

即:0)1()1(2])1(1[

2

22

222=-+-++v v y v v

b y v v b 上述方程的判别式为:

0)1()1(4)1(4222

2

222=-+--=

?v v v v b

v v b ∴ (2)与(1)相比,证毕。

5、求与两直线11236-==-z y x 与21

4

283-+=

-=z y x 相交,而且与平面0532=-+y x 平行的直线的轨迹。

解:设动直线与二已知直线分别交于),,(),,,(111000z y x z y x ,则

11236000-==-z y x ,21

4

283111-+=-=z y x 又动直线与平面0532=-+y x 平行,所以,0)(3)(21010=-+-y y x x

对动直线上任一点),,(z y x M ,有:

10

010010z z z z y y y y x x x x --=--=--

从(1)——(4)消去111000,,,,,z y x z y x ,得到:z y x 44

92

2=- 6、求与下列三条直线

??

?==z

y x 1, ???-=-=z y x 1 与52

4132+=+=--z y x

都共面的直线所构成的曲面。 解:动直线不可能同时平行于直线??

?==z

y x 1

及直线???-=-=z y x 1

不妨设其与第一条直线交于),,1(λλp

注),,1(λλp 与第二条直线的平面为:0)()1(=+-+z y x λ 过p 与直线

5

2

4132+=

+=--z y x 的平面为0)]()1(3[)](3)1[(=++----+z y x z y x λ 动直线的方程为:?

?

?=++----+=+-+0)]()1(3[)](3)1[(0

)()1(z y x z y x z y x λλ

从上式中消去参数λ,得:12

2

2

=-+z y x

此为所要求的轨迹方程。

7、试证明经过单叶双曲面的一 直母线的每个平面一定经过属于另一族直母线的一条直母线,并举一反例,说明这个命题与双曲抛物面的情况下不一定成立。

证明:单叶双曲面122

2222=-+c

z b y a x 的一族直母线为:

??????

?-=-+=+)1()()1()(b y u c

z a x v b

y v c z

a x u 过该族中一条直母线的平面为:0)]1()([)]1()(

[=---++-+b

y

u c z a x v t b y v c z a x u s 即:0)1()()1()(=---++-+b

y

tu c z a x tv b y sv c z a x su (1)

另一族直母线为:??????

?+=--=+)1()()1()(b

y m c

z a x n b y

n c

z

a x m 过该族中一条直母线的平面为:0)]1()([)]1()(

[=+--+--+b

y

m c z a x n l b y n c z a x m k 即0)1()()1()(=+--+--+b

y

ml c z a x nl b y kn c z a x km (2)

对照(1)、(2)得,只要令v l t n u k s m ====,,,,得(2)便是(1)了 亦即过u 族每一直母线的任一平面都经过v 族中的一条直母线,

同理,对v 族的直母线也有类似性质。

对双曲抛物面:z b

y a x 222

22=-

其族直母线为:

??????

?=-=+z b

y a

x u u b y

a x )(2 (*)

取其中的一条(即取定u ),显然平面u b

y

a x 2=+通过直母线(*)

,但该平面不通过v 族直母线中的任何一条,这是因为:

v 族直母线

??????

?=+=-z v b

y a x w b

y a x )( 的方向矢量为}2,1,

1{ab

v

a b 而 02201111≠=?+?+?ab ab v a b b a

∴平面u b

y

a x 2=+不能通过v 族中的任何直母线。

8、试求单叶双曲面122

2222=-+c

z b y a x 上互相垂直的两条直母线交点的轨迹方程。

解:由于过单叶双曲面上每点仅有一条u 母线和一条v 母线,

所以它的同族直母线不能相交,设单叶双曲面的二垂直相交的直母线为:

??????

?-=-+=+)1()()1()(b y w c z a x u b

y u c z

a x w ??????

?+=--=+)1()()1()(b

y t c

z a x v b y

v c z

a x t 将两方程化为标准式,得:

)

(22)

(2)(22

22

22

22

w u

c uw

w u

z buw

y

w u

a uw

w u

a x +--

=

=

-+-

)

(2)(2)(2)(22222222t v c vt t v a z bvt y t v a vt v t a x +--

=-=-+-

由此求出二直线的交点坐标为:

ut

vw wt uv c z ut vw ut vw b y ut vw wt uv a x +-=

+-=++=

)

(,)(,)( 又二直线垂直,

0))((4))((22222222222=+++---∴t v w u c uvwt b t v w u a

2222222222222222222222222

2222222222222222222222222222222222

2

222222

2

2

)()2)(()(4)(2)())(()()(2)())(()()(2)()()()()()()(ut vw uvwt t u v w c b a ut vw uvwt b uvwt c b a t u w v b t u v w c a ut vw uvwt c b a t u w v b c a t w v u ut vw uvwt c b a t w v u c t u w v b t w v u a ut vw wt uv c ut vw b wt uv a z y x +++-+=

++--++++-=

+--+++++=

+--++++++=

+-+-++=

++∴

222c b a -+=

即2

2

2

2

2

2

c b a z y x -+=++

又交点在单叶双曲面上,所以:122

2222=-+c

z b y a x

故交点的轨迹为??

???-+=++=-+c b a z y x c

z b y a x 2222222

22221

9、试证明双曲抛物面)(222

22b a z b

y a x ≠=-上的一两条直母线直交时,其交点必在一双曲

线上。

证明:由于过双曲抛物面上一点仅有一条u 族直母线,也仅有一条v 族直母线,所以同族的直母线不能相交。 设两相交的直母线为:

??

?=--=-+0

2abz uay ubx abu ay bx 其方向矢量为}2,,{u b a - 与 ?

??=-+=--00

2abz uay ubx abu ay bx 其方向矢量为}2,,{v b a

由二直线直交,所以:)(4

10

422

22a b uv uv b a -=

?=+-

(*)

二直母线的交点坐标为:

??

?

??=-=+=uv z v u b y v u a x 2)()( 但由(*)式有:???

????-=-=-22

22222

2

2a b z a b b y a x (* *)

(* *)为一双曲线方程,∴交点在一双曲线上。

10、已知空间两异面直线间的距离为a 2,夹角为α2,过这两条直线分别作平面,并使这

两平面相互垂直,求这样两平面交线的轨迹。

解:建立坐标系:取二异面直线的公垂线作为z 轴,公垂线的中点为原点O ,让x 轴与二异面直线夹角相等,则二直线方程为:

???==?+a z x tg y 0α 与 ??

?-==?-a

z x tg y 0

α 过这两直线的平面为:

0)()(:1=?++-x tg y u a z αλπ 0)()(:2=?-++x tg y m a z l απ

二平面的交线为:??

?=?-++=?++-0

)()(0

)()(x tg y m a z l x tg y u a z ααλ (1)

21ππ⊥

0)1(2=-+∴αλtg um l

(2)

当二异面直线不直交时,1≠αtg ,从(1)(2)中消去m l u ,,,λ,得:

1)1()1(22

2

22222=+---a

z tg a y ctg a x αα ——单叶双曲面 此为要求的轨迹方程。

当二异面直线直交时,则1=αtg ,此时,(1)(2)变为:

??

?=-++=++-0

)()(0

)()(x y m a z l x y u a z λ )1(' 0=l λ )2('

当0=λ时,)1('为??

?=-++=+0

)()(0

x y m a z l x y

它的轨迹为平面0=+x y 。

当0=l 时,)1('为?

??=-=++-00)()(x y x y u a z λ

它的轨迹为平面0=-x y

从而当二异面直交时,动直线(1)的轨迹为二平面:

0=+x y 与 0=-x y

解析几何第四版吕林根课后习题答案第五章

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1 (,)F x y , 2 (,)F x y 及3 (,)F x y . (1) 2222 1x y a b +=;(2) 22 22 1x y a b -=;(3)2 2y px =;(4) 223520; x y x -++= (5)2 226740 x xy y x y -+-+-=.解:(1) 221 0010 000 1a A b ?? ? ? ?= ? ?- ? ?? ?; 121(,)F x y x a = 221(,)F x y y b =3(,)1F x y =-;(2) 221 0010 0001a A b ?? ? ? ?=- ? ?- ? ?? ? ; 121(,)F x y x a = 221(,)F x y y b =-;3 (,)1F x y =-.(3) 0001000p A p -?? ?= ? ?-?? ; 1(,)F x y p =-;2 (,)F x y y =;3 (,)F x y px =-;(4) 510 20 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+ ;2 (,)3F x y y =-;3 5(,)22 F x y x =+;(5)

222420 x xy ky x y ++--=交于两个共轭虚交点.解:详解 略.(1)4k <-;(2)1k =或3k =(3)1k =或5k =;(4) 4924 k >. §5.2二次曲线的渐进方向、中心、渐进线 1. 求下列二次曲线的渐进方向并指出曲线属于 何种类型的(1) 22230 x xy y x y ++++=;(2) 22342250 x xy y x y ++--+=;(3)24230xy x y --+=. 解:(1)由2 2(,)20 X Y X XY Y φ=++=得渐进方向为:1:1 X Y =-或1:1-且属于抛物型的; (2)由2 2(,)3420 X Y X XY Y φ=++=得渐进方向为:(22):3 X Y i =-且属于椭圆型的; (3) 由(,)20X Y XY φ==得渐进方向为:1:0X Y =或0:1且属于双曲型的. 2. 判断下列曲线是中心曲线,无心曲线还是线心曲线. (1)2 2224630 x xy y x y -+--+=;(2)2 2442210 x xy y x y -++--=; (3)2 281230 y x y ++-=;(4)2 296620 x xy y x y -+-+=.解:(1) 因为2 1110 12I -= =≠-,所以它为中心曲线; (2)因 为2 120 24 I -= =-且121 241-=≠--,所以它为无心曲线; (3)因为2 00002I = =且004 026 =≠,所以它为无心曲线; (4)因为2 930 3 1 I -==-且933312--==-,所以它为线心曲线;

解析几何经典例题

解析几何经典例题 圆锥曲线的定义是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1. 如图1,P为椭圆上一动点,为其两焦点,从 的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2. 如图2,为双曲线的两焦点,P为其上一动点,从的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3. 如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地, 求抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4. ①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5. 如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

解析几何专题含答案

椭圆专题练习 1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A B C .23 D .5 9 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A .3 B .3 C .3 D .13 3.【2016高考浙江理数】已知椭圆C 1:+y 2=1(m >1)与双曲线C 2:–y 2=1(n >0)的焦点重合,e 1, e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m b >0),四点P 1(1,1),P 2(0,1),P 3(–1, 2),P 4(1,2 )中恰有三点在椭圆C 上. (1)求C 的方程; (2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2 212 x y +=上,过M 作x 轴的垂线, 垂足为N ,点P 满足NP =u u u r u u u r 。

解析几何第四版吕林根课后习题答案第三章(同名3095)

第三章 平面与空间直线 § 3.1平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1)Θ }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: ?? ? ??++-=-=--=v u z u y v u x 212123 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又 }3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: ?? ? ??+-=+-=+=v u z u y u x 317521 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: ?? ? ??+-=+=--=v u z u y v u x 235145 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=, }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?

解析几何第四版习题答案第四章

第四章 柱面、锥面、旋转曲面与二次曲面 § 4.1柱面 1、已知柱面的准线为: ? ? ?=+-+=-+++-0225 )2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。 解:(1)从方程 ?? ?=+-+=-+++-0 225 )2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(2 2 2 =-+++--z y y z 即:02 3 5622=----+z y yz z y 此即为要求的柱面方程。 (2)取准线上一点),,(0000z y x M ,过0M 且平行于直线? ??==c z y x 的直线方程为: ??? ??=-=-=? ?? ? ??=+=+=z z t y y t x x z z t y y t x x 0 00000 而0M 在准线上,所以 ?? ?=+--+=-++-+--0 2225 )2()3()1(222t z y x z t y t x 上式中消去t 后得到:026888232 22=--+--++z y x xy z y x 此即为要求的柱面方程。 2 而0M 在准线上,所以: ?? ?+=-++=-) 2(2)2(2 2t z t x t z y t x 消去t ,得到:010******* 22=--+++z x xz z y x 此即为所求的方程。 3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过 又过准线上一点),,(1111z y x M ,且方向为{ }1,1,1的直线方程为: ??? ??-=-=-=? ?? ? ??+=+=+=t z z t y y t x x t z z t y y t x x 1 11111 将此式代入准线方程,并消去t 得到: 013112)(5222=-++---++z y x zx yz xy z y x 此即为所求的圆柱面的方程。 4、已知柱面的准线为{})(),(),((u z u y u x u =γ,母线的方向平行于矢量{}Z Y X ,,=,试证明柱面的矢量式参数方程与坐标式参数方程分别为: S v u Y x +=)( 与 ?? ? ??+=+=+=Zv u z z Yv u y y Xv u x x )()()( 式中的v u ,为参数。 证明:对柱面上任一点),,(z y x M ,过M 的母线与准线交于点))(),(),((u z u y u x M ',则, v M =' 即 1、求顶点在原点,准线为01,0122 =+-=+-z y z x 的锥面方程。 解:设为锥面上任一点),,(z y x M ,过M 与O 的直线为: z Z y Y x X == 设其与准线交于),,(000Z Y X ,即存在t ,使zt Z yt Y xt X ===000,,,将它们代入准线方程,并消去参数t ,得: 0)()(222=-+--y z y z z x 即:02 22=-+z y x 此为所要求的锥面方程。 2、已知锥面的顶点为)2,1,3(--,准线为0,12 22=+-=-+z y x z y x ,试求它的方程。

平面解析几何经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角的范围 0 180 (2)经过两点的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线l1,l2 ,其斜率分别为k1, k2 ,则有 l1 / /l2 k1 k2 。特别地, 当直线 l1,l2 的斜率都不存在时,l1与l2 的关系为平行。 (2)两条直线垂直 如果两条直线l1,l2 斜率存在,设为k1, k2 ,则l1 l2 k1 k2 1 注:两条直线l1 ,l2 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率 之积为 -1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果 l1,l2 中 有一条直线的斜率不存在,另一条直线的斜率为0 时, l1与l2 互相垂直。 二、直线的方程 1、直线方程的几种形式 名称方程的形式已知条件局限性 点斜式 不包括垂直于x 轴的直 线为直线上一定点,k 为斜率 斜截式k 为斜率, b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式 不包括垂直于x 轴和 y 轴的是直线上两定点 直线 截距式 a 是直线在x 轴上的非零截距, b 是直不包括垂直于x 轴和 y 轴或

线在 y 轴上的非零截距过原点的直线 一般式 A ,B,C 为系数无限制,可表示任何位置的 直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是,两条 直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条 直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平 行;反之,亦成立。 2.几种距离 (1 )两点间的距离平面上的两点间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用 公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知A(x , y ), B(x , y ), C (x , y ), 若 x 1 x 2 x3或k AB k AC ,则有 A 、B、 C 三点共 1 1 2 2 3 3 线。

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y . (1)22221x y a b +=;(2)22 221x y a b -=;(3)22y px =;(4)223520;x y x -++= (5)2226740x xy y x y -+-+-=.解:(1)221 0010 000 1a A b ?? ? ? ?= ? ?- ? ???;121(,)F x y x a =221 (,)F x y y b =3(,)1F x y =-;(2)2210010 000 1a A b ?? ? ? ?=- ? ?- ? ?? ? ;121(,)F x y x a =221(,)F x y y b =-;3(,)1F x y =-.(3)0001000p A p -?? ? = ? ? -?? ; 1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;(4)51020 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+;2(,)3F x y y =-;35 (,)22 F x y x =+;(5)1232 171227342 A ??-- ? ? ?=- ? ? ?-- ??? ;11(,)232F x y x y =- -;217(,)22F x y x y =-++;37(,)342 F x y x y =-+-. 2. 求二次曲线2 2 234630x xy y x y ----+=与下列直线的交点.(1)550 x y --=

解析几何第四版吕林根 期末复习 课后习题(重点)详解

第一章 矢量与坐标 §1.3 数量乘矢量 4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→ →→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→ → → → → → → → → → =+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→ AB 与→ BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线. 6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM , CN 可 以构成一个三角形. 证明: )(21 AC AB AL += Θ )(21 BC BA BM += )(2 1 CB CA CN += 0)(2 1 =+++++=++∴CB CA BC BA AC AB CN BM AL 7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL +OM +ON . [证明] LA OL OA +=Θ MB OM OB += NC ON OC += )(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++CN BM AL ON OM OL OC OB OA ++=++∴ 从而三中线矢量CN BM AL ,,构成一个三角形。 8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB +OC +OD =4OM . [证明]:因为OM = 21 (OA +OC ), OM =2 1 (OB +OD ), 所以 2OM =2 1 (OA +OB +OC +OD ) 所以 OA +OB +OC +OD =4OM . 10、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半. 图1-5

解析几何第四版吕林根课后习题答案第三章

第三章 平面与空间直线 § 平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1)Θ }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:

042:=+-+z y x π. 解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为: 14 24=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-, ∴ 所求平面的参数式方程为: 3.证明矢量},,{Z Y X =平行与平面0=+++D Cz By Ax 的充要条件为: 0=++CZ BY AX . 证明: 不妨设0≠A , 则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{A C A B --, 从而v 平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面? ? 0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标. 解: Θ }5,2,3{z +-= 而平行于0147=--+z y x 由题3知:0)5(427)3(=+-?+?-z 从而18=z . 5. 求下列平面的一般方程. ⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面;

解析几何经典例题

解析几何经典例题 圆锥曲线的定义就是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1、如图1,P为椭圆上一动点,为其两焦点,从的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2、如图2,为双曲线的两焦点,P为其上一动点,从 的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3、如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地,求 抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4、①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( ) 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( ) A、圆 B、椭圆 C、双曲线 D、抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹就是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5、如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

中医谈方论药第三章答案 解析几何第四版课后答案第三章

中医谈方论药第三章答案解析几何第四版课后答案第三章中医谈方论药第三章答案第三章单元测试 1以下哪一部书是李克绍先生的学术代表作 ( ) A. 《胃肠病漫话》 B. 《伤寒论串讲》C. 《伤寒解惑论》 D. 《伤寒论语释》 2以下哪一项不属于《伤寒解惑论》中提出九种治学方法。( ) A. 关于“要理解当时医学上的名词术语” B. 关于“读于无字处和语法上的一些问题” C. 关于“内容不同的条文要有不同的阅读法” D. 关于“要理解寒温之争” 3丁元庆教授认为,《伤寒解惑论》中提出的哪一项既是标准也是方向?( ) A. 关于“要和《内经》《本草经》《金匮要略》结合起来” B. 关于“要与临床相结合” C. 关于“对传统的错误看法要敢破敢立” D. 关于“对原文要一分为二” 4以下哪段话是李克绍先生所说:( ) A. “胸中有万卷书,笔底无半点尘,始可著书;胸中无半点尘,目中无半点尘者,才许作古文疏注。” B. “能否理论联系实际,在临床医疗中能否灵活运用,这是检验学习《伤寒论》成功与否的重要标志。” C. “《伤寒论》言证候不谈病机,述病理而少及生理,出方剂而不言药理” D. “医者书不熟则理不明,理不明则识不清,临证游移,漫无定见,药证不合,难以奏效。”5以下哪段话,是湖北叶发正研究员在《伤寒学术史》中对李克绍先生的评价:( ) A. “他的论著享誉海内外,称得起现代的伤寒著名学家。” B. “高山仰止,景行行止” C. “他对《伤寒论》的研究创当代《伤寒论》注疏之新风,其见解独特、基于临床、前后呼应、逻辑严密;他活泼泼地注疏通解了活泼泼的《伤寒

论》。” D. “先生最反对学术上人云亦云,不求甚解,认为这是自欺欺人的不良学风。先生读书也看前人注解,但决不盲从。” 6以下哪一项,不是丁元庆教授对急性口僻的辨治分析:( ) A. 口僻发生在面部,表现为口眼歪斜。面部是足阳明胃经循行之地。 B. 阳明火热内盛,炙灼足阳明人迎脉,形成人迎脉积。 C. 足阳明经脉受邪,累及经筋,口目为僻。 D. 将葛根汤、葛根芩连汤、黄芪桂枝五物汤等用于急性口僻治疗。 7以下哪一项,不是丁元庆教授对颈动脉粥样硬化的辨治分析( ) A. 颈动脉粥样硬化是卒中的独立危险因素。 B. 阳明火热内盛,炙灼足阳明人迎脉,形成人迎脉积,成为火热致中的中间环节。 C. 足阳明经脉受邪,累及经筋,是发病的重要因素。 D. 提出用葛根芩连汤干预颈动脉粥样硬化及其斑块形成的研究方法。

解析几何吕林根课后习题解答一到五.docx

第一章矢量与坐标 § 1.1矢量的概念 1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. 解: 2.设点 O 是正六边形 ABCDEF的中心, 在矢量 OA 、 OB 、 OC 、 OD 、 OE 、 OF 、 AB 、 BC 、 CD、DE 、 EF O 和 FA 中,哪些矢量是相等的? [解 ]: 图 1-1 3.设在平面上给了一个四边形ABCD,点 K、L、 M、N 分别是边AB、BC、CD、 DA的中点,求证:KL = NM .当ABCD是空间四边形时,这等式是否也成立? [证明 ]: . 4.如图1-3,设ABCD-EFGH是一个平行六面体, 在下列各对矢量中,找出相等的矢量和互为相反 矢量的矢量: (1) AB、; (2) AE、; (3) AC 、 CD CG EG ; (4)AD 、 GF ;(5)BE 、 CH . 解: 图1—3

§ 1.2矢量的加法 1.要使下列各式成立,矢量a,b 应满足什么条件? (1)a b a b;(2)a b a b ; (3)a b a b ;(4)a b a b ; (5)a b a b . 解: § 1.3数量乘矢量 1试解下列各题. ⑴化简 (x y) (a b) (x y) (a b) . ⑵已知 a e1 2 e2e3, b 3e12e2 2 e3,求a b , a b 和 3 a 2 b . ⑶ 从矢量方程组解:3 x 4 y a ,解出矢量 x ,y.2 x 3 y b 2 已知四边形ABCD 中, AB a 2 c ,CD 5 a 6 b 8 c ,对角线AC 、 BD 的中 点分别为 E 、 F ,求EF. 解: 3 设AB a 5 b , BC 2 a 8 b ,CD3( a b) ,证明: A 、 B 、 D 三点共线.解:

解析几何第四版吕林根课后习题答案

解析几何第四版吕林根 课后习题答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第三章 平面与空间直线 § 平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1) }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又 }3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:

解析几何大题带规范标准答案

三、解答题 26.(江苏18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆1 242 2=+y x 的顶点, 过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,),2,0(),0,2(,2,2--= =N M b a 故所以线段MN 中点的坐标为 ) 22 ,1(- -,由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过 坐标 原点,所以 .22122 =-- = k (2)直线PA 的方程2221, 42x y y x =+=代入椭圆方程得 解得 ). 34 ,32(),34,32(,32--±=A P x 因此 于是), 0,32(C 直线AC 的斜率为.032,1323234 0=--=++ y x AB 的方程为故直线

. 32 21 1| 323432|,21=+--=d 因此 (3)解法一: 将直线PA 的方程kx y = 代入 221,42x y x μ+==解得记 则)0,(),,(),,(μμμμμC k A k P 于是-- 故直线AB 的斜率为 ,20k k =++μμμ 其方程为 ,0)23(2)2(),(222222=+--+-= k x k x k x k y μμμ代入椭圆方程得 解得 223 2 2 2 (32) (32)( , ) 222k k k x x B k k k μμμμ++= =-+++或因此. 于是直线PB 的斜率 .1 ) 2(23) 2(2)23(22 2232 22 3 1k k k k k k k k k k k k -=+-++-= ++-+= μμμ 因此.,11PB PA k k ⊥-=所以 解法二: 设)0,(),,(,,0,0),,(),,(11121212211x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为21,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 ) () (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

解析几何第三章知识点

第三章 平面与空间直线 版权所有,侵权必究 §3.1 平面的方程 1.平面的点位式方程 在空间给定了一点M 0与两个不共线的向量a ,b 后,通过点M 0且与a ,b 平行的平面π 就惟一被确定. 向量a ,b 叫平面π 的方位向量. 任意两个与π 平行的不共线的向量都可作为平面 π 的方位向量. 取标架{}321,,;e e e O ,设点M 0的向径0r =0OM ={}000,,z y x , 平面π 上任意一点M 的向径为r =OM = {x ,y ,z }(如图). 点M 在平面π上的充要条件为向量M M 0与向量a ,b 共面. 由于a ,b 不共线,这个共面的条件可以写成 M M 0= u a +v b 而M M 0= r -r 0,所以上式可写成 r = r 0+u a +v b (3.1-1) 此方程叫做平面π 的点位式向量参数方程,其中u ,v 为参数. 若令a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z },则由(3.1-1)可得 ?????++=++=++=v Z u Z z z v Y u Y y y v X u X x x 210210210 (3.1-2) 此方程叫做平面π 的点位式坐标参数方程,其中u ,v 为参数. (3.1-1)式两边与a ×b 作内积,消去参数u ,v 得 (r -r 0,a ,b ) = 0 (3.1-3) 此即 2 2 2 111000Z Y X Z Y X z z y y x x ---=0 (3.1-4)

这是π 的点位式普通方程. 已知平面π上三非共线点i M (i = 1,2,3). 建立坐标系{O ;e 1, e 2, e 3},设r i = i OM ={i x , i y ,i z },i = 1,2,3. 对动点M ,设r =OM ={x ,y ,z },取21M M 和31M M 为方位向量,M 1 为定点,则平面π的向量参数方程,坐标参数方程和一般方程依次为 r = 1r +u(2r -1r )+v(3r -r 1) (3.1-5) ?????-+-+=-+-+=-+-+=)()()()() ()(131211312113121z z v z z u z z y y v y y u y y x x v x x u x x (3.1-6) 1 31 31 3121212111z z y y x x z z y y x x z z y y x x ---------= 0 (3.1-7) (3.1-5),(3.1-6)和(3.1-7)统称为平面的三点式方程. 特别地,若i M 是π 与三坐标轴的交点,即1M (a ,0,0),2M (0,b ,0),3M (0,0,c ),其中abc ≠0,则平面π 的方程就是 c a b a z y a x 00---=0 (3.1-8) 即 1=++c z b y a x (3.1-9) 此方程叫平面π的截距式方程,其中a ,b ,c 称为π 在三坐标轴上的截距. 2.平面的一般方程 在空间任一平面都可用其上一点M 0(x 0,y 0,z 0)和两个方位向量a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z }确定,因而任一平面都可用方程将其方程(3.1-4)表示. 将(3.1-4)展开就可写成 Ax +By +Cz +D = 0 (3.1-10) 其中 A = 22 11 Z Y Z Y ,B =2 2 11X Z X Z ,C = 2 21 1 Y X Y X 由于a = {1X ,1Y ,1Z }与b = {2X ,2Y ,2Z }不共线,所以A ,B ,C 不全为零,这说明空间任一平面都可用关于a ,b ,c 的一三元一次方程来表示. 反之,任给一三元一次方程(3.1-10),不妨设A ≠0,则(3.1-10)可改写成 02=++??? ? ? +ACz ABy A D x A

解析几何第四版吕林根课后习题答案

第三章 平 面 与 空 间 直 线 § 3.1平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点)1,5,1(1-M CD 的(3)(ⅰ)设平面通过直线AB ,且平行于直线CD : }1,5,4{--=AB ,}2,0,1{-=CD 从而π的参数方程为: 一般方程为:0745910=-++z y x 。

(ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=, }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=? 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 0=. 故其方位矢量为:}1,0,{},0,1,{A C A B -- , 从而平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面?

? 0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标. 解: }5,2,3{z AB +-= ⑹求过点()1,5,31-M 和()2,1,42M 且垂直于平面0138=-+-z y x 的平面. 解:平行于x 轴的平面方程为 00 1 011112 =--+-z y x .即01=-z . 同理可知平行于y 轴,z 轴的平面的方程分别为01,01=-+=-y x z .

⑵设该平面的截距式方程为 132=+-+-c z y x ,把点()4,2,3-M 代入得19 24-=c 故一般方程为02419812=+++z y x . ⑶若所求平面经过x 轴,则()0,0,0为平面内一个点, {}2,1,5-和{}0,0,1为所求平面的方位矢量, ∴ .11 6 cos ,119cos ,112cos -=== ?γβ 则该平面的法式方程为: .01111 6 119112=--+z y x 既 .0121692=--+z y x

解析几何第四版吕林根课后习题答案第三章

第三章平 §3.1平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点M J QI-I)和点M2(1,—1,0)且平行于矢量{—1,0,2}的平面(2)通过点M^l,—5,1)和 M 2 (3,2,—2)且垂直于xoy坐标面的平面; (3)已知四点A(5,1,3) , B(1,6,2) , C(5,0,4) D(4,0,6)。求通过直线AB且平行于直线CD的平面, 并求通过直线AB且与MBC平面垂直的平面。 解:(1) M1M2 ={_2,_2,1},又矢量{—1,0,2}平行于所求平面, 故所求的平面方程为: 般方程为:4x -3y+2Z -7 =0 (2)由于平面垂直于xoy面,所以它平行于z轴,即{0,0,1}与所求的平面平行,又 M 1M 2 ={2,7,-3},平行于所求的平面,所以要求的平面的参数方程为: 般方程为:7(x—1)—2(y+5)=0,即7x—2y-17 = 0。 (3)( i)设平面兀通过直线AB,且平行于直线CD : AB={m,5,—1},CD ={-1,0,2} 从而兀的参数方程为: 般方程为:10x +9y + 5z-74=0。 (ii)设平面兀'通过直线AB,且垂直于MBC所在的平面 AB ={75,-1},ABX AC ={-4,5,-1}x{0T,1} ={4,4,4} =4{1,1,1} 均与兀’平行,所以兀’的参数式方程为: 般方程为:2X+ y -3z - 2 = 0 . 2.化一般方程为截距式与参数式: 兀:X +2y-z+4 =0. 解:兀与三个坐标轴的交点为:(—4,0,0), (0—2,0), (0,0,4), 所以,它的截距式方程为:△+丄+2 =1 又与所给平面方程平行的矢量为:{4, —2,0},

数学 解析几何 经典例题 附带答案

数学解析几何经典例题~ 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.双曲线x 22-y 21 =1的焦点坐标是( ) A .(1,0),(-1,0) B .(0,1),(0,-1) C .(3,0),(-3,0) D .(0,3),(0,-3) 解析: c 2=a 2+b 2=2+1,∴c = 3. ∴焦点为(3,0),(-3,0),选C. 答案: C 2.“a =1”是“直线x +y =0和直线 x -ay =0互相垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解析: 当a =1时,直线x +y =0与直线x -y =0垂直成立; 当直线x +y =0与直线x -ay =0垂直时,a =1. 所以“a =1”是“直线x +y =0与直线x -ay =0互相垂直”的充要条件. 答案: C 3.(2010·福建卷)以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .x 2+y 2+2x =0 B .x 2+y 2+x =0 C .x 2+y 2-x =0 D .x 2+y 2-2x =0 解析: 抛物线y 2=4x 的焦点坐标为(1,0),故以(1,0)为圆心,且过坐标原点的圆的半径为r =12+02=1,所以圆的方程为(x -1)2+y 2=1,即x 2+y 2-2x =0,故选D. 答案: D 4.方程mx 2+y 2=1所表示的所有可能的曲线是( ) A .椭圆、双曲线、圆 B .椭圆、双曲线、抛物线 C .两条直线、椭圆、圆、双曲线 D .两条直线、椭圆、圆、双曲线、抛物线 解析: 当m =1时,方程为x 2+y 2=1,表示圆;当m <0时,方程为y 2-(-m )x 2=1,表示双曲线;当m >0且m ≠1时,方程表示椭圆;当m =0时,方程表示两条直线. 答案: C 5.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2 所得的直线方程是( ) A .-x +2y -4=0 B .x +2y -4=0 C .-x +2y +4=0 D .x +2y +4=0 解析: 由题意知所求直线与直线2x -y -2=0垂直. 又2x -y -2=0与y 轴交点为(0,-2). 故所求直线方程为y +2=-12 (x -0), 即x +2y +4=0. 答案: D 6.直线x -2y -3=0与圆C :(x -2)2+(y +3)2=9交于E 、F 两点,则△ECF 的面积为 ( ) A.32 B.34 C .2 5 D.355

相关文档
最新文档