毕设外文翻译

毕设外文翻译
毕设外文翻译

毕业设计外文资料翻译

学院:机械电子工程学院

专业:过程装备与控制工程

姓名:崔红飞

学号:080503105

外文出处:Applied Energy 85 (2008)

625—633

附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文

Lingen Chen Jun Luo Fengrui Sun Chih Wu

摘要 对多级压缩机的优化设计模型,本文假设固定的流道形状以入口和出口的动叶绝对角度,静叶的绝对角度和静叶及每一级的入口和出口的相对气体密度作为设计变量,得到压缩机基元级的基本方程和多级压缩机的解析关系。用数值实例来说明多级压缩机的各种参数对最优性能的影响。 关键词 轴流压缩机 效率 分析关系 优化

1 引言

轴流式压缩机的设计是工艺技术的一部分,如果缺乏准确的预测将影响设计过程。至今还没有公认的方法可使新的设计参数达到一个足够精确的值,通过应用一些已经取得新进展的数值优化技术,以完成单级和多级轴流式压缩机的设计。计算流体动力学(CFD )和许多更准确的方法特别是发展计算的CFD 技术,已经应用到许多轴流式压缩机的平面和三维优化设计。它仍然是使用一维流体力学理论用数值实例来计算压缩机的最佳设计。Boiko 通过以下假设提出了详细的数学模型用以优化设计单级和多级轴流涡轮:(1)固定的轴向均匀速度分布(2)固定流动路径的形状分布,并获得了理想的优化结果。陈林根等人也采用了类似的想法,通过假设一个固定的轴向速度分布的优化设计提出了设计单级轴流式压缩机一种数学模型。在本文中为优化设计多级轴流压缩机的模型,提出了假设一个固定的流道形状,以入口和出口的动叶绝对角度,静叶的绝对角度和静叶及每一级的入口和出口的相对气体密度作为设计变量,分析压缩机的每个阶段之间的关系,用数值实例来说明多级压缩机的各种参数对最优性能的影响。

2 基元级的基本方程

考虑图1所示由n 级组成的轴流压缩机, 其某一压缩过程焓熵图和中间级的速度三角形见图2和图3,相应的中间级的具体焓熵图如图4,按一维理论作级的性能计算。按一般情况列出轴流压缩机中气体流动的能量方程和连续方程,工作流体和叶轮的速度。在不同级的轴向流速不为常数,即考虑i j u u ≠,i j c c ≠ (i j ≠) 时的能量和流量方程。在下列假定下分析轴流压缩机的工作:

·相对于稳定回转的动叶、静叶和导向叶片机构, 气体流动是稳定的; ·流体是可压缩、无黏性和不导热的; ·通过级的流体质量流量为定值;

·在实际工质的情况下, 压缩过程是均匀的; ·本级出口绝对气流角为下一级进口角绝对气流角;

·忽略进出口管道的影响。 在每一级的具体焓如下:

j

*

2

2j i 2j i=1/2i i h c =+-∑ (1)

j

*

22j+11

i 2j+1i 1

/2i i h c ==+-∑ (2)

第j 阶段的动叶和静叶的焓值损失总额计算如下:

()(){

2

2

2rj rj 2j-1

2j-12j 12j-1

2j-12j-12j-1rj/2/2//h w

G F u Gctg F ωραρω-?

?????==+-??????

(3) ()()222rj sj 2j 2j 2j 2j sj /2/1/2h c G F ctg ωραω???==+????

(4) 其中ri ω是第j 阶段动叶叶片轮廓总损失系数,sj ω是第j 阶段静叶叶片轮廓总损 失的系数。

图1 n 级轴流式压缩机的流量路径。

叶片轮廓损失系数ri ω和sj ω是工作流体和叶片的几何功能参数。它们可以使用各种

方法及视作常量来计算。当ri ω和sj ω看做工作流体和叶片的几何功能参数时,可以使用Ref 迭代的方法来计算损失系数。使用迭代方法解决计算损失系数: (1)选择ri ω和sj ω初始值,然后计算各级的参数。

(2)计算的ri ω,sj ω值,重复第一步,直到计算值和原值之间的差异足够小。 第j 阶段理论所需计算得:

j 2j u,2j 2j-1u,2j-12j 2j 2j-1

2j-12j 2j 2j-12j-1G G h u c u c u ctg u ctg F F ααρρ=-=

- (5) 第j 阶段实际所需计算得:

图2 n级压缩机的焓熵图

图3 中间级的速度三角形

图4 中间级的焓熵图

2222

2j-12j

2j 2j-1

rj 2

2

w w u u h --=

+

(6)

基元级反应度定义为rj j /h h Ω=。因此有:

()()()

u,2j 222

a,2j 2j 2j-1j a,2j 2j 2j-1

1112k ctg ctg k k ctg ctg ?αααα??+-+??

Ω=-

- (7)

在这里u,i k ,()a,i 12k i n =→视作速度系数,它们的计算为:

a,i a,i a,111i i //k c c F F ρρ==和u,i i 1/k u u =

()()j

2

*22j-11

2j i 2j 2j 2j i=1/1/20A i i h G F ctg ρα??≡-+-+=??

∑ (8) ()()j

2

*

22j 1

2j+1i 2j+12j 12j+1i 1

/1/20A i i h G F ctg ρα+=??≡-+-+=??∑ (9) 3 级组的数学模型

压缩机各级的比压缩功为()j 1h j n =→则总的比耗功为n

c j j=1h h =∑, 各级的滞止等

熵能量头为*s,j h ,则级组各级滞止等熵比压缩功总和为n

*s,j j=1h ∑,级组等熵比压缩功为*

sc h , 则n

**

s,j z sc j=1(1)h h α=+∑为压缩机的重热系数。根据定义,多级压缩机通流部分滞止等熵效

率为:

n

*

**sc

sc

c sc

i i=1

//h h h h η==∑

求解确定各级能量头的分配:

()n

n

n

*2n+1j Z sc

jr sj j=1

j 1

j 1

10A h h h h α==≡-+-?-?=∑∑∑ (11)

方程式(11)同样可以写作:

()1221:,0j A ctg ρα==

()22323,,,0A ctg ctg ρραα=

….

()2j-122j 22j ...,...0A ctg ctg ρραα=

()2j 22j 122j 1...,...0A ctg ctg ρραα++= (12)

()2n 22n 122n 1:...,...0j n A ctg ctg ρραα++==

()*

2n 122n 122n+1sc ...,...,0A ctg ctg h ρραα++=

出于方便,一些参数简化约束计算做了如下定义:

()()()()()()

2*22222j 111j j j 1/211/1c i ctg y f ctg τλελαα=-++???? (13) ()()()*2uj 111uj j j j 1/21/1j u c i k ctg y f ctg τλελα?α??=-+?????? (14) ()()()2*222j 11uj 1/21/1u i k ctg τλ?α??=-+?????? (15)

()()()2*2**2*j 1j 1j uj 1j 1/2/2//2w i c i u c i u i =-+ (16)

这里1()τλ 1()ελ是气动力函数,*11/c a λ=在这里的*a 是滞止声速相对应的

*2*12(1)/(1)a i k k =-+,且j j 11uj j //()f F F l k l == 是相对面积,*

j j 1/y ρρ=是相对密度,l 是

叶片高a,11/c u ?= 是流量系数。

通过Boiko 的论文引入等熵线系数,一个是:

1i j j j i 1

exp s s R σσ=??-== ? ???∏ (17)

这里()

()

k/k-1i is i /i i σ= (18)

因此约束条件也可写作

()()

()

j

11u,2i 2i u,2i-12i-1k-11-k 2j-12j 2j-1

2i=12i 2i 2i-12i-112111k ctg k ctg A y y f y f ctg τλελαασ?α-????

??≡-+

- ?+?

?∑ ()()2

2j 2

112222j 2j 1

11101ctg y f ctg ατλελα+--=????+ (19)

()()

()

j

11u,2i 2i u,2i-12i-1k-1

1-k 2j 2j+12j

2i 12i 2i 2i-12i 112111k ctg k ctg A y y f y f ctg τλελαασ?α=--????

??≡-+

- ?+?

?∑ ()()2

2j 12

112222j+12j+11

11

101ctg y f ctg ατλελα++--=????+ (20) ()()n

u,2i 2i u,2i-12i-12n+11z SC

i 12i 2i 2i 12i 11k ctg k ctg A y f y f ααελ?αψ=--??≡--+ ??

?∑

()

()12

22

n

12i 1u,2i-1ri 22i 12i-12i-12i-12i-11

2ctg k y f y f ?ελ?ελαω-=???? ?-+- ? ?????

∑ ()()

122

n 2

2i

si

22i=12i 2i

1102ctg y f ?ελαω

-+=∑ (21)

在这里多级轴流式压缩机滞止等熵线的效率计算如下:

()()()n

*

sc

sc 1u,2i

2i 2i 2i u,2i-12i 12i 12i 1i=1///k ctg y f k ctg y f ηψελ?αα---??

??=-??????∑ (22) 这里*

2sc sc

1/h u ψ=是多级压缩机的等熵工作系数,每一级的等熵工作系数是*2

si si 2i-1/h u ψ=。

现在的优化问题是寻找i a 和i y 的最佳值,来找出在方程(19~21)约束下的目标函数

*sc η的最大值。

4 结论

一旦这些系统和定义的常数按目标实现自己系统功能,在他最理想的环境下达到预计函数最大的程度。其呈现的并非是一个线性的而是一阶梯函数。本优化模型是(2n +1)约束功能和一个n 级轴流压缩机(4n + 1)变量的非线性规划程序。例如改善外部法或SUMT 法,对于这样的问题Powell 采用在无约束极小化技术与一维最小的抛物线插值方法。人们已经发现是非常有作用的。

表1 各级相对面积

级 (i ) 1 2 3 4 5 6 7 相对面积i f

1 0.936 0.886 0.809 0.729 0.701

0.647

参数 上限 下限 原始数据

最佳数据

s ψ=0.732 s ψ=0.732 s ψ=0.732 s ψ=0.6

?=0.59

?=0.59

?=0.49

?=0.59

1α()? 54 90 80.5891 72.6858 74.9116 66.5570 2α()? 35 90 49.50 45.00 45.00 45.00 3α()? 54 90 84.1338 76.3431 77.55 68.2003 4α()? 35 90 49.50 45.00 45.00 45.00 5α()? 54 90 66.411 59.7080 69.0582 55.7046 6α()? 35 90 49.5418 45.00 45.00 46.6157 7α()? 54 90 89.99 90.00 90.99 89.6147 2y 0 3 1.089 1.0459 1.0913 1.093 3y 0 3 1.148 1.1474 1.1549 1.0798 4y 0 3 1.424 1.3970 1.3900 1.2624 5y 0 3 1.424 1.4117 1,。4198 1.2624 6y 0 3 1.565 1.5372 1.6091 1.3345 7y

0 3 1.618 1.6338 1.6671 1.4450 *sopt η

0.9020

0.9050

0.9074

0.8955

5 数值计算例子

在计算中,做u,i 1k =,1330m/s u =,*1288K T =, 1.4k =,3n =,

286.96J/(kg k)R = ,z α则为0.04, *

sopt η为0.025和sj ω为0.02的设置。表1列出了在每个级的相对面积。应当指出

会有一些优化目标的关系与这些量纲的影响是工作流体参数的功能和流动路径的几何参数设置。然而,得到的关系不会改变流体性质。对于3级压缩机中,有13个设计变量和7个约束条件。此外,较低上限约束的13个设计变量的值也应考虑在计算中。优化变量的上限和下限,原来的设计方案中优化不同流量系数和工作系数的结果列于表2。由此可以看出,优化程序是有效和实用的。

计算结果表明,最佳停滞等熵效率是随工作系数和流量系数的递减而递减的函数。工作系数影响最佳停滞等熵效率的作用大于流量系数。各值流量系数和工作系数,最优的最后一级输出绝对角度总是接近90?。 6 结论

在本文中在研究固定流形的多级轴流压缩机的效率优化中使用一维流体理论研究。根据压缩机普遍特性和特征间关系。由展示的数值量其结果可以为多级压缩机的性能分析和优化提供一些指导。这是一个初步的研究将其不可避免的使用多目标数值优化技术和人工神经网络算法用于分析压缩机优化。

参考文献(见原文)

术语

附件2:外文原文(复印件)

Design efficiency optimization of one-dimensional multi-stage

axial-flow compressor

Lingen Chen , Jun Luo , Fengrui Sun , Chih Wu

Postgraduate School, Naval University of Engineering, Wuhan, 430033, PR China

Mechanical Engineering Department, US Naval Academy, Annapolis MN21402, USA

Available online 28 November 2007

Abstract

A model for the optimal design of a multi-stage compressor, assuming a fixed configuration of the flow-path, is presented.The absolute inlet and exit angles of the rotor, the absolute exit angle of the stator, and the relative gas densities at the inlet and exit stations of the stator, of every stage, are taken as the design variables. Analytical relations of the compressor elemental stage and the multi-stage compressor are obtained. Numerical examples are provided to illustrate the effects of various parameters on the optimal performance of the multi-stage compressor. 2007 Elsevier Ltd. All rights reserved.

Keywords: Multi-stage axial-flow compressor; Efficiency; Analytical relation; Optimization

1. Introduction

The design of the axial-flow compressor is partially an art. The lack of accurate prediction influences the design process. Until today, there are no methods currently available that permit the prediction of the values of these quantities to a sufficient accuracy for a new design. Some progresses has been achieved via the application of numerical optimization techniques to single- and multi-stage axial-flow compressor design [1–22].Especially with the development of computational fluid-dynamics (CFD), many more accurate methods of calculating have been presented in many references in which the techniques of CFD have been applied to two- and three-dimensional optimal designs of axial-flow compressors

[17–20]. However, it is still of worthwhile significance to calculate, using one-dimensional flow-theory, the optimal design of compressors. Boiko [23] presented a detailed mathematical model for the optimal design of single- and multi-stage axial-flow turbines by assuming (i) a fixed distribution of axial velocities or (ii) a fixed flow-path shape, and obtained the corresponding optimized results. Using a similar idea, Chen et al. [22] presented a mathematical model for the optimal design of a single-stage axial-flow compressor by assuming a fixed distribution of axial velocities.In this paper, a model for the optimal design of a multi-stage axial-flow compressor, by assuming a fixed flow path shape, is presented. The absolute inlet and exit angles of the rotor, the absolute exit angle of the stator, and the relative gas densities at the inlet and exit stations of the stator, of each stage, are taken as the design variables. Analytical relations of the compressor stage are obtained. Numerical examples are provided to illustrate the effects of various parameters on the optimal performance of the multi-stage compressor 2. Fundamental equations for elemental-stage compressor Consider a n-stage axial-flow compressor – see Fig. 1. Fig. 2 shows the specific enthalpy–specific entropy diagram of this compressor. For a n-stage axial-flow compressor, there are (2n + 1) section stations. The stage velocity triangle of an intermediate stage (i.e. j th stage) is shown in Fig. 3. The corresponding specific enthalpy–specific entropy diagram is shown in Fig. 4. The performance calculation of multi-stage compressor is performed using one-dimensional flow theory. The analysis begins with the energy and continuity equations,

and the axial-flow velocities of the working fluid and wheel velocities at the different stations in the compressor are not considered as constant, that is, i j u u ≠,i j c c ≠ (i j ≠), where i denotes the i th station and j denotes the j th stage. The major assumptions made in the method are as follows

? The working fluid flows stably relative to the vanes, stators and rotors, which rotate at a fixed speed.

? The working fluid is compressible, non-viscous and adiabatic. ? The mass-flow rate of the working fluid is constant.

? The compression process is homogeneous in the working fluid.

? The absolute outlet angle of the working fluid, in j th stage, is equal to the absolute inlet angle of the working fluid in (j +1)th stage.

? The effects of intake and outlet piping are neglected. The specific enthalpies at every station are as follows

j

*

2

2j i 2j i=1/2i i h c =+-∑ (1)

j

*

22j+11

i 2j+1i 1

/2i i h c ==+-∑ (2)

The total profile losses of the j th stage rotor and the stator are calculated as follows:

()(){

2

2

2rj rj 2j-1

2j-12j 12j-1

2j-12j-12j-1rj/2/2//h w

G F u Gctg F ωραρω-?

?????==+-??????

(3) ()()222rj sj 2j 2j 2j 2j sj

/2/1/2h c G F ctg ωραω???==+???? (4)

Where ri ωis the total profile loss coefficient of j th stage rotor-blade and sj ωis that of j th stage-stator blade.

Fig. 1. Flow-path of a n-stage axial-flow compressor

Fig. 2. Enthalpy–entropy diagram of a n-stage compressor

Fig. 3. Velocity triangle of an intermediate stage

Fig. 4. Enthalpy –entropy diagram of an intermediate stage.

The blade profile loss-coefficients ri ω and sj ω are functions of parameters of the working fluid and blade geometry. They can be calculated using various methods and are considered to be constants. When ri ω and sj ω are functions of the parameters of the working fluid and blade geometry, the loss coefficients can be calculated using the method of Ref. [24], which was employed and described in Ref. [21]. The optimization problem can be solved using the iterative method:

(1) First, select the original values of ri ωand sj ω and then calculate the parameters of the stage.

(2) Secondly, calculate the values of ri ω and sj ω, and repeat the first step until the differences between the calculated values and the original ones are small enough. The work required by the j th stage is

j 2j u,2j 2j-1u,2j-12j 2j 2j-1

2j-12j 2j 2j-12j-1G G

h u c u c u ctg u ctg F F ααρρ=-=

- (5) The work required by the j th rotor is:

22

22

2j-12j

2j 2j-1

rj 2

2

w w u u h --=

+

(6)

The degree of reaction of the jth stage compressor is defined as rj j

/h h Ω=. Hence, one

has

()()()

u,2j 222

a,2j 2j 2j-1j a,2j 2j 2j-1

1112k ctg ctg k k ctg ctg ?αααα??+-+??

Ω=-

- (7)

Where u,i k ,()a,i 12k i n =→ are the velocity coefficients, and they are defined as:

a,i a,i a,111i i //k c c F F ρρ==and u,i i 1/k u u =The constraint conditions can be obtained from the

energy-balance equation for the one-dimensional flow

()()j

2

*22j-11

2j i 2j 2j 2j i=1/1/20A i i h G F ctg ρα??≡-+-+=??

∑ (8) ()()j 2

*

22j 1

2j+1i 2j+12j 12j+1i 1

/1/20A i i h G F ctg ρα+=??≡-+-+=??∑ (9) 3. Mathematical model for the behaviour of the multi-stage compressor

The compression work required by each stage is ()j 1h j n =→. The total compression work required by the multi-stage compressor is n

c j j=1h h =∑. The stagnation isentropic

enthalpy rise of every stage is *

s,j h . The sum of the stagnation isentropic enthalpy rise of each stage is n

*s,j j=1h ∑, while the stagnation isentropic enthalpy rise of the multi-stage compressor is *

sc h . One has n

**s,j z sc j=1(1)h h α=+∑,The stagnation isentropic efficiency of the multi-stage

axial-flow compressor is

n

*

**sc

sc

c sc

i i=1

//h h h h η==∑ (10)

The total energy-balance of a n-stage compressor gives:

()n

n

n

*2n+1j Z sc

jr sj j=1

j 1

j 1

10A h h h h α==≡-+-?-?=∑∑∑ (11)

Eq. (11) can be rewritten as

()1221:,0j A ctg ρα==

()22323,,,0A ctg ctg ρραα=

….

()2j-122j 22j ...,...0A ctg ctg ρραα=

()2j 22j 122j 1...,...0A ctg ctg ρραα++= (12)

()2n 22n 122n 1:...,...0j n A ctg ctg ρραα++==

()*

2n 122n 122n+1sc ...,...,0A ctg ctg h ρραα++=

For convenience, in order to make the constraints dimensionless, some parameters are defined:

()()()()()()

2*22222

j 111j j j 1/211/1c i ctg y f ctg τλελαα=-++???? (13) ()()()*2

uj 111uj j j j 1/21/1j u c i k ctg y f ctg τλελα?α??=-+?????? (14) ()()()2*222

j 11uj 1/21/1u i k ctg τλ?α??=-+?????? (15)

()()()2*2**2*j 1j 1j uj 1j 1/2/2//2w i c i u c i u i =-+ (16)

Where 1()τλ 1()ελare the aerodynamic functions, and *11/c a λ=, where *a is the stagnation sound velocity and *2*12(1)/(1)a i k k =-+,j j 11uj j //()f F F l k l ==is the relative area,

*j j 1/y ρρ= is the relative density, where l is the height of the blade, and a,11/c u ?= is flow

coefficient. Introducing the isentropic coefficient used by Boiko [23], one has

1i j j j i 1

exp s s R σσ=??

-== ? ???∏ (17)

Where ()

()

k/k-1i is i /i i σ= (18)

Therefore, the constraint conditions can be rewritten as :

()()

()

j

11u,2i 2i u,2i-12i-1k-11-k 2j-12j 2j-1

2i=12i 2i 2i-12i-112111k ctg k ctg A y y f y f ctg τλελαασ?α-????

??≡-+

- ?+?

?∑ ()()2

2j 2

112222j 2j 1

11101ctg y f ctg ατλελα+--=????+ (19)

()()

()

j

11u,2i 2i u,2i-12i-1k-1

1-k 2j 2j+12j

2i 12i 2i 2i-12i 112111k ctg k ctg A y y f y f ctg τλελαασ?α=--????

??≡-+

- ?+?

?∑ ()()2

2j 12

112222j+12j+1111101ctg y f ctg ατλελα++--=????+ (20)

()()n

u,2i 2i u,2i-12i-12n+11z SC

i 12i 2i 2i 12i 11k ctg k ctg A y f y f ααελ?αψ=--??

≡--+ ??

?∑

()

()12

22

n

12i 1u,2i-1ri 22i 12i-12i-12i-12i-112ctg k y f y f ?ελ?ελαω-=???

? ?-+- ? ?????

()()

122

n 2

2i

si

22i=12i 2i

1102ctg y f ?ελαω

-+=∑ (21)

and the stagnation isentropic efficiency of the multi-stage axial-flow compressor can be

rewritten as

()()()n

*

sc

sc 1u,2i

2i 2i 2i u,2i-12i 12i 12i 1i=1///k ctg y f k ctg y f ηψελ?αα---??

??=-??????∑ (22) Where *

2sc sc

1/h u ψ=is isentropic work coefficient of the multi-stage. The isentropic work coefficient of each stage is defined as *2

si si 2i-1/h u ψ=.Now the optimization problem is to

search the optimal values of i a and i y for finding the maximum value of the objective

function *

sc η under the constraints of Eqs. (19)~(21).

4. Solution procedure

Once the system variables, the objective function, and the constraints are defined, a suitable method has to be adopted to determine the values of the design variables that maximize the objective function while satisfying the given constraints. The present optimization model is a non-linear programming procedure with

Table 1Relative areas for the stations

Station

(i )

1 2 3 4 5 6 7 Relative area

i

f

1

0.936

0.886

0.809

0.729

0.701

0.647

Table 2Original and optimal design plans

参数 上限 下限 原始数据

最佳数据

s ψ=0.732 s ψ=0.732 s ψ=0.732 s ψ=0.6

?=0.59

?=0.59

?=0.49

?=0.59

1α()? 54 90 80.5891 72.6858 74.9116 66.5570 2α()? 35 90 49.50 45.00 45.00 45.00 3α()? 54 90 84.1338 76.3431 77.55 68.2003 4α()? 35 90 49.50 45.00 45.00 45.00 5α()? 54 90 66.411 59.7080 69.0582 55.7046 6α()? 35 90 49.5418 45.00 45.00 46.6157 7α()? 54 90 89.99 90.00 90.99 89.6147 2y 0 3 1.089 1.0459 1.0913 1.093 3y 0 3 1.148 1.1474 1.1549 1.0798 4y 0 3 1.424 1.3970 1.3900 1.2624 5y

3

1.424

1.4117

1,。4198

1.2624

6y 0 3 1.565 1.5372 1.6091 1.3345 7y

0 3 1.618 1.6338 1.6671 1.4450 *sopt η

0.9020

0.9050

0.9074

0.8955

5. Numerical example

In the calculations, ,1u i k =,1330/u m s =, *1288T K =, 1.4k =, n = 3, R = 286.96 J/(kg ·K), 0.04z α=,0.025rj ω= and 0.02sj ω= are set. The relative areas at every station are listed in Table 1. It should be pointed out that there will be some influence on the relation of the optimization objective with these dimensionless parameters if are functions of the working fluid parameters and geometry parameters of the flow-path configuration. However, the relation obtained will not change qualitatively. For a 3-stage compressor, there are 13 design variables and 7 constraint conditions. Besides, the lower and upper limit value

constraints of the 13 design variables should also be considered in the calculations. The lower and upper limits of the optimization variables, the original design plan, and the optimization results for different flow coefficients and work coefficients are listed in Table 2. It can be seen that the optimization procedure is effective and practical. The calculations show that the

optimal stagnation isentropic efficiency *

sopt η is an increasing function of the work coefficient and a decreasing function of the flow coefficient. The effect of the work coefficient on the optimal stagnation isentropic-efficiency is larger than that of the flow coefficient. Also for various values 你of the flow coefficients and work coefficients, the optimal absolute exit-angle of the last stage always approaches 90?. 6. Conclusion

In this paper, the efficiency optimization of a multi-stage axial-flow compressor for a fixed flow shape has been studied using one-dimensional flow-theory. The universal characteristic relation of the compressor be haviour is obtained. Numerical examples are presented. The results can provide some guidance as to the performance analysis and

optimization of the multi-stage compressor. This is a preliminary study. It will be necessary to use multi-objective numerical optimization techniques [11–13,20,21,25–29] and artificial neural network algorithms [10,19,30,31] for practical compressor optimization. References

[1] Wall RA. Axial-flow compressor performance prediction. AGARD-LS-83 1976(June):4.1–4.34.

[2] Gu C, Miao Y. Blade design of axial-flow compressors by the method of optimal control theory. Trans ASME, J Turbomach

1987;109(1):99–107.

[3] Hearsey RM. Numerical optimization of axial compressor design. ASME paper No. 89-GT-14.

[4] Tuccille R. A proposal for optimized design of multi-stage compressors. ASME paper No. 89-GT-34.

[5] Lim JS, Chung MK. Design-point optimization of an axial-flow compressor stage. Int J Heat Fluid Flow 1989;10(1):48–58.

[6] Massardo A, Statta A. Axial-flow compressor design optimization: Part I-pitchline analysis and multi-variable objective function

influence. Trans ASME, J Turbomach 1990;112(2):339–404.

[7] Massardo A, Statta A, Marini M. Axial-flow compressor design optimization: Part

II-throughflow analysis. Trans ASME, J

Turbomach 1990;112(2):405–11.

[8] Egorov IN, Fomin VN. Numerical method of optimization of a multi-stage axial compressor. Experimental and Computational

Aerothermodynamics of Internal Flows. World Publishing Corporation; 1990, p.

495–503.

[9] Tuccille R. Optimal design of axial-flow compressor. ASME IGTI 1990;5:227–33.

[10] Geoge H, Stuart B. Preliminary design of axial compressors using artificial intelligence and numerical-optimization techniques.

ASME paper No. 91-GT-334.

[11] Chen L. A brief introduction of multi-objective optimization for an axial-flow compressor-stage. Gas Turbine Technol 1992;5(1):11–3

[in Chinese].

[12] Egorov IN, Krekinin GV. Multi-criterion stochastic optimization of an axial compressor. ASME IGTI 1992;7:563–70.

[13] Egorov IN. Optimization of multi-stage axial compressor in a gas-turbine engine system. ASME paper, 92-GT-424 1992.

[14] Chen L. Some new developments on the optimal design of turbomachinery during the past decade. J Eng Thermal Energy Power

1992;7(4):214–21 [in Chinese].

[15] Egorov IN. Deterministic and stochastic optimization of a variable axial-compressor. ASME paper No. 93-GT-397.

[16] Sun J, Elder RL. Numerical optimization of a stator vane setting in multi-stage

axial-flow compressors. Proc Inst Mech Eng

1998;212(A4):247–59.

[17] Calvert WJ, Ginder RB. Transonic fan and compressor design. Proc Inst Mech Eng 1999;213(C5):419–36.

[18] Gallimore SJ. Axial-flow compressor design. Proc Inst Mech Eng

1999;213(C5):437–49.

[19] Li J, Satofuka N. Optimization design of a compressor cascade airfoil using a Navier–Stokes solver and genetic algorithms. Proc Inst

Mech Eng 2002;216(A2):195–202.

[20] Benini E. Three-dimensional multi-objective design optimization of a transonic compressor rotor. AIAA J Propul Power

2004:559–65.

[21] Chen L, Sun F, Wu C. Optimal design of subsonic axial-flow compressor stage. Appl Energy 2005;80(2):187–95.

[22] Chen L, Luo J, Sun F, Wu C. Optimized efficiency axial-flow compressor. Appl Energy 2005;81(4):409–19.

[23] Boiko AB. Optimal Design for Flow-Path of Axial Turbines. Harkov: Higher Education Press; 1982 [in Russian].

[24] Casey MV. A mean-line prediction method for estimating the performance characteristics of an axial- compressor stage. Proc ImechE

1987, Turbomach Efficiency Predict Improv 1987:145–55.

[25] Chen L, Wu C, Blank D, Sun F. Preliminary design optimization of a marine dual tandem gear. Int J Pow Energy Syst

1997;17(3):218–22.

[26] Chen L, Wu C, Ni N, Cao Y, Sun F. Optimal design of centrifugal compressor stages. Int J Pow Energy Syst 1998;18(1):12–5.

[27] Chen L, Wu C, Blank D, Sun F. The multi-objective optimal design method for a radial-axial flow turbine with the criteria of optimal

twist at the outlet of blade. Int J Pow Energy Syst 1998;18(1):16–20.

[28] Chen L, Zhang J, Wu C, Blank D, Sun F. Analysis of multi-objective

decision-making for marine steam turbine. Int J Pow Energy

Syst 1998;18(2):96–101.

[29] Chen L, Zhou S, Wu C, Sun F. Preliminary design optimization of a steam generator. Energy Convers Manage 2002;43(13):1651–61.

[30] Lin BJ, Hung CI, Tang EJ. An optimal design of axial-flow fan blades by the machining method and an artificial neural-network.

Proc Inst Mech Eng 2002;216(C3):367–76.

[31] Qin X, Chen L, Sun F, Wu C. Efficiency optimization for an axial-flow

steam-turbine stage using genetic algorithm. Appl Therm Eng

2003;23(18):2307–16.

L. Chen et al. / Applied Energy 85 (2008) 625–633 633

信息与计算科学中英文对照外文翻译文献

(文档含英文原文和中文翻译) 中英文对照外文翻译 基于拉格朗日乘数法的框架结构合理线刚度比的研究 【摘要】框架结构是一种常见的多层高层建筑结构;列的合理线刚度比研究是框架结构优化设计中的一个重要方面。本论文研究合理线刚度比时,框架梁、柱的

侧移刚度根据拉格朗日乘数法结构优化的理论和在框架梁、柱的总物质的量一定的前提下,取得最高值。与传统的估计方法和试算梁柱截面尺寸不同,梁、柱的合理的截面尺寸可以在初步设计阶段由派生的公式计算。这种方法不仅作为计算框架梁、柱的截面尺寸基础,确认初步设计阶,而且也被用做类似的结构梁柱合理线刚度比研究的参考。此外,在调整帧梁、柱的截面尺寸的方法的基础上,降低柱的轴向的压缩比,从而达到剪切压缩比和提高结构的延展性。 【关键词】拉格朗日数乘法框架结构刚度比截面尺寸 1 引言 在混凝土框架结构初步设计的期间,通常,框架梁截面高度通过跨度来估算,和截面宽度根据高宽比估算; 框架柱的截面尺寸是根据柱轴压缩的支持柱的面积的比率估算[1]。然而,在估计过程中,初步设计阶段中的一个重要的链,未考虑到柱侧移刚度的影响[2]。列侧移刚度越大,结构层间位的刚度越大,剪切型框架结构的层间位移将越较小。所以,总结构越小的侧向位移将减少地震灾害[3] 所造成的损失。论文的核心是如何得到列侧移刚度的最大值。 同时,列侧移刚度的值与框架梁-柱线刚度直接相关。本论文的目的是为了得到一个合理的框架梁 - 柱的线刚度比,在某个控制范围内获得列侧移刚度的最大值。 计算列横向位移的方法有两种方法:刚度拐点点法和修改拐点法。拐点的方法假定关节的旋转角度为0(当梁柱线性刚度比是大于或等于3时,柱的上端和下端的关节的旋转角度可以取为0,因为它实际上是相当小),即梁的弯曲刚性被视为无穷大。拐点的方法主要是应用于具有比较少层的框架结构。但对于多层、高层框架结构,增加柱截面会导致梁柱线刚度比小于3,在水平荷载作用下,框架结构的所有关节的旋转角度的横向位移会发生不可忽视。因此,一位日本教授武藤提出修改拐点法[4],即D-值方法。本文采用D-值列侧移刚度的计算法,因为它着重于多层、高层框架结构。 少数在国内外对框架梁柱合理线刚度比的研究,只有梁七黹,源于列侧移刚度的计算方法,比D-值法更加应用广泛;申得氏指出在多层、高层框架结构的柱侧向刚度计算中存在的问题,补充和修改底部和顶部层的列侧向刚度计算公式;

毕设外文资料翻译.

理工学院 毕业设计外文资料翻译 专业:计算机科学与技术 姓名:马艳丽 学号: 12L0752218 外文出处:The Design and Implementation of 3D Electronic Map of Campus Based on WEBGIS 附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 基于WebGIS的校园三维电子地图的设计与实现 一.导言 如今,数字化和信息化是当今时代的主题。随着信息革命和计算机科学的发展,计算机技术已经渗透到科学的各个领域,并引起了许多革命性的变化,在这些科目,古代制图学也不例外。随着技术和文化的不断进步,地图变化的形式和内容也随之更新。在计算机图形学中,地理信息系统(GIS)不断应用到Web,制作和演示的传统方式经历了巨大的变化,由于先进的信息技术的发展,地图的应用已经大大延长。在这些情况下,绘图将面临广阔的发展前景。电子地图是随之应运而生的产品之一。随着计算机技术,计算机图形学理论,遥感技术,航空摄影测量技术和其他相关技术的飞速发展。用户需要的三维可视化,动态的交互性和展示自己的各种地理相关的数据处理和分析,如此多的关注应支付的研究三维地图。东北石油大学及其周边地区的基础上本文设计并建立三维电子地图。 二.系统设计 基于WebGIS的校园三维电子地图系统的具有普通地图的一般特性。通过按键盘上的箭头键(上,下,左,右),可以使地图向相应的方向移动。通过拖动鼠标,可以查看感兴趣的任何一个地方。使用鼠标滚轮,可以控制地图的大小,根据用户的需求来查看不同缩放级别的地图。在地图的左下角会显示当前鼠标的坐标。在一个div层,我们描绘了一个新建筑物的热点,这层可以根据不同的地图图层的显示,它也可以自动调整。通过点击热点,它可以显示热点的具体信息。也可以输入到查询的信息,根据自己的需要,并得到一些相关的信息。此外,通过点击鼠标,人们可以选择检查的三维地图和卫星地图。 主要功能包括: ?用户信息管理:检查用户名和密码,根据权限设置级别的认证,允许不同权限的用户通过互联网登录系统。 ?位置信息查询:系统可以为用户提供模糊查询和快速定位。

1外文文献翻译原文及译文汇总

华北电力大学科技学院 毕业设计(论文)附件 外文文献翻译 学号:121912020115姓名:彭钰钊 所在系别:动力工程系专业班级:测控技术与仪器12K1指导教师:李冰 原文标题:Infrared Remote Control System Abstract 2016 年 4 月 19 日

红外遥控系统 摘要 红外数据通信技术是目前在世界范围内被广泛使用的一种无线连接技术,被众多的硬件和软件平台所支持。红外收发器产品具有成本低,小型化,传输速率快,点对点安全传输,不受电磁干扰等特点,可以实现信息在不同产品之间快速、方便、安全地交换与传送,在短距离无线传输方面拥有十分明显的优势。红外遥控收发系统的设计在具有很高的实用价值,目前红外收发器产品在可携式产品中的应用潜力很大。全世界约有1亿5千万台设备采用红外技术,在电子产品和工业设备、医疗设备等领域广泛使用。绝大多数笔记本电脑和手机都配置红外收发器接口。随着红外数据传输技术更加成熟、成本下降,红外收发器在短距离通讯领域必将得到更广泛的应用。 本系统的设计目的是用红外线作为传输媒质来传输用户的操作信息并由接收电路解调出原始信号,主要用到编码芯片和解码芯片对信号进行调制与解调,其中编码芯片用的是台湾生产的PT2262,解码芯片是PT2272。主要工作原理是:利用编码键盘可以为PT2262提供的输入信息,PT2262对输入的信息进行编码并加载到38KHZ的载波上并调制红外发射二极管并辐射到空间,然后再由接收系统接收到发射的信号并解调出原始信息,由PT2272对原信号进行解码以驱动相应的电路完成用户的操作要求。 关键字:红外线;编码;解码;LM386;红外收发器。 1 绪论

外文翻译 - 英文

The smart grid Smart grid is the grid intelligent (electric power), also known as the "grid" 2.0, it is based on the integration, high-speed bidirectional communication network, on the basis of through the use of advanced sensor and measuring technology, advanced equipme nt technology, the advanced control method, and the application of advanced technology of decision support system, realize the power grid reliability, security, economic, efficient, environmental friendly and use the security target, its main features include self-healing, incentives and include user, against attacks, provide meet user requirements of power quality in the 21st century, allow all sorts of different power generation in the form of access, start the electric power market and asset optimizatio n run efficiently. The U.S. department of energy (doe) "the Grid of 2030" : a fully automated power transmission network, able to monitor and control each user and power Grid nodes, guarantee from power plants to end users among all the nodes in the whole process of transmission and distribution of information and energy bi-directional flow. China iot alliance between colleges: smart grid is made up of many parts, can be divided into:intelligent substation, intelligent power distribution network, intelli gent watt-hourmeter,intelligent interactive terminals, intelligent scheduling, smart appliances, intelligent building electricity, smart city power grid, smart power generation system, the new type of energy storage system.Now a part of it to do a simple i ntroduction. European technology BBS: an integration of all users connected to the power grid all the behavior of the power transmission network, to provide sustained and effective economic and security of power. Chinese academy of sciences, institute of electrical: smart grid is including all kinds of power generation equipment, power transmission and distribution network, power equipment and storage equipment, on the basis of the physical power grid will be modern advanced sensor measurement technology, network technology, communication

框架结构毕业设计任务书和指导书范本

框架结构毕业设计任务书和指导书 1 2020年4月19日

毕业设计基本要求 1目的 (1)综合运用所学专业理论知识与设计技能,处理建筑设计中有关方针、政策、功能、经济、安全、美观等方面的问题。解决总体、单体、空间等关系,以创造富有时代气息的优美建筑形象与环境。依据建筑设计完成结构体系的布置、结构在各种荷载工况下的计算、构造和施工图。 (2)掌握一般建筑工程的设计思路,进而举一反三熟悉有关建筑工程的设计、施工、预算等建设过程。为即将走上工作岗位奠定基础。 (3)学以致用,学习科学技术和技能的目的是应用。一个工程师在设计、建设实际工程中应具备的知识,都是我们在毕业设计中应予以加强的。因此深切领悟总体概念设计、掌握具体理论设计和实际工程技术处理措施的结合作为重点来训练。 (4)树立正确的设计思想,全面对待建筑与结构的关系, 2 2020年4月19日

培养勤奋、严谨、认真的工作作风及分析解决一般工程技术问题的能力。 (5)掌握调查研究、理论联系实际的学习方法,养成既能独立思考,又能相互配合密切合作的工作态度。 (6)使学生对一般工业与民用建筑的土建设计的内容和构成有比较全面的了解,并熟悉有关设计标准、规范、手册和工具书,增强毕业后到生产第一线工作的适应能力。 2成果形式及要求 (1)计算书和说明书: 字数应不少于1万字,书写要工整,字迹要清楚,可采用计算机打印。计算书内容要阐明设计依据或标准,方案构思、特点、必要的经济指标,结构选型、构造处理、材料特点及计算上的主要问题,还应包括结构计算全过程,计算要正确、完整、思路清晰、简图明了。计算书格式:应严格按照毕业设计手册中的要求。 (2)图纸: 3 2020年4月19日

外文翻译1

译文(一) THE ACCOUNTING REVIEW V ol. 83, No. 3 2008 pp. 823–853 市场参与者的杜邦分析的使用 马克?t?Soliman 华盛顿大学 文摘:杜邦分析,一种常见的财务报表分析,依靠于净营业资产收益率的两个乘法组件:利润率和资产周转率。这两个会计比率衡量不同的构造。因此,有不同的属性。之前的研究已经发现,资产周转率的变化是未来收益的变化正相关。本文全面探讨了杜邦组件和沿着三个维度有助于文学。首先,本文有助于财务报表分析文献,发现在这个会计信息信号实际上是增量学习会计信号在先前的研究在预测未来收益。其次,它有助于文学在股票市场上使用的会计信息通过检查眼前和未来的股本回报投资者应对这些组件。最后,它增加了分析师的文献处理会计信息的再次测试直接和延迟反应的分析师通过同期预测修正以及未来预测错误。一致的跨市场加入者的两组,结果表明是有用的信息就是明证杜邦组件和股票收益之间的联系以及维度分析师预测。然而,我发现预测未来预测错误和异常返回信息处理表明似乎没有完成。平均水平,分析表明杜邦组件代表增量和可行的操作特征信息的公司。 关键词:财务报表分析、杜邦分析、市场回报、分析师预估。 数据可用性:在这项研究中使用的数据是公开的来源显示的文本。 在本文中,我分析杜邦分析中包含的信息是否与股市回报相关和分析师预测。之前的研究文档组件从杜邦分析,分解的净营业资产收益率为利润率和资产周转率,有解释力对未来盈利能力的变化。本文增加了文献综合研究投资者和分析师反应杜邦组件三个维度。首先,它复制先前记录的预测能力和检查是否健壮和增量其他预测已经考虑在文学的存在。其次,它探讨了使用这些组件的股市投资者通过观察同生和未来收益。在同时代的长窗协会和短时期限信息测试,结果显示积极联系杜邦组件和股本回报率。但小未来异常返回交易策略显示的信息可能不完整的处理。最后,检查当前预测修正由卖方分析师和未来的预测错误。尽管他们似乎修改他们的预测未来收益与这些杜邦组件中的信息一致,修订似乎不完整就是明证可预测的未来预测错误。一致的市场参与者,在两组同期结果表明,信息是有用的,但是未来的测试表明,信息处理似乎没有完成。 由金矿和笔者(2001)提供了一个使用剩余收益的股票估值方法框架,给出了一个简单的财务比率分析的直接映射到股票估值。特别是他们用杜邦分析,分解公司的净营业资产收益率(RNOA)利润率(PM)和资产周转率(ATO)点的地方1。PM和ATO会计信号,测量不同结构对一个公司的业务2。PM 往往是来自定价权,如产品创新,产品定位,品牌知名度,先发优势和市场定位。ATO措施资产利用率和效率,通常来自于有效的利用财产,工厂和设备,有效的库存流程;和其他形式的资本管理工作3。 我们有理由期待竞争力量的影响这两个来源盈利能力不同。大的利润率通常吸引新进入者进入市场或快速模仿新思想从现有的竞争对手。由此产生的竞争导致高利润率回归正常水平,暗示更多暂时的利益。与利润不同,然而,竞争可能少威胁要部署一个有效的资产。更难以模仿另一个公司的高效生产流程因为这样模仿通常包括大型和昂贵的改革目前的工厂和操作。 1.具体来说,RNOA营业收入/平均净营业资产,PM营业收入/销售和ATO销售 /平均净营业资产。此后,点和ATO被称为“杜邦公司组成”。另一个常见的形式是分解罗伊(利润杠杆资产周转率)或(NI /产品销售/资产资产/股本)。讨论的“估值理论和RNOA”部分,我在分析使用RNOA为了专注于操作,因此抽象从公司的融资决策。 2.例如,阿伯克龙比和惠誉赚取高额利润通过出售used-looking服装被认为是时髦和青少年所要

多层混凝土框架结构设计文献综述

多层混凝土框架结构设计 1.前言 随着社会的发展,钢筋混凝土框架结构的建筑物越来越普遍.由于钢筋混凝土结构与砌体结构相比较具有承载力大、结构自重轻、抗震性能好、建造的工业化程度高等优点;与钢结构相比又具有造价低、材料来源广泛、耐火性好、结构刚度大、使用维修费用低等优点。因此,在我国钢筋混凝土结构是多层框架最常用的结构型式。近年来,世界各地的钢筋混凝土多层框架结构的发展很快,应用很多。 一般框架结构是由楼板、梁、柱及基础4种承重构件组成的,由主梁、柱与基础构成平面框架,各平面框架再由连续梁连接起来而形成的空间结构体系。文献[1]认为,在合理的高度和层数的情况下,框架结构能够提供较大的建筑空间,其平面布置比较的灵活,可适合多种工艺与使用功能的要求。 多层钢筋混凝土框架结构设计可以分为四个阶段:一是方案设计,二是结构分析,三是构件设计,四是绘施工图。结构分析和构件设计是结构设计中的计算阶段,在现代,已由电子计算机承担这一工作,常采用PKPM建模计算。但是,结构的计算并不能代替结构的设计。文献[2]中认为:良好的结构设计的重要前提,应该是合理组织与综合解决结构的传力系统、传力方式,良好的结构方案是良好结构设计的重要前提。2.关于框架结构设计文献回顾 2.1框架结构的优缺点 框架结构体系是由横梁与柱子连接而成.梁柱连接处(称为节点)一般为刚性连接,有时为便于施工和其他构造要求,也可以将部分节点做成铰接或者半铰接.柱支座一般为固定支座,必要时也可以设计成铰支座.框架结构可以分为现浇整体式,装配式,现浇装配式. 文献[3]中提到:框架结构的布置灵活,容易满足建筑功能和生工艺的多种要求.同时,经过合理设计,框架结构可以具有较好的延性和抗震性能.但是,框架结构承受水平力(如风荷载和水平地震作用)的能力较小.当层树较多或水平力较大时,水平位移较大,在强烈地震作用下往往由于变形过大而引起非结构构件(如填充墙)的破坏.因此,为了满足承载力和侧向刚度的要求,柱子的截面往往较大,既耗费建筑材料,又减少使用面积.这就使框架结构的建筑高度受到一定的限制.目前,框架结构一般用于多层建筑和不考虑抗震设防,层数较少的的高层建筑(比如,层数为10层或高度为30米以下) 2.3框架结构的布置 多层框架结构的平面布置形式非常的灵活,文献[4]中将框架结构按照承重方式的不同分为以下三类:(1)横向框架承重方案,以框架横梁作为楼盖的主梁,楼面荷载主要由横向框架承担.由于横向框架数往往较少,主梁沿横向布置有利于增强房屋的横向刚度.同时,主梁沿横向布置还有利于建筑物的通风和采光.但由于主梁截面尺寸较大,当房屋需要大空间时,净空较小,且不利于布置纵向管道. (2)纵向框架承重方案以框架纵梁作为楼盖的主梁,楼面荷载由框架纵梁承担.由于横梁截面尺寸较小,有

毕业设计外文翻译

毕业设计(论文) 外文翻译 题目西安市水源工程中的 水电站设计 专业水利水电工程 班级 学生 指导教师 2016年

研究钢弧形闸门的动态稳定性 牛志国 河海大学水利水电工程学院,中国南京,邮编210098 nzg_197901@https://www.360docs.net/doc/a94704282.html,,niuzhiguo@https://www.360docs.net/doc/a94704282.html, 李同春 河海大学水利水电工程学院,中国南京,邮编210098 ltchhu@https://www.360docs.net/doc/a94704282.html, 摘要 由于钢弧形闸门的结构特征和弹力,调查对参数共振的弧形闸门的臂一直是研究领域的热点话题弧形弧形闸门的动力稳定性。在这个论文中,简化空间框架作为分析模型,根据弹性体薄壁结构的扰动方程和梁单元模型和薄壁结构的梁单元模型,动态不稳定区域的弧形闸门可以通过有限元的方法,应用有限元的方法计算动态不稳定性的主要区域的弧形弧形闸门工作。此外,结合物理和数值模型,对识别新方法的参数共振钢弧形闸门提出了调查,本文不仅是重要的改进弧形闸门的参数振动的计算方法,但也为进一步研究弧形弧形闸门结构的动态稳定性打下了坚实的基础。 简介 低举升力,没有门槽,好流型,和操作方便等优点,使钢弧形闸门已经广泛应用于水工建筑物。弧形闸门的结构特点是液压完全作用于弧形闸门,通过门叶和主大梁,所以弧形闸门臂是主要的组件确保弧形闸门安全操作。如果周期性轴向载荷作用于手臂,手臂的不稳定是在一定条件下可能发生。调查指出:在弧形闸门的20次事故中,除了极特殊的破坏情况下,弧形闸门的破坏的原因是弧形闸门臂的不稳定;此外,明显的动态作用下发生破坏。例如:张山闸,位于中国的江苏省,包括36个弧形闸门。当一个弧形闸门打开放水时,门被破坏了,而其他弧形闸门则关闭,受到静态静水压力仍然是一样的,很明显,一个动态的加载是造成的弧形闸门破坏一个主要因素。因此弧形闸门臂的动态不稳定是造成弧形闸门(特别是低水头的弧形闸门)破坏的主要原是毫无疑问。

5外文翻译原文1

A Case Study of Pattern-based Software Framework to Improve the Quality of Software Development Chih-Hung Chang, Chih-Wei Lu Dept. of Information Management, Hsiuping Institute of Technology No.11, Gongye Rd., Dali City, Taichung County, Taiwan(R.O.C.) 886-4-24961123 ext 3112 {chchang,cwlu}@ https://www.360docs.net/doc/a94704282.html,.tw William C. Chu Dept. of Computer Science and Information Engineering, Tunghai University No.181, Sec. 3, Taichung Port Rd.,Taichung City, Taiwan (R.O.C.) 886-4-23508983 cchu@https://www.360docs.net/doc/a94704282.html,.tw Nien-Lin Hsueh Dept. of Information Engineering and Computer Science, Feng Chia University No. 100 Wenhwa Rd., Taichung, Taiwan (R.O.C.) 886-4- 24517250 ext 3773 nlhsueh@https://www.360docs.net/doc/a94704282.html,.tw Chorng-Shiuh Koong Dept. of Computer and Information Science, Taichung University No.140, Ming-Sheng Rd., Taichung City, Taiwan (R.O.C.) 886-4-22183804 csko@https://www.360docs.net/doc/a94704282.html,.tw ABSTRACT In recent years, development of the software industry and demand for software systems have increased rapidly, but developers often does not know whose suggestion to follow regarding methodologies of software engineering. One reason for that is the difficulty in applying new software engineering technologies. Developers take a long time to train. Another reason is the difficulty in integrating CASE toolsets. So many indeterminate factors make the development process more and more complex. On the other hand, software development is too customized, and software reuse is difficult. T he reasons above are the cause for software development and maintenance to become more complex and difficult to control. In this paper we explore the importation of a software pattern-based framework, and the development of an ERP/support chain system. Based on software patterns, developers can separate development and business so as to reduce problems caused by the developer’s lack of business experience. T he quality of the product can thus be enhanced, software development costs be reduced, and software maintenance be improved. Keywords Design Pattern, Framework, Software Development Process, XML 1.INTRODUCTION In Object-Oriented T echnology, the property of inheritance allows software components to be reused, which can obviously reduce the cost of software development. For this reason, to produce a highly reusable software component is an important goal of software engineering. However, programmers are usually focused on code reuse while ignoring design reuse. Design patterns provide a clear concept of design structure by describing the relationships of inheritance and reference between components of the system. Design patterns are a series of familiar usages and constructions utilized throughout system design. Design patterns allow rapid coding of certain components by following certain patterns of steps. T his can improve the documentation and maintenance of existing systems by providing an explicit specification of class, object interactions and their underlying intents. One of the main purposes of design patterns is to help software engineers to understand the common characteristics of software objects/components in specialized domain. In recent years, due to the development and maturation of WWW and Java [14] technologies, many applications are now web applications or leaning in that direction. Many software concepts are utilized for the web as well, such as Design Patterns and Frameworks. The Apache Struts [12] and Spring Framework [13] are both open source frameworks used to address and reduce the complexity of developing an enterprise application. T he advantage of using a framework is the layered architecture it provides. Layered architecture allowed users to choose the component desired, while also providing the integration framework when developing application using J2EE. T hese developing web concepts can facilitate the development of web applications. However, these very useful tools and concepts lack a systematic organization. We hope to use these open source software technologies to develop a software framework which can be applied to web application. T his should solve the problem of web applications lacking a good structure, while through applying these open source software technologies, software development costs will be reduced. Furthermore, a guideline for programmers who wants to use these open source technologies will be provided. This paper is organized as follows: In the next section, we discuss works related to our project; in section 3, the open source technologies used in the paper and the system implementation will be described; Section 4 is a sample experiment. T he conclusion is given in section 5.

毕设外文文献翻译

xxxxxxxxx 毕业设计(论文)外文文献翻译 (本科学生用) 题目:Poduct Line Engineering: The State of the Practice 生产线工程:实践的形态 学生姓名:学号: 学部(系): 专业年级: 指导教师:职称或学位: 2011年3月10日

外文文献翻译(译成中文1000字左右): 【主要阅读文献不少于5篇,译文后附注文献信息,包括:作者、书名(或论文题目)、出版社(或刊物名称)、出版时间(或刊号)、页码。提供所译外文资料附件(印刷类含封面、封底、目录、翻译部分的复印件等,网站类的请附网址及原文】 Requirements engineering practices A precise requirements engineering process— a main driver for successful software development —is even more important for product line engineering. Usually, the product line’s scope addresses various domains simultaneously. This makes requirements engineering more complex. Furthermore, SPL development involves more tasks than single-product development. Many product line requirements are complex, interlinked, and divided into common and product-specific requirements. So, several requirements engineering practices are important specifically in SPL development: ? Domain identification and modeling, as well as commonalities and variations across product instances Separate specification and verification for platform and product requirements ? Management of integrating future requirements into the platform and products ? Identification, modeling, and management of requirement dependencies The first two practices are specific to SPL engineering. The latter two are common to software development but have much higher importance for SPLs. Issues with performing these additional activities can severely affect the product line’s long-term success. During the investigation, we found that most organizations today apply organizational and procedural measures to master these challenges. The applicability of more formal requirements engineering techniques and tools appeared rather limited, partly because such techniques are not yet designed to cope with product line evelopment’s inherent complexities. The investigation determined that the following three SPL requirements engineering practices were most important to SPL success. Domain analysis and domain description. Before starting SPL development, organizations should perform a thorough domain analysis. A well-understood domain is a prerequisite for defining a suitable scope for the product line. It’s the foundation for efficiently identifying and distinguishing platform and product requirements. Among the five participants in our investigation, three explicitly modeled the product line requirements. The others used experienced architects and domain experts to develop the SPL core assets without extensive requirements elicitation. Two organizations from the first group established a continuous requirements management that maintained links between product line and product instance requirements. The three other organizations managed their core assets’ evolution using change management procedures and versioning concepts. Their business did not force them to maintain more detailed links between the requirements on core assets and product instances. The impact of architectural decisions on requirements negotiations. A stable but flexible architecture is important for SPL development. However, focusing SPL evolution too much on architectural issues will lead to shallow or even incorrect specifications. It can cause core assets to ignore important SPL requirements so that the core assets lose relevance for SPL development. Organizations can avoid this problem by establishing clear responsibilities for requirements management in addition to architectural roles. The work group participants reported that a suitable organizational tool for balancing requirements and architecture is roundtable meetings in which requirements engineers,

10外文翻译(1)

外文资料 Ethics and leadership skills in the public service Abstract The deteriorating situation of ethics in public administration–all around the globe–has made it a burning issue. Although ethics cannot be learned, it can be developed. Among various other approaches, improving leadership skills can prove to be effective in promoting ethics. Skilled and committed leadership can set ethical standards. Learning and mastering various technical, conceptual and interpersonal skills and other skills like emotional and social intelligence enable public servants to diffuse and establish core ethical values in the organization. The leadership skills and their role in promoting ethics have been discussed here for a better understanding of the subject. 1. Introduction The importance of ethics in public administration has long been neglected until recently. The deteriorating situation of ethics in this field –all around the globe– has made it a burning issue. Recent ethical scandals both in the public and private sectors have influenced scholars, national and international organizations to take a deep interest in this matter. Efforts have been made to promote ethical standards of the public servants. Among various other approaches, improving leadership skills can prove to be effective in promoting ethics in public service. Hart (2001) believes ethics cannot be effective without proper leadership. With the increasingly competitive nature of global economy and other surrounding pressures, the array of required leadership skills has also expanded (Montgomery,2003). Leaders guide the members of the organization toward the goals of the organization. It is one of the main responsibilities of a good leader to ensure that the functions of the organization are performed in an ethical manner. This paper discusses the concepts of ethics, leadership and leadership skills and attempts to present the role of leadership skills in enhancing ethics in the public service. 2. Ethics in the Public Service Ethics is a must for public administrators. Public policies have a direct effect on the citizens. Therefore ensuring ethics in the public service is a crucial matter. According to Rosenbloom (1989) ethics can be considered as a form of self-accountability or an “inner check” of the conduct of pub lic administrators. Ethics are statements, written or oral, that prescribe or proscribe certain behaviours under specified conditions (Nigro & Nigro, 1989, p.37). Public service ethics encompasses a broad and widening range of principles and values. According to the United Nations Department of Economic and Social Affairs (1999) these include objectivity, impartiality, fairness, sensitivity, compassion, responsiveness, integrity, accountability, transparency, selfless devotion to duty, protection of public interest. Ethical dilemmas generally take place around administrative discretion, corruption, accountability, nepotism, interest group pressure, information

相关文档
最新文档