国外高分子材料新型注射成型技术(精)

国外高分子材料新型注射成型技术(精)
国外高分子材料新型注射成型技术(精)

国外高分子材料新型注射成型技术

发布时间:2004-3-21 14:51:09 浏览数:5引言

在21世纪已经到来的今天,高分子材料已经成为支持人类文明社会发展的科学进步的重要物质基础。众所周知,高分子材料技术是以合成技术、改性技术、形体设计技术、成型加工技术、应用技术和回收再利用技术为基础的综合技术,但由于高分子材料是为了制造各种制品而存在的,因此从应用的角度来讲,以对其进行形状赋予为主要目的的成型加工技术有着重要的意义。高分子材料的主要成型方法有挤出成型、注射成型、吹塑成型、压延成型、压制成型等等,其中注射成型因可以生产和制造形状较为复杂的制品,在高分子材料的成型加工方法中一直占有极其重要的位置。

本文主要参考近年来发表的日本有关成型加工方面的文献,着眼于高分子材料注射成型技术的最新发展动向,概要地介绍若干种用途较为广泛的注射成型新技术的原理。

气体辅助成型法(GAM,Cas Assist Molding)

GAM法的要点是在树脂充填(不完全充填)完成后,利用型腔内树脂冷却前的时间差,将具有一定压力的惰性气体迅速地注入成型品内部,此时气体可在成品壁较厚的部分形成空腔,这样即能使成品壁厚变得均匀,防止产生表面缩痕或收缩翘曲,使制品表面平整光滑。

GAM法近年来发展较快,国外很多公司为了进行专利回避,相继开发了具有不同特征的新方法,如日本旭化成公司的AGI法(Asahi Gas Iniection)、三菱工程塑料公司的CINPRES法(Controlled Internal Pressure)及出光石油化学公司的GIM法(Gas Injection Molding)等等,但各方法原理完全相同,如AGI法是将惰性气体(一般为N2)喷嘴设在注射机料口喷嘴内部,而CINPRES法是将惰性气体喷嘴设置在模具上,且可以是1个也可以是几个。

注射压缩成型法(IPM,Injection Press Molding)

IPM法技术由日本三菱重工业、名古屋机械制作所、出光石油化学等公司相继开发成功。有整体压缩法和部分压缩法之分。整体压缩法成型是首先在保持模具一定开度的状态下合模,将树脂充填(不完全充填)进去,而后利用油缸压缩使模具的动模移动至完全合模的情况下充填树脂(不完全充填),压缩不是靠整个动模移动,而是靠动模板上制品赋形面部分(可以是全体也可以是一部分)的移动而实现的。注射压缩成型法的优点是可以采用较低的注射压力成型薄形制品或需较大成型压力的制品,一般适用流动性较差且薄壁的制品,如高分子量PC或纤维填充工程塑料等。

模具滑合成型法(DSI,Die SlideInection)

DSI法由日本制钢所开发.有DSI-2M法和M—DSI法之分,DSI-2M法主要用于中空制品制造,而M-DSI主要用于不同树脂的复合体制造,其原理完全相同。如使用DSI-2M 法时,首先将中空制品一分为二,两部分分别注射,然后将两部分阴模(半成品仍在模具中)滑移至对合位置,在制品两部分结合缝再注人树脂(2次注射),最后得到完整的中空成型制品。和吹塑品相比,该法制品具有表面精度好、尺寸精度高、壁厚均匀且设计自由度高(如L型)等优点。

在制造形状复杂的中空制品时,DSI和传统的二次熔接法(如超声波熔接)相比,其优点是:a不需要将半成品从模具中取出,因而可以避免半成品在模具外冷却引起的制品形状精度下降问题;b可以避免二次熔接法因产生局部应力而引起的熔接强度降低问题。但为了提高制品的熔接强度,DSI法也应根据制品的要求,采取不同的接合形状。如凹口对接:适用于对接合强度要求不高,但对外观形状要求较高的制品;嵌入对接:适用于即对接合强度要求较高,又对外观形状要求较高的制品;交织对接:适用对熔接性较差的塑料制品;封合对接:适用于即要求接合强度较高,又要求密封性较高的制品,如制造压力容器时一般需采用该方法。此外,日本制钢所还开发其他12种接合形状,并对其适用性进行了较为详细的评价。可见在DSI法中接合形状的设计是至关重要的。

剪切场控制取向成型法(SCORIM,Shear Controllcd Orientation Injection Molding)

SCORIM技术由英国Brunell大学开发,通常用于玻纤或碳纤维将不可避免地在垂直于流动方向上取向(和熔接痕方向平行),最终造成制品强度的降低。它在模具上开设两个主流道,从注射喷嘴射出的熔融树脂将分别沿这两个主流道充满型腔,同时利用SCORIM装置将两个液压油缸的活塞分别设于主流道上,当熔融树脂充满型腔后,两活塞将一进一退反复振荡,此时熔接痕部位的玻纤或碳纤维将被迫沿着剪切力场方向取向,该技术不仅可提高熔接痕中度,也可消除制品内部的缩孔或表面的缩痕。

由于纤维增强是制备高强度制品的重要方法,因此有关利用剪切场控制纤维取向的注射成型新技术较多,除SCORIM法外,较典型的有:由德国Klockner Ferromatik Desma公司开发的推拉法(Push-Pull),该法和SCORIM法原理相同,主要区别是用两个注射机螺杆代替活塞进行反复振荡;日本宝理公司开发的层间正交法(Cross Layer Moldint)是在浇口垂直方向上设置两个加压杆或加压板,使制品芯部处于熔融状态的树脂再次取向,最终使处于制品表面层的纤维和处于芯层的纤维方向垂直,可以减少纤维增强制品力学性能下的各向异性。

硬化PC薄片表面镶嵌成型法(CFI Coated Film Insert Injection)

CFI法由三菱工程塑料公司开发,主要利用表面硬化或硬化并彩印的PC薄片进行表面镶嵌成型。其概要是行将冲切好的PC薄片装在模具上,然后合模并在所定的条件下注射成型,既可以得到单面镶嵌,也可以得到双面镶嵌硬化PC薄片的制品。该方法克服了对制品进行表面硬化处理难度大、效率低的缺点,可以先在平面状的PC薄片上进行涂装和硬化处理,再将其按所需形状冲切后镶八模具,而后靠注射树脂的压力和温度得到曲面状的制品,

适用于汽车或各种家电、OA(电脑办公用品)制品的铭板等。

采用CFI法时,中间的树脂层可以使用PC,也可以使用PS、AS、MS、PMMA等透明材料或ABS等不透明材料。为了使PC薄片和中间树脂层之间有较好接合强度,一般要在接合面上事先涂有特殊的粘合层;为了使PC薄片表面上的硬化层不因过度弯曲或因热的作用而产生龟裂,制品的曲率半径应小于30mm,且模具温度应保持在70℃以下;为了使PC 薄片形成所要求的曲面形状,并使其和中间树脂层之间有较好的接合强度,中间层树脂的注射成型温度一般应高于290℃;为了使PC薄片不在流动树脂的剪切力作用下产生位移,应采取如真空吸合、打孔、磁吸(在PC薄片边缘贴上磁片)、或将PV薄片弯曲后人模具上设定的沟槽内等方法,使其固定在相应的位置上。

三菱工程塑料公司还开发了彩印PC薄片表面镶嵌成型法(PSI,Printed Sheet Insert Injection),PSI法中采用彩印的PC薄片,其成型原理和CFI法基本相同。该方法所得制品的表面(可以是外表面也可以是内表面)为印刷面,而注射树脂一般采用透明材料以保证制品的透光性。适用于需要有背光透出的汽车仪表或各种家电、OA制品的面板等。

直接注射成型法(DIM,Direct Injection Molding)

直接注射成型技术由日本岸本产业、KCK等公司开发成功,主要用于高浓度玻璃纤维、碳纤维或有机、无机粉体(如碳酸钙、木粉)等复合材料制品的注射成型。在复合材料制备时,为了使填充剂均匀地分散在基体树脂中,传统的方法一般需将基体树脂和玻璃纤维等掺混并经双螺杆挤出机混炼造粒,这不仅造成较大的能量耗损,也带来如基体树脂的降解、氧化变色、玻璃纤维因过度剪切而切断等问题。而直接注射成型法不经挤出机混炼造粒,可以将掺混物直接注射成制品,但由于注射网为单螺杆装置,且其长径比一般挤出机小,因此对直接注射成型技术而言,最关键的是如何提高螺杆的混炼效率。

直接注射成型技术通常是通过改变压缩段的螺杆构造来提高混炼效率的,该装置中不仅螺杆形状和密炼机转子相似,而且在料筒壁上开设了相瓦错开的沟槽,工作时其狭缝S部分可产生较大的剪切力,有利于树脂塑化和无机填充剂的分散,沟槽P部分可使溶融混合物反复实现混合-剪切-再混合的过程,有利于复合材料达到均质化的要求。该装置只能用于复合材料的成型而不能用于纯树脂的成型,这是因为用于纯树脂成型时,狭缝S可产生较多的逆流使螺杆的输送效率降低,而用于复合材料成时,大量的无机填充剂所产生的增粘作用可抑制逆流的发化,此时装置才能同时具有混炼和输送功能。

高分子材料成型加工(含答案)

1.高分子材料成型加工:通常是使固体状态(粉状或粒状)、糊状或溶液状态的高分子化合物熔融或变形,经过模具形成所摇的形状并保持其已经取得的形状,最终得到制品的工艺过程。 2.热塑性塑料:是指具有加热软化、冷却硬化特性的塑料(如:ABS、PP、POM、PC、PS、PVC、PA、PMMA等),它可以再回收利用。具有可塑性可逆 热固性塑料:是指受热或其他条件下能固化或具有不溶(熔)特性的塑料(如:酚醛树脂、环氧树脂、氨基树脂、聚胺酯、发泡聚苯乙烯、不饱和聚酯树脂等)具有可塑性,是不可逆的、不能再回收利用。 3. 通用塑料:一般是指产量大、用途广、成型性好、价格便宜的塑料 工程塑料:指拉伸强度大于50MPa,冲击强度大于6KJ/m2,长期耐热温度超过100°C 的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等的、可代替金属用作结构件的塑料. 4.可挤压性:材料受挤压作用形变时,获取和保持形状的能力。 可模塑性:材料在温度和压力作用下,产生形变和在模具中模制成型的能力。 可延展性:材科在一个或两个万向上受到压延或拉伸的形变能力。 可纺性:材料通过成型而形成连续固态纤维的能力。 5.塑化效率:高分子化合物达到某一柔软程度时增塑剂的用量定义为增塑剂的塑化效率。定义DOP的效率值为标准1,小于1的则较有效,大于1的较差. 6.稳定流动:凡在输送通道中流动时,流体在任何部位的流动状况及一切影响流体流动的因素不随时间而变化,此种流动称为稳定流动。 不稳定流动:凡流体在输送通道中流动时,其流动状况及影响流动的各种因素都随时间而变化,此种流动称之不稳定流动。 7. 等温流动是指流体各处的温度保持不变情况下的流动。(在等温流动情况下,流体与外界可以进行热量传递,但传入和输出的热量应保持相等) 不等温流动:在塑料成型的实际条件下,由于成型工艺要求将流道各区域控制在不同的温度下:而且由于粘性流动过程中有生热和热效应,这些都使其在流道径向和轴向存在一定的温度差,因此聚合物流体的流动一般均呈现非等温状态。 8. 熔体破裂: 聚合物在挤出或注射成型时,在流体剪切速率较低时经口模或浇口挤出物具有光滑的表面和均匀的形状。当剪切速率或剪切应力增加到一定值时,在挤出物表面失去光泽且表面粗糙,类似于“橘皮纹”。剪切速率再增加时表面更粗糙不平。在挤出物的周向出现波纹,此种现象成为“鲨鱼皮”。当挤出速率再增加时,挤出物表面出现众多的不规则的结节、扭曲或竹节纹,甚至支离和断裂成碎片或柱段,这种现象统称为熔体破裂. 9. 离模膨胀:聚合物熔体挤出后的截面积远比口模截面积大。此种现象称之为巴拉斯效应,也成为离模效应。离模膨胀依赖于熔体在流动期间可恢复的弹性变形。有如下三种定性的解释:取向效应、弹性变形效应(或称记忆效应)、正应力效应。 10. 均匀程度指混人物所占物料的比率与理论或总体比率的差异。 分散程度指混合体系中各个混人组分的粒子在混合后的破碎程度。破碎度大。粒径小,起分散程度就高;反之。粒径大,破碎程度小,则分散的不好 11. 塑炼:为了满足各种加工工艺的要求,必须使生胶由强韧的弹性状态变成柔软而具有可塑性的状态,这种使弹性生胶变成可塑状态的工艺过程称作塑炼。 混炼就是将各种配合剂与可塑度合乎要求的生胶或塑炼胶在机械作用下混合均匀,制成混炼胶的过程。 12. 固化速率:是以热固性塑料在一定的温度和压力下,压制标准试样时,使制品的物理机械性能达到最佳值所需的时间与标准试件的厚度的比值(s/mm厚度)来表示,此值愈小,固化速率愈大。 13.成型收缩率:在常温常压下,模具型腔的单向尺寸L 。和制品相应的单向尺寸L之差与

纳米技术在高分子材料改性中的应用

纳米技术在高分子材料改性中的应用 (南通大学化学化工学院高分子材料与工程132 朱梦成1308052064 ) [摘要] 纳米材料及其技术是随着科技发展而形成的新型应用技术。纳米材料的研究是从金属粉末、陶瓷等领域开始的,现已在微电子、冶金、化工、电子、国防、核技术、航天、医学和生物工程等领域得到广泛的应用。近年来将纳米材料分散于聚合物中以提高高分子材料性能的研究也日益活跃,并取得了许多可观的成果。 [关键词] 纳米技术;高分子材料;改性;应用 1纳米粒子的特性及其对纳米复合材料的性能影响 1.1纳米粒子的特性 纳米粒子按成分分可以是金属,也可以是非金属,包括无机物和有机高分子等;按相结构分可以是单相,也可以是多相;根据原子排列的对称性和有序程度,有晶态、非晶态、准晶态。由于颗粒尺寸进入纳米量级后,其结构与常规材料相比发生了很大的变化,使其在催化、光电、磁性、热、力学等方面表现出许多奇异的物理和化学性能,具有许多重要的应用价值。 1.1.1表面与界面效应 纳米微粒比表面积大,位于表面的原子占相当大的比例,表面能高。由于表面原子缺少邻近配位的原子和具有高的表面能,使得表面原子具有很大的化学活性,从而使纳米粒子表现出强烈的表面效应。利用纳米材料的这种特点,能与某些大分子发生键合作用,提高分子间的键合力,从而使添加纳米材料的复合材料的强度、韧性大幅度提高。 1.1.2小尺寸效应 当超细微粒的尺寸与传导电子的德布罗意波长相当或更小时,晶体周期性的边界条件将被破坏,导致其磁性、光吸收、热、化学活性、催化性及熔点等发生变化。如银的熔点为900℃,而纳米银粉的熔点仅为100℃(一般纳米材料的熔点为其原来块体材料的30%~50%)。应用于高分子材料改性,利用纳米材料的高流动性和小尺寸效应,可使纳米复合材料的延展性提高,摩擦系数减小,材料表面光洁度

高分子相关外文期刊&出版商&影响因子

Additives for Polymers《聚合物添加剂》英国 ISSN:0306-3747,1971年创刊,全年12期,Elsevier Science出版社出版,选摘各国期刊和专利中有关塑料和橡胶工业新材料、产品、技术、商业动态等方面的文献和资料。 Advances in Polymer Technology《聚合物技术进展》美国 ISSN:0730-6679,1981年创刊,全年4期,John Wiley出版社,SCI、EI收录期刊,SCI 2003年影响因子0.540,2003年EI收录32篇。1981-1995年刊名为Advances in Polymer Technology 1981 - 1995,刊载反映聚合物技术进展和趋势的原始论文和评论,内容包括材料、生产和加工方法,设备和产品设计等方面,兼及技术经济研究论述、专利评介和技术快讯。 Biopolymers《生物聚合物》美国 ISSN:0006-3525,1963年创刊,全年24期,John Wiley出版社,SCI、 EI收录期刊, SCI 2003年影响因子2.733,2003年EI收录70篇。1963-1995年刊名为Biopolymers (including Peptide Science) 1963-1995,刊载生物分子的结构、特性、相互作用与集合方面的研究论文。涉及有机与物理化学、实验与理论研究、结构的静态与动态和生物光谱学检定等。 Colloid & Polymer Science《胶体与聚合物科学》德国 ISSN:0303-402X,1907年创刊,全年12 期,Springer-Verlag出版社,SCI、EI收录期刊,SCI 2002年影响因子1.182,2003年EI收录137篇。附《胶体与聚合物科学进展》刊载胶体与聚合物的科学、技术及其应用等方面的研究论文、简讯和书评。 Biomaterials《生物材料》英国 ISSN:0142-9612,1980年创刊,全年24期,Elsevier Science 出版社出版,SCI、EI收录期刊,SCI 2002年影响因子3.008。刊载研究论文、评论文章和实验报告,内容包括各种合成和天然生物材料的结构、性质、功能及其临床应用等。 European Polymer Journal《欧洲聚合物杂志》英国 ISSN:0014-3057,1965年创刊,全年12期,Elsevier Science 出版社出版,SCI、EI收录期刊,SCI 2003年影响因子1.086,2003年EI收录292篇。刊载合成与天然高分子物质的理论和实验方面的研究论文和简报。 Journal of Applied Polymer Science《应用聚合物科学杂志》美国 ISSN:0021-8995,1956年创刊,全年56期,John Wiley出版社,SCI、EI收录期刊,SCI 2003年影响因子1.017,2003年EI收录1671篇。1959-1995年刊名为Journal of Applied Polymer Science 1959 - 1995,本刊作为聚合物研究的综合性情报源之一,全面反映聚合物科学在各学科领域应用的研究进展和成果。 Journal of Biomedical Materials Research Part A《生物医学材料研究杂志A部分》美国ISSN:0021-9304,1967年创刊,全年24期,John Wiley出版社,SCI、EI收录期刊,2003年 EI收录511篇。发表生物材料领域原始研究论文,包括合金、聚合物和陶瓷等材料应用于外科、牙科和植入器件的论述和简讯。 Journal of Biomedical Materials Research Part B: Applied Biomaterials《生物医学材料研究杂志B部分》美国

高分子膜材料的制备方法

高分子膜材料的制备 方法 xxx级 xxx专业xxx班 学号:xxxxxxx xxx

高分子膜材料的制备方法 xxx (xxxxxxxxxxx,xx) 摘要:膜技术是多学科交叉的产物,亦是化学工程学科发展的新增长点,膜分离技术在工业中已得到广泛的应用。本文主要介绍了高分子分离膜材料较成熟的制膜方法(相转变法、熔融拉伸法、热致相分离法),而且介绍了一些新的制膜方法(如高湿度诱导相分离法、超临界二氧化碳直接成膜法以及自组装制备分离膜法等)。 关键词:膜分离,膜材料,膜制备方法 1.引言 膜分离技术是当代新型高效的分离技术,也是二十一世纪最有发展前途的高新技术之一,目前在海水淡化、环境保护、石油化工、节能技术、清洁生产、医药、食品、电子领域等得到广泛应用,并将成为解决人类能源、资源和环境危机的重要手段。目前在膜分离过程中,对膜的研究主要集中在膜材料、膜的制备及膜过程的强化等三大领域;随着膜过程的开发应用,人们越来越认识到研究膜材料及其膜技术的重要性,在此对膜材料的制备技术进行综述。 2.膜材料的制备方法 2.1 浸没沉淀相转化法 1963年,Loeb和Sourirajan首次发明相转化制膜法,从而使聚合物分离膜有了工业应用的价值,自此以后,相转化制膜被广泛的研究和采用,并逐渐成为聚合物分离膜的主流制备方法。所谓相转化法

制膜,就是配置一定组成的均相聚合物溶液,通过一定的物理方法改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,最终转变成一个三维大分子网络式的凝胶结构。相转化制膜法根据改变溶液热力学状态的物理方法的不同,可以分为一下几种:溶剂蒸发相转化法、热诱导相转化法、气相沉淀相转变法和浸没沉淀相转化法。

高分子材料成型模具

《高分子材料成型模具》教学大纲 一、课程基本信息 课程名称(中、英文):高分子材料成型模具 Plastic Molds Engineering Design 课程号(代码):300010040 课程类别:专业必修课 学时:64 学分:4 二、教学目的及要求 本课程的目的:本课程的目的是让学生学会常用的塑料成型用模具的设计方法、原则和注意事项。包括注射模、挤出模、压制模等模具设计。要求学生通过课堂学习和实践环节,掌握塑料模设计的主要步骤和方法。 要求:学生通过课堂对模具理论基础的学习,掌握塑料模设计的主要步骤和方法,为学生毕业设计或毕业后到单位的工作,打下坚实的理论基础和应对工作之必备的方法。 三、教学内容 1.1.注塑模部分(55学时): 概述(1学时) 塑料制品设计(5学时) 注塑成型模具设计(55学时) 包括:浇注系统(5学时) 无流道模具浇注系统(4学时) 注塑成型零部件(5学时) 成型零部件工作尺寸计算(4学时) 型腔刚强度壁厚尺寸计算(5学时) 合模导向与定位机构(5学时) 顶出脱模机构及力学计算(6学时) 侧向分型与抽芯机构(12学时) 温控系统(6学时) 气辅成型制品设计(6学时)

2、塑料挤塑成型模具(共约18学时) 第一节概述:了解挤出模的概念、作用、与挤出机的关系,学习设计挤出模之前的一引起理论准备。(2学时) 第二节圆形棒材挤塑成型机头设计:掌握圆形棒材挤塑成型机头和定径套的一般结构及设计方法,包括带分流锥和无分流锥棒材模,注意 二者的差别。(1学时) 第三节管材挤塑成型机头:了解塑料管材的发展趋势;学习管材挤出机头和其定径套的典型结构及设计方法。包括:直通式机头、直角式 机头、筛孔板式(吊篮式)机头等。注意各自的特点。(5学时重 点) 第四节吹塑薄膜机头设计:学习吹塑薄膜机头及其冷却定径装置的结构及设计方法。包括:芯棒式机头、十字形机头、螺旋式机头、径 向流道机头、旋转式机头及多层复合薄膜吹塑机头等。(1学时)第五节吹塑型坯机头:学习吹塑型坯机头结构设计,注意模具中熔接痕和物料均布问题;型坯垂延和温度分布不均的问题;制品沿轴向各 点吹胀比不同引起厚薄不均的问题;制品沿径向各点吹胀比不同引 起厚薄不均的问题;(1学时) 第六节板材与片材模设计:学习板片材挤塑模结构设计的设计原则:出料均匀、压降适度和停留时间短且无滞料现象。学习此类模具在出料 不均匀的情况下的改进措施。(3学时重点) 第七节线缆包覆挤塑模设计:掌握线缆包覆模(挤压式和导管式)的结构设计方法(1学时) 第八节异型材挤塑模设计:学习塑料异型材挤出模及定型装置的类型及设计方法。包括塑料异型材的设计原则和板孔式异型材机头、异型材 多级挤塑机头及流线形异型材挤出机头及名自的定型装置设计。(3

LSR(注射成型)最新技术详解-精

注射成型LSR的最新进展 在这一制品中,,用作滤 图1热塑性塑料/LSR包覆成型的一个应用是水龙头滤网 包覆成型的一个应用是水龙头滤网。。在这一制品中 网的LSR被包覆成型到尼龙66上 得益于材料、设备和工艺的改进与革新,液态硅橡胶(LSR)逐渐摆脱了小众需求的现状,扩大了应用领域。其中,大型、微型和发泡制品,以及多色或多材料的组合是LSR应用的新领域。 液态硅橡胶(LSR)对于注塑加工商的商业机会的拓宽,要归功于更新的成型工艺,如发泡、多色或者多硬度注射,以及热塑性塑料/热固性塑料包覆技术的涌现。材料、设备和模具的改进增加了产品的多功能性,提高了产品质量,降低了注塑加工商准入的门槛。

今天的LSR注塑加工商拥有更多的原材料选择、更大的模具选择余地以及更好的工艺技术,不但可以成型小至数千分之一g的制品,而且也能够加工32kg以上的巨大产品。 材料、模具和加工设备供应商表示,在过去的几年里,对LSR感兴趣的人逐渐增加。“一些塑料公司对此感兴趣,一些新公司也希望开拓他们的业务,同时医疗领域的加工商也更多地加入进来。”Roembke Mfg.&Design模具公司副总裁Greg Roembke说。“我们发现,汽车工业已开始应用LSR。也许传统的硅橡胶在汽车工业中的应用已达到了极致,下一步需要从LSR获得更多的东西。”他补充说。 图2LSR的双注射包覆成型通常在一个成型单元内完成, 而LSR和热塑性塑料则分别在不同的注射机上成型 LSR注塑加工商表示,他们已经从高温硅橡胶(HCR)、EPDM、乳胶、天然橡胶、TPE、PVC甚至陶瓷的应用领域中抢占了一些市场。Momentive Performance Materials(前GE Silicones)的弹性体和RTV总经理Bill French说,由于LSR惰性、耐热且耐化学品,因此可用于生产奶嘴和奶头、医用装置阀门或密封条、医疗植入体、医用手套和汽车密封条

纳米技术在高分子材料中的应用

2013年11月(下) [摘要]当材料尺寸无限减小,达到纳米级别时材料将显现出有独特的效应如:小尺寸效应、量子尺寸效应和表面效应等,这些效应与聚合 物密度小,耐腐蚀、易加工等优良特性有机结合,便形成了一类新型功能高分子材料。本文综述了纳米技术在塑料、橡胶、纤维三类高分子材料中的典型应用。 [关键词]纳米高分子材料;纳米塑料;纳米橡胶 纳米技术在高分子材料中的应用 丰艳兰 曾小飞 (华东交通大学理工学院,江西南昌330010) 纳米技术一词从提出到发展只有二十几年的时间,它的提出掀起了科技届的研究浪潮,有专家预言它必将引领新时代的科技变革,于是世界各国、地区都积极制定计划,加强投入,力争占领科技至高点。近年来,随着纳米技术的成熟与改善,国内外对于聚合物基纳米复合材料的研究已显现成效。高分子基纳米复合材料是各种纳米结构单元与有机高分子材料复合形成的一种新型材料,常见的纳米高分子基复合材料有:纳米复合塑料、纳米复合橡胶、纳米复合纤维。 1纳米复合塑料 纳米复合塑料是指塑料中分散了纳米级尺寸的超微细分散相,分散相为聚合物时,称为聚合物分子纳米复合塑料;分散相为无机填料时,称为无机填料纳米复合塑料,研究较多的是无机填料作为分散相。众所周知,塑料作为一种用途广泛的材料有着自身的缺点:如强度较差、不耐老化、透气性差等。发展纳米复合塑料可以很好地改善这些方面的性能。 1)无机纳米材料复合塑料能够很好地改善塑料的强度,起到增强增韧的效果。比如在尼龙塑料当中增加少量的纳米粘土生产的纳米复合塑料,既保持了产品的塑性,又提高了它的刚性和强度,更提高了它的抗弯能力,可以作为车体材料进行使用。 2)使用纳米添加剂改善的塑料制品可以大大提高抗老化能力,塑料的老化主要原因是光老化,将纳米TiO 2等粒子填充到塑料基体当中,纳米TiO 2可以很好地吸收紫外线,降低紫外线对塑料的破坏,提高塑料制品的抗老化能力。比如用添加0.1%~0.5%的纳米TiO 2制成的透明塑料包装材料包装食品,可以减少紫外线对食品营养成分的损失,保持食品的营养价值。 3)可以赋予塑料一些新的功能。比如在农膜的使用当中,有一种纳米转光膜,它就是利用纳米技术,在农膜塑料生产过程中添加纳米黏土,这种农膜被称为纳米转光膜,由于纳米黏土的存在,它能够很好地强化、放大有利于农作物生产的特征光,而过滤掉不利于农作物生长的光,从而大大促进农作物的光合作用,使农作物果实更大更有营养。 2纳米复合橡胶 纳米橡胶是指尺寸在1~100的纳米无机粒子分散在连续相橡胶基体中构成的复合材料。利用纳米粒子作为补强材料填充到橡胶中,可以很好地发挥纳米粉体的小尺寸效应、量子效应等表面效应,提高粉体与橡胶大分子间作用力的,弥补界面区化学作用力的缺乏,从而增强对橡胶的补强效果。赋予橡胶制品更高的性能,延长橡胶制品的使用寿命。现有研究表明,纳米黏土复合橡胶能够很好地提高材料的模量、硬度和强度,提高橡胶的气体阻隔性、耐油、阻燃性能。Si 3N 4陶瓷粉体分散在橡胶中,能很好地发挥Si 3N 4的高化学稳定性、优良的机械性能和介电性能。 3纳米复合纤维 纳米纤维有广义和狭义之分,狭义的纳米纤维指纤维直径为纳米量级的超细纤维,广义的纳米纤维还包括将纳米颗粒填充到普通纤维中对其进行改性的纤维。目前国内外开发的热点是后者;所采用纳米颗粒的性能不同,可开发各种不同的功能性纤维。 1)可用于开发抗菌纤维产品,将具有抗菌作用的成分:银离子、铜离子、锌离子等微粒离子及其化合物通过物理吸附离子交换等方法制成抗菌剂,填充至纤维材料中,金属离子在低浓度下可以破坏细菌的细胞膜或细胞原生质活性酶的活性,从而起到抗菌作用。这种抗菌纤维常用来制作手术服、护士服、手术巾等医疗用品,还可制造衣物、鞋袜等生活用品。 2)可用于开发紫外线防护纤维,将ZnO 、SiO 2等纳米粉体利用共混纺丝法或后整理法制得防紫外线纤维或织物。纳米材料可做紫外线屏蔽剂,主要是因为纳米粒子的尺寸比紫外线相当或更小,小尺寸效应导致其对紫外线的吸收更强。通过以上方法制得的紫外线防护纤维可广泛用于制造遮阳伞、遮阳冒、泳衣、防晒服等。 3)可用于开发远红外纤维。研究表明,将具有较高远红外发射率的陶瓷微粉加入到高分子聚合物中,经纺丝加工可制成远红外纳米纤维,其中的纳米粒子可以有效地吸收材料本身释放的远红外射线,从而达到促进血液循环,调节新陈代谢的保温保健功能。同样,由于纳米粒子可以很好地吸收电磁波,这种纤维材料还可以用于制作军用服装。 4)可用于开发超双疏织物。对织物进行纳米表面处理,使之形成纳米尺寸的凹凸结构,利用纳米结构的表面效应可以实现既疏水又疏油的超双疏性。 纳米技术作为一项高新技术在材料领域有着非常广阔的应用前景,而高分子材料作为发展最快、品种多样、应用广泛、价廉性优的一类材料,加强两者结合的有机结合,可实现开发高性能高分子材料的现实意义。 作者简介:丰艳兰,1982年生,女,江西丰城人,华东交通大学理工学院助教,本科学历,研究方向为新材料应用研究;曾小飞,1983年生,男,江西丰城人,华东交通大学理工学院助教,研究生学历,研究方向为材料科学的发展及应用。 [参考文献] [1]肖亚航.纳米塑料的性能及应用前景[J].黑龙江科技信息,2010. [2]施利毅.纳米材料在高性能橡胶开发中的应用进展[J].中国橡胶,2007.[3]白鸟世明.高功能纳米复合纤维[J].产业用纺织品,2009. 112

(新)新型注射成型技术_

新型注射成型技术 1. 共注射成型(芯层注射成型) 采用共注射成型有助于观察到制件中独特的结构。塑料“甲”先注射充入部分型腔,然后塑料:“乙”紧跟着“甲”注射进入型腔并保持初始推动流动压力场。根据表皮区和芯层的尺寸大小,按正确的比例关系计量出“甲”和“乙”的用料量,可制得1个内芯层为“甲”外表完全由“乙”包裹的制件。 另外,在化妆品应用方面,有小部分的表皮“甲”料放在“乙”料之后注射,以使浇口部分的表皮能完全闭合。用2种不同颜色的树脂进行共注射成型的制件,形成一个容易区分的表皮和芯层区间(认识到所有的注射成型件中存在有类似的表皮和芯层这一点非常重要。)如果没有先进的检测技术,通常难以区分表皮—芯层的区域及其分界面。共注射成型并非一门新的工艺技术。英国ici公司早在70年代就开始应用这一技术,并取得了包括基础理论,生产产品及机器设备等几项专利。现普遍采用的ici生产工艺类似“三明治模塑”,由于模塑外层表皮的材料与中间或芯层的材料不同,因此两种材料必须有一定的相容性,并且芯层材料要求具有可高度辐射、发泡成型和100%回收利用等性能。选用材料应经多种选择比较而定。共注射成型工艺问世15年后,才真正得以普及推广。一种采用共注射成型的厚齿输制

作横截面。 表皮材料是非填充尼龙,而芯层材料是玻璃-珠料-填充尼龙。芯层中玻璃珠粒料收缩率极低,具有良好的尺寸稳定性。尼龙表皮赋予齿轮齿牙良好的润滑性并避免了珠粒料容易产生的磨蚀问题。 基于共注射成型的基础理论目前已开发出几种新型加工改进方法。例如,模内“上漆”和气体辅助模塑成型扩大了采用这种工艺的范围。模内上漆加工方法是采用低分子量聚合物作为外层材料,而气体辅助模塑成型是采用氮气或另一种气体作为芯层(或部分芯层)材料。随着产品设计与生产加工设备的不断完善改进,将满足各种新应用和新技术的需求,共注射技术必将成为富有潜力的工业化大规模生产工艺方法。 2. 气体辅助注射成型 气体辅助注射成型技术主要是为了减轻重量和(或)节省循环时间等而逐渐发展起来的。 通常的共注射成型中,首先注射外层材料,并只部分填充型腔。然后气体通过喷嘴注射或直接进入模腔内,模腔制件的芯层部位。液化气体也可注射到待成型制件的芯层部分。一般而言,在芯层内气体压力推动熔料向前流动,直至完全充满型腔,并防止制件表层在固化阶段从模腔壁凹下,相连的表皮层紧贴着模腔壁,气体则保存在模塑制件的芯层区间。由于注入气体的压力高于大气压力,故此该气体的压力必须在制件顶出之前降低,以避免当起限位作用的模腔壁移动时,

高分子纳米生物材料的发展现状及前景

高分子纳米生物材料的发展现状及前景 纳米材料研究都是从20世纪80年代开始的,是在之前三次工业革命的基础上发展起来的的新兴科技领域。巨大的需求与技术支撑,使其在材料、生物、医学、高分子等领域开拓出一片片新大陆,筑起21世纪工业革命的基石。而纳米技术作为一项高新技术在高分子材料中有着非常广阔的应用前景,对开发具有特殊性能的高分子材料有着重要的实际意义 纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。 1纳米科技与高分子材料的邂逅 高分子材料学的一个重要方面就是改变单一聚合物的凝聚态,或添加填料来使高分子材料使用性能大幅提升。而纳米微粒的小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应能在声、光、电、磁、力学等物理特性方面呈现许多奇异的物理、化学性质。金属、无机非金属和聚合物的纳米粒、纳米丝、纳米薄膜、纳米块体以及由不同组元构成的纳米复合材料,可实现组元材料的优势互补或加强。通过微乳液聚合方法得到的纳米高分子材料具有巨大的比表面积,纳米粒子的特异性能使其在这一领域的发展过程中顺应高分子复合材料对高性能填料的需求,出现了一些普通微米级材料所不具有的新性质和新功能,纳米科技与高分子材料科学的交融互助对高分子材料科学突破传统理念发挥了重要作用。 高分子纳米复合材料的应用及前景 由于高分子纳米复合材料既能发挥纳米粒子自身的小尺寸效应、表面效应和量子效应,以及粒子的协同效应,而且兼有高分子材料本身的优点,使得它们在催化、力学、物理功能(光、电、磁、敏感)等方面呈现出常规材料不具备的特性,故而有广阔的应用前景利用纳米粒子的催化特性,并用高聚物作为载体,既能发挥纳米粒子的高催化性和选择催化性,又能通过高聚物的稳定作用使之具有长效稳定性。 纳米粒子加入聚合物基体后,能够改善材料的力学性能。如纳米A-Al2O3/环氧树脂体系,粒径27nm,用量1%~5%(质量分数)时,玻璃化转变温度提高,模量达极大值,用量超过10%(质量分数)后,模量下降[79]。又如插层原位聚合制备的聚合物基有机)无机纳米级复合材料(聚酰胺/粘土纳米复合材料等)具有高强度、高模量、高热变形温度等优点,目前已有产品出现,用作自行车、汽车零部件等[55]。尤其引人注目的是高分子纳米复合材料在功能材料领域方面的应用,包括磁性、电学性质、光学性质、光电性质及敏感性质等方面。 磁性纳米粒子由于尺寸小,具有单磁畴结构,矫顽力很高,用它制作磁记录材料可以提高记录密度,提高信噪比;一般要求与聚合物复合的纳米粒子,采用单磁畴针状微粒,且不能小于超顺磁性临界尺寸(10nm)。 利用纳米粒子的电学性质,可以制成导电涂料、导电胶等,例如用纳米银代替微米银制成导电胶,可以节省银的用量;还可以用纳米微粒制成绝缘糊、介电糊等。另外可用于静电屏蔽材料,日本松下公司应用纳米微粒Fe2O3、TiO2、Cr2O3、ZnO等具有半导体特性的氧化物粒子制成具有良好静电屏蔽的涂料,而且可以调节其颜色;在化纤制品中加入金属纳米粒子可以解决其静电问题,提高安全性。 利用复合体系的光学性能,可以制成如下材料:(1)优异的光吸收材料。例如在塑料制品表面上涂上一层含有吸收紫外线的纳米粒子的透明涂层,可以防止塑料

高分子相关期刊

众所周知的Nature、Science,包括其旗下的比如Nature Material等杂志 这些呢就不在这里说了呃…… 反正对我来说是永远摸不到的事情 不过希望上面能看到本版的朋友的文章 二、高档次的杂志 这里的杂志比较属于大家能够得着的杂志(虽然我只有眼巴巴地看着) 1.JACS(全称:Journal of the American Chemical Society) 网址:https://www.360docs.net/doc/a6680796.html,/journals/jacsat/index.html 07年IF:7.885 相信JACS在化学领域中的地位不用我在这里多唠叨了 ACS(美国化学会)旗下杂志 投稿要点:新颖,新颖,非常新颖,JACS上较多有机的文章,也有高分子领域的,但是相对较少 2.德国应化(Angew. Chem. Int. Ed.,全称:Angewandte Chemie International Edition) 网址:https://www.360docs.net/doc/a6680796.html,/journal/26737/home 07年IF:10.031 虽然德国应化不如JACS来得权威和悠久,但是其IF暴涨到10以上是大家有目共睹的 德国应化也强调新颖,虽然不是特别新但结果很好的也有发表的可能 据说很多人是JACS掉下来投他家的 另外德国应化上高分子方面的文章比JACS的多 3.先进材料(Adv. Mater.,全称:Advanced Materials) 网址:https://www.360docs.net/doc/a6680796.html,/journal/10008336/home 07年IF:8.191 也是wiley旗下的品牌杂志,也是属于顶级 也是要新颖、结果好 4.先进功能材料(ADV FUNCT MATER,全称:Advanced Functional Materials)网址:https://www.360docs.net/doc/a6680796.html,/journal/77003362/home 07年IF:7.496 跟先进材料一个系列的,文章基本都是全文 表征一定要全面,做到无懈可击 5.纳米快报(全称:Nano Letters) 网址:https://www.360docs.net/doc/a6680796.html,/journals/nalefd/index.html 07年IF:9.627 这个比较适合做纳米材料的虫子

高分子材料成型原理题库(简化)

高分子材料加工成型原理题库 一、填空: 1.聚合物具有一些特有的加工性质,如有良好的可模塑性,可挤压性,可纺性和可延性。 正是这些加工性,正是这些加工性质为聚合物材料提供了适于多种多样加工技术的可能性。 2.熔融指数是评价聚合物材料的可挤压性这一加工性质的一种简单而又实用的方法,而螺旋流动试验是评价聚合物材料的可模塑性这一加工性质的一种简单而又实用的方法。3.在通常的加工条件下,聚合物形变主要由高弹形变和粘性形变所组成。从形变性质来看包括可逆形变和不可逆形变两种成分,只是由于加工条件不同而存在着两种成分的相对差异。 4.PS、PP、PVC、PC、HDPE、PMMA和PA分别是聚合物聚苯乙烯、聚丙烯、聚氯乙烯、聚碳酸酯、高密度聚乙烯、聚甲基丙烯酸甲酯和聚酰胺的缩写。 5.聚合物的粘弹性行为与加工温度T有密切关系,当T>Tf时,主要发生粘性形变,也有弹性效应,当Tg

高分子纳米材料及其应用

高分子纳米材料(论文)题目:高分子纳米材料及其应用 化工学院学院高分子材料与工程专业 学号0502110202 学生姓名 指导教师 二〇〇一四年十一月

高分子纳米材料及其应用 摘要:高分子纳米材料是一门新兴并且发展迅速的一门科学。其具有很多独特 的性质,应用前景非常广阔。本文主要介绍了高分子材料的性质,同时介绍了高分子纳米复合材料常见的制备方法及其在各个领域的应用。 关键词:性质;纳米复合材料;制备方法;应用 Abstract: Polymer nano-materials is an emerging and rapidly developing research direction. It has many unique properties and broad application. This paper describes the properties of polymer materials, and also introduced preparation method of the polymer nano-composite materials .The paper also introduces its application in various fields. Key words:Properties; Nano-composite materials; Preparation method; Application 1 引言 纳米材料科学是一门新兴的并正在迅速发展的材料科学。由于纳米材料体系具有许多独 特的性质,应用前景广阔,而且涉及到原子物理、凝聚态物理、胶体化学、配位化学、化学 反应动力学和表面、界面科学等多种学科,在实际应用和理论上都具有极大的研究价值,所 以成为近些年来材料科学领域研究的热点之一,被誉为“21世纪最有前途的材料”。[1, 2] 纳米作为一个材料的衡量尺度,其大小为1 nm (纳米) =10~9 m (米),即十亿分之一米, 大约是10个原子的尺度。最初定义的纳米材料仅仅是指1~100 nm 尺度范围的纳米颗粒及 由他们构成的纳米固体和薄膜。目前,在广义上定义的纳米材料是指三维空间尺度里至少有 一维是纳米尺寸或者由它们作为结构基本单元的材料;根据定义按照空间维度可以将纳米材 料分为三类:(1) 维度为零的纳米材料,是指纳米颗粒、原子团簇等三维空间尺度均在纳米 尺寸的材料;(2) 维度为一的纳米材料,是指纳米线、纳米管等三维空间尺度中有两维是纳 米尺度的材料;(3) 维度为二的纳米材料,是指纳米膜、超晶格等三维空间尺度中仅有一维 是纳米级的材料;[3] 2 纳米材料的性质[4, 5] 物质的尺寸一旦与原子尺寸在同一量级时,其表面电子结构和晶体结构就会发生变化, 导致纳米材料会具备一些表面效应、小尺寸效应等优异特性。 (1)量子尺寸效应。量子尺寸效应又称量子限域效应,当粒子尺寸下降到一定程度时,金属 费米能级附近的电子能级由准连续能级变为离散能级,以及能隙变宽现象均为量子尺寸 效应。材料或物质的物理性质在很多方面都是由材料的电子结构决定的,当材料尺寸小

材料加工新技术-高分子材料成型加工课程大作业

材料加工新技术-高分子材料成型加工 课程大作业 学生姓名: 学生学号: 专业方向: 研究生导师: 完成时间:2015年12月2日

高分子材料成型加工的发展趋势 前言 高分子材料只有通过加工成型获得所需的形状、结构与性能,才能成为具有实用价值的材料与产品。高分子材料加工成型是一个外场作用下的形变过程,其技术与装备在很大程度上决定了最终材料与产品的结构与性能。高分子材料加工成型过程节能降耗、废旧制品循环利用、可再生资源替代是发展趋势,研宄与探索高分子材料加工成型新方法、技术及装备对推动高分子材料产业及相关制造业的发展具有重要意义,同时可丰富和发展我国高分子产品先进制造理论及其应用。从以下三个方面说明: 1 材料 随着生产和科技的发展,以及人们对知识的追求,对高分子材料的性能提出了各种各样新的要求。所以现在高分子制品正朝着高性能、高精度、高效率、低成本的方向发展,随之而来的是对注塑成型方法和工艺设备提出“精密、高效、节能”的迫切要求。 1.1精密上:挤出成型和注射成型是两种最主要的塑料加工成型方法。其中挤出成型主要用于连续加工具有相同截面形状和尺寸的塑料制品,生产率高,投资少见效快。但与注射成型相比,其加工制品精度低的缺陷大大限制了挤出成型的应用范围。挤出制品的精密化是挤出成型未来发展的重要方向,精密挤出一方面可以拓宽挤出制品的应用领域,更重要的是精密挤出大大减少了树脂的浪费,降低了生产成本。 [3]但是目前精密加工所能达到的加工精度距加工的极限还有相当的

距离。国外有人声称已开发了以原子级去除单位的加工方法,但目前还未在实际生产中得到应用。为了促进精密加工技术的发展,可以在下面几个方面来研究精密加工: (1)基于新原理的加工方法努力开发加工单位极小的精密加工方法,必须在加工机理的本身就使其误差分散在1nm以下的水平。目前加工单位比较小的加工方法主要有弹性破坏加工、化学加工、离子束加工、电子束加工、等离子体加工等。(2)开发精密的机械机构不论是加工装置还是测量装置,都需要精密的机械机构,包括导轨、进给机构及轴承等,超精密空气静压导轨是目前最好的导轨,其直线度可达(0.1-0.2)um/250mm,通过补偿技术还可以进一步提高直线度,但是它没有液体静压导轨的刚性大。同时,由于空气静压导轨的气膜厚度只有10um左右,所以在使用过程中,要注意防尘。另外,在导轨的设计中,还可以用多根导轨并联来均化气膜的误差.(3)开发高精度的测试系统在目前的超精密加工领域中,对加工精度的测量主要有两种方法;激光检测和光栅检测.(4)开发适用于精密加工并能获得高精度、高表面质量的新型材料例如最近开发超微粉烧结金属、非结晶金属、超微粉陶瓷、非结晶半导体陶瓷、复合高分子材料等。只要在上述的一个方面取得发展或突破,必将导致精密加工技术的高速发展。 1.2高效与节能上:改善加工工艺,缩短成型加工流程。例如塑料激光烧结成型技术【1】:激光烧结成型技术是使用CAD辅助技术对塑料进行加工处理。可以有效的节约生产模具方面的成本结算。比注塑技术更加环保节能, 对于零部件的生产方面有更加出色的表现,

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍 小编备注:结合国内目前MIM现状补充了一些资料。转载请注明文章来源:金属注射成型网https://www.360docs.net/doc/a6680796.html, 1 MIM是一种近净成形金属加工成型工艺 MIM (Metal injection Molding )是金属注射成形的简称。是将金属粉末与其粘结剂的增塑混合料注射于模型中的成形方法。它是先将所选金属粉末与粘结剂进行混炼,然后将混合料进行制粒再注射成形所需要的形状胚料,然后通过高温烧结,得到具有强度的金属零件。 2 MIM工艺流程步骤 MIM流程结合了注塑成型设计的灵活性和精密金属的高强度和整体性,来实现极度复杂几何部件的低成本解决方案。MIM流程分为四个独特加工步骤(混合、成型、脱脂和烧结)来实现零部件的生产,针对产品特性决定是否需要进一步的机械加工或进行表面处理. 混合

精细金属粉末和热塑性塑料、石蜡粘结剂按照精确比例进行混合。混合过程在一个专门的混合设备中进行,加热到一定的温度使粘结剂熔化。大部分情况使用机械进行混合,直到金属粉末颗粒均匀地涂上粘结剂冷却后,形成颗粒状(称为原料),这些颗粒能够被注入模腔。 CNPIM备注:混炼是MIM工艺中非常重要的一道工序。目前混炼有几种体系,不同的添加剂,后面对应需要不同的脱脂方法将添加剂去除。最常用的蜡基和塑基,分别对应热脱脂和催化脱脂。 成型 注射成型的设备和技术与注塑成型是相似的。颗粒状的原料被送入机器加热并在高压下注入模腔。这个环节形成(green part)冷却后脱模,只有在大约200°c的条件下使粘结剂熔化(与金属粉末充分融合),上述整个过程才能进行,模具可以设计为多腔以提高生产率。模腔尺寸设计要考虑金属部件烧结过程中产生的收缩。每种材料的收缩变化是精确的、已知的。 脱脂

药用高分子材料——纳米药物载体技术

纳米药物载体技术 用纳米粒子作为药物载体可实现靶向输送、缓释给药的目的, 这是由于小粒子可以进入很多大粒子难以进入的人体器官组织, 如小于50nm 的粒子就能穿过肝脏皮或通过淋巴传送到脾和骨髓, 也可能到达肿瘤组织。另外纳米粒子能越过许多生物屏障到达病灶部位, 如透过血脑屏障( BBB) 把药物送到脑部, 通过口服给药可使药物在淋巴结中富集等。具有生物活性的大分子药物( 如多肽、蛋白类药物) 很难越过生物屏障, 用纳米粒子作为载体可克服这一困难, 并提高其在体输送过程中的稳定性。用纳米粒子实现基因非病毒转染, 是输送基因药物的有效途径。 药物既可以通过物理包埋也可以通过化学键合的方式结合到聚合物纳米粒子中。载有药物的聚合物纳米粒子通常以胶体分散体的形式通过口服、经皮、皮下及肌肉注射、动脉注射、静脉点滴和体腔黏膜吸附等给药方式进入人体。制备聚合物纳米粒子的方法主要有以下几种: ( 1) 单体聚合形成聚合物纳米粒子; ( 2) 聚合物后分散形成纳米粒子; ( 3) 结构规整的两亲性聚合物在水介质中自组装形成纳米粒子。 1 单体聚合制备的聚合物纳米粒子 聚氰基丙烯酸烷基酯( PACA) 在人体极易生物降解, 且对许多组织具有生物相容性。制备聚氰基丙烯酸烷基酯纳米粒子采用的是阴离子引发的乳液聚合方法, 通常以OH-为引发剂, 反应一般在酸性水介质中进行, 常用的乳化剂有葡聚糖、乙二醇与丙二醇的嵌段共聚物和聚山梨酸酯等, 具体制备过程见图1。当反应介质pH 值偏高时, OH-浓度大, 反应速度快, 形成的PACA 分子量低, 以此作为给药载体材料进入人体后, 降解速度太快, 不利于药物缓释。因此聚合反应介质的pH 值通常控制在1.0~ 3.5 围。

现代高分子材料综述(非常好!!)

现代高分子材料综述 材料学王晓梅学号:112408 摘要 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子材料的相关常识。本文综述了各类高分子材料的研究及发展,主要论述了导电高分子材料、功能高分子材料、工程高分子材料、复合高分子材料以及生物高分子材料等应用领域。 前言 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料[1]。 由于高分子化学反应和合成方法对高分子化学学科发展的推动,促进了高分子合成材料的广泛应用。同时,随着高分子材料的发展,纳米技术与生物技术之间的界限变得越来越小,并与更多的传统分子科学与技术相结合。因此,我们相信,高分子技术的发展促使使各类高分子材料得到更加迅速的发展,推广和应用。 1

相关文档
最新文档