牵引变电所动态无功补偿方式研究

牵引变电所动态无功补偿方式研究
牵引变电所动态无功补偿方式研究

动态无功补偿设备(SVG)技术协议详情(实用标准)

35kV静止无功发生器成套装置 技术协议

第一节技术协议 一. 总则 1. 本技术协议书仅适用于中铝能源太阳山风电厂五期110kV升压站主变扩建工程动态无功补偿装置(SVG)的加工制造和供货。技术协议中提出了对设备本体及附属设备的功能设计、结构、性能、安装和试验等方面的技术要求。 2. 本技术协议提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规的条文,供方应提供符合本技术规引用标准的最新版本标准和本技术协议技术要求的全新产品,如果所引用的标准之间不一致或本技术协议所使用的标准如与供方所执行的标准不一致时,按要求较高的标准执行。 3. 本技术协议将作为订货合同的附件,与合同具有同等的法律效力。本技术协议未尽事宜,由合同签约双方在合同谈判时协商确定。 4. 供方保证提供的产品符合安全、健康、环保标准的要求。供方对成套设备(含辅助系统与设备)负有全部技术及质量责任,包括分包(或采购)的设备和零部件。 5. 本技术协议提出了对SVG技术参数、性能、结构、试验等方面的技术要求。 6. 若供方所提供的技术资料协议前后有不一致的地方,以有利于设备安装运行、工程质量为原则,由需方确定。 二. 标准和规 1. 合同设备包括供方向其他厂商购买的所有附件和设备,这些附件和设备应符合相应

的标准规或法规的最新版本或其修正本的要求。 2. 除非合同另有规定,均须遵守最新的国家标准(GB)和国际电工委员会(IEC)标准以及国际单位制(SI)标准,尚没有国际性标准的,可采用相应的生产国所采用的标准,但其技术等方面标准不得低于国家、电力行业对此的各种标准、法规、规定所提出的要求,当上述标准不一致时按高标准执行。 3. 供方提供的设备和配套件要符合以下最新版本的标准,但不局限于以下标准,所有设备都符合相应的标准、规或法规的最新版本或其修正本的要求,除非另有特别说明外,合同期有效的任何修正和补充都应包括在。 DL/T672-1999 《变电所电压无功调节控制装置订货技术条件》 DL/T597-1996 《低压无功补偿控制器订货技术条件》 GB/T 11920-2008《电站电气部分集中控制设备及系统通用技术条件》 GB 1207-2006 《电磁式电压互感器》 SD 325-89 《电力系统电压和无功电力技术导则》 DL/T 840-2003 《高压并联电容器使用技术条件》 GB 50227-2008 《并联电容器装置设计规》 GB 311.1-1997 《高压输变电设备的绝缘配合》 GB 311.2-2002 《绝缘配合第2部分:高压输变电设备的绝缘配合使用导则》GB 311.3-2007 《绝缘配合第3部分:高压直流换流站绝缘配合程序》 GB/T 311.6-2005 《高电压测量标准空气间隙》 GB/T 11024.2-2001《标称电压1kV以上交流电力系统用并联电容器第2部分:耐久性 试验》 JB/T 8170-1995 《并联电容器用部熔丝和部过压力隔离器》 GB 50227-2008 《并联电容器装置设计规》

关于变电站无功补偿容量的确定

关于变电站无功补偿容量的确定 摘要:合理进行无功补偿是保证电压质量和电网稳定运行的必要手段,对提高输送能力和降低电网损耗具有重要意义。本文首先分析了无功功率补偿的目的,进而阐述了变电站补偿容量的确定原则,最后论述了按调压要求并联电容器补偿容量的选择,以供参考。 关键词:变电站无功补偿;容量;确定 随着电力负荷的增加,必然要求电网系统利用率的提高。但由于接入电网的用电设备绝大多数是电感性负荷,自然功率因素低,将会影响发电机的输出功率;降低有功功率的输出;影响变电、输电的供电能力;降低有功功率的容量;增加电力系统的电能损耗;增加输电线路的电压降等。因此,连接到电网中的大多数电器不仅需要有功功率,还需要一定的无功功率。当前,随着电力网的发展而引起的无功潮流的变化,以及用户无功补偿水平的提高,变电站的无功补偿要随时相应的进行调整,有的时候甚至需要拆迁。因此,在确定变电站的补偿容量时,要兼顾近期与远期。 1 无功功率补偿的目的 电网中的无功功率负荷部分属于感性负荷,如异步电动机、输电线路、变压器;而无功功率的电源主要有发电机、并联电容器、同步调相机、静止补偿器。无功功率的产生基本不消耗能源,但是无功功率沿电力网传输却要引起有功功率损耗和电压损耗。合理配置变电站无功功率补偿容量,可改善功率因数,尽量避免发电机降低功率因数运行,减少网络中的有功功率损耗和电压损耗;可改善电压调节,使用户端的供电电压维持在规定范围内;可调节负载的平衡性,使不平衡负载变成平衡负载等。 在具体设置补偿装置时,应遵循分散补偿和降低网损的原则,根据电网电压、系统稳定性、有功分配、无功平衡、调相调压,以及限制谐波电压、潜供电流、暂时过电压等因素,须经过电网计算才能合理的确定补偿位置和补偿容量,以达到节约投资降低网损的效果。 2变电站补偿容量的确定原则 2.1 35kV及以上电压等级的变电站,其无功功率补偿主要在于补偿主变压器的无功功率损耗(包括空载无功功率损耗和负载无功的损耗),因此,35~63kV变电站的补偿容量,一般可按主变压器的10%~15%确定;110kV变电站的补偿容量,一般可按变压器容量的15%~20%确定。 2.2 35kV变电站的无功补偿容量的确定应遵循以下原则:1)变电站的无

静态与动态无功补偿

**********. 静态补偿与动态补偿区别是什么? 动态补偿,是近几年发展起来是一类先进的补偿装置,静态补偿是相对于动态补偿来说的。以前我们常见的补偿柜或者补偿箱,大多用接触器做电容的开关。因为接触器的反应慢,又要考虑电容器的放电时间,所以这类补偿装置的一个共同特点是投切间隔较长,最快也不过在5秒左右。 这样的速度,对于电焊机、行吊、锯木机,等等机器来说,就不能很好的补偿了。 为了解决这个问题,就采用了可控硅来做电容开关,可以将反应速度提高到毫秒,也就是可以跟踪负载的变化,级数先进的产品,几乎达到同步补偿的水平。这样的快速补偿装置,我们叫它“动态补偿”。 目前,国家对动态补偿的要求还比较低: 国家标准GB/T15576-2008《低压成套无功功率补偿装置》中“6?13”的规定:动态补偿的响应时间不大于1秒。 JB/T 10695-2007《低压无功功率动态补偿装置》中“6?12?8”的规定:动态补偿的响应时间不大于2秒。 因此,按目前的标准,动态补偿就是:对电网功率因数变化,能在2秒以内反应并投切的补偿装置。 早期动态的补偿装置,因工作时没有接触器动作,没有吸合或释放产生的巨大响声,所以又称静止补偿。 那么,响应时间长的传统补偿装置,就是静态补偿了。 动态补偿的优点:反应快,补偿效果好,特别适用于负载波动剧烈的场合。动态补偿通常还有分补功能,可以对不平衡的负载做良好的补偿。 动态补偿的不足:价格高,可靠性还不够,自身耗能很大。在负载比较稳定的场合没有优势。静态补偿的优点:技术成熟,价格低廉,工作可靠,在一般场合补偿效果良好。所以使用很广泛。 静态补偿的不足:反应慢,对于负载波动大的设备无法补偿。静态补偿因成本限制,通常没有分补功能表。 特别指出:采用复合开关的补偿柜,不能算动态补偿,只能算静态补偿的改进产品,或者是介于动态补偿与静态补偿之间的改良产品。详见:第“20、复合开关是什么开关?” ************SVC&&SVG 止无功补偿器(Static Var Compensator——SVC)等。其中,SVC是用于无功补偿 典型的电力电子装置,它是利用晶闸管作为固态开关来控制接入系统的电抗器和 电容器的容量,从而改变输电系统的导纳。按控制对象和控制方式不同,分为晶 闸管控制电抗器(Thyristor Controlled Reactor——TCR)和晶闸管投切电容器 (Thyristor Switching Capacitor——TSC)以及这两者的混合装置(TCR+TSC)、 TCR与固定电容器(Fixed Capacitor)配合使用的静止无功补偿装置(FC + TCR) 和TCR与机械投切电容器(Mechanically Switch Capacitor——MSC)配合使用的 装置(TCR+MSC)。 为静止无功发生器(Static Var Generator——SVG)。它既可提供滞后的无功功 率,又可提供超前的无功功率。SVG分为电压型和电流型两种,图3给出了SVG装置

无功补偿装置几种常见类型比较

无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR型)动态无功补偿装置、SVG 动态无功发生器。 ① 调压式动态无功补偿装置 调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。根据 Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。该装置为分级补偿方式,容易产生过补、欠补。由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。由于有载调压变压器的阻抗,使得滤波效果差。虽然价格便宜, 占地面积小,维护方便,一般年损耗在0.2%以下。 ② 磁控式(MCR型)动态无功补偿装置 磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。 能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。

磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。设备自身谐波含量少,不会对系统产生二次污染。占地面积小,安装布置方便。装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。免维护,损耗较小,年损耗一般在0.8%左右。 ③相控式动态无功补偿装置(TCR) 相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。相控式原理的可控电抗器的调节原理见下图 所示。 通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。 普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。 i 相控式原理图 优点: 响应速度快,≤40ms。适合于冶金行业。 一般年损耗在0.5%以下。缺点:晶闸管要长期运行在高电压和大电流工况下,容易被

牵引变电所设计原则及其要求

目录 第1章牵引变电所设计基础 (1) 1.1 概述 (1) 1.2 电气主接线设计的基本要求 (1) 1.3 电气主接线的设计依据 (2) 1.4 主变压器型式、台数及容量的选择 (3) 第2章 F所牵引变电所电气主接线图设计说明 (3) 第3章短路计算 (4) 第4章高压电气设备选择及校验 (5) 4.1 高压电气设备选择的原则 (5) 4.2 高压电气设备的选择方法及校验 (7) 4.2.1 高压断路器和隔离开关的选择 (11) 4.2.2 高压熔断器的选择和校验 (13) 4.2.3 电流互感器的选择和校验 (14) 4.2.4 电压互感器 (14) 4.2.5 支柱绝缘子及穿墙套管的选择和校验 (15) 4.2.6 母线的选择和校验 (16) 4.2.7 限流电抗器选择 (16) 4.2.8 避雷器的选择 (17) 后记 (19) 参考资料 (20) 附图 (21)

第1章牵引变电所设计原则及要求 1.1概述 变电所电气主接线设计是依据变电所的最高电压等级和变电所的性质,选择出一种与变电所在系统中的地位和作用相适应的接线方式。变电所的电气主接线是电力系统接线的重要组成部分,它表明变电所内的变压器、各电压等级的线路、无功补偿设备以最优化的接线方式与电力系统连接,同时也表明在变电所内各种电气设备之间的连接方式。一个变电所的电气主接线包括高压侧、中压侧、低压侧以及变压器的接线。因各侧所接的系统情况不同,进出线回路数不同,其接线方式也不同。电气主结线的基本结线形式有但母线结线,双母线结线,桥形结线和简单分支结线。牵引负荷侧电气结线特点主要有:1.每路馈线设有备用断路器的单母线结线;2.具有公共备用断路器的结线;3.但母线分段带旁路母线结线。 1.2 电气主接线基本要求 电气主接线应满足可靠性、经济性和灵活性三项基本要求: 1、灵活性 主接线的灵活性主要表现在正常运行或故障情况下都能迅速改变接线方式,具体情况如下: ①满足调度正常操作灵活的要求,调度员根据系统正常运行的需要,能方便、 灵活地切除或投入线路、变压器或无功补偿装置,使电力系统处于最经济、最安全的运行状态。 ②满足输电线路、变压器、开关设备停电检修或设备更换方便灵活的要求。 设备停电检修引起的操作,包括本站内的设备检修和系统相关的厂、站设备检修引起的站内的操作是否方便灵活。 ③满足接线过渡的灵活性。一般变电站都是分期建设的,从初期接线到最终 接线的形成,中间要经过多次扩建。主接线设计要考虑接线过渡过程中停电范围最少,停电时间最短,一次、二次设备接线的改动最少,设备的搬迁最少或不进行设备搬迁。 ④满足处理事故的灵活性。变电所内部或系统发生故障后,能迅速地隔离故 障部分,尽快恢复供电操作的方便和灵活性,保障电网的安全稳定。

无功补偿控制器及动态补偿装置工作原理

无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1.延时投切方式 延时投切方式即人们熟称的”静态”补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如COSΦ超前且》0.98,滞后且》0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到COSΦ不满足要求时,如COSΦ滞后且《0.95,那么将一组电容器投入,并继续监测COSΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如COSΦ《0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300S,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到COSΦ〈0.95,迅速将电容器组逐一投入,而在投

无功补偿装置SVG简介

高压SVG培训 我是思源清能电气电子有限公司,服务工程师,张治福,我的手机号是: 第一章装置电气原理与构成 1.1电气原理 SVG装置的主电路采用链式逆变器拓扑结构,Y形连接,10kV装置每相由12个功率单元串联组成,6kV装置每相由8个功率单元串联组成,运行方式为N+1模式。下图所示为SVG装置的连接原理图。

图1-1 10kV装置的连接原理图 图1-2 6kV装置的连接原理图 10kV装置的电气原理如下图。 图1-3 10kV装置的电气原理图 1.2装置构成 SVG装置主要由五个部分组成:控制柜、功率柜、启动柜、连接电抗器和冷却系统。这里采用风冷。

1.2.1控制柜 控制柜由控制器、显示操作面板、控制电源、继电器、空气开关等部分组成。 控制电源提供了DC24V和DC5V电源系统,为控制器和继电器操作供电。 操作面板包括了液晶屏显示、信号指示灯。操作部分包括启机按钮、停机按钮和复位按钮。 空气开关的功能如下表所示。 表2-1 空气开关功能表

第二章装置的控制面板说明 2.1 装置的运行状态 SVG装置带电时,运行在五种工作状态:待机、充电、运行、跳闸、放电。各状态说明和转换关系如下: 1)待机状态 装置上电后立即进入待机状态,然后进行自检。若无任何故障且状态正常,装置复位后,则点亮就绪灯。若在就绪情况下收到用户启机命令,则闭合主断路器。主断路器闭合后即转入充电状态。 2)充电状态 表示装置的直流电容正在充电,由于装置为自励启动,主断路器闭合即表示装置已经进入了充电状态。若在主断路器闭合后直流电压充电到超过直流设定值,则自动闭合启动开关以短路充电电阻,启动开关闭合后延时10s自动转入并网运行状态。 3)运行状态 表示装置处于并网运行的工作状态,可以在各种控制方式下输出电流,达到补偿无功、负序或谐波的效果。若在此过程中出现报警,报警指示灯亮,不影响装置正常运行;若在此过程中出现过流、同步丢失等可恢复故障,装置将闭锁,待手动或自动复位消除故障后,装置将重新解锁运行;若在此过程中出现严重故障或收到停机命令,装置将发跳闸命令,并转到跳闸状态。 4)跳闸状态 表示装置正在执行跳闸指令。一进入跳闸状态,装置就立刻发跳闸命令。检测到主断路器断开后进入放电状态。 5)放电状态 表示装置正在放电。主断路器断开后,直流电容将缓慢下降直至为0。该状态时持续10s后装置自动转入待机状态。 2.2 控制柜屏面说明 装置提供了液晶操作面板、控制按钮和远程后台三种方式对装置进行操作。

动态无功补偿技术的应用现状及发展 刘宪栩

动态无功补偿技术的应用现状及发展刘宪栩 发表时间:2018-05-31T10:36:53.397Z 来源:《电力设备》2018年第2期作者:刘宪栩王云昊刘楠 [导读] 摘要:在电力系统输送电能的过程中,无功功率不足,将使系统中输送的总电流增加、使变压器的输出力减少、供电线路及系统设备有功功率损耗增大、线路末端电压下降。 (国网天津市电力公司城西供电分公司天津市 300190) 摘要:在电力系统输送电能的过程中,无功功率不足,将使系统中输送的总电流增加、使变压器的输出力减少、供电线路及系统设备有功功率损耗增大、线路末端电压下降。对于电力用户来说,过多地从电网中吸取无功,不仅使电网损耗增加,也影响自身的用电和生产。可见无功功率对供电系统和负荷的运行都十分重要。但是,近些年来,随着我国工业的迅速发展,一些大功率非线性负荷的不断增多,对电网的冲击和谐波污染也呈不断上升趋势,缺乏无功调节手段造成了母线电压随运行方式的变动很大,引发了多种电能质量问题。主要包括:功率因数低、谐波含量高、三相不平衡、功率冲击、电压闪变和电压波动。 关键词:动态无功补偿技术;应用现状;发展 引言 在电力系统的运行中,系统运行的安全性、可靠性和经济性、输送电能的质量是其最根本的问题。一些大功率负荷的投入、退出,或者系统局部故障等,都会造成系统中有功功率和无功功率的大幅扰动,从而对电网的稳定性和经济性产生影响。特别是如电弧炉等冲击负荷、非线性负荷容量的不断增加,使得电力网发生电压波形畸变,电压波动闪变和三相不平衡等,产生电能质量降低,电网功率因数降低,网络损耗增加等不良影响。另外,现在的直流输电工程日益发展,大功率换流装置(无论整流或逆变)都需要系统提供大量无功功率。特别是一端为弱系统或临近的交流系统发生故障时,如果不能迅速补偿大幅度波动的无功功率,就会导致系统失控或瓦解。快速有效地调节电网的无功功率,使整个电网负荷的潮流分配更趋合理,这对电网的稳定、调相、调压、限制过电压等等方面都是十分重要的。 1动态无功补偿技术的现状 性能优良的SVC(静止无功补偿器)和技术更为先进的STATCOM(静止同步补偿器)已大规模应用于电力系统及工矿企业。 1.1同步调相机 早期的动态无功功率补偿装置主要为同步调相机,是传统的动态无功补偿设备,多为高压侧集中补偿,一般装于电力系统的枢纽变电站中,以减少因传输无功功率引起能量的损耗和电压降落。由于它是旋转电机,运行中的损耗和噪声都比较大,维护复杂费用高,且响应速度慢,所以难以满足快速动态补偿的要求。目前已逐渐退出动态无功补偿领域,在现场中仅有少量使用。 1.2静止无功补偿器(SVC) 静止无功补偿器(SVC)于20上世纪70年代兴起,现在是已经发展的很成熟的FACTS(柔性交流输电系统)装置,其被广泛应用于现代电力系统的负荷补偿和输电线路补偿(无功和电压补偿)。SVC装置的典型代表有:晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)和滤波器组(FC)。随着电力电子技术的不断发展和控制技术的不断提高,SVC向高压大容量多套并联的方向发展,以满足电力系统对无功补偿和电压控制的要求。南瑞继保在SVC的技术发展中做出了很大贡献,为国内外电网提供了多套大容量SVC系统。安装于新疆-西北联网工程第二通道750kV沙州变电站的SVC系统容量为-360Mvar(感性)~360Mvar(容性),由两套配置相同的SVC组成,直接接入变电站同一条66kV母线,每套SVC包含TCR(-360Mvar)×1,滤波器组(+180Mvar)×1。本工程SVC系统TCR单体容量达到360Mvar,直接接入电压等级高达66kV,开启了我国输电系统大容量、高电压动态无功补偿器的新篇章。 1.3静止同步补偿器(STATCOM) STATCOM系统基于电压源型变流器,采用目前最为先进的无功补偿技术,将IGBT构成的桥式电路经过变压器或电抗器接到电网上,适当地调节桥式电路交流侧输出电压的相位和幅值,或者直接控制其交流侧电流,就可以使该电路吸收或者发出满足要求的无功电流,实现动态调整控制目标侧电压或者无功的目的。同时如果需要STATCOM在补偿无功的基础上对负载谐波进行抑制,只要令STATCOM输出与谐波电流相反的电流即可。因此,STATCOM能够同时实现补偿无功功率和谐波电流的双重目标。 南瑞继保研制的百兆乏直流换流站动STATCOM在南方电网±500kV/3000MW永富直流富宁换流站顺利投运,该项目是大容量STATCOM装置应用于高压直流输电领域中的首个成功案例。此STATCOM系统包含协调控制系统和两套35kV/±100MVArSTATCOM成套设备。换流阀采用多电平电压源型换流器结构,成套设备占地面积小、功率密度高,具备快速暂态无功补偿、目标电压控制、交流系统故障穿越、协调控制等功能,是缓解直流换相失败、无功电压调节等的最佳解决方案,代表着柔性交流输电和用户电能质量领域的前沿方向。 2动态无功补偿技术的发展 2.1电力有源滤波器 电力有源滤波器的基本原理如图1所示。 图1 电力有源滤波器的基本原理 电力有源滤波器的交流电路分为电压型和电流型,目前实用的装置90%以上为电压型。从与补偿对象的连接方式来看,电力有源滤波器可分为并联型和串联型。并联型中有单独使用、LC滤波器混合使用及注入电路方式,目前并联型占实用装置的大多数。但电力有源滤波器现仍存在一些问题,如电流中有高次谐波,单台容量低,成本较高等。随着电力半导体器件向大容量、高频化方向发展,这类既能补偿谐波又能补

静止无功补偿器的控制方式

SVC 输出容量控制主要有电压控制和恒导纳控制两种方式,可以在运行人员的指令下互相切换。 3.1.1电压控制模式 这种控制模式下控制系统将测量所得到的母线电压Vmeas与一个设定的参考电压Vref 进行比较,然后将差值进行计算, 得到一个标么值电纳信号Bref ,该电纳值除以单组机械可投切电容(电抗) 器的电纳值可以确定需要的电容(电抗)器数目,而差值由TCR来补充。随后将该标么值电纳送往脉冲触发发生电路,控制TCR 的触发角。SVC稳态特性曲线的斜率采用电流反馈来实现,这种方法能够保证在SVC 控制范围内使端电压和端电流之间保持线性关系。实测的SVC电流ISVC与代表调差率的系数KSL相乘,构成信号VSL再输入到加法节点。当ISVC为感性时, VSL取正;当ISVC为容性时,VSL取负。其传递函数为:G( s) =K1(1+s T Q)/s(1+s Tp),其中T Q=Tp+Kp/K1 由于Tp通常设为零,因而控制器转化为简单的比例积分器,比例系数Kp 反映响应速度。电压调节器输出的电纳参考信号被送到触发计算单元,该单元计算出6 组触发角,送至脉冲发生电路,从而在SVC 母线上得到期望的电纳值,达到设定的控制目标。 3.1.2恒导纳控制模式 在该模式下,SVC 的等效导纳Bord 由运行人员设定,且该导纳可以在规定范围内连续可调。Bref来自电压调节器的输出,在恒导纳模式下被偏置。首先根据监控单元提供的开入量需要确定已投运的电容(电抗) 器组的等效电纳,然后经过电纳计算,得出仍需投切的电容(电抗) 器组以及需要的TCR 触发角连续调节的等效感性电纳。最后换算成触发角发送到触发脉冲发生电路。 3.1.3 PWM电流控制 对PWM电路的电流控制可分为间接电流控制和直接电流控制。前者通过控制整流器产生的交流电压基波分量的相位和幅值来实现PWM 交流侧的电流控制;后者采用跟踪型PWM控制技术对交流侧的电流进行直接控制。在目前的STATCOM 系统中,考虑到PWM开关频率较低以及功耗问题,因此多采用间接电流控制。但间接电流控制其网侧电流的动态响应慢,且对系统参数变化灵敏。相比之下,直接电流控制更能精确地控制PWM输出的电流,因此在DSTATCOM设计中,采用直接电流控制方法,从而可以设置较高的PWM 开关频率,减少输出电流谐波,获得较好的输出电流波形,进而降低系统设计成本,提高运行可靠性。该实验控制方法采用基于矢量变换的直接电流控制,其控制方案如下图所示。

静止无功补偿器新型自适应动态规划电压控制

第46卷第12期电力系统保护与控制 Vol.46 No.12 2018年6月16日 Power System Protection and Control Jun. 16, 2018 DOI: 10.7667/PSPC170929 静止无功补偿器新型自适应动态规划电压控制 周晓华,张 银,刘胜永,罗文广,李振强 (广西科技大学电气与信息工程学院,广西 柳州 545006) 摘要:以静止无功补偿器电压控制非线性系统为研究对象,提出了一种采用新型自适应动态规划GrHDP实现静止无功补偿器电压控制的方法。选取当前及历史时刻电压误差作为系统状态反馈向量,根据外部增强信号及内部强化信号,GrHDP利用误差反向传播算法对3个神经网络权值进行反馈调节并获取最优权值,实现了静止无功补偿器的电压优化控制。在Matlab/Simulink仿真平台对执行依赖启发式动态规划ADHDP、PI控制和GrHDP进行了仿真对比。结果表明,采用GrHDP的静止无功补偿器能快速补偿系统无功功率,具有更好的电压控制效果,控制系统响应速度快、自适应能力强。 关键词:静止无功补偿器;电压控制;新型自适应动态规划;执行依赖启发式动态规划;电压调节器Voltage control of static Var compensator based on novel adaptive dynamic programming ZHOU Xiaohua, ZHANG Yin, LIU Shengyong, LUO Wenguang, LI Zhenqiang (School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China) Abstract: To remedy the defect of traditional PI controller in static V ar compensator nonlinear voltage control system, a method based on novel adaptive dynamic programming, goal representation heuristic dynamic programming (GrHDP), is proposed to optimize control of SVC voltage control system adaptively. According to the external enhancement signal and the internal strengthening signal, the GrHDP algorithm uses error backward propagation to adjust the weights of the three neural networks and obtain the optimal weights in order to realize the optimal control of the system by selecting the current and historical voltage errors as the system state feedback vector. The Action Dependent Heuristic Dynamic Programming (ADHDP) and the GrHDP algorithm are used to design the voltage regulator of the SVC voltage control system respectively, and simulation comparison is carried out in Matlab/Simulink platform. The results show that the SVC voltage control system based on GrHDP algorithm can compensate reactive power quickly, and has better voltage stability and control effect.The control system has faster response speed and stronger adaptive ability. This work is supported by National Natural Science Foundation of China (No. 61563006), Science and Technology Project of Guangxi (No. 1598008-2), and Natural Science Foundation of Guangxi (No. 2013GXNSFCA019020). Key words: static Var compensator; voltage control; novel adaptive dynamic programming; action dependent heuristic dynamic programming; voltage regulator 0 引言 静止无功补偿器(Static Var Compensator, SVC) 是一种常用的并联型柔性交流输电系统(Flexible AC Transmission System, FACTS)装置[1]。它通过从电网吸收或向电网注入可连续调节的无功功率,以 基金项目:国家自然科学基金项目资助(61563006);广西科技攻关项目资助(1598008-2);广西自然科学基金项目资助(2013GXNSFCA019020) 维持SVC装设点的电压恒定,同时有利于电网无功功率的平衡。目前,SVC以其性价比高、响应速度快和可靠性高等特点,在电力系统中得到了广泛的应用[2-3]。传统PID控制需确定的参数少,且易于在工程中实现,目前工程中SVC的电压控制一般采用传统的PI控制[4],以维持SVC所在线路的电压稳定。然而,将传统PID控制应用于SVC这个非线性复杂系统,将无法同时满足快速性和稳定性的要求,也不能实现对SVC的精确控制[5]。为此,针对SVC的电压控制问题,学者们提出了不同的控制策 万方数据

动态无功补偿装置

随着现代电力电子技术的发展,产生了一些静止形态的动态无功补偿装置。电力电子装置不仅可以发送而且还可以吸收无功功率,其本身也成为产生无功的功率源。在许多情况下,动态补偿有功功率或在补偿无功的同时也补偿部分有功功率,对改善电能质量会有更好的效果。随着电网中精密电能用户的增多,要求电网必须提供与用户所要求的质量指标相适应的电能。近年来,为了进一步提高配电电能质量指标,出现了多种动态的改善电能指标的电力电子设备。这些提高电能质量和供电可靠性的技术称为契约电力(custom power)。补偿技术发展的初期,人们已经注意到补偿无功功率和补偿系统参数存在某些相同的效果,有时甚至会产生更适合用户的效果,因此,补偿参数技术在电网中有着重要的应用领域。最常用的是串联电容输电补偿,他对减少电压变动,提高电力系统稳定性起到重要的作用。 本文对电力系统中为提高电能质量所使用的各种补偿技术及动态补偿方式作了概括性的介绍,重点叙述了补偿技术的发展及其技术前景,讨论了正在开展的新的补偿技术以及补偿用能源的合理使用,并表明了对当前电网中应用各种补偿方式的看法和评价。电力电子技术应用于电网和用户后使电网上产生了更多的无功和谐波,而用于滤波的技术实际上与补偿技术是相互联系也是相互影响的,因此,对滤波技术的进展也作了介绍。 1 并联无功补偿 1.1 同步调相机 同步调相机是最早用于电网的无功补偿设备,适合于电网电压调节。但调相机的反应速度较慢,因此对瞬时电压波动效果较差。他以励磁电流调节来改变发出电压,从电压的幅值大小决定无功功率的输出,同步电机的启动和运行需要很大的维护工作量,这是他的弱点。同步调相机运行中转子有惯性,在故障瞬间调相机向系统输出短路电流,增大系统的短路容量。对系统容量偏小而且电网短路电流不够大的电网(如直流输电的受端),同步调相机还是有显著作用的。但是,在一般电网中,由于短路容量往往偏大,甚至于需要采取限流措施,不适合采用同步调相机。目前,除了需要加大短路容量外,作为无功和电压补偿的同步调相机已经被完全淘汰。 1.2 静止无功补偿器(static var compansator,SVC) 平滑动态补偿是指所补充进电网的无功电流,他是按照电网无功需求的变化而变化的。由于无功是与电压直接联系的,所以调节无功在很大程度上是为了系统电压的质量和电压支撑。 静止无功补偿器目前主要有以下2种类型,一种是晶闸管投切电容器

动态无功补偿装置

动态无功补偿装置 随着现代电力电子技术的发展,产生了一些静止形态的动态无功补偿装置。电力电子装置不仅可以发送而且还可以吸收无功功率,其本身也成为产生无功的功率源。在许多情况下,动态补偿有功功率或在补偿无功的同时也补偿部分有功功率,对改善电能质量会有更好的效果。随着电网中精密电能用户的增多,要求电网必须提供与用户所要求的质量指标相适应的电能。近年来,为了进一步提高配电电能质量指标,出现了多种动态的改善电能指标的电力电子设备。这些提高电能质量和供电可靠性的技术称为契约电力(custom power)。补偿技术发展的初期,人们已经注意到补偿无功功率和补偿系统参数存在某些相同的效果,有时甚至会产生更适合用户的效果,因此,补偿参数技术在电网中有着重要的应用领域。最常用的是串联电容输电补偿,他对减少电压变动,提高电力系统稳定性起到重要的作用。 本文对电力系统中为提高电能质量所使用的各种补偿技术及动态补偿方式作了概括性的介绍,重点叙述了补偿技术的发展及其技术前景,讨论了正在开展的新的补偿技术以及补偿用能源的合理使用,并表明了对当前电网中应用各种补偿方式的看法和评价。电力电子技术应用于电网和用户后使电网上产生了更多的无功和谐波,而用于滤波的技术实际上与补偿技术是相互联系也是相互影响的,因此,对滤波技术的进展也作了介绍。 1并联无功补偿 1.1同步调相机 同步调相机是最早用于电网的无功补偿设备,适合于电网电压调节。但调相机的反应速度较慢,因此对瞬时电压波动效果较差。他以励磁电流调节来改变发出电压,从电压的幅值大小决定无功功率的输出,同步电机的启动和运行需要很大的维护工作量,这是他的弱点。同步调相机运行中转子有惯性,在故障瞬间调相机向系统输出短路电流,增大系统的短路容量。对系统容量偏小而且电网短路电流不够大的电网(如直流输电的受端),同步调相机还是有显著作用的。但是,在一般电网中,由于短路容量往往偏大,甚至于需要采取限流措施,不适合采用同步调相机。目前,除了需要加大短路容量外,作为无功和电压补偿的同步调相机已经被完全淘汰。 1.2静止无功补偿器(static var compansator,SVC) 平滑动态补偿是指所补充进电网的无功电流,他是按照电网无功需求的变化而变化的。由于无功是与电压直接联系的,所以调节无功在很大程度上是为了系统电压的质量和电压支撑。 静止无功补偿器目前主要有以下2种类型,一种是晶闸管投切电容器(TSC),另一种是晶闸管控制电抗器(TCR)。TSC与普通电容器不同之处,在于用晶闸管代替了断路器作电容器组的投切。TCR则连续调节电抗器电流大小,使无功按要求变化,下面分别说明其特点。 1.2.1晶闸管投切电容器(TSC)

静止型动态无功补偿成套装置技术规范

35kV SVG型静止型动态无功补偿成套装置技术规范 1总则 1.l 本设备技术规范书适用于XXXXXXXXXXXXXXXXXXXX工程XXkV 动态无功补偿与谐波治理装置,它提出了该设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 本设备技术规范书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,供方应提供符合工业标准和本协议要求的优质产品。 1.3 如果供方没有以书面形式对本技术规范书的条文提出异议,则意味着供方提供的设备完全符合本技术规范书的要求。 l.4 本设备技术规范书所使用的标准如遇与供方所执行的标准不一致时,按较高标准执行。 1.5 本设备技术规范书经供、需双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 1.6 本设备技术规范书未尽事宜,由甲、乙双方协商确定。 2工程概况 2.1环境条件 周围空气温度 最高温度 ℃ 37.8 最低温度 ℃ -37 最大日温差 K 25 1 日照强度 W/cm2 (风速 0.5m/s) 0.1 2 海拔高度 m 1805 最大风速 m/s 23.7 3 离地面高10m处,30年一遇10min平均最大风速 4 环境相对湿度(在25℃时)平均值 65% 地震烈度(中国12级度标准) 8 水平加速度 g 0.30 垂直加速度 g 0.15 5 地震波为正弦波,持续时间三个周波,安全系数1.67 污秽等级 III 泄漏比距 3.1cm/kV 6 最高运行电压条件下,制造厂根据实际使用高海拔进行修正,并提供 高海拔修正值 7 覆冰厚度(风速不大于15m/s时) 10 批注 [s1]: 需根据现场实际情况进行更改 第1页

关于牵引变电所无功补偿研究

关于牵引变电所无功补偿研究 梁俊 (华东交通大学电气与电子学院电气(城轨)2009-1) 摘要:为克服现有牵引变电所固功率因数低,谐波含量大和通过牵引变电所向电力系统注入波动的负序电流,改善电能质量,要进行进行无功补偿。并联电容补偿的缺陷经济有效的方式是采用并联补偿,而对于电力部门采用的发送正计的计量方式,固定无功补偿已经满足不了要求,需采用动态补偿方案,而动态补偿方案的确定需根据牵引负荷的特点来最终确定。 关键字:牵引变电所;无功补偿;固定补偿;动态补偿;功率因数 电力牵引负荷波动范围很大,一般机车电流很难保持30 s平稳不变,有时还会在更短的时间发生更突然的变化,使得日平均负荷与最大负荷相差很大。同时,现在国内外普遍采用交—直型机车,产生整流型牵引负荷,这使牵引负荷具有功率因数低和谐波含有大(主要是奇次)的特点。因此,功率因数低,谐波含量大和通过牵引变电所向电力系统注入波动的负序电流即为电力牵引自身具有的三大技术课题,这不仅使牵引供电系统自身的技术指标变坏,还使电力系统的电能质量受到损害。 改善电能质量的有效措施之一就是进行无功补偿。所谓的无功补偿方案, 就是补偿基波下的牵引负荷的无功功率,以提高功率因数,滤除指定谐波。为提高电力系统的容量利用率和供电质量,各国对各级电网及各类电力用户功率因数有着明确的规定,并采用经济手段进行管理。我国将大宗工业用户经济功率因数定为0.90,高于0.90奖励,低于0.90惩罚。 我国幅员广大、地质情况多样,各地区发展程度不一,许多欠发达地区普遍具有电网容量小,公用电网负荷中铁路占比重过大的问题。现有的无功补偿方案一般是设置固定电容进行并联补偿,实际运营后发现,在铁路轻载和空载的条件下,过补偿问题严重。补偿后造成无负荷时电压抬升,变电所月平均功率因数反而降低,罚款增加等问题。因此研究一种能提高电能质量,又不用大量追加一次性投资的补偿方案是非常必要的。 1 补偿方案 近几年,结合国外的先进技术,我国电气化铁道变电所无功补偿与谐波综合治理提出了多种无功补偿方案,无论哪种方案,都是力求基波下补偿牵引负荷的感性无功功率,提高功率因数,降低负序,并构成有效的滤波通路,滤除(或抵消)指定谐波。主要方案有: (1)安装固定电容器和电抗器组成单调谐滤波器。在设计时,滤除指定的谐波,并兼顾提高功率因数,降低负序。这种方案的优点是结构简单,投资少,但很难适应牵引负荷变化剧烈的特点,对于过补、欠补问题无法解决,在电力部门使用“返送正计”的无功计量方式情况下,功率因数很难满足要求。 (2)分组投切电容器。可采用晶闸管进行投切电(TSC)晶闸管投切电容器的单相电路图如图1 所示,其 图1 晶闸管投切电容器电路图

110KV 变电站无功补偿规格书

华恩机械有限责任公司35kV变电所SVG无功补偿装置 技术规格书 山西金鹤电力设计有限公司 2011年12月18日

1总则 1.1 本设备技术规格书适用于华恩机械35kV变电所的2套10kV无功补偿装置(SVG)。规格书提出设备的功能、设计、结构、性能、安装和试验等方面的技术要求。供方提供的设备应是符合本技术要求、完整的设备。 1.2本设备技术规范书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,供方应提供符合工业标准和本规格书要求的优质产品。 1.3若供方没有以书面形式对本技术条件提出异议,则意味着卖方提供的设备完全符合本技术条件和国家标准要求;如有异议,不管多小,都应在投标书中以“对技术条件的意见和同技术条件的差异”为标题的专门章节中说明 1.4本技术规范书经双方确认后,作为商务合同的附件,与商务合同具有同等的法律效力,随合同一起生效。 1.5本技术规格书未尽事宜,由供需双方协商确定。 1.6供方须执行现行国家标准和行业标准。应遵循的主要现行标准如下。下列标准所包含的条文,通过在本技术规范中引用而构成为本技术规范的条文。本技术规范出版时,所示本均为有效。所有标准都会被修订,供需双方应探讨使用下列标准最新版本的可能性。有矛盾时,按现行的技术要求较高的标准执行。 (1) DL/T672 《变电所电压无功调节控制装置订货技术条件》 (2) DL/T597 《低压无功补偿控制器订货技术条件》 (3) GB11920 《电站电气部分集中控制装置通用技术条件》 (4) GB1207 《电压互感器》 (5) SD325 《电力系统电压和无功电力技术导则》 (6) SD205 《高压并联电容器技术条件》。 (7) DL442 《高压并联电容器单台保护用熔断器订货技术条件》。 (8) GB50227 《高压并联电容器装置设计规范》。 (9) GB311.2~311.6 《高电压试验技术》。 (10)GB11 024 《高电压并联电容器耐久性试验》。

相关文档
最新文档