稀土在光学材料中的应用

稀土在光学材料中的应用
稀土在光学材料中的应用

稀土在光学材料中的应用

——03304129 赵志刚

稀土简介:

什么是稀土?稀土是一组金属的简称,包括化学元素周期表第三副族中称为镧系元素的镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu、钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu,共17个元素。“稀土”一词是十八世纪沿用下来的名称,因为当时用于提取这类元素的矿物比较稀少,而且获得的氧化物难以熔化,也难以溶于水,也很难分离,其外观酷似“土壤”,而称之为稀土。稀土元素分为“轻稀土元素”和“重稀土元素”:“轻稀土元素”指原子序数较小的钪Sc、钇Y和镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu。“重稀土元素”原子序数比较大的钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu。

从1794年发现第一个稀土元素钇到1792年发现自然界中的稀土元素钜,供经历了178年,才把17种稀土元素全部在自然界中找齐。近年由于工业提纯和冶炼技术的发展,除元素钜以外,都能获得高纯度和稀土氧化物和稀土金属。稀土的应用也随着科技的发展,从19世纪末应用稀土制造汽灯纱罩、打火石和弧光灯碳棒等初级产品,发展到现在把稀土广泛的应用于彩电荧光屏,三基色节能灯,绿色高能充电电池,汽车尾气净化催化剂,电脑驱动器、核磁共振成像仪。固体激光器和磁悬浮列车等高科技领域。

1、不同稀土离子的发光特性介绍

稀土离子具有丰富的发射光谱.其中,除La3+、Lu3+之外的其余镧系离子的4f电子可在7个4f轨道之间任意分布,从而产生各种光谱项和能级,对未充满f电子壳层的愿子或离子可观察到的谱线多达三万条.因此,可以发射紫外到红外各种波长的电磁辐射.三价镧系稀土离子的颜色呈现明显的对称性,没有4f电子的La3+离和4f层全满的Lu3+离子以及4f层半充满的Gd3+离子为无色,其他稀土离子的颜色以Gd3+离子为对称轴,其颜色具体为:

稀土离子对光的吸收是发生在内层4f电子在不同能级之间的跃迁,产生吸收光谱谱线很窄,特异性强.因此呈现出的颜色鲜艳纯正.稀土离子的荧光光谱不同普通荧光光谱,具有较大的Stokes位移,部分稀土离子的

stokes位移表见表 1

2、稀土离子的发光光学原理

2.1稀土原子或离子结构特点

稀土离子的特殊的光学特性与稀土原子的原子结构是分不开的。现先介绍稀土原子在周期表中的地位、稀土原子电子层结构、离子价态。

2.1.1.镧系元素在周期表中的特殊地位

17个稀土元素位于皿B族,钪、钇、镧分别是第四、五、六长周期中过渡元素系列的第一个元素。第六周期镧后的14个元素.性质和镧十分相似,位于周期表内同一格内。在这个意义上,这15个元素可以称之为“同位

素”。但它们又与其正的同位素不同。真正的同位素它们的原子序数相同,只是质量数不同。而15个镧系元素的原子序数是不同的。在这个意义上,它们又不是向位素。所以镧系元素在周期表中具有既是同位素又不是真正同位素的特殊地位。由于这种特殊地位,所以铜系元素的性质十分相近,但又不完全相同。这就造成15个镧系元素彼此之间分离很困难,但如创造条件巧妙地利用它们之间微细的差异,分离还是能够做到的。另一方面,性质相近面又不完全相同,所以它们的许多性质如离子半径、电子能级等有近乎连续的变化,这就好比衣服的尺码非常齐全,可以让人们根据需要加以选用一样。这也是稀土有许多优异性能的原因之一。

2.1.2.稀土原子的电子层结构

表1—6列出稀土元素原子(57—71)的电子层结构。

共中15个镧系元素的特点是原子的最外层电子已填充到6S2,次外层的5S25P6也已填满,5d还空着或仅有一个电子,而处于内层的4f电子却顾刚开始填补,到镥填满的共有14个。钪的最外层是4S2,次外层是3S23P6(3d1,钇的员外层是5S2,次外居是4S24P64d1。所以17个稀土元素的原子的最外两层电子结构相似,它们与别的元素比合时通常失去最外层的2个S电子,次外层的一个d电子(无5d电子时则失去1个4f电子),所以正常原子价是三价。

镧系元素的三价正离子的电子层结构是[Xe][4f]x,其中[Xe]表示惰性原子Xe的电子层结构, x=0(La3+)到x=14(Lu3+)有规则地连续增加。

2.1.3.稀土元素的价态

稀土元素的员外两层电子层的结构基本相同,都是[ns]2 [(n一1)s]2[(n一1)P]6[(n一1)d]1或0,它们的正常原子价是正三价,即电离掉[ns]2,[(n—1)d]1“或[4f]1。这是稀土元素的共性。但它们又各有自己的个性,即4f电子的数目对价态也有次要的影响。根据光谱学士的洪特(Hund)规则,在原子或离子的电子层结构中,当向一亚层处于全空、全阴或半满的状态时比较稳定。所以4f亚层处于[4f]0 (La3+),[4f]7(Gd3+)和[4f]14 (Lu3+)时比较稳定。在它们右侧的元素(Ce3+,Pr3+,Tb3+)比稳定状态多1或2个电子,它们可氧化成4价。在它们左侧的元素(Sm3+,Eu3+,Yb3+)比稳定状态少l或2个电子,它们可还原成2价。这是这几个元亲具有反常价态的理由。

2.2.稀土元素的光学性质及其应用机理

2.2.1.稀土元素的电子能级

稀土元素可以作为优良的荧光、激光和电光源材料以及彩色玻璃和陶瓷釉料。这是与稀土元素具有未充满的4f电子层结构并由此而产生的多种多样的电子能级分不开的。

稀土元素的电子能级有下列特征

(1)角量子数l =3的4f 亚层共有7个轨道,它们的磁量子数m L 依次等于-3、-2、-1、0、1、2、3。15个镧系元素的三价离子当处于基态时,它们的4f 电子在各轨道的分布如表1—11所示。表中M L =

∑ml 是离子的总磁量子

数,它的最大值即离子的总角量子数L 。∑=ms Ms 是离子的总自旋量子数沿磁场的分量,它的最大值即离子的总自旋量子数S.J =L+S 是离子的总内量子数,它表示轨道和自旋角动量总和的大小。对于从La 3+→Eu 3+的前7

个离子,J =L-S;对于从Gd 3+→Lu 3+的后8个离子,J =L+S,表中最后一项光谱项是L 、S 、J 这3个量子数的代号。

光谱项的中间大写的英文字炭示L :

L = 0 1 2 3 4 5 6

符号 S P D F G H I

左上角的数字友不光谱项的多重性;它等于2S+1。右下角的数字,即内量子数J ,例如Nd 3+

的L =6,用大写

英文字母I 表尔,S =3/2,则2S+1=4,J =9/2,所以Nd 3+的基态的光谱项用4I 9/2表示

(2)除La 3+和Lu 3+的4f 亚层为全空或全满外,其余镧系元素的4f 电子可在7个4f 轨道之间任意配布,从而产生

各种光谱项和能级,如图1—8所示。稀土元素的电子能级是多种多样的,例如镨原子在4f 36s 2状态有41个能级,

在4f6s6P 有500个能级,在4f 25d6s 2有100个能级, 4f 35d6s 有750个能级, 4f 35d 2有1700个能级,而钆原子的4f 75d

6s 2则有3106个能级,它的激发状态4f 75d6s6P 则有多达36000个能级。各能级之间的跃迁受光诺选律的限制,所以实际观察到的光谱谱线还不至于多到无法估计。通常具有末充满f 电子壳层的原子或离子的光谱约有30000条可观察到的谱线,具有末充满d 电子完层的过渡金用元素的谱线约有7000条,而具有未充满的P 电子壳层的主族元素的语线则共有1000条。由此可见,稀土元素的电子能级和谱线要比一般元素更多种多样,它们可以吸收或发射从紫外、可见到红外光区的各种波长的电磁辐射。

(3)稀土离子的电子优级多种多样的另一特征是有些激发态的平均寿命长达10-2—10-6秒,而一般原子或离子

的激发态的平均寿命只有10-8—10-10秒,这种长寿命的激发态叫做亚稳态。稀土离子有许多亚稳态是由于4f →4f

电子能级之间的自发跃迁是禁阻跃迁,它的跃迁几率很小,所以激发态的寿命就长。这是稀土可以作为激光和荧光材料的根据。

(4)在镧系元素离子的4f 亚层外面,还有(5s 2)(5P 6 )电子层。由于后者的屏蔽作用,使4f 亚层受化合物中其他元素的势场影响(在晶体或络离子中这种势场叫晶体场或配位体场)较小。因此镧系元素化合物的吸收光谱和自由离子的吸收光谱基本一样,都是线状光谱,这和d 区过渡元素的化合物的光谱不同,它们的光谱是由3d →3d 的跃迁产生的。nd 亚层处于过渡金属离子的最外层,外面不再有其他电子层屏蔽,所以受晶体场或配位体场的影响较大,所以同一元素在不同化合物中的吸收光谱往往不同,又由于谱线位置的移动,吸收光谱由气体自由离子的线状光谱变为化合物或溶液中的带状光谱。

2.2.2.稀土的发射光谱及其应用

上面讨论了稀土离子的电子能级。稀土原子也有相应的能级图,在常温时它们处于最低的能级即基态。但当被火焰、电弧、电花、气体放电或其他方法所激发的时候,稀土原子或离子就跃迁到较高的各能级即激发态,当它们从较高的能级E 〞跳回到较低的E ˊ能级时,就能放出一定波长λ的光。如果E ˊ和E 〞均用波数的单位即

倒数厘米(厘米-1)表示时,则 E E '-''==υ

λ~1

例如Nd +3从4F 3/2(E 〞~11400厘米-1)跳到4I11/2 (E ˊ≈2000厘米-1),放出光波的波数υ

~和波长λ为 υ

~= E 〞- E ˊ=11400-2000=9400厘米-1 λ=υ

~1=1.06×10-4厘米=1.06u =10600埃 2.2.3.稀土的吸收光谱及其应用

白光照射在物质上,物质如果完全吸收则呈现黑色,如果对所有波长的光的吸收程度相差不多则呈现灰色。还有许多物质吸收某些波氏的光另外又对其它波任有强烈的散射,它就呈现相应的颜色,物质吸收光的波长与呈现的颜色的关系如表l —12所示。

吸收光的颜色与观察到的颜色互称补色,互为补色的两种光合在一起就呈白光,表l—13列出三价镧系元素离子的颜色。

从表1-13中可以看到下列特点:①具有f0,f14结构的La3+、Lu3+、Sc3+、Y3+在2000~10000埃区域无吸收,故无色。②具有f7、f1、f6、f8的离子吸收峰全部或极大部分在紫外区,具有f13的离子吸收峰在红外区,所以都无色。②具有f x和f14-x的离子的光谱项的L和S相同,只有f不同,它们的颜色也基本一样。

2.3稀土荧光和场致发光材料的发光机理

物质在x射线,电子射线或紫外光的照射下,可从基态跃迁到激发态,然后从激发态跃迁到较低的能级就能放出不同波长的可见光,这种现象叫做荧光。例如氧化钇铕荧光粉Y2O3:Eu(含铕4%原子百分比)或硫氧化钇铕荧光扮Y2O2S:Eu (含铕4%原子万分比)可做彩色电视的红粉,其色彩鲜镕稳定,完度大大超过不合稀土的红粉(Zn,Gd)S:Ag。又如Y2O2S:Tb,Gd202S:Tb,16:oas:Tb等高亮度荧光扮可用于投影电视,供军事指挥系统显示,人民公社生产队及200人左右单位集体收看。常用高压汞灯的发光特点偏重于蓝绿色,照明物体后,不能准确重复日光照耀的颜色。在高压汞灯中加入掺铕的钒酸钇荧光粉或钒磷酸钇荧光粉,可以利用汞灯发出的紫外线激发铕,产生红色荧光,与原来汞灯的蓝绿色光合在一起,使之更接近于日光,亮度也有所增加。

物质在直流、交流或脉冲电场的作用下,也可从基态跃迁到激发态,然后回到较低的能级而发光,这种现象叫做场致发光。例如用Y203作为基质,接氧化铕作为激活剂场致发光扮,在6吨/厘米2的压力下压成发光屏夹在两屏电极之间,通以450伏左右的直流电,就能发出波长为611nm的红光,其发光效率高,毋需防潮。又如在ZnS:Gu场致发光屏材附中接入少量铕,发光亮度可以增加l倍以上,可用于体育比赛用的电动记分牌等。再如掺铒硫化锌(ZnS:Er·Gu)薄膜场致发光数码片,可以发出绿光。

下面举Y203S:Eu电视荧光扮为例,说明它的发光机理。

根据Eu3+激活的Y203S或Y203在连续激发下发光的增长与衰落规律的研究,它的发光机理主要是复合发光而不是分立中心发光,复合发光大致分为下列几步进行:

①阴极射线首先使基质Y203S激发。

②被激发的基质把能量传递给Eu3+的基态7F0,使它跃迁到激发态5D1和5D0。

②由5D1和5D0跃迁到7F J(J=0,1,2,3,4,5)发出各种波长的荧光如表1—15。

3.增强稀土离子发光的方法与机理

3.1、改变或优化工艺条件。现以上海复旦-科恨发光材料研究中心一成果说明:

新老工艺如下图4:

对比新老工艺可从以下几方面增强稀土离子的发光特性:(1)新工艺的原料选择对制得的荧光粉材料性能有一定的影响,其基质材料选用亚细、单分散、颗粒均匀(最好是球形),不团聚的粉体。 (2)混料:新工艺选用特殊混料方法,使基质和其他材料的表面具有粘附性,粒子均匀性分散性好,高温灼烧易得到纯相产品,未进入晶格的发光中心的数量可大大减少,从而使荧光粉光衰大大降低。(3)新工艺选用自制的TiO2,A12O3,MgO, Y2O3,等溶胶,主要以金属羟氧化物为原料水解制得,其颗粒均匀(纳米级),包覆其氧化物薄膜在荧光粉表面,烘干、制灯后点燃一定时问,光衰下降 (相比于不包膜的荧光粉)。

3.2、将稀土材料制成纳米材料:

李振钢等研究了三种ZnS:Tm 纳米晶(粒径分别为3.6nm、3.8nm 和4.1nm)的光激发发射光谱,激发波长为332nm,发射光谱的峰值分别为483nm、484nm和485nm。这3个峰值接近于ZnS: Tm 体材料的Tm3+发射的480nm 的峰值,这是Tm3+离子1G4向3H6跃迁产生的发射。同时还研究了ZnS:Tb的三种纳米晶的光激发发射光谱,激发波长为332nm,发现了其发射光谱峰值为548nm、547nm 和546nm,这3个峰值接近于ZnS:Tb体材料的Tb3+的544nm 的峰值,这是Tb3+离子5D4向7F5跃迁产生的发射,这两组发射峰表明,铥、铽杂质已掺入ZnS之中.并且随着晶粒长大,发射光增强,表明随晶粒长大,发光中心增加,即进入ZnS纳米晶中的Tm3+或Tb3+的绝对数增加。纳米Y2O3:Eu3+及纳米YAG :Ce3+的光谱中均有光谱蓝移现象。蓝移的大小与纳米粉体的粒径有关。伴随这些现象的同时,纳米Y2O3:Eu3+及纳米YAG :Ce3+的晶格也发生了畸变现象,这可能是由于纳米材料的巨大表面张力导致了晶格畸变,并通过晶体场的作用产生了光谱蓝移。纳米尺寸不仅会导致品格畸变,而且稀土氧化物纳米微粒小到一定程度后还会出现物相的变化,如某些利用物理方法合成的超细稀土氧化物纳米微粒(<10nm)中有高压物相及新相的出现。

对掺Ce4+的介孔SiO2进行荧光测试,观察到两个荧光带,一个位于紫外区340nm,另一个位于红光范围650nm 处。Al3+的掺杂会明显增强Ce4+/SiO2荧光强度,A13+的添加可以使发光强度增高5倍以上。Tb3+和A13+的共掺SiO2介孔固体(干凝胶)也发现了极强的荧光增强现象,在绿光波段546nm 处出现一尖锐的荧光峰,这是Tb3+的4f电子跃迁所引起的。荧光峰的强度可以通过A13+的加入量进行调制,当Al:Tb=10:1(摩尔比)时,有最佳绿光增强效果,强度增加1O倍,A1:Tb为5O:1时发光强度最强。在Sm掺杂的SiO2介孔固体(干凝胶)中,A1:Sm=10:1时为最佳荧光增强。

纳米Y2O3:Eu3+和纳米Eu2O3微粒的荧光寿命与体材相比有明显的延长。与微米Y2O3:Eu3+相比,纳米Y2O3:Eu3+ (粒径Z0nm)具有较高的激活剂临界浓度。微米Y2O3:Eu3+中Eu3+临界浓度为6 %(摩尔分数),而纳米Y Y2O3:Eu3+中Eu3+的临界浓度为8 %(摩尔分数),这种现象反映纳米Y2O3:Eu3+的能量传递过程发生了重要变化。

纳米微粒的尺寸效应,对纳米稀土发光材料结构的影响还表现在激活剂在晶格中所处的点阵格位不同,所产生的光谱峰的位置和强度也不同。HeikeMeyssamy等们研究发现,LaPO4:Eu3+纳米微粒占的点阵格位发生了变化。

由以上可知纳米化的稀土材料有以下几个特点:(1)荧光寿命变化(2)红外吸收带宽化(3)光谱发生红移或蓝移(4)浓度猝灭。

4、稀土光学材料的应用

以下主要从农业、军事、居民消费、医用等领域介绍稀土发光材料的应用。

4.1.在农业方面的应用

将发光材料作为太阳光的转光剂,加入到农用塑料薄膜中制成农膜或大棚,改善光合作用的光质,提高光能利用率,促进农作物、主要使蔬菜的早熟和增产。这一新技术于20世纪90年代在我国迅速发展。目前使用和发展的转光剂分两大类:

(1)有机铕(钐)的配合物/螯合物;

(2)稀土激活的发红光无机荧光体。这一新技术对西部和北部绿色农业工程发展,甚至脱贫致富很有帮助。

4.2.在军事方面的应用

稀土发光材料制作的各种显示器已用于歼击机、强击机和武装直升机中,提高其功能和性能。长余辉夜光粉制品用于舰艇等方面。我国有关单位已做出了贡献。

4.3在居民消费领域应用

1、白光LED

发白光的发光二极管(LED)在20世纪90年代末出现,成为第四代照明光源。实现白光LED其中有两个重

要方案:(1)蓝光LED芯片和可被蓝光有效激发的发黄光的荧光体有机结合组成白光LED;(2)像三基色节能

灯那样发紫外光LED芯片和可被紫外光有效激发而发红、蓝、绿的三基色荧光体或多基色荧光体有机结合。由

蓝色InGaN LED芯片和可被蓝光有效激发的发黄光的铈激活的稀土石榴石荧光体有机结合,是实现发白光LED

目前的主导方案,在国内外已产业化。在这种稀土石榴石荧光体在我国有良好的基础和很高的水平,用国产的

这种荧光体制作的白光LED达到了国际先进水平。

2、CRT显示用稀土发光材料

目前彩管中红粉普遍采用铕激活的硫氧化钇(Y2O2S∶Eu)荧光粉。由于氧化钇、氧化铕价格昂贵,致使

红粉成本较高。目前的研究方向是探索与优化纳米级稀土红色荧光粉的制备工艺,将稀土氧化物超细化、纳米化,同时尽量减少稀土用量或寻找廉价材料以代替红粉中昂贵的稀土原料。蓝粉使用银或银、铝激活的硫化锌,尽管研制了铥激活的硫化锌或二价铕离子激活的氯磷酸锶等新的蓝粉,但由于发光效率和成本比不上银激活的

硫化锌,未得到推广使用。绿粉主要采用钙、铝激的硫化锌(镉),该荧光粉光衰较红粉和绿粉大,故需开发新

的绿粉。据报道,铽激活的硫氧化镧特性较好,但发光效率低,而铈激活的硫化钙虽然发光效率高,但稳定性差。

投影电视用荧光粉与普通彩电荧光粉相比,需承受更大的电流密度和更高的阴极电压。红粉采用铕激活的

氧化钇。绿粉以铽为激活剂,基质主要有钇铝石榴石、溴氧化镧、氯氧化镧等。蓝粉采用二价铕激活的碱土金

属氯磷酸盐或碱土金属硅酸盐。2001年,中科院长春光机所与物理所研制成功了彩色投影电视用稀土荧光粉,

具有亮度大、对比度高等优点,主要技术指标达到了世界商用投影管的要求。该项目是国家"863"计划资助的产

业化项目,2002年已进行了中试,其产品在天津三星电管厂已进行试用,符合要求。

计算机显示器要求荧光粉具有高亮度、高对比度和清晰度,其红粉也采用铕激活的硫氧化钇,但铕的含量

比彩电红粉稍高。绿粉为铽镝激活的硫氧化钇或硫氧化钆,据报道,蓝粉也将由稀土发光材料取代锌、锶硫化物。多年来,我国彩色显示管用彩粉市场一直被日本产品所垄断。北京北化精细化学品有限公司已研制成功彩

色显示管用稀土荧光粉,产品发光亮度高,粒度小,分散窄,分散性好。据报道,彩色显示管荧光粉的产业化

已受到国家发展改革委专项基金的支持,预计不久将实现规模化生产。

3平板显示用稀土发光材料

平板显示分等离子体显示、液晶显示、场发射显示及电致发光显示等。等离子体显示用荧光粉主要发光区

域在紫外区域,所用的红粉为铕激活的硼酸钇和硼酸钆,绿粉为锰激活的硅酸锌,蓝粉为二价铕激活的碱土金

属多铝酸盐。

场发射显示器用荧光粉基本是由传统CRT用荧光粉加以改进而制成,要求荧光粉组成稳定,发光效率高,

不易分解,颗粒结晶质量完好,物理化学性能稳定,颗粒尺寸小,目前尚未见规模化生产。

接近商业化应用的电致发光稀土荧光粉主要有铽激发的硫化锌绿色荧光粉、铈激发的硫化锶蓝绿色荧光粉。4.4医用领域

医用x射线照相时,为将x射线图像转换为可视图像,需使用增感屏。增感屏也有多种,其中高灵敏度增感

屏使用Cd202S:Tb荧光粉。与其它荧光粉相比,Gd202S:Tb可通过x射线励磁发出高效率的白光或绿光。

5、主要参考文献

1.《稀土》编写组编著.冶金工业出版社

2.白木子荫.稀土发光材料的发光原理与应用.灯与照明.2002.12

3.苏文斌,谷学新,酆洪,朱若华.稀土元素发光特性及其应用.化学研究.2001.12

4.孙家跃,肖昂,杜海燕,刘洁.稀土光致发光材料的研究现状和应用. 北京工商大学学报(自然科学版).2001.12

5.张梅,刘德强,黄瑞甜,郑江华,胡建国,马林,徐燕.高显色性稀土发光材料的研究.中国稀土学报.2002.12

6. 肖林久,孙彦彬,邱关明,陈永杰,代少俊.纳米稀土发光材料的研究进展.稀土.2001.08

7. 杨应国,胡小华,袁曦明.纳米稀土发光材料的研究与展望.矿业快报.2004.12

8.https://www.360docs.net/doc/a76414163.html,/xtzs/faguang.htm

17种稀土元素名称及用途

17种稀土元素名称及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce)"铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨. (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。 镨的广泛应用: (1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。

稀土材料的应用简介

稀土矿的应用简介 一、稀土矿的简介 1、稀土的发现史 从1794年发现元素钇,到1945年在铀的裂变物质中获得钷,前后经过151年的时间,人们才将元素周期表中第三副族的钪、钇、镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥17个性质相近的元素全部找到,把它们列为一个家族,取名稀土元素。我国稀土品种全,17种元素除钷尚未发现天然矿物,其余16种稀土元素均已发现矿物、矿石。2、资源储量分布 我国稀土矿产主要集中在内蒙古白云鄂博铁-铌、稀土矿区,其稀土储量占全国稀土总储量的90%以上,是我国轻稀土主要生产基地。即轻稀土主要分布在北方地区,重稀土则主要分布在南方地区,尤其是在南岭地区分布可观的离子吸附型中稀土、重稀土矿,易采、易提取,已成为我国重要的中、重稀土生产基地。此外,在南方地区还有风化壳型和海滨沉积型砂矿,有的富含磷钇矿(重稀土矿物原料);在赣南一些脉钨矿床(如西华山、荡坪等)伴生磷钇矿、硅铍钇矿、钇萤石、氟碳钙钇矿、褐钇铌矿等重稀土矿物,在钨矿选冶过程中可综合回收,综合利用。 二、稀土的用途 稀土(RE)常被冠以“工业味精”的美誉。稀土元素因其具有独特的电子结构而表现出特殊的光、电、磁学等物理化学性质。无论是稀土金属还是其化合物都有良好的应用价值。1、传统领域中的稀土材料 (1)稀土在农轻工中的应用 稀土元素作为微量元素用于农业有2个优点:一是作为植物的生长、生理调节剂;二是稀土属低毒、非致癌物质,合理使用对人畜无害、环境无污染。如添加稀土元素的硝酸盐化合物作为微量元素化肥施用于农作物可起到生物化学酶或辅助酶的生物功效,具有增产效果。 纺织业中:铈组元素(Eu以前的镧系元素)的氯化物或醋酸盐可提高纺织品的耐水性,并使织物具有防腐、防蛀、防酸等性能。某些稀土化合物还可以作为皮革的着色剂或媒染剂,La、Ce、Nd的一些化合物可用作油漆的干燥剂,增强油漆的耐腐蚀性。 (2)稀土在冶炼工业中的应用 稀土元素对O、S和某些非金属具有强亲和力,利用这一特点,将稀土用于炼钢中能净化钢液,能起到脱S和脱O的作用,其原理是加入钢中的稀土能结合钢中可能生成的MnS、Al2O3和硅铝酸夹杂物中的O和S形成化合物。 钢的脱硫:在钢中添加混合稀土金属的目的之一是控制硫夹杂物的含量和形状。炼钢通常要添加锰,锰与硫结合形成硫化物夹杂物,这种夹杂物在轧钢时会变形。而添加混合稀土金属则能产生稀土的硫化物、硫氧化物,它们在轧钢时形状保持不变,使钢的性能得到改善。 稀土球墨铸铁:混合稀土金属以稀土硅铁合金或硅镁钛合金的形式加入铁不中促进石墨的球化,从而提高铸铁的可锻强度。产品称球墨铸铁。 打火石:混合稀土金属制造打火石,这是75%的混合稀土金属和25%的铁制成的一种合金。 有色金属合金中:稀土金属有色金属合金中也获得广泛应用。例如有一种稀土镁合金(含有Mg、Zn、Zr、La、Ce)可用于制造喷气式发动机的传动装置,直升飞机的变速箱,飞机的着陆轮和座舱罩。在镁合金中添加稀土金属优点是可提高其高温抗蠕变性,改善铸造性能和室温可焊性。有一种铝锆钇合金用作电线,其特点是输出功率高、耐热、耐振动和耐腐蚀。(3)稀土在炼油业中的应用 目前,世界上90%的炼油裂化装置都使用含稀土的催化剂,其中稀土分子筛型石油裂化

稀土发光材料的研究和应用.

稀土发光材料的研究和应用 摘要:介绍了稀土发光材料的发光特性与发光机理。综述了我国在稀土发光材料的化学合成方法。总结了稀土发光材料的应用。最后对我国存在问题和发展前景进行了叙述。关键字:稀土发光材料;发光特性;发光机理;合成;应用;问题和展望。 Abstract:Introduces the luminescence properties of rare earth luminescent material and luminescence mechanism. Rare-earth luminescence materials in China, the paper summarized the chemical synthesis method. The application of rare earth luminescence materials is summarized. Finally, the existing problems and development prospect of the narrative in our country. Keywords:Rare earth luminescent material; Luminescence properties; Light-emitting mechanism; Synthesis; Application; Problems and its prospect. 化学元素周期表中镧系元素———镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素称为稀土元素。稀土化合物包含至少一种稀土元素的化合物。它是一种重要的战略资源,特别是高新技术工业的重要原料,如军事装备方面一些精确打击武器、一些汽车零部件和高科技产品,都依赖用稀土金属制造的组件。据了解,中国是唯一能有效提供全部17种稀土金属的国家,且储量远远超过世界其他国家的总和,是名副其实的“稀土大国”。由于稀土元素的离子具有特别的电子层结构和丰富的能级数量,使它成为了一个巨大的发光材料宝库。在人类开发的各种发光材料中,稀土元素发挥着重要作用,稀土发光几乎覆盖了整个固体发光的范畴。稀土发光材料具有发光谱带窄,色纯度高,色彩鲜艳;光吸收能力强,转换效率高;发射波长分布区域宽;荧光寿命从纳秒跨越到毫秒达6个数量级;物理和化学性质稳定,耐高温,可承受大功率电子束、高能辐射和强紫外光的作用等。目前稀土材料已广泛用于照明、显示、信息、显像、医学放射学图像和辐射场的探测等领域,并形成很大的工业生产和消费市场规模;同时也正在向着其他新型技术领域扩展,成为人类生活中不可缺少的重要组成部分。本文将介绍掺稀土离子发光材料的发光机理、节能灯、白光LED用荧光粉、PDP显示用荧光粉,以及对在上转换发光、生物荧光标记和下转换提升太阳能效率等方面的应用前景进行总结和展望。

稀土永磁材料与应用

稀土永磁材料与应用 一、稀土永磁材料 稀土永磁材料是将钐、钕混合稀土金属与过渡金属(如钴、铁等)组成的合金,用粉末冶金方法压型烧结,经磁场充磁后制得的一种磁性材料。 稀土永磁分钐钴(SmCo)永磁体和钕铁硼(NdFeB)系永磁体,其中SmCo磁体的磁能积在15~30MGOe之间,NdFeB系永磁体的磁能积在27~50MGOe之间,被称为“永磁王”,是目前磁性最高的永磁材料。钐钴永磁体,尽管其磁性能优异,但含有储量稀少的稀土金属钐和稀缺、昂贵的战略金属钴,因此,它的发展受到了很大限制。我国稀土永磁行业的发展始于60年代末,当时的主导产品是钐-钴永磁,目前钐-钴永磁体世界销售量为630吨,我国为90.5吨(包括SmCo磁粉),主要用于军工技术。 随着计算机、通讯等产业的发展,稀土永磁特别是NdFeB永磁产业得到了飞速发展。 稀土永磁材料是现在已知的综合性能最高的一种永磁材料,它比十九世纪使用的磁钢的磁性能高100多倍,比铁氧体、铝镍钴性能优越得多,比昂贵的铂钴合金的磁性能还高一倍。由于稀土永磁材料的使用,不仅促进了永磁器件向小型化发展,提高了产品的性能,而且促使某些特殊器件的产生,所以稀土永磁材料一出现,立即引起各国的极大重视,发展极为迅速。我国研制生产的各种稀土永磁材料的性能已接

近或达到国际先进水平。 现在稀土永磁材料已成为电子技术通讯中的重要材料,用在人造卫星,雷达等方面的行波管、环行器中以及微型电机、微型录音机、航空仪器、电子手表、地震仪和其它一些电子仪器上。目前稀土永磁应用已渗透到汽车、家用电器、电子仪表、核磁共振成像仪、音响设备、微特电机、移动电话等方面。在医疗方面,运用稀土永磁材料进行“磁穴疗法”,使得疗效大为提高,从而促进了“磁穴疗法”的迅速推广。在应用稀土的各个领域中,稀土永磁材料是发展速度最快的一个。它不仅给稀土产业的发展带来巨大的推动力,也对许多相关产业产生相当深远的影响。 二、稀土永磁材料分类 1.稀土钴永磁材料,包括稀土钴(1-5型)永磁材料SmCo5和稀土钴(2-17型)永磁材料Sm2Co17两大类。 2.稀土钕永磁材料,NdFeB永磁材料。 3.稀土铁氮(RE-Fe-N系)或稀土铁碳(RE-Fe-C系)永磁材料。 三、稀土永磁材料制备工艺分类 1.粉末冶金烧结工艺制备的烧结磁体; 2.还原扩散制粉或氢碎处理粉末及粉末冶金烧结工艺制备的烧结磁体; 3.快速凝固制粉或氢碎制粉(HDDR),粉末模压粘结工艺制备的粘结磁体; 4.快速凝固制粉或氢碎(HDDR)粉末的注射工艺制备的注射磁

稀土发光

关于稀土发光材料的认识(孙三大) 绪论 稀土元素由于具有未充满的4f电子壳层和4f电子被外层的5s,5p电子屏蔽的特性,使稀土元素具有极复杂的类线性光谱。吸收光谱使稀土离子大多有色,发射光谱使许多稀土化合物产生荧光和激光。镧系原子的组态为1S22S22P63S23P63d104S24P64d105S25P6(4f n6S2或4f n-15d6S2),其中n=1-15,La,Ce,Gd,Lu为4f n-15d6S2(镧系稀土元素电子层结构的特点是电子在外数第三层的4f轨道上填充,4f轨道的角量子数l=3,磁量子数m可取0、±1、±2、±3等7个值,故4f亚层具有7个轨道。根据Pauli不相容原理,在同一原子中不存在4个量子数完全相同的两个电子,即一个原子轨道上只能容纳自旋相反的两个电子,4f 亚层只能容纳14个电子,从La到Lu,4f电子依次从0增加到14),其余的元素4f n6S2[1-3]。 大部分无机固体致发光材料遵守斯托克斯定律,即发射光的光谱能量低于激发光的光谱能量,这样发光的现象叫做下转换发光。对于下转换发光由外界光源直接作用于稀土离子。1)使稀土离子中的电子由基态跃迁到激发态,完成高能级电子的排布,如图(1)所示,2)由某基团或离子等吸收高能光子后通过非福射他豫将能量传递给较低能级的稀土离子,使稀土离子中的电子由基态跃迁到激发态,如图(2)所示;另外,在1966年,在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。这一小部分光致发光材料违背了斯托克斯定律,即上转换发光,它通过吸收低光子能量的长波福射转换为高光子能量的短波福射。稀土离子可以通过激发态吸收或能量传递过程被激发至高能级而发射上转换发光,如图(3)所示。 Gound state (1)(2)(3) 图中所示(1)和(2)为下转换发光过程,图(3)为上转换发光过程。 稀土上转换/下转换发光材料在众多领域具有巨大的应用价值,对其进行理论和实验的深入

稀土元素镧及其应用(精)

稀土元素镧及其应用 在稀土元素家族中,锢无疑是个非常重要的成员。论地位和名气,他居于稀土家族主体“镧系元素”之首,作为15个元素的代表占据了化学元素周期表主表中的一个空格,并以他的名字来命名这个元素族系。论地壳中丰度为32ppm,占稀土总丰度的14.1%,仅次于铈和钕,居第三位。从发现年代看,他也仅排在钇和铈之后,是第三个被发现的稀土元素。 1839年,那位曾经发现铈的瑞典化学家伯采利乌斯(J.J.Berzelius),有一个瑞典学生名叫莫桑德(Car1 Mosander),在研究“铈土”时,分离并发现其中还隐藏着一种新元素,于是莫桑德便借用希腊语中“隐藏”一词把这种元素取名为”镧”。从此,镧便登上了被人类认识和利用的历史舞台。 镧之所以被较早发现,与他在元素周期表中的位置,也就是原子结构和性质密切相关。他居镧系元素之首,4f轨道上电子数为0,与其他元素发生化学反应时呈正三价。钪和钇虽然与他同在IIIB族,但不在一个周期,性质悬殊。与他紧邻的铈又能呈稳定正四价状态,也造成较大的化学性质差异,易于分离。而他与错钕等其他稀土元素之间又有铈相隔,因此镧比较容易同其他稀土分离并提纯。 稀土元素作为典型的金属元素,其金属活泼性仅次于碱金属和碱土金属。在17个稀土元素当中,按金属的活泼次序排列,由钪、钇到镧递增,又由镧到镥递减,属镧最为活泼。因此作为金属热还原工艺的还原剂,他可以用来还原制备其他稀土金属,而还原制备金属镧,则只能采用比他更为活泼的碱金属和碱土金属,通常采用金属钙作还原剂。 活跃的化学活性和丰富的储量,使镧广泛应用于冶金、石油、玻璃、陶瓷、农业、纺织和皮革等传统工业领域。尽管生产镧并不困难,但为了降低成本,在充分发挥镧及稀土共性的前提下,经常以混合轻稀土或富镧稀土的产品形式使用。 稀土作为金属材料的净化和变质剂,通常以混合稀土金属或中间合金的形态来使用。而镧作为最活泼的一员,在去除氧、硫、磷等非金属杂质和铅、锡等低熔点金属杂质,以及细化晶粒等方面自然会发挥首当其冲的作用。只是他经常和铈错钕等轻稀土弟兄们一起协同作战。当然,也能同其他金属协同作战,如在铅中加入富镧稀土金属(0.01‰~0.2‰)和铁(0.005‰~ 0.1‰),可明显提高抗折拉性能,使铅板机械强度提高上百倍。不仅改善了铅板防辐射性能,还扩大了合金基材的应用范围。以银-氧化镧复合镀层取代纯银作为电接触材料,可节约用银70%~90%,有很大经济效益。 20世纪80年代,石泊裂化催化剂曾经是稀土最大应用领域,因为稀土用作Y 型沸石催化剂,以镧的催化活性最强。在美国一直采用富镧稀土作为石油裂化催化

稀土发光材料的发光机理及其应用

万方数据

万方数据

万方数据

万方数据

万方数据

稀土发光材料的发光机理及其应用 作者:谢国亚, 张友, XIE Guoya, ZHANG You 作者单位:谢国亚,XIE Guoya(重庆邮电大学移通学院,重庆,401520), 张友,ZHANG You(重庆邮电大学数理学院,重庆,400065) 刊名: 压电与声光 英文刊名:Piezoelectrics & Acoustooptics 年,卷(期):2012,34(1) 被引用次数:2次 参考文献(19条) 1.周贤菊;赵亮;罗斌过渡金属敏化稀土化合物近红外发光性能研究进展[期刊论文]-重庆邮电大学学报(自然科学版) 2007(06) 2.段昌奎;王广川稀土光谱参量的第一性原理研究[期刊论文]-重庆邮电大学学报(自然科学版) 2011(01) 3.周世杰;张喜燕;姜峰轻稀土掺杂对TbFeCo材料磁光性能的影响[期刊论文]-重庆工学院学报 2004(05) 4.CARNALL W T;GOODMAN G;RAJNAK K A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 1989(07) 5.LIU Guokui;BERNARD J Spectroscopic properties of rare earths in optical materials 2005 6.DUAN Changkui;TANNER P A What use are crystal field parameters? A chemist's viewpoint[外文期刊] 2010(19) 7.蒋大鹏;赵成久;侯凤勤白光发光二极管的制备技术及主要特性[期刊论文]-发光学报 2003(04) 8.黄京根节能灯用稀土三基色荧光粉 1990(05) 9.VERSTEGEN J M P J A survey of a group of phosphors,based on hexagonal aluminate and gallate host lattices 1974(12) 10.PAN Yuexiao;WU Mingmei;SU Qiang Tailored photoluminescence of YAG:Ce phosphor through various methods 2004(05) 11.KIM J S;JEON P E;CHOI J C Warm-whitelight emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphor[外文期刊] 2004(15) 12.苏锵;梁宏斌;王静稀土发光材料的进展与新兴技术产业[期刊论文]-稀土信息 2010(09) 13.SIVAKUMAR S;BOYER J C;BOVERO E Upconversion of 980 nm light into white light from SolGel derived thin film made with new combinations of LaF3:Ln3+ nanoparticles[外文期刊] 2009(16) 14.WANG Jiwei;TANNER P A Upconversion for white light generation by a single compound[外文期刊] 2010(03) 15.QUIRINO W G;LEGNANI C;CREMONA M White OLED using β-diketones rare earth binuclear complex as emitting layer[外文期刊] 2006(1/2) 16.BUNZLI J C G;PIGUET C Taking advantage of luminescent lanthanide ions 2005 17.WANG Leyu;LI Yadong Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals[外文期刊] 2007(04) 18.LINDA A;BRYAN V E;MICHAEL F Downcoversion for solar cell in YF3:Pr3+,Yb3+ 2010(05) 19.TENG Yu;ZHOU Jiajia;LIU Jianrong Efficient broadband near-infrared quantum cutting for solar cells 2010(09) 引证文献(2条) 1.杨志平.梁晓双.赵引红.侯春彩.王灿.董宏岩橙红色荧光粉Ca3Y2(Si3O9)2:Eu3+的制备及发光性能[期刊论文]-硅酸盐学报 2013(12) 2.严回.孙晓刚.王栋.吕萍.郑长征C24H16N7O9Sm 的晶体合成、结构与性质研究[期刊论文]-江苏师范大学学报(自然科学版) 2013(3) 本文链接:https://www.360docs.net/doc/a76414163.html,/Periodical_ydysg201201028.aspx

稀土金属的最新应用

稀土金属的最新应用 引言 稀土金属材料可以分成稀土金属合金以及稀土金属间化合物两大类。稀土金属合金有稀土铸铁、稀土钢铁合金、稀土有色金属合金等,多为结构材料。稀土金属间化合物则是稀土金属与其他金属或类金属之间形成的具有一定化学成分、晶体结构和显著金属结合键的物质,原子遵循着某种有序化的排列。这些金属间化合物在稀土合金相图中被称为稀土金属中间相。稀土金属间化合物主要有稀土磁性材料、稀土储氢材料、稀土热电材料( YbAl3,CePd3,YbxCo4Sb12,CeNiSn) 、热电子发射材料( LaB6 单 晶) 、超导材料( LaAl,LaAl2,LaSi3) 等,多为功能材料。 一、稀土金属在冶金及其结构材料上的应用 稀土是活泼的,易与氧、氢、氮、硫和其他元素结合成化合物,但不易与碳结合。在炼钢工艺中稀土用来生产较纯的、不含气体的钢,其含硫低,夹杂少。硫化物夹杂呈球形,热轧时仍为球形,它均匀布于晶内,这就增加钢的热塑性和可弯曲性,使其韧性更加各向同性。加稀土处理过的钢达到较高的屈服强度和冲击韧性,并具有较低的脆性转变温度。它使低合金钢获致较高的硬度,很高的耐磨和抗蚀性能,使含高铬的铁素体不诱钢获得更高的抗氧化能力,在循环加热试验中结果良好,并可替代镍铬合金作发热体用。稀土促进了铸铁中的石墨化和球化,细化了石墨体,铁素体和共晶体;从而提高了铸铁的延性、韧性和强度。制延性铸铁时,加铈可减少镁的添加量,因而防止了镁的挥发和烧损。随着稀土的添加,灰口铁成为较有延性的,白口铁更为耐磨,使可加工铸铁的热处理时间缩短,而合金铸铁可获得更好的抗蚀和抗氧化能力。 稀土在金属中添加的量虽然不多,但是应用领域非常广,而且带来的附加价值高,仍有很大的发展空间。除了在铸铁、钢铁以及有色金属中的应用外,在稀土金属间化合物方面的应用也开始受到关注,如B2 型稀土金属间化合物由于具有良好的室温塑性而受到人们的关注,在这种稀土金属间化合物中发现应力诱导相变有助于提高材料的塑性。美国Ames 实验室的KarlA Gschneidner 博士在探索室温下具有较好韧性的稀土金属间化合物,在Nature Materials 杂志上报道了一系列晶体结构为CsCl 型( B2) 、化学成分为RM( R: 表示稀土金属,M: 2,8 - 13 族金属) 的稀土金属间化合物都具有良好的室温塑性。 二、稀土金属催化剂 催化剂降低反应活性能,促进化学反应,是化学化工上的一个核心技术,影响到很多产业领域。稀土元素及其化合物具有很好的催化性质,在石油化工、橡胶合成、氨的合成、尾气净化、塑料降解、污水处理一些涉及到节能和环境保护等领域得到重要应用。下面是几例最新发现: 1.稀土硅氨化物在催化制备螺[环丙烷-1,3′-吲哚]化合物中的应用 硅氨基稀土化合物化学式为[(MeSi)N]Ln(-Cl)Li(THF),可作为催化剂催化取代靛红、亚磷酸酯和烯烃,锅化反应制备螺[环丙烷-1,3′-吲哚]化合物;催化剂中,(MeSi)N表示三甲基硅氨基,Ln表示正三价的稀土金属离子,选自镧、钐、钆、铒或镱中的种;-代表桥键;THF代表四氢呋喃。此方法中,催化剂合成方法简单,反应原料简单易得,底物适用范围广,锅化反应方法效率高,反应条件温和,大部分目标产物的收率均达85%以上。 2.稀土咪唑盐化合物作为催化剂的应用 稀土咪唑盐化合物的通式为[RECl(THF)](HIPr),其中,RE为稀土金属,选自La、Sm、Yb、Y中的种;HIPr为1,3-二(2,6-二异丙基苯基)咪唑阳离子;本发明的稀土咪唑盐化合物合成简单,结构明确,且收率高。本发明同时提供了上述化合物的制备方法及将其作为催化剂催化氮杂环丙烷衍生物与二氧化碳反应的应用方法,应用方法条件温和,活性高,选择性好,底物适应范围广。 3.稀土改性活性炭催化剂应用

浅析稀土材料的应用现状及发展前景

浅析稀土材料的应用现状及发展前景 化学与材料学院材料科学与工程 姓名:黄兆剑学号:指导老师:童长青老师 摘要:稀土资源是很多高精尖产业必不可少的资源,我国是世界上第一大稀土资源国,同时也是稀土出口第一大霪。大量的出口苇仅导致了重要资源的流失也破坏了自然环境,更可能危及到我国今后的发展。本文献综述归纳了稀土在材料领域的应用现状及其发展前景,加以分析和论述,以便寻求新的应用领域。 关键词:稀土稀土贸易应用发展前景 前言: 稀土是不可再生的重要战略资源,在新能源、新材料、节能环保、航空航天、电子信息等领域的应用日益广泛。经过多年发展,我国稀土开采、冶炼分离和应用技术研发等取得了较大进步,产业规模不断扩大。稀土元素是元素周期表中ⅢB族中原子序数2l的钪(Sc)、39的钇(Y)和57的镧(La)至71的镥(Lu)等17个元素的总称“。稀土元素具有独特的4f电子结构、大的原子磁矩、很强的自选耦合等特性,与其他元素形成稀土配合物时,配位数可在6—12之间变化,并且稀土化合物的晶体结构也是多种多样的。这使其具有诸多其他元素所不具备的光、电、磁特性,被誉为新材料的“宝库”。稀土材料的应用主要包括传统材料领域和高新材料领域。 一、中国稀土贸易浅谈 1、中国稀土大量出口 我国稀土产业在世界上拥有多个第一:资源储量第一,占70%左右;产量第一,占世界稀土商品量的80%至90%;销售量第一,60%至70%的稀土产品出疆到国外,而且我国的稀土矿还具有优质、易开采、相对集中、品种多样齐全的优点。改革开放的三十多年间,在中国大量出口稀土资源换取外汇的同时,美、俄以及一些是有稀土资源的欧洲国家都早已经封矿,均为从中国进口稀土。日本已经囤积中国稀土足够其国内使用三十年,掌握稀土国际定价权。据专家分析,目前国外稀土资源量超过了24526万吨,中国保有资源量不足9100万吨,只占27%。不仅稀土总量大量流失,其在对外出口中存在的问题也需要引起重视。 2、当前稀土行业贸易中存在的问题及分析 价格过低,无定价权 专家指出,我国稀土产品价格长期以来一直受国夕商家控制。 技术落后,浪费严重 科学技术越发达的国家,稀土应用搞得越好,稀土材料功能开发搞得越好。这种正相关性存在于日本、美国、欧洲等多个国家,其稀土功能材料的开发,高端技术的应用都是走在世界的前列。而中国尽管有资源,但在高端领域掌握的技术落后于发达国家。不仅稀土的应用技术落后,稀土的开采技术也都还是十几年前的老技术,诸多落后环节的粗放开采导致了稀土开采环节的浪费。 走私不断,变相出口 出口配额的限制以及提高关税等政策的实施,又滋生了另一个利润的空间一一走私。很多小型开采者由于无法获得出口配额通过走私牟利。

稀土发光材料的特点及应用介绍

稀土发光材料的特点及应用介绍 专业:有机化学姓名:杨娟学号:201002121343 发光是物体把吸收的能量转化为光辐射的过程。当物质受到诸如光照、外加电场或电子束轰击等的激发后,吸收外界能量,处于激发状态,它在跃迁回到基态的过程中,吸收的能量会通过光或热的形式释放出来。如果这部分能量是以光的电磁波形式辐射出来,即为发光。 所谓的稀土元素,是指镧系元素加上同属IIIB族的钪Sc和钇Y,共17种元素。这些元素具有电子结构相同,而内层4f电子能级相近的电子层构型、电价高、半径大、极化力强、化学性质活泼及能水解等性质,故其应用十分广泛。 1稀土发光材料的发光特性 稀土是一个巨大的发光材料宝库,稀土元素无论被用作发光(荧光)材料的基质成分,还是被用作激活剂,共激活剂,敏化剂或掺杂剂,所制成的发光材料,一般统称为稀土发光材料或稀土荧光材料。 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在返回到基态的过程中,以光的形式放出能量。 因为稀土元素原子的电子构型中存在4f轨道,当4f电子从高的能级以辐射驰骋的方式跃迁至低能级时就发出不同波长的光。稀土元素原子具有丰富的电子能级,为多种能级跃迁创造了条件,从而获得多种发光性能。 稀土发光材料优点是发光谱带窄,色纯度高色,彩鲜艳;吸收激发能量的能力强,转换效率高;发射光谱范围宽,从紫外到红外;荧光寿命从纳秒跨越到毫秒6个数量级,磷光最长达十多个小时;材料的物理化学性能稳定,能承受大功率的电子束,高能射线和强紫外光的作用等。今天,稀土发光材料已广泛应用于显示显像,新光源,X射线增感屏,核物理探测等领域,并向其它高技术领域扩展。 2稀土发光材料的合成方法 稀土发光材料的合成方法包括水热合成法、高温固相合成法、微波合成法、溶胶——凝胶法、微波辐射法、燃烧合成法以及共沉淀法。 2. 1 水热合成法

稀土基本知识及应用

第一課概念 1.1 什麼是稀土? 1.2 稀土生產與分離 1.3 稀土資源 1.1 什麼是稀土? 稀土就是化學元素週期表中鑭系元素—鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑 (Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)、鑥(Lu),以及與鑭系的15個元素密切相關的兩個元素—鈧(Sc)和釔(Y)共17種元素,稱為稀土元素(Rare Earth)。簡稱稀土(RE或R)。 稀土元素最初是從瑞典產的比較稀少的礦物中發現的,“土”是按當時的習慣,稱不溶於水的物質,故稱稀土。 根據稀土元素原子電子層結構和物理化學性質,以及它們在礦物中共生情況和不同的離子半徑可產生不同性質的特徵,十七種稀土元素通常分為二組。 輕稀土(又稱鈰組)包括:鑭、鈰、鐠、釹、鉕、釤、銪、釓。 重稀土(又稱釔組)包括:鋱、鏑、鈥、鉺、銩、鐿、鑥、鈧、釔。 稱鈰組或釔組,是因為礦物經分離得到的稀土混合物中,常以鈰或釔佔優勢而得名。 稀土元素的主要物理化學性質 稀土元素是典型的金屬元素。它們的金屬活潑性僅次於鹼金屬和鹼土金屬元素,而比其他金屬元素活潑。在17個稀土元素當中,按金屬的活潑次序排列,由鈧,釔、鑭遞增,由鑭到鑥遞減,即鑭元素最活潑。稀土元素能形成化學穩定的氧化物、鹵化物、硫化物。稀土元素可以和氮、氫、碳、磷發生反應,易溶於鹽酸、硫酸和硝酸中。 稀土易和氧、硫、鉛等元素化合生成熔點高的化合物,因此在鋼水中加入稀土,可以起到淨化鋼的效果。由於稀土元素的金屬原子半徑比鐵的原子半徑大,很容易填補在其晶粒及缺陷中,並生成能阻礙晶粒繼續生長的膜,從而使晶粒細化而提高鋼的性能。 稀土元素具有未充滿的4f電子層結構,並由此而產生多種多樣的電子能級。因此,稀土可以作為優良的螢光,鐳射和電光源材料以及彩色玻璃、陶瓷的釉料。 稀土離子與羥基、偶氮基或磺酸基等形成結合物,使稀土廣泛用於印染行業。而某些稀土元素具有中子俘獲截面積大的特性,如釤、銪、釓、鏑和鉺,可用作原子能反應堆的控制材料和減速劑。而鈰、釔的中子俘獲截面積小,則可作為反應堆燃料的稀釋劑。

稀土发光材料及其应用(精)

稀土发光材料及其应用 1、概述稀土离子的发光特性,主要取决于稀土离子4f壳层电子的性质。随着稀土离子4f壳层电子数量的变化,表现出不同的跃迁形式和极其丰富的能级跃迁。研究表明,稀土离子的4fN电子组态中,有1639个能级,能级之间的可跃迁数目高达199177个,可观察到的谱线达30000多条,如果再涉及到4f—5d的能级跃迁,则数目更多。因而,稀土离子可以吸收或发射从紫外到红外区的各种波长的光,形成多种多样的发光材料。由于稀土离子特有的发光特性,为其作为高效发光材料奠定了基础,并在发光学和发光材料的发展过程中起着里程碑的作用。如1964年Y2O3∶Eu和Y2O3S∶Eu等彩电红粉的出现,使彩电的亮度提高到一个新的水平;20世纪70年代出现的红外变可见上转换发光材料,从理论上提出反Stokes效应;1974年报道的稀土三基色荧光粉为新一代荧光灯奠定了基础。近30年来,稀土发光材料正在逐渐取代非稀土发光材料,已经在光致发光、电致发光、阴极射线发光和X射线发光材料方面获得重要而广泛的应用,稀土发光材料的研究也成为发光材料的研究重点和前沿,国内外的竞争非常激烈。 2、国内本 行业的发展现状及未来发展趋势(1)阴极射线发光材料主要应用于电视机、计算机、示波器、雷达等各种荧光屏和显示器,其中在彩色阴极射线管(CRT)的发展最快,在彩色电视的发展过程中,稀土荧光粉起到了里程碑的作用。在20世纪60年代中期,成功地合成了YVO4∶Eu、Y2O3∶Eu和Y2O3S∶Eu等稀土红色荧光粉,突破了红粉亮度上不去的障碍,使彩电的亮度提高到一个新的水平。目前,国内普通彩电中使用的蓝粉和绿粉仍然是硫化锌系列荧光粉,但由于硫化锌型绿粉的光衰比蓝粉和红粉的大,需要增加电视机的色彩调节,因此需要开发新的绿色荧光粉。近几年随着国外新型稀土蓝色荧光粉和绿色荧光粉的开发成功,正在取代传统的荧光粉,使高清晰度大屏幕彩电开始大批量投放市场,进入平常百姓家庭。对于彩色电视飞点扫描管、束电子引示管、扫描电子显微镜探测镜等所需的超短余辉荧光粉(τ≤μs),目前都是Ce3+激活的,其寿命非常短,一般在30~100ns。(2)电致发光材料固体平板显示技术是显示技术领域的主要发展趋势之一,液晶显示、电致发光显示、等离子体显示是三种主要的平板显示技术。电致发光平板化微机终端显示器用于便携式微机,已经在美国、日本、芬兰有商品生产,预计在今后将迅速发展,与阴极射线发光分庭抗争。目前已商品生产的电致发光材料是ZnS∶Mn。为实现彩色电致发光平板显示,国内外许多实验室正在大力研究掺杂稀土的薄膜材料。(3)X射线发光材料以稀土荧光粉为主的新的X射线增感屏作为X射线发光材料已日益受到人们的重视,并得到不断的发展,近年来新发现的几种荧光粉,不仅具有与CaWO4同样的照

稀土在光学材料中的应用

稀土在光学材料中的应用 ——03304129 赵志刚 稀土简介: 什么是稀土?稀土是一组金属的简称,包括化学元素周期表第三副族中称为镧系元素的镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu、钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu,共17个元素。“稀土”一词是十八世纪沿用下来的名称,因为当时用于提取这类元素的矿物比较稀少,而且获得的氧化物难以熔化,也难以溶于水,也很难分离,其外观酷似“土壤”,而称之为稀土。稀土元素分为“轻稀土元素”和“重稀土元素”:“轻稀土元素”指原子序数较小的钪Sc、钇Y和镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu。“重稀土元素”原子序数比较大的钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu。 从1794年发现第一个稀土元素钇到1792年发现自然界中的稀土元素钜,供经历了178年,才把17种稀土元素全部在自然界中找齐。近年由于工业提纯和冶炼技术的发展,除元素钜以外,都能获得高纯度和稀土氧化物和稀土金属。稀土的应用也随着科技的发展,从19世纪末应用稀土制造汽灯纱罩、打火石和弧光灯碳棒等初级产品,发展到现在把稀土广泛的应用于彩电荧光屏,三基色节能灯,绿色高能充电电池,汽车尾气净化催化剂,电脑驱动器、核磁共振成像仪。固体激光器和磁悬浮列车等高科技领域。 1、不同稀土离子的发光特性介绍 稀土离子具有丰富的发射光谱.其中,除La3+、Lu3+之外的其余镧系离子的4f电子可在7个4f轨道之间任意分布,从而产生各种光谱项和能级,对未充满f电子壳层的愿子或离子可观察到的谱线多达三万条.因此,可以发射紫外到红外各种波长的电磁辐射.三价镧系稀土离子的颜色呈现明显的对称性,没有4f电子的La3+离和4f层全满的Lu3+离子以及4f层半充满的Gd3+离子为无色,其他稀土离子的颜色以Gd3+离子为对称轴,其颜色具体为: 稀土离子对光的吸收是发生在内层4f电子在不同能级之间的跃迁,产生吸收光谱谱线很窄,特异性强.因此呈现出的颜色鲜艳纯正.稀土离子的荧光光谱不同普通荧光光谱,具有较大的Stokes位移,部分稀土离子的 stokes位移表见表 1 2、稀土离子的发光光学原理 2.1稀土原子或离子结构特点 稀土离子的特殊的光学特性与稀土原子的原子结构是分不开的。现先介绍稀土原子在周期表中的地位、稀土原子电子层结构、离子价态。 2.1.1.镧系元素在周期表中的特殊地位 17个稀土元素位于皿B族,钪、钇、镧分别是第四、五、六长周期中过渡元素系列的第一个元素。第六周期镧后的14个元素.性质和镧十分相似,位于周期表内同一格内。在这个意义上,这15个元素可以称之为“同位

稀土发光材料的发光机理及其应用(1)

稀土发光材料的发光机理及其应用 学好:09021126 姓名:彭振华 摘要:稀土是我国的重要战略资源,对稀土元素的基本物理和化学性质的了解,是深入研究稀土元素的结构与性能,开发稀土生产新的工艺流程、稀土元素新应用、稀土新材料,充分利用稀土资源的基础。稀土发光材料在一些方面已得到普遍应用并在新能源和生物医学等方面具有重要的应用前景。目前稀土材料已广泛用于照明、显示、信息、显像、医学放射学图像和辐射场的探测等领域,并形成很大的工业生产和消费市场规模;同时也正在向着其他新型技术领域扩展,成为人类生活中不可缺少的重要组成部分。 1、稀土发光材料的发光原理 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光;另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在返回到基态的过程中,以光的形式放出能量。以稀土化合物为基质和以稀土元素为激活剂的发光材料多属于后一类,即稀土荧光粉。稀土元素原子具有丰富的电子能级,稀土化合物的发光是基于它们的4f电子在f-f组态之内或f-d组态之间的跃迁。 2、稀土发光材料的重要应用 2.1光致发光材料 灯用发光材料自70年代末实用化以来,促使稀土节能荧光灯、金属卤化物灯向大功率、小型化、低光衰、高光效、高显色、无污染、无频闪、实用化、智能化等方面发展。这些发光灯主要被用于照明、复印机光源、光化学光源等由发射红、绿、蓝3种含稀土的荧光粉(即三基色荧光粉)按一定比例混合制成的节能灯。由于其光效高于白炽灯数倍,光色也好,被长期用于办公室、百货商店和工厂中的照明中。稀土发光材料的质量提高和应用技术的发展,推动了新一代节能光源的科研、生产及应用,并带动了许多相关行业的发展。 典型的荧光灯是在玻璃管内壁涂荧光粉,当灯通电时,封装在灯两端的电极间放电发出紫外光,荧光粉吸收紫外光受到激发,然后通过各种非辐射弛豫过程和能量传递过程,使稀土离子处于可发出可见光的能态上,从而进一步发出各种颜色的可见光。 ①汞灯 稀土荧光粉用于高压汞灯中已有多年。此灯的原理是利用氩气在汞蒸气中的放电作用,它的光强度高于荧光灯。所有铕激活的钡酸钇荧光粉起改善光色作用。高

浅析稀土材料的应用

稀土材料 3分 开放分类: 目录 ? ? ? ? 摘要 请用一段简单的话描述该词条,马上。 稀土材料泛指一切含有稀土元素的功能材料和结构材料。 稀土材料-什么是稀土 就是化学元素周期表中—镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素—钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。 稀土元素最初是从瑞典产的比较稀少的矿物中发现的,“土”是按当时的习惯,称不溶于水的物质,故称稀土。 根据稀土元素原子的和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组:轻稀土(又称铈组)包括:镧、铈、镨、钕、钷、钐、铕、钆;重稀土(又称钇组)包括:铽、镝、钬、铒、铥、镱、镥、钪、钇。又称铈组或钇组,是因为矿物经分离得到的稀土混合物中,常以铈或钇占优势而得名。 稀土材料-稀土材料

1.稀土永磁材料 稀土永磁材料是将钐、钕混合稀土金属与(如钴、铁等)组成的合金,用粉末冶金方法压型烧结,经充磁后制得的一种磁性材料。稀土永磁分钐钴(SmCo)永磁体和钕铁硼(NdFeB)系永磁体,其中SmCo磁体的磁能积在15~30MGOe之间,NdFeB系永磁体的磁能积在27~50MGOe之间,被称为“永磁王”,是目前磁性最高的永磁材料。钐钴永磁体,尽管其磁性能优异,但含有储量稀少的稀土金属钐和稀缺、昂贵的战略金属钴,因此,它的发展受到了很大限制。我国稀土永磁行业的发展始于上世纪60年代末,当时的主导产品是钐-钴永磁,目前钐-钴永磁体世界销售量为630吨,我国为90.5吨(包括SmCo磁粉),主要用于军工技术。随着计算机、通讯等产业的发展,稀土永磁特别是NdFeB永磁产业得到了飞速发展。 稀土永磁材料是现在已知的综合性能最高的一种永磁材料,它比十九世纪使用的磁钢的磁性能高100多倍,比、铝镍钴性能优越得多,比昂贵的铂钴合金的磁性能还高一倍。由于稀土永磁材料的使用,不仅促进了永磁器件向小型化发展,提高了产品的性能,而且促使某些特殊器件的产生,所以稀土永磁材料一出现,立即引起各国的极大重视,发展极为迅速。我国研制生产的各种稀土永磁材料的性能已接近或达到国际先进水平。 现在稀土永磁材料已成为电子技术通讯中的重要材料,用在人造卫星,雷达等方面的行波管、环行器中以及微型电机、微型录音机、航空仪器、电子手表、地震仪和其它一些电子仪器上。目前稀土永磁应用已渗透到汽车、家用电器、电子仪表、、音响设备、、移动电话等方面。在医疗方面,运用稀土永磁材料进行“磁穴疗法”,使得疗效大为提高,从而促进了“磁穴疗法”的迅速推广。在应用稀土的各个领域中,稀土永磁材料是发展速度最快的一个。它不仅给稀土产业的发展带来巨大的推动力,也对许多相关产业产生相当深远的影响。 2.稀土超磁致伸缩材料 磁性材料由于磁场的变化,其长度和体积都要发生微小的变化,这种现象称为磁致伸缩。其中长度的变化称为线性磁致伸缩,体积的变化称为体积磁致伸缩。体积磁致伸缩比线性磁致伸缩要弱得多,一般提到磁致伸缩均指线性磁致伸缩。是1842年由发现的,故又称焦耳效应。长期以来,作为磁致伸缩材料的主要是镍、铁等金属或合金,由于磁致伸缩值较小,功率密度不高,故应用面较窄。主要用于声纳、超声波发射等方面。 稀土超是国外八十年代末新开发的新型功能材料。主要是指稀土-铁系金属间化合物。这类材料具有比铁、镍等大得多的磁致伸缩值,其磁致伸缩系数比一般磁致伸缩材料高约102~103倍,因此被称为大或超磁致伸缩材料。并且机械响应快、功率密度高,在所有商品材料中,稀土超磁致伸缩材料是在物理作用下应变

相关文档
最新文档