5万m3/h焦炉煤气生产车间工艺设计方案

5万m3/h焦炉煤气生产车间工艺设计方案
5万m3/h焦炉煤气生产车间工艺设计方案

5万m3/h焦炉煤气生产车间工艺设计方案

1 绪论

1.1 概述

随着我国钢铁工业的发展,焦化行业进入到一个大发展时期。大量焦炉煤气的产生,为焦炉煤气的合理开发利用提出了新的课题。焦炉煤气的有效利用可产生巨大的经济效益,并且可避免环境污染和二次能源的浪费。与石油资源相比,我国的煤炭储量十分丰富,结合当前焦炭市场需求旺盛的局面,必将会产生大量的焦炉煤气。因此,我国未来每年焦炉煤气产量将十分可观。

是因为未经净化的煤气中含有大量的煤焦油、粗苯、氨、氮、萘、SO

等物质

2等温室气体。焦炉煤气的应用开发前景非常广阔,从焦炉煤气可提炼出的以及CO

2

数百种化工产品来看,其不但延长了炼焦综合利用的产业但是,焦炉煤气欲得到进一步利用,必须对其进行净化。未经净化的荒煤气不能得到利用,这链条经济道路,还可将低附加值的焦炉煤气转化为高附加值的产品。因此,对它必须进行深度净化综合利用,走可持续发展的循环[1]。

1.2 文献综述

1.2.1 焦炉煤气特点

焦炉煤气是指用几种烟煤配成炼焦用煤,在炼焦炉中经高温干馏后,在产出焦炭和焦油产品的同时所得到的可燃气体。炼焦过程析出的挥发性产物,从炭化室出来后成为粗煤气(又称为荒煤气),粗煤气中的有用物质在经过回收和净化之后便得到洁净焦炉煤气。焦炉煤气是炼焦时的副产品.煤在隔绝空气

);当温下干镏,当温度小于350℃时,煤受热分解出水分和部分气态物(CO,CO

2

度在350℃~550℃时,煤受热析出大量的气体(甲烷占45%~55%,氢气占10%~20%) 当温度在550℃~700℃时,煤中的氢大量受热分解,气体中的氢气比例上升;当

温度超过700℃,煤气量减少.当温度升到950℃~l050℃时,焦炭成熟.煤气就是温度小于700℃以前煤受热分解出的气态物质。煤在干镏中还产生煤焦油.焦炭赴冶金,铸造,化工,电石等部门的燃料或原料。煤焦油中含有多种物质,苯、酚、甲酚等是医药、塑料、合成纤维等部门的重要化工原料,沥青是建筑行业的防水材料。煤气中古有大量的甲烷和氢气,每干馏一吨煤能产300 m3~350m3的煤气,每m3的煤气的热值相当于2.2kg的煤。煤气中还含有一部分氨气,氨气与硫酸反应能生成硫铵,与水接触可生成氨水。煤气中还含有很多有毒的物质,如硫化物、氰化物、酚类化合物、苯类化合物及萘。这些物质回收起来能成为化工原料,分散在煤气中则产生污染[2]。

1.2.2 焦炉煤气的组成及性质

焦炉气是混合物,其产率和组成因炼焦用煤质量和焦化过程条件不同而有所差别,一般每吨干煤可生产焦炉气300m3~350m3(标准状态)。其主要成分为氢气(55%~

以上不饱和60%)和甲烷(23%~27%),另外还含有少量的一氧化碳(5%~8%)、C

2

烃(2%~4%)、二氧化碳(1.5%~3%)、氧气(0.3%~0.8%)、氮气(3%~7%)。其中氢

以上不饱和烃为可燃组分,二氧化碳、氮气、氧气为不可气、甲烷、一氧化碳、C

2

燃组分。焦炉气属于中热值气,其热值为每标准立方米1719MJ,适合用做高温工业炉的燃料和城市煤气。焦炉气为有易爆性气体,空气中的爆炸极限为6%~30%;密度为0.4kg/m2~0.5kg/m2,运动粘度25×10-6m2/s。焦炉煤气是无色有臭味的气

S而有毒;焦炉煤气含氢多,燃烧速度快,火体;焦炉煤气因含有CO和少量的H

2

焰较短,着火温度为600℃~650℃[3]。

1.2.3 焦炉煤气净化的意义

焦炉煤气净化回收的炼焦化学产品在国民经济中占有重要的地位,炼焦化学工业是国民经济的一个重要部门,是钢铁联合企业重要组成部分之一,是煤炭的综合利用工业。

来自焦炉的荒煤气经冷却和用各种吸收剂处理后,可以提取出焦油、氨、萘、硫化氢、氰化氢及粗苯等化学产品,并得到净焦炉煤气。氨可用于制取硫酸铵和无水氨。煤气中所含氢可用于制造合成氨、合成甲醇、双氧水、环己烷等,合成氨可进一步制成尿素、硝酸铵和碳酸氢铵等化肥。煤气中所含乙烯可用于制取乙醇和二氯乙烷的原料。硫化氢是生产单质硫和元素硫的原料。氰化氢可用于制取黄血盐钠

或黄血钾盐。同时,回收硫化氢和氰化氢对减轻大气和水质的污染,加强环境保护以及减轻设备腐蚀均具有重要意义。粗苯和煤焦油都是组成很复杂的半成品,经精制加工后,可得到二硫化碳、苯、甲苯、二甲苯、三甲苯、古马隆、甲酚、萘、蒽和吡啶盐基及沥青等产品。

在钢铁联合企业中,经过回收化学产品的焦炉煤气是具有较高热值的冶金燃气,是钢铁生产中的重要燃料。焦炉煤气除满足钢铁生产自身需要外,其余部分经深度脱硫后,还可以公民用或送化学工厂用作合成原料气。石油和天然气的化学加工和合成技术的发展,使炼焦化学产品市场竞争激烈,由于石油储量有限,开采量加大,按目前耗用速度,石油使用年限估计为几十年,而煤的使用年限估计为几十年,而煤的使用年限估计在几百年。今后在丰富的煤炭资源基础上,没得综合利用将会更加合理和高效地发展。

煤气的净化对煤气输送过程及回收化学产品的设备正常运行都是十分必要的。煤气净化包含煤气的初冷、煤气的输送、化学产品回收,如:脱硫、制取硫铵、终冷洗苯、粗苯蒸馏等工序,以减少煤气中有害物质。在大中型焦化厂设置煤气净化系统,既是获得一些化工产品的途径,又是焦化生产所必不可少的工艺过程和技术手段[4]。

1.2.4 当前焦炉煤气净化工艺流程

自焦炉导出的粗煤气按一定顺序进行粗煤气处理,以便回收和精制获得焦油、粗苯、氨等化学产品,并得到净化的煤气。净化后的煤气可以用作基本化工原料,也可用作工厂的热源气。

多数焦化厂由粗煤气回收化学产品和进行煤气净化,采用冷凝的方式析出焦油和水。用鼓风机抽吸和加压以便输送煤气。回收氨和吡啶碱,既得到了有用产品,又防止了氨的危害。回收硫化氢和氰化氢变害为宝。回收粗煤气中的粗苯,获得有用产品,同时还避免了环境的污染。目前,国外的焦炉煤气的净化流程分为正压操作和负压操作两种[5]。

(1)正压操作的焦炉煤气处理系统

鼓风机位于初冷器之后,在风机之后的全系统均处于正压操作,此流程国应用广泛。煤气经压缩之后温升50℃,故对饱和器生产硫酸铵(需55℃)和弗萨姆法回收氨系统那个特别适用。工艺流程图如图1-1所示。

(2)负压操作的焦炉煤气处理系

该系统把鼓风机化在最后,将焦炉煤气从-7kPa~10kPa升压到15kPa~17kPa 后送到用户[28]。该流程的优点是无煤气终冷系统,减少了低温水用量,总能耗有所降低。鼓风机后煤气升温,成为热煤气远距离输送时冷凝液少了,减轻了管道腐蚀。他的缺点是负压操作时,煤气体积增加,煤气管道和设备容积均相应增加(如洗苯塔直径增加7%~8%);负压使煤气中各组分的分压下降,减少了系统推动力,如洗苯塔的苯回收率下降2.4%;负压操作要求所有的设备管道加强密封,一面空气漏入。此外,负压操作系统适合于水洗氨工艺,工艺流程图如图1-2所示。

图1-1 正压操作焦炉煤气处理系统

图1-2 负压操作焦炉煤气处理系统

1.2.5 典型的焦炉煤气净化工艺单元

煤气净化工艺通常由冷凝鼓风、脱硫脱氰、脱氨、终冷洗苯、硫回收和粗苯蒸馏等单元组成,选择不同的脱硫脱氨工艺,煤气净化工艺的组合方式略有不同,以下为几种比较常见组合的煤气净化工艺[6]。各个工艺都力求节约能量,节省成本,获得做大经济效益的产品。

(1)配套HPF法脱硫的煤气净化工艺(如图1-3所示)

图1-3 HPF法脱硫的煤气净化工艺流程图

(2)配套真空碳酸钾法脱硫的焦炉煤气净化工艺(如图1-4所示)

图1-4 真空碳酸钾法脱硫的焦炉煤气净化工艺流程图(3)配套A—S法脱硫洗氨及间接法饱和器生产硫铵的煤气净化工艺(如图1-5所示)

煤化工(焦化厂)焦炉煤气6大脱硫技术详解与脱硫工艺选择

煤化工(焦化厂)焦炉煤气 6大脱硫技术详解与脱硫工艺选择 1、焦炉煤气脱硫技术 焦炉煤气常用的脱硫方法从脱硫剂的形态上来分:包括干法脱硫技术和湿法脱硫技术。 1.1焦炉煤气干法脱硫技术 干法脱硫工艺是利用固体吸收剂脱除煤气中的硫化氢,同时脱除氰化物及焦油雾等杂质。 干法脱硫又分为中温脱硫、低温脱硫和高温脱硫。常用脱硫剂有铁系和锌系,氧化铁脱硫剂是一种传统的气体净化材料,适宜于对天然气、油气伴生气、城市煤气以及废气中硫化氢含量高的气体。 常温氧化铁脱硫原理是用水合氧化铁(Fe2O3·H2O)脱除 H2S,其反应包括脱硫反应与再生反应。 干法脱硫工艺多采用固定床原理,工艺简单,净化率高,操作简单可靠,脱硫精度高,但处理量小,适用于低含硫气体的处理,一般多用于二次精脱硫。 但由于气固吸附反应速度较慢,工艺运行所需设备一般比较庞大,而且脱硫剂不易再生,运行费用增高,劳动强度大,不能回收成品硫,废脱硫剂、废气、废水严重污染环境。

1.2焦炉煤气湿法脱硫技术 湿法工艺是利用液体脱硫剂脱除煤气中的硫化氢和氰化氢。常用的方法有氨水法、单乙醇胺法、砷碱法、VASC脱硫法、改良 ADA法、TH 法、苦味酸法、对苯二酚法、HPF 法以及一些新兴的工艺方法等。 1.2.1 氨水法(AS法): 氨水法脱硫是利用焦炉煤气中的氨,在脱硫塔顶喷洒氨水溶液(利用洗氨溶液)吸收煤气中 H2S,富含 H2S 和 NH3的液体经脱酸蒸氨后再循环洗氨脱硫。 在脱硫塔内发生的氨水与硫化氢的反应是:H2S+2NH3·H2O →(NH4)2S+2H2O。 AS 循环脱硫工艺为粗脱硫,操作费用低,脱硫效率在 90 %以上,脱硫后煤气中的 H2S 在200~500 mg·m-3。 1.2.2 VASC法: VASC法脱硫过程是洗苯塔后的煤气进入脱硫塔,塔内填充聚丙烯填料,煤气自下而上流经各填料段与碳酸钾溶液逆流接触,再经塔顶捕雾器出塔。 煤气中的大部分 H2S 和 HCN 和部分 CO2被碱液吸收,碱液一般主要是 Na2CO3或 K2CO3溶液。 吸收了酸性气体的脱硫富液与来自再生塔底的热贫液换热后,由顶部进入再生塔再生,吸收塔、再生塔及大部分设备材质为碳钢,富液与再生塔底上升的水蒸汽接触使酸性气体解吸。

焦炉煤气湿法脱硫工艺设计(初稿)

河南城建学院 毕业设计 题目:焦炉煤气湿法脱硫工艺设计学生姓名:张炳麒 年级: 101209127 专业:化学工程与工艺 申报学位:学士学位 院系:化学与化学工程系 指导教师:李霞 完成日期:2011-05-15 2011年05月15日

摘要

目录 1﹒绪论 (1) 1.1概述 (1) 1.2焦炉煤气净化的现状 (1) 1.3栲胶的认识 (2) 1.4栲胶法脱硫的缺点 (3) 1.5设计任务的依据 (8) 2.生产流程及方案的确定·················································· 3.生产流程说明··························································3.1反应机理·························································· 3.2主要操作条件··························································3.3工艺流程·························································· 3.4主要设备介绍·························································· 4.工艺计算·························································· 4.1原始数据·························································· 4.2物料衡算·························································· 4.3热量衡算·························································· 5.主要设备的工艺计算和设备选型····································· 5.1主要设备的工艺尺寸··················································· 5.2辅助设备的选型··················································· 6 设备稳定性及机械强度校核计算············································6.1壁厚的计算··················································· 6.2 机械强度的校核···················································

天然气制甲醇工艺总结word精品

天然气制甲醇工艺技术总结 中化二建集团有限公司王瑞军 工程名 称:内蒙古天野化工油改气联产20万吨/年甲醇项目 工程地点:内蒙古呼和浩特巾 开工日期:2004年5月 竣工日期:2005年11月 投资金 额: 约6亿元人民币 1甲醇装置简介 1.1内蒙古天野化工集团为调整产品结构,开拓碳一化工领域产品,增强企业参与市场的竞争能力,解决企业生存发展问题,以天然气取代重油为原料,采用非催化部分氧化技术对现有的30万吨/年合成氨生产装置进行技术改造,同时增建一套以天然气为原料年产20万吨的甲醇装置。 1.2 本项目由中国五环科技有限公司设计,中化二建集团有限公司承建。所采用的技术均为国产。所选用的设备除三台天然气压缩机组为进口外,其余均为国产。设计日产甲醇667吨,日耗天然气608500立方米。装置采用:变频电机驱动离心式天然气压缩、 2.5MPa 补碳一段蒸汽转化炉、蒸汽透平驱动离心式合成气压缩机、8.0MPa林达均温合成塔、三塔 精馏、普里森膜分离氢回收、MEA二氧化碳回收工艺。另外还为合成氨配套一台蒸汽透平驱动离心式天然气压缩机。 2甲醇装置工艺特点 2.1 天然气压缩工序 天然气压缩工序是将1.25MPa( A)天然气压缩至蒸汽转化要求的压力2.85MPa(A)。天然气压缩机组采用德国阿特拉斯生产的电机驱动的离心式压缩机组?离心压缩机的显著 特点是单机打气量大。运转平稳无脉冲、维修少、无需备用,与蒸汽透平驱动相比投资少,占地面积较小。 2.2 天然气转化工序 2.2.1天然气转化工序是通过天然气和蒸汽转化反应生产甲醇合成需要的合成气。天然气转化工序只设一段转化炉,转化炉采用顶烧方箱炉,对流段为水平布置,水碳比为 3.2, 转化炉出口转化气温度855E,压力2.19MPa,甲烷含量约2.5% (干基)。 2.2.2 原料天然气脱硫采用钻钼加氢串氧化锌脱硫工艺,氧化锌脱硫槽采用双塔,可并联可串联保证天然气中总硫小于O.IPPn,同时脱硫剂更换不影响生产。

焦炉煤气脱硫方法的简介和比较

焦炉煤气脱硫方法的比较 1 煤气脱硫的概念及意义焦炉煤气由焦化企业炼焦生产时产生。从焦炉集气管流出的煤气称为荒煤气,其硫化氢含量与装炉煤料的全硫量有关。一般干煤全硫的质量分数为0.5 %? 1.2 %,其中有20%?45%转到荒煤气中,煤气中95%以上的硫以硫化氢形态存在,33干煤干煤气?3g/标m15g/m其他为有机硫。硫化氢在煤气中的质量浓度一般为气。煤气中所含的硫化氢是极为有害的物质,因而煤气脱硫就有十分重要的意义:一是可以防止设备的腐蚀,减少设备维修费用,降低生产成本,提高回收产品的质量和产量。二是提高焦炉煤气的品质,减少焦炉煤气燃烧后产生的污染。煤气脱硫可以有效降低煤气燃烧后产生的二氧化硫等有害物质,保护周围的环境。三是降低钢铁企业用煤气中硫化氢的含量可以使钢铁企业生产出优质钢材。四是回收后的硫磺可用于医药、化工等领域,随着行业的发展,需求量会进一步加大。 一、干法脱硫(姜崴,焦炉煤气脱硫方法的比较, 科技情报开发与经济, 第17卷第 15 期,2007 年,278-279) 干法脱硫主要是利用氢氧化铁与其他制剂合成的脱硫催化剂脱除煤气中的硫化氢,经过再生的脱硫剂可重新使用。干法脱硫主要用于气量较小的煤气脱硫或脱硫精度高的二次脱硫。 1.1 干法一次脱硫干法脱硫是将焦炉煤气通过含有氢氧化铁的脱硫剂,使氢氧化铁与硫化氢反应生成硫化铁或硫化亚铁,当饱和后,使脱硫剂与空气接触,在有水分存在时,空气中的氧将铁的硫化物转化成氢氧化物,脱硫剂再生连续使用。其原理如下:脱硫反应式,当碱性时: 2Fe(0H)+3HS=FeS+6HO233222Fe(0H)+HS=2Fe(OH)+S+2HO2223Fe(OH)+HS=FeS+2H0 222 再生反应式,当水分足量时: 2FeS+3O+6HO=4Fe(OH+6S224FeS+30-6HO=4Fe(OH)+4S223/ h8000 m 以下规模较小的焦化企业。干干法一次脱硫适用于荒煤气产量在法脱硫具有占地少、投资省的特点,脱硫效率高,合理控制操作指标可以满足城市煤气的需要。常用操作指标如下:脱硫箱(塔)操作温度为25C?3OC;操作压力为常压;脱硫剂阻力为2000Pa/ m 以下;脱硫剂pH值为8-9。 干法脱硫可采用箱式脱硫或塔式脱硫。箱式脱硫占地大、操作环境差、脱硫剂更 换简便、投资省;塔式脱硫操作环境好、占地小、投资稍大。在实际生产当中两者都有采用,但脱硫剂再生效果不好,废弃脱硫剂的处理困难,容易对环境造成二次污染。 1.2 干法二次脱硫 主要用于湿法一次脱硫的后续处理或对煤气中HS含量要求严格的场合。二2次脱硫的脱硫剂也与一次脱硫有所不同(多用活性炭吸附)。经二次脱硫后,HS含量可降至很低,此种煤气可用于甲醇的合成。 、国内外湿法脱硫工艺现状( 蔡颖,赫文秀, 焦炉煤气脱硫脱氰方法研究, 内蒙古石油化工, 2006 年第10 期,1-2. )国内焦炉煤气脱硫脱氰工艺不断进步和从上世纪八十代初迄今二十多年来,发展,新的工艺技术不断地用于工业生产,尤其是湿式氧化法脱硫工艺发展更快,在焦化行业应用极为广泛。湿法工艺是利用液体脱硫剂

焦炉煤气净化工艺流程的选择

焦炉煤气净化工艺流程的选择 (2011-01-24 13:14:42) 标签: 分类:焦化类 煤化工 杂谈 笑看人生 摘要:本文对我国煤气净化工艺的发展进行了回顾,提出了我国焦炉煤气净化工艺发展的方向以及选择工艺流程的原则。并推荐采用的焦炉煤气净化工艺流程以及各单元中应采用的行之有效的环保、节能技术。 1 焦炉煤气净化工艺的历史回顾 我国焦炉煤气净化发展是与炼焦工业的发展紧密相连的。建国以前,我国焦化工业几乎是一片空白。建国以来,随着炼焦工业的发展,煤气净化工艺从无到有,蓬勃发展,技术水平和装备水平得到了不断提高。概括起来,大体上经历了三个阶段。第一个阶段是从20世纪50年代末到60年代中期,我国焦化厂的焦炉煤气净化工艺主要是以50年代从原苏联引进的工艺为基础、消化翻板饱和器法生产硫铵的老流程,以当时的武钢焦化厂、包钢焦化厂、鞍钢化工总厂、太钢焦化厂、马钢焦化厂等一批大型厂为代表。但该工艺存在流程陈旧、能耗高、环保措施不健全、装备水平低等问题。主要表现在初冷采用立管冷却器,冷却效率低;硫铵装置设备庞大,煤气阻力大,产品质量差,设备腐蚀严重;没有配套建设脱硫装置,终冷系统不能闭路,对大气和水体污染严重;在粗苯蒸馏系统采用蒸汽法,不但耗用大量蒸汽,产品质量也得不到保证。第二阶段是从60年代中期至70年代末期,随着我国自行设计的58型焦炉不断推广及炭化室高5.5米焦炉的诞生,对煤气净化工艺开展了与石油、化工行业找差距进行技术革新的阶段。在广大技术人员的努力下,在此期间我们将初冷流程改为二段冷却;开发了多种油洗萘代替终冷水洗萘;研制成功了终冷水脱氰生产黄血盐,解决了终冷水的污

天然气造气工艺流程说明

天然气造气工艺流程说明 一、合成氨工序造气流程: 经加压脱硫来的天然气和蒸汽混合分别送进各自的混合气 预热器预热后进入箱式一段转化炉和换热式转化炉进行转 化反应,反应后的气体和甲醇工段送来的驰放气进入二段炉。压缩送来的空气,经过空气预热器预热达到一定温度后进入二段炉,空气中的氧与转化气中的氢燃烧释放热量在二段炉内继续进行甲烷转化(当有甲醇弛放气时,配适量的纯氧)。出二段炉的工艺气体进入换热式转化炉的管间,作为热源供换热式转化炉转化管内天然气的转化,然后管间的二段转化气离开换热式转化炉进入换转炉的混合气预热器,预热进换转炉的混合气,换热后的二段转化气经过废热锅炉进一步回收热量产生蒸汽,气体降至一定温度后进入中温变换炉进行一氧化碳的变换,中温变换炉出来的气体进入甲烷化第二换热器,预热甲烷化入口气,换热后的中温变换气进入中变废锅,气体降至一定温度后进入低温变换炉,进一步将一氧化碳变换为二氧化碳,出低温变换炉一氧化碳达到≤. 0.3%,经低变废锅回收部份热量产蒸汽,回收热量后的低变气进入脱碳系统低变气再沸器预热再生塔底部溶液,最后进入低变冷却系统降温至35℃以下进入压缩工段或碳化工段。脱碳来的净化气或压缩来的碳化气进入甲烷化第一换热器

预热后进入甲烷化第二换热器进一步预热,气体达到一定温度后进入甲烷化炉,残余的一氧化碳和二氧化碳在镍触媒作用下生成甲烷,使CO+CO的含量<10PPm,甲烷化出来的气2体进入甲一换回收部份热量后进入甲烷化第一、第二冷却器,气体温度降至35℃以下送压缩加压,最后送往合成氨工序。 二、甲醇造气流程 经加压脱硫来的天然气和蒸汽混合分别送进各自的混合气 预热器预热后进入箱式一段转化炉和换热式转化炉进行转 化反应,反应后的气体进入二段炉。空分来的氧气经预热后达到一定温度进入二段炉,氧与转化气中的氢燃烧释放热量在二段炉内继续进行甲烷转化。出二段炉的工艺气体进入换热式转化炉的管间,作为热源供换热式转化炉转化管内天然.气的转化,然后管间的二段转化气离开换热式转化炉进入换转炉的混合气预热器,预热进换转炉的混合气,换热后的二段转化气经过废热锅炉进一步回收热量产生蒸汽,气体降至一定温度后根据甲醇合成气体成分情况通过中变近路阀调 整入中温变换炉的气量进行一氧化碳的变换,以便调整气体成分。中温变换炉出来的气体和中变近路转化气进入甲化第二换热器,预热甲醇合成来的弛放气,换热后的中温变换气或转化气进入中变废锅,气体降至一定温度后根据中变气体的成分通过低变近路阀调整入低温变换炉的气量,进一步调整气体成分,低变炉或低变近路来的气体经低变废锅回收部

焦炉工艺流程

炼焦工艺 现代焦炭生产过程分为洗煤、配煤、炼焦和产品处理等工序。 1.洗煤 原煤在炼焦之前,先进行洗选。目的是降低煤中所含的灰分和去除其他杂质。 2.配煤 将各种结焦性能不同的煤按一定比例配合炼焦。 目的是在保证焦炭质量的前提下,扩大炼焦用煤的使用范围,合理地利用国家资源,并尽可能地多得到一些化工产品。 3.炼焦 将配合好的煤装入炼焦炉的炭化室,在隔绝空气的条件下通过两侧燃烧室加热干馏,经过一定时间,最后形成焦炭。 4.炼焦的产品处理 将炉内推出的红热焦炭送去熄焦塔熄火,然后进行破碎、筛分、分级、获得不同粒度的焦炭产品,分别送往高炉及烧结等用户。 熄焦方法有干法和湿法两种。

湿法熄焦是把红热焦炭运至熄焦塔,用高压水喷淋60~90s。 干法熄焦是将红热的焦炭放入熄焦室内,用惰性气体循环回收焦炭的物理热,时间为2~4h。 在炼焦过程中还会产生炼焦煤气及多种化学产品。焦炉煤气是烧结、炼焦、炼铁、炼钢和轧钢生产的主要燃料。 炼焦工艺主要设备 1、焦炉简介: 现代焦炉炉体由炭化室、燃烧室和蓄热室三个主要部分构成。一般,炭化室宽0.4~0.5m、长10~17m、高4~7.5m,顶部设有加煤孔和煤气上升管(在机侧或焦侧),两端用炉门封闭。燃烧室在炭化室两侧,由许多立火道构成。蓄热室位于炉体下部,分空气蓄热室和贫煤气蓄热室。 焦炉系统中常用的控制设备:PLC、变频器、组态软件、电动机、断路器、接触器、按钮、温度仪表等等。 2、捣固焦炉简介: 捣固焦泛指采用捣固炼焦技术在捣固焦专用炉型内生产出的焦炭,这种专用炉型即捣固焦炉。捣固炼焦技术是一种可根据焦炭的不同用途,配入较多的高挥发分煤及弱粘结性煤,在装煤推焦车的煤箱内用捣固机将已配合好的煤捣实后,从焦炉机侧推入炭化室内进行高温干馏的炼焦技术。

焦炉煤气净化技术现状

焦炉煤气净化技术现状 在2004年国家公布的《焦化准入条件》中,明确规定新建或改造焦炉要同步配套建设煤气净化设施。至2006年底,经国家发改委核准的厂家仅108家,这些家的产能之合仅占当年焦炭总产能的30%左右。还有大量企业未被核准,其主要原因之一就是煤气净化设施配套不完善。煤气净化设施主要包括冷凝鼓风装置、脱硫脱氰装置、氨回收装置及苯回收装置。所谓配套不完善,是指缺某个或某些装置,特别是缺脱硫脱氰装置。 主流工艺技术 我国焦炉煤气净化工艺通过不断引进国外先进技术和创新发展,已经步入世界先进行列;煤气净化工艺已基本涵盖了当今世界上较为先进的各种工艺流程。目前,年产焦炭100万t以上的大型焦化厂全部设有煤气净化系统,对来自炼焦炉的荒煤气进行净化处理,脱除其中的硫化氢、氰化氢、氨、焦油及萘等各种杂质,使之达到国家或行业标准,供给工业或民用用户使用;同时,对化工副产品进行回收利用。 煤气净化工艺采用的主要技术包括:焦炉煤气的冷凝冷却及排送、焦油氨水分离、焦油、萘、硫化氢、氰化氢、氨等杂质的脱除以及粗苯的回收等。 焦炉煤气的冷凝冷却 焦炉煤气的冷凝冷却,即初步冷却,普遍采用了高效横管间冷工艺。其特点是:煤气冷却效率高,除萘效果好;当煤气温度冷却至20~22℃,煤气出口含萘可降至0.5g/m3,不需另设脱萘装置即可满足后续工艺操作需要。 高效横管间冷工艺通常分为二段式或三段式初冷工艺。当上段采用循环冷却水,下段采用低温冷却水对煤气进行冷却时,称为二段式初冷工艺。为回收利用荒煤气的余热,通常在初冷器上部设置余热回收段,即构成三段初冷工艺。采用三段初冷工艺,回收的热量用作冬季采暖或其它工艺装置所需的热源,不仅可以回收利用荒煤气的余热,同时也可节省大量循环冷却水,节能效果显著,应大力倡导采用。 除上述普遍采用的横管间冷工艺外,焦炉煤气的冷凝冷却也可采取先间冷,

焦炉煤气制氢新工艺

焦炉煤气变压吸附制氢新工艺的开发与应用焦炉煤气变压吸附(PSA)制氢工艺利用焦化公司富余放散的焦炉煤气,从杂质极多、难提纯的气体中长周期、稳定、连续地提取纯氢,不仅解决了焦化公司富余煤气放散燃烧对大气的污染问题;而且还减少了大量焦炭能源的耗用及废水、废气、废渣的排污问题;是一个综合利用、变废为宝的环保型项目;同时也是一个低投入、高产出、多方受益的科技创新项目。该装置首次采用先进可靠的新工艺,其经济效益、社会效益可观,对推进国内PSA技术进步也有重大意义。 1942年德国发表了第一篇无热吸附净化空气的文献、20世纪60年代初,美国联合碳化物(Union Carbide)公司首次实现了变压吸附四床工艺技术工业化,进入20世纪70年代后,变压吸附技术获得了迅速的发展。装置数量剧增,装置规模不断扩大,使用范围越来越广,主要应用于石油化工、冶金、轻工及环保等领域。本套大规模、低成木提纯氢气装罝,是用难以净化的焦炉煤气为原料,国内还没有同类型的装置,并且走在了世界同行业的前列。 1、焦炉煤气PSA制氢新工艺。 传统的焦炉煤气制氢工艺按照正常的净化分离步骤是: 焦炉煤气首先经过焦化系统的预处理,脱除大部分烃类物质;经初步净化后的原料气再经过湿法脱硫、干法脱萘、压缩机、精脱萘、精脱硫和变温吸附(TSA)系统,最后利用PSA制氢工艺提纯氢气,整个系统设备投资大、工业处理难度大、环境污染严重、操作不易控制、生产成本高、废物排放量大,因此用焦炉煤气PSA制氢在某种程度上受到一定的限制,所以没有被大规模的应用到工业生产当中。 本装置釆用的生产工艺是目前国内焦炉煤气PSA制氢工艺中较先进的生产工艺,它生产成本低、效率高,能解决焦炉煤气制氢过程中杂质难分离的问题,从而推动了焦炉煤气PSA制氢的发展。该工艺的特点是: 焦炉煤气压缩采用分步压缩法、冷冻净化及二段脱硫法等新工艺技术。 1.1工艺流程。 PSA制氢新工艺如图1所示。

合成气制备甲醇原理与工艺

合成气制备甲醇原理与工艺 简要概述 班级:xxxxxxxxxxxxxxxxxxxxx 专业:化学工程与工艺 姓名:xxxxx 学号:201473020108 指导教师:xxxxx

一、甲醇的认识 1.物理性质 无色透明液体,易挥发,略带醇香气味;易吸收水分、CO2和H2S,与水无限互溶;溶解性能优于乙醇;不能与脂肪烃互溶,能溶解多种无机盐磺化钠、氯化钙、最简单的饱和脂肪醇。 2.化学性质 3.甲醇的用途 (1)有机化工原料 甲醇是仅次于三烯和三苯的重要基础有机化工原料 (2)有机燃料 (1)、甲醇汽油混合燃料;(2)、合成醇燃料;(3)、与异丁烯合成甲基叔丁基醚(MTBE)、高辛烷值无铅汽油添加剂;(4)、与甲基叔戊基醚(TAME)合成汽油含氧添加剂

4.甲醇的生产原料 甲醇合成的原料气成分主要是CO 、 CO2、 H2 及少量的N2 和CH4。主要有煤炭、焦炭、天然气、重油、石脑油、焦炉煤气、乙炔尾气等。 天然气是生产甲醇、合成氨的清洁原料,具有投资少、能耗低、污染小等优势,世界甲醇生产有90%以上是以天然气为原料,煤仅占 2%。 二、合成气制甲醇的原理 1.合成气的制备 a.煤与空气中的氧气在煤气化炉内制得高 CO 含量的粗煤气; b.经高温变换将 CO 变换为 H2 来实现甲醇合成时所需的氢碳比; c.经净化工序将多余的 CO2 和硫化物脱除后即是甲醇合成气。 说明: 由于煤制甲醇碳多氢少,必需从合成池的放气中回收氢来降低煤耗和能耗,回收的氢气与净化后的合成气配得生产甲醇所需的合成气, 即( H2-CO2) /( CO+CO2)=2.00~2.05。 2.反应机理 主反应 OH CH H CO 322→+ △H 298=-90.8kJ/mol CO 2 存在时 O H OH CH H CO 23222+→+ △H 298=-49.5kJ/mol 副反应 O H OCH CH H CO 233242+→+ O H CH H CO 2423+→+ O H OH H C H CO 2942384+→+ O H CO H CO 222+→+ 增大压力、低温有利于反应进行,但同时也有利于副反应进行,故通过加入催化剂,提高反应的选择性,抑制副反应的发生。 3. 影响合成气制甲醇的主要因素 (1)合成甲醇的工业催化剂

焦炉气制甲醇工艺

焦炉气的精制是以炼焦剩余的焦炉气为生产原料,经化工产品回收(焦炉气的粗制);再经压缩后(2.55MPa),进入脱硫转化工段,脱硫采用NHD湿法脱硫和干法精脱硫技术,总硫脱至0.1×10-6,转化采用烃类部分氧化催化技术;制得合格的甲醇合成新鲜气(又称精制气),送去压缩工段合成气压缩机,最后进入甲醇合成塔制得甲醇。 第1章焦炉气成分分析 1.1典型焦炉气的组成 焦炉气的主要成分为甲烷26.49%、氢气58.48%、一氧化碳6.20%和二氧化碳2.20%等,还有少量的氮气、不饱和烃、氧气、焦油、萘、硫化物、氰化物、氨、苯等杂质。焦炉气基础参数:流量62967m3/h(2台焦炉生产的剩余焦炉气);温度25℃;压力0.105MPa(a)(煤气柜压力)。 1.2焦炉气的回收利用 焦炉气是良好的合成氨、合成甲醇及制氢的原料。根据焦炉气组成特点,除H 2 、CO、 CO 2 为甲醇合成所需的有效成分外,其余组分一部分为对甲醇合成有害的物质(如多种形态的硫化物,苯、萘、氨、氰化物、不饱和烃等)。如焦炉气中的硫化物不仅会与转化催化剂的主要活性成分Ni迅速反应,生成NiS使催化剂失去活性,而且还会与甲醇合成催化剂的主要活性组分Cu迅速反应,生成CuS,使催化剂失去活性,并且这两种失活是无法再生的。又如,不饱和烃会在转化催化剂表面发生析碳反应,堵塞催化剂的有效孔隙及表面活性位,使催化剂活性降低。另一部分为对甲醇合成无用的物质(对甲醇合成而言为惰 性组分),如CH 4、N 2 等。惰性气体含量过高,不仅对甲醇合成无益,而且会增加合成气体 的功耗,从而降低有效成分的利用率。 第2章焦炉气的精制 2.1硫的脱除及加氢净化 焦炉气制甲醇工艺中,焦炉气精制的首要工作是“除毒”,将对甲醇合成催化剂有害

焦炉煤气净化工艺的有关思考

龙源期刊网 https://www.360docs.net/doc/a918831259.html, 焦炉煤气净化工艺的有关思考 作者:郭晓林 来源:《中国化工贸易·中旬刊》2018年第07期 摘要:焦炉煤气装置主要包括煤气脱苯、煤气脱硫、煤气脱氮等几个环节,不同工序具 有不同的施工工艺。在全球环保法规日益严格的背景下,以往煤气净化技术弊端逐渐凸显。而焦炉煤气中含有的HCN、H2S及其他燃烧后废料对大气也造成了严重的影响。因此本文根据现阶段焦炉煤气净化主要工序特点,对焦炉煤气净化工艺进行了优化分析,以便为焦化工业的可持续发展提供有效地借鉴。 关键词:煤炉;煤气;净化 某焦化厂主要包括4座4.2m焦炉、1座6.2m焦炉,其设计煤气处理能力为 125000Nm3/h。随着该焦化企业生产规模拓展,在2017年建成投产后,年度设计生产能力由 以往的210万t焦炭上升到300万t焦炭,同时焦炉煤气总发生量也由以往的120000Nm3/h上升到150000Nm3/h。这种情况下,实际生产系统指标就出现不匹配风险。本文对该焦化企业焦炉煤气净化工艺进行了优化分析。 1 焦炉煤气净化工艺主要工序 ①焦炉煤气脱氮:在焦炉干馏环节,大多数氮可转化为以氨根离子为基础的含氮化合物,在煤气粗提取环节也存在6-8g/m3的氮。由于氨具有腐蚀性质,因此在实际处理过程中,需要采用氨水焦油分离装置将其分层分离。 ②焦炉煤气脱苯:焦炉中煤气脱苯主要依据理论脱苯标准,依次通过冷冻、吸附、洗涤等工序进行处理。在焦化工业生产过程中,依据焦油来源共分为石油洗油洗苯、焦油洗油洗苯两种类型。在粗焦油加工系统的大规模焦化企业,大多选择自产焦油洗油洗涤模式。 ③焦炉煤气脱硫:在焦炉煤气中存在着少量的硫化氢及氰化氢气体。现阶段我国煤气脱硫方式主要包括干式氧化、湿式吸收、湿式氧化等几种类型。其中干式氧化主要采用氧化铁箱法,整体使用较普遍。 2 焦炉煤气净化工艺的改进 2.1 环保技术 焦炉煤气净化工艺根据净煤气质量指标及焦化产业市场标准,具有不同的工艺流程。而系统工艺改进则是通过物料流、能源流、信息流、资金流等各个环节设计控制及优化组织,结合环保技术的合理应用,实现过程分析优化。

焦炉煤气脱硫效率分析及工艺选择

焦炉煤气脱硫效率分析及工艺选择 煤气中的硫来自原料煤中,存在形式主要是 H2S,亦有少量有机硫(主要是COS)。H2S 不仅会造成环境的污染,还会腐蚀设备,使催化剂中毒,对生产造成很多不良影响,所以必须要脱去煤气中的硫。煤气脱硫即采用一定的技术手段将H2S、HCN 等有害物质从焦炉煤气中脱除,采用的工艺方法一般分为湿法和干法。 1 焦炉煤气脱硫技术 焦炉煤气常用的脱硫方法从脱硫剂的形态上来分包括干法脱硫技术和湿法脱硫技术。 1.1焦炉煤气干法脱硫技术 干法脱硫工艺是利用固体吸收剂脱除煤气中的硫化氢,同时脱除氰化物及焦油雾等杂质。干法脱硫又分为中温脱硫、低温脱硫和高温脱硫。常用脱硫剂有铁系和锌系,氧化铁脱硫剂是一种传统的气体净化材料,适宜于对天然气、油气伴生气、城市煤气以及废气中硫化氢含量高的气体。常温氧化铁脱硫原理是用水合氧化铁(Fe2O3·H2O)脱除 H2S,其反应包括脱硫反应与再生反应。 干法脱硫工艺多采用固定床原理,工艺简单,净化率高,操作简单可靠,脱硫精度高,但处理量小,适用于低含硫气体的处理,一般多用于二次精脱硫。但由于气固吸附反应速度较慢,工艺运行所需设备一般比较庞大,而且脱硫剂不易再生,运行费用增高,劳动强度大,不能回收成品硫,废脱硫剂、废气、废水严重污染环境。 1.2焦炉煤气湿法脱硫技术 湿法工艺是利用液体脱硫剂脱除煤气中的硫化氢和氰化氢。常用的方法有氨水法、vasc法、单乙醇胺法、砷碱法、改良 ADA法、TH 法、苦味酸法、对苯二酚法、HPF 法以及一些新兴的工艺方法等。 1.2.1氨水法(AS 法) 氨水法脱硫是利用焦炉煤气中的氨,在脱硫塔顶喷洒氨水溶液(利用洗氨溶液)吸收煤气中 H2S,富含 H2S 和 NH3的液体经脱酸蒸氨后再循环洗氨脱硫。在脱硫塔内发生的氨水与硫化氢的反应是:H2S+2NH3·H2O→(NH4)2S+2H2O。AS 循环脱硫工艺为粗脱硫,操作费用低,脱硫效率在 90 %以上,脱硫后煤气中的 H2S 在200~500 mg·m-3。 1.2.2VASC 法 VASC 法脱硫过程是洗苯塔后的煤气进入脱硫塔,塔内填充聚丙烯填料,煤气自下而上流经各填料段与碳酸钾溶液逆流接触,再经塔顶捕雾器出塔。煤气中的大部分 H2S 和 HCN 和部分 CO2被碱液吸收,碱液一般主要是 Na2CO3或K2CO3溶液。吸收了酸性气体的脱硫富液与来自再生塔底的热贫液换热后,由顶部进入再生塔再生,吸收塔、再生塔及大部分设备材质为碳钢,富液与再生塔底

煤气化制甲醇工艺流程

煤气化制甲醇工艺流程 1 煤制甲醇工艺 气化 a)煤浆制备 由煤运系统送来的原料煤干基(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~ 53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。 气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。 气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。 c)灰水处理 本工段将气化来的黑水进行渣水分离,处理后的水循环使用。 从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。 闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。 闪蒸出的低压气体直接送至洗涤塔给料槽,澄清槽上部清水溢流至灰水槽,由灰水泵分别送至洗涤塔给料槽、气化锁斗、磨煤水槽,少量灰水作为废水排往废水处理。 洗涤塔给料槽的水经给料泵加压后与高压闪蒸器排出的高温气体换热后送碳洗塔循环

焦炉煤气脱硫脱氰净化工艺综述

焦炉煤气脱硫脱氰净化工艺综述 1.1引言 随着化学工业及城市煤气事业的迅速发展,炼焦制气厂也迅速发展起来,这样的处理煤气中硫化氢、氰化氢的问题就提到议事日程一来了。国际上对含有硫化氢、氰化氢的煤气的燃烧与使用有着严格的要求,且已有一系列的脱硫脱氰工艺投入生产。我国虽然在脱硫脱氰的工艺技术上也有很大的发展,但仍落后于需要,为了满足冶金工业对焦炉煤气中硫化氢、氰化氢的要求,减少焦炉煤气燃烧后对大气的污染,防止含硫化氢、氰化氢的废水污染水质,降低煤气中的硫化氢、氰化氢对仪表、设备等的腐蚀,综合利用硫化氢、氰化氢,使它变害为宝,必须大力发展脱硫脱氰的工艺。 在炼焦过程产生的焦炉煤气中含有硫化氢(H2S)、氰化氢(HCN)有害气体。H2S 含量一般为5-7g/m3,HCN含量为1-2g/m3。若不事先脱除,不但严重腐蚀气系统的设备和管道,所产生的废气和废水污染环境,危害人的身体健康。车间内允许的H2S浓度应小于10mg/m3,HCN浓度应低于0.3mg/m3,当H2S浓度达到700-1000mg/m3时,人立即昏迷,当人吸入50mgHCN,可瞬间死亡。 我国规定车间内二氧化硫(SO2)的最高允许浓度为15 mg/m3,二氧化氮(NO2)为5 mg/m3,含有H2S和HCN的煤气作燃料燃烧时,生成SO2和NO2,按65孔焦炉每座焦炉所产生的煤气量计算,每天向大气排放5吨SO2,严重污染大气。 随着环保规定的日趋严格,焦炉煤气脱硫脱氰技术有了很大发展,到目前为止,脱硫脱氰方法及其废液(气)处理已有数十种,本文主要介绍PDS法、HPF 法、FRC法、DDS法、改良ADA法及TH法焦炉煤气脱硫脱氰的方法以及他们之间的比较。 1.2煤气净化技术发展概况 焦炉煤气净化是焦化厂中重要的工艺过程。20世纪50年代初,我国各焦化厂大部分是沿用由前苏联引入焦炉炉型相配套的初冷—洗氨—终冷—洗苯的煤气净化(或称煤气回收) 工艺。自20世纪50年代末起,我国焦化工作者冲破旧的工艺模式,创造性地开发和设计了与我国自行设计的58型焦炉和其他炉型相适应的焦

焦炉煤气脱硫及硫回收工艺分析

焦炉煤气脱硫及硫回收工艺分析 (冶金工业规划研究院; Email:dengdpan@https://www.360docs.net/doc/a918831259.html,) 潘登 摘要:简述了几种具有代表性的脱硫、脱氰工艺,分析了不同工艺特点。介绍 了常用的几种硫回收工艺,并总结了脱硫工艺组合硫回收工艺的原则和方法,为企业选择焦炉煤气净化工艺提供参考依据。 关键词:焦炉煤气,脱硫,硫回收,工艺分析 一.前言 炼焦煤在干馏过程中,煤中全硫的20~45%会转到荒煤气中,荒煤气中的硫 以有机硫和无机硫两种形态存在,有机硫主要有二硫化碳、噻吩、硫醇等,煤气 中95%以上的硫以H2S无机硫形态存在,由于荒煤气中的有机硫含量很少而且在煤气净化洗涤过程中大部分会被除去,因此焦炉煤气的脱硫主要是脱除煤气中的H2S,同时除去同为酸性的HCN。据生产统计焦炉炼焦生产的荒煤气中H2S 含量为2~15g/m3,HCN含量为1~2.5 g/m3。荒煤气中H2S在煤气处理和输送过程中,会腐蚀设备和管道危害生产安全,未经脱硫的煤气作为燃料燃烧时,会生成大量SO2,造成严重的大气污染,同时H2S含量较高的焦炉煤气用在冶炼,将严重影响钢材产品质量,制约高附加值优质钢材品种的开发。出于生产安全,环保要求及煤气有效利用方面考虑,那种五、六十年代老焦化厂采用荒煤气→冷凝鼓风工段→硫铵工段→粗苯工段的无脱硫工段老三段模式与绿色环保的现代生产理念相悖,这样焦炉煤气脱硫已经成为煤气净化不可或缺的重要组成部分。焦炉煤气脱硫,不但环保,而且还可以回收硫磺及硫酸等化学品,产生一定的经济效益。在淘汰落后产能以及清洁生产政策下,对煤气脱硫的要求是越来越高,《焦化行业准入条件》已明确要求焦炉煤气必须脱硫,脱硫后煤气作为工业或其它用时H2S含量应不超过250 mg/Nm3,若用作城市煤气,H2S含量应不超过20mg/Nm3。本文将对焦炉煤气常用脱硫工艺进行介绍,分析不同工艺的特点,同时对硫回收工艺作简要说明。 二.工艺概述 近年来,焦炉煤气脱硫技术经不断发展与完善已日益成熟和广泛应用,脱硫 产品以生产硫磺和硫酸工艺为主。煤气脱硫主要有干法脱硫和湿法脱硫两大类,

焦炉煤气制液化天然气工艺简介

焦炉煤气制液化天然气工艺知识简介 一、常见燃料气体英文缩写: NG:是指天然气。 SNG :是指替代天然气。 CNG :是指压缩天然气。 LNG:是指液化天然气。 LPG :是指液化石油气。 COG :是指焦炉煤气。 BOG :是指闪蒸气 二、液化天然气LNG 的基本性质: LNG 是常压下气态的天然气通过冷却至-162℃,使之凝结成液体,其体积缩小到气态时的1/625,其熔点-182℃,闪点-188℃,沸点-161.5℃,相对密度0.43t/m 3,引燃温度538℃,爆炸极限5.3—15%。 三、焦炉煤气制合成天然气原理 由于焦炉煤气中CO 和CO 2的总含量约为10% (v/v),多碳烃的含量为2~3%, 以及约55% (v/v)的H 2,所以可以利用甲烷化反应生成甲烷,主反应见反应式 (1)和 (2): CO+3H2→CH4+H2O △H0=-206kJ/mol (1) CO2+4H2→CH4+2H2O △H0=-178kJ/mol (2) 焦炉煤气中还有少量O 2,可与氢气反应生成水,见反应式(3): 从反应式 (1)、(2)和 (3)可知,这三个反应都是很强的放热反应,在反应过程中反应热可使甲烷化炉的温度升高到650℃左右。这不仅使催化剂由于多碳烃裂解而结碳,还可能容易使不耐高温的甲烷化催化剂烧结而失活。 222O 2H 2H O H= -241.99kJ/mol (3)=?+

四、工艺流程简介 焦炉煤气先经过粗脱萘焦油器,脱除煤气中的焦油和萘,使煤气中萘含量降低到≤50mg/Nm3,焦油含量降低到≤5mg/Nm3。然后经焦炉煤气压缩机压缩后进入精脱萘、焦油、和苯变温吸附单元,进一步脱除焦炉煤气中的焦油、萘、苯等杂质,保证焦炉气中氨含量<10ppm,萘<10ppm,焦油<1ppm。 S≤精脱苯、萘、焦油的焦炉煤气进入粗脱硫罐,使焦炉煤气中的H 2 1mg/Nm3,然后进入预加氢反应器、一级加氢转化反应器、氧化锌精脱硫塔、二 等有级加氢转化反应器和氧化锌精脱硫,对焦炉气中的硫醇、硫醚、COS、CS 2 机硫及无机硫H S进行精脱硫,使焦炉煤气中的总硫含量小于0.1ppm。 2 净化后的焦炉煤气进入甲烷化反应器,一氧化碳和二氧化碳通过与氢气反应基本上全部转化为甲烷。甲烷化后的焦炉气含甲烷量在65%左右,称为富甲烷气。富甲烷气经过过滤器进脱水装置进行脱水,然后依次经过脱汞单位、过滤单元进换热器,出换热器后进精馏塔从塔顶脱除氮气和氢气,塔底获得的LNG产品再次经换热器过冷后送到LNG贮罐常压储存。其基本工艺线路如下: 管道天然气制液化天然气已是相当成熟的工艺,而焦炉煤气制LNG由于与管道天然气制LNG原料气成分具有一定的区别,在焦炉气制LNG工艺中最关键

氨水法焦炉煤气脱硫的基本原理

范守谦(鞍山立信焦耐工程技术有限公司) 1 气体在液体中的溶解度——亨利定律 任何气体在一定温度和压力下与液体接触时,气体会逐渐溶解于液体中。经过相当长的时间,气相和液相的表观浓度不再发生变化,即处于平衡状态。这时,对于不同气体,如果组分在气相中的分压(对单组分气体即为总压)保持定值,则不同气体在液体中的浓度称为气体在液体中的溶解度。该组分在气相中的分压称为气相平衡分压,表示了气相的平衡浓度。 很多气体的液相平衡浓度X与气体的平衡分压P*有定量关系。如:二氧化碳为直线关系,硫化氢和氨只有在较大浓度范围时不呈直线关系,在浓度较小时,可视为直线关系。因此,在一定温度下,对于接近于理想溶液的稀溶液,在气相压力不大时,气液平衡后气体组分在液相中的浓度与它在气相中的分压成正比,即亨利定律。 P* =EX 式中的P* 为气体组分在气相中的分压,大气压;X为气体组分在液相中的浓度,分子分数; E 为亨利系数(与温度有关)。 上式经浓度单位换算后可改写为: C =HP* 式中的P*为气体组分在气相中的分压,mmHg;C 为气体组分在液相中的浓度,gmol;H为亨利系数,gmol/mmHg。

注:①亨利定律是一个稀溶液定律,它只适用于微溶气体; ②只适用于气相和液相中分子状态相同的组分。如: NH3(气态)? NH3(溶解态) NH3(溶解态)+H2O ? NH4OH ? NH+4 + OH- 用亨利定律时,应把NH+4的量减去,才能得到水溶液中氨的浓度C氨C氨=H0P *氨 式中的H0为氨在纯水中的亨利系数,kgmol/(m3·mmHg)。 温度,℃H0 20 0.099 40 0.0395 60 0.017 80 0.0079 90 0.0058 在氨水脱硫过程中 C氨=H氨·P *氨

天然气转化合成甲醇的工艺

天然气转化合成甲醇的工艺综述 2015-6-24 专业:化工12-3班 学号: 学生姓名:劳慧 指导教师:刘峥

一.前言 (1) 二.主体部分 (2) 1. 天然气合成甲醇的原理 (2) 2. 高压法合成甲醇的原理及工艺流程 (2) 3. 低压法合成甲醇的原理及工艺流程 (3) 4. 中压法合成甲醇的原理及流程 (4) 5. 三者的比较 (4) 6. 以天然气合成甲醇的优势和现状 (6) 7. 其他原料合成甲醇与天然气合成甲醇的比较 (6) 三.结论部分 (8) 1. 对天然气合成甲醇的认识和了解 (8) 2. 对天然气转化合成甲醇提出我的观点和见解 (8) 四.参考文献 (8)

天然气转化合成甲醇的工艺 一.前言 20世纪60年代,石油和天然气作为一次能源与煤炭一起成为主要能源。与此同时,以石油和天然气为原料的化学工业也迅猛发展起来。与石油不同的是,天然气的成分主要是低分子量的烷烃。因此,天然气化工在发展中逐步成为一个体系。天然气是储量十分丰富的资源和能源,同时也是主要的温室气体之一,合理地利用天然气不仅关系到未来的资源配置和能源利用,而且也是可持续发展的重要战略发展方向之一。 天然气可以合成多种化工原料产品,比如生产合成氨还有甲醇,其中甲醇是最重要的。甲醇是一种重要的基础化工产品和化工原料,主要用于生产甲醛。醋酸、甲苯胺、氯甲烷、乙二醇及各种酸的酯类和维尼纶等,并在很多工业部门中广泛用作溶剂。甲醇在气田开发中用作防冻剂,添在汽油中可提高汽油的辛烷值,甲醇还可直接用作燃料用于发动机。 目前工业上几乎都是采用一氧化碳、二氧化碳加压催化氢化法合成甲醇。典型的流程包括原料气制造、原料气净化、甲醇合成、粗甲醇精馏等工序。 天然气、石脑油、重油、煤及其加工产品(焦炭、焦炉煤气)、乙炔尾气等均可作为生产甲醇合成气的原料。天然气与石脑油的蒸气转化需在结构复杂造价很高的转化炉中进行。由天然气制合成气进而合成甲醇是制甲醇产品一条重要的工艺路线。

焦炉气制甲醇工艺

焦炉气制甲醇工艺(总8页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

第1章焦炉气成分分析 1.1典型焦炉气的组成 焦炉气的主要成分为甲烷26.49%、氢气58.48%、一氧化碳6.20%和二氧化碳2.20%等,还有少量的氮气、不饱和烃、氧气、焦油、萘、硫化物、氰化物、氨、苯等杂质。焦炉气基础参数:流量62967m3/h(2台焦炉生产的剩余焦炉气);温度25℃;压力0.105MPa(a)(煤气柜压力)。 1.2焦炉气的回收利用 焦炉气是良好的合成氨、合成甲醇及制氢的原料。根据焦炉气组成特点,除H2、CO、CO2为甲醇合成所需的有效成分外,其余组分一部分为对甲醇合成有害的物质(如多种形态的硫化物,苯、萘、氨、氰化物、不饱和烃等)。如焦炉气中的硫化物不仅会与转化催化剂的主要活性成分Ni迅速反应,生成NiS使催化剂失去活性,而且还会与甲醇合成催化剂的主要活性组分Cu迅速反应,生成CuS,使催化剂失去活性,并且这两种失活是无法再生的。又如,不饱和烃会在转化催化剂表面发生析碳反应,堵塞催化剂的有效孔隙及表面活性位,使催化剂活性降低。另一部分为对甲醇合成无用的物质(对甲醇合成而言为惰性组分),如CH4、N2等。惰性气体含量过高,不仅对甲醇合成无益,而且会增加合成气体的功耗,从而降低有效成分的利用率。 第2章焦炉气的精制 2.1硫的脱除及加氢净化 焦炉气制甲醇工艺中,焦炉气精制的首要工作是“除毒”,将对甲醇合成催化剂有害 的物质脱除到甲醇合成催化剂所要求的精度。这是因为甲醇合成催化剂对硫化物的要求要高于转化催化剂。甲醇合成催化剂要求总硫<0.1×10-6,转化催化剂要求总硫<0.×10-6。第二就是要减少惰性组分的含量。脱除“毒物”的方法,根据系统选择工艺方案的不同而有所差别。而降低惰性气体的组分含量主要是采用将烃类部分氧化催化转化的方法,使其转化为甲醇合成有用的CO和H2,同时达到降低合成气中惰性组分的目的。 2.1.1无机硫的脱除 焦炉气中硫质量浓度高达6g/m3,氰化物质量浓度约为1.5g/m3。在焦炉气净化工艺中设有脱硫、脱氰、蒸苯、焦油电捕捉等一系列净化装置,除为了减轻硫化氢和氰化物对后续装置的腐

相关文档
最新文档